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ON HERMITE AND HERMITE-FEJER INTERPOLATION 
OF HIGHER ORDER 

1. Introduction 
There are many different methods of constructing algebraic or trigono-

metric polynomials which approximate a given continuous function f ( x ) . 
The process of finding a polynomial which coincides with the function f ( x ) 
at certain pre-assigned points, called the nodes of interpolation, and its 
successive derivatives coinciding with arbirarily chosen numbers is referred 
to Hermite interpolation [10]. However, the expilicit forms of fundamental 
polynomials are too complicated and, for that reason, very little is known 
about the convergence behaviour of this kind of polynomials. 

Let there be 

(1.1) 1 — Xnn •'-n—l,n < . . . < X2nXln < 1 

the nodes of interpolation, 
2k — 1 

(1.2) xkn = cos— 7T, k = 1 , 2 , . . . , re, 
In 

the Tchebysheff nodes and f ( x ) a function continuous on [—1,1]. 
As far as convergence is concerned, Fejer [8] proved the following theo-

rems. 

Theorem A. If H^n-iif,x) a polynomial of degree at most 2n — 1 
which satisfies the conditions 

(1.3) # 2 n - l ( / , Z f c n ) = f(Xkn), # 2 n - l ( / , **n) = 0, 

then lim H2n-i{f,x) = f ( x ) uniformly on [—1,1]. 
n—>00 

Theorem B. If the polynomial # 2 n - i ( / 5 2) satisfies the conditions 

(1.4) # 2 „ _ i ( / , z f c „ ) = /(as*«), \H'2n_x{f,Xkn)\ < ^ V A 
•k/1 - xi.. log n 
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where lim en = 0, then lim H2n-i(f,x) = f ( x ) uniformly on [—1,1]. 
n—*oo n—Kx> 

For the order of convergence of / /2„_ i ( / , x) satisfying the conditions 

(1.5) tf2„-l(/,X*„) = f(xk »), = /'(**„), 
k — * • • ^ Tt^ 

we have the following result (cf. [12]). 

THEOREM C. Let f e C 1 [ - L , 1] and H2n-i{f,x) be defined by (1.5) . 
Then, for -1 < x < 1, 

| # 2 n - i ( / , * ) - / ( * ) | < cm-Hogn E 2 n . 2 ( f ) , 

where ci (later on C2,C3,...) is an absolute constant and E 2 n - 2 ( f ) is the 
best approximation of f'(x) by polynomials of degree at most 2n — 2. 

Let {xfcnli be the n distinct zeros of (1 — x2)Pn-2(x), where Pn(x) is 
the Legendre polynomial of degree n with the normalization P n ( l ) = 1. Let 
Gn(f, x) be the unique polynomial of degree at most An — 7 such that 

( L 6 ) \ Gn(f,Xkn) = f(xkn), G(nr\f,xkn) = 0, r = 1 ,2 ,3 ; 
k = 2 , 3 , . . . , n — 1. 

Then one can easily see that 

(1.7) G n ( f , x ) = / ( - 1 ) 1 ( 1 - x)P*_2(x) + / ( l ) i ( l + x)P*_2(x)+ 
n—1 

+ f(.Xkn)Akn(x) , 
k=2 

where, for k = 2 , 3 , . . . , n — 1, 

(1.8) Akn{x) = h\n + | [ ( N - 2){n - 1)(1 - xxkn) + L]x 

(l-x*)(x-xkn)> 4 

( i - *n ( 

(1.9) hkn{x) = 

(1.10) lkn(x) = 

2 

kn 
Pn-2(x) 

(X - xkn)P'n_2(xkn) 
For the polynomial Gn(f, x) we shall prove the following theorem. 

THEOREM 1. Let f e C[-l,l] and G n ( f , x ) be defined by (1.6) . Then, 
for — 1 < x < 1, we have 

(1.11) | G n ( / , S ) - f(x)| < C2 71"1 ¿ ^ ( ^ ^ + , 
k=1 ^ ' 
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where Wf(6) is the modulus of continuity of f(x) on [—1,1]. 

This type of estimates for Hermite-Fejer interpolation has been given in 
[l]-[4], [9], [11], [13], [14], [16]—[18], [21]-[23]. One can easily see that (1.11) 
is best possible for f(x) 6 Lip a, 0 < a < We also show that the result is 
precise for a = 1, by proving the following theorem. 

Theorem 2. There exists a function / (x) G Lip 1 and a constant C3 such 
that 

I G n { f , 0) - / (0) | > C37T1 log n, n = 6 ,8 ,10, . . . . 
Next, let us denote by Fn(f, x) the unique polynomial of degree at most 

4ra — 7 satisfying the conditions 

F n ( f , - l ) = f ( - l ) , Fn(/,1) = /(1), Fn(f,xkn) = f(xkn), 
F'n{f, xkn) = /3kn, F'M xkn) = 7fcn, xkn) = Xkn, 

Jc —- 1 y 

where xkn are the zeros of Pn_2(x) and (3kn, fkn, Xkn are any given numbers. 
Clearly, 

n n—1 
(1.13) Fn(f, f(Xkn)Akn(x) + PknBkn{x)+ 

k= 1 k=2 
n—1 n—1 

+ / , IknCk n 
k=2 k=2 

where xi n = 1 and xnn = —1. The fundamental polynomials Akn(x) for 
k = 2 ,3 , . . . , n — 1 are given by (1.8) and for k = 1, n by 

(1.14) Aln(x) = ^ P n
4 _ 2 ( z ) , Ann(x) = I^Pn

4_2(x), 

and Bkn, Ckn, Dkn for k = 2 ,3 , . . . , n - 1 by 

(1.15) B U x ) = (x - x ^ J / i l x ) + 4 ( " - 2 ) ( » - l ) a - x L ) + l J U l ) i 

( I .« ) c u . ) = ( * ~ X k " n i Z f ^ \ f h " ~ 2 " " ) i t . W , 
Zl.A Xkn) 

(1.17) Dkn{x) = { l ~ f { i { X \ n ) n f l L { x ) ' 

where hkn(x) are given by (1.9) and lkn by (1.10). These are all new forms 
and, as it turns out, they are very convenient for the proofs. 
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T h e o r e m 3 . Let f e C [ - l , l ] and F n ( f , x ) be given by ( 1 . 1 3 ) . Let, for 
k —— 2)3)« • • y TI 1 , 

Pkn = o(—p \ 7fcn =o( U V 
W 1 -®fcn l o g» / \ l - 4 n / 

A ^ - ° ( ( l - x L ) 3 / 2 l o g n ) -kn) 
Then lim Fn(f,x) = / ( x ) uniformly on [—1,1]. n—̂oo 

Theorem 3 is analogous to Theorem B of Fejer. It can also be compared 
with a result of Erdos and Turan [7]. 

2. Preliminaries 
In this section we state a few known results which we shall use later on. 

From [5], [19] we have, for — 1 < x < 1, 
n—1 

(2.1) $ > * „ ( » ) = l - i * _ 2 ( * ) < l . 
k=2 

By [20], for - 1 < x < 1, we have 

(2.2) |P»_2(s)| < 1, œl/2 
(ra — 2) 

(2.4) n - 2 ? fc = 2 ,3 , . . . , 
n- 2 

(2.5) 

- 3 / 2 
Tt y k — 2 , 3 , . . . , 

+ 1 , - 1, 

n - 2' 

n - 2 
+ l , . . . , n - 1, 

(2.6) |^_ a(«fcn)| ~ - | ) 

/ 3 \ "3/2 
(2.7) I^_ 2 («fcn) |~ ( " - k - y n 2 ' * = 

with x = cosfl, Xfc„ = cos Okn and 

<2-8» w i - > - 2 ) " I / ! > 

(n even), 

(2.9) ( n - 1 - < < ( » - f ) ~ 1)», 

A; = 2 ,3 , . . . , n - 1 . 
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Further, from [15] for - 1 < x < 1, we also have 

(2.10) 

(2.11) 

(1 - X^\Pn.2(x)\ 

( l - 4 n ) 3 / 4 K - 2 ( * * n ) | 
( 1 - Z 2 ) 1 / 4 

< c^n 1 , n > 4 , 

(1 -x\ ) i / 4 - C s ' k — 2,3,... ,n — 1. 

and from [6] there follows |/jtn(®)| < C6, A: = 2 , 3 , . . . , n — 1. 

3. Some lemmas 
First, we assume Xjn to be that zero of P„_2{x) which is nearest to x. 

Then, as in [22], it can be seen that 

( 3 . 1 ) \f(x) - f(xkn)\ < 

C7 

C8 
' / i sin 0 \ / i 2 V 

if j = k, 

if j < k = 
= j + i < n - 2 

or 2 < k = j — i < j , 

where i is a positive integer. By (2.9), it follows that 

( 3 . 2 ) 
1 < 2n- 1 

sin \ \0 — 6 k n \ ~ 2* - 1 ' 
One can also easily see that 
( 3 . 3 ) sin 0 k n < sin 0 + sin 0 k n < 2 sin ± ( 0 + 0 k n ) , 

( 3 . 4 ) sin 0 < sin 0 + sin 6 k n < 2 sin \{9 + G k n ) , 
(3.5) s i n i | 0 - 0 f c n | < sin i ( 0 + 0 f c n ) . 

L E M M A 3 . 1 . If - 1 < x < 1, then 

( 3 . 6 ) Akn(x)< i i j < J k = j + i < n _ 2 o i 2 < k = j - i < j . 

Proof . From (1.7) there follows 
n —1 

(3.7) 5 > * n ( * ) = l - P n 4 _ 2 ( z ) < l . 
k=2 

Since Akn(x) > 0 for k = 2,3,..., n — 1, the inequality ( 3 . 7 ) implies 

( 3 . 8 ) Ajn(x)< 1, - 1 < x < 1 , 

which completes the proof of the first part of ( 3 . 6 ) . 
By [11], [14], we get 

( 3 . 9 ) hkn(x) < c10i~2, k = j ± i , 
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where h k n ( x ) is given by (1.9). Further, from (1.8) we have 
(3.10) A k n ( x ) = h \ n { x ) + | [ (n - 2)(n - 1)(1 - x x k n ) + 1]x 

, ( 1 — X 2 ) ( x — X k n ) 2 , 4 

(i - * L ) 3 

If k ji due to (3.9) and (2.1), it xollows that 
(3.11) ( T i < c w i ~ 2 . 

Next, consider 
n2( 1 - x2)(x - Xfcn)2( 1 - X X k n ) 4 

l k n ( x ) = a 1 + 0 2 , A = 2 ,3 , . . . ,»— 1 . 

(3.12) <r2 < 
(1 - * L ) 3 

(1 - s 2 ) ( s - xfcn)2
 4 

+ ( 1 _ , L ) 3 

Since x = cos0, x;tn = cos0*n , on using ( 2 . 1 0 ) , ( 3 . 2 ) , ( 3 . 4 ) and ( 3 . 5 ) , we 
obtain for k ^ j, 

(3.13) ,T* <T C l 1 

n1 

< 2 2 
n l 

+ 

1 - x 2 1 + 
X x - x k n ) 2 | x - x f c n | 

sin2 0 
Lsin2i(0 + 0 * n ) s i n 2 i | 0 - 0 f c n | 

1 
8in + 0ftn)sin - tfjbnl. 

£13 
n 2 

1 
Lsin2 \\0 — 0kn\\ 

< Cl4 i 
- 2 

Similarly, on using (2.10), (2.11), (2.4), (2.5), (3.2) and (3.5), we get for 

( l - x 2 ) ( x - x f c n ) 2
 f4 (3.14) CT, = l k n ( x ) < c 1 5 " 2 \ x ~ x k n | 1 < 

(i - * L ) 3 

< c 1 6 ( n s i n \ \ 9 - 0 k n \ ) ~ 2 < c 1 7 i ~ 2 . 

Finally, from ( 3 . 1 0 ) , ( 3 . 1 1 ) and ( 3 . 1 4 ) , we have the second part of ( 3 . 6 ) . This 
completes the proof of Lemma 3.1. 

LEMMA 3 .2 . F o r - 1 < x < 1 and D k n ( x ) d e f i n e d by ( 1 . 1 7 ) , we have 

Z w i -(3.15) 

(3.16) 

< ci8 n
 3 log n, 

Z i ( 1 " X l n f ' 2 
k—2 

n—1 
V 1 

h (1 - X l n f ' 2 
k—2 
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P r o o f . Due to (1.17), we have 

m r i y \DUx)\ (1 - x*)\pn-2(x)\%n(x)\ 
1 ' h - x l n ) 3 / 2 ~ ( 1 - * 3 » ) , / a K - a ( * i . ) l 3 

419 

Jkn> 

+ n _ 9 7 TTT = h + h -
Wj ( l - « i n ) 5 / 2 K - » ( « * n ) | 3 

On using (2.10) and (2.11), it follows that 

(3.18) h = 
( l - * 2 ) 3 / 4 | P n _ 2 ( x ) | 3 1 ' ( l - * 2 ) 1 / * 

L(1 - «3»)1'4 M * ) l < C2on - 3 

Further, if k ^ j, from an earlier result ([15], p. 249), we have for — 1 < x < 1 

(3.19) 
(1 - x2)1 /4 

(1 - * L ) 1 / 4 

Now, using (2.10) and (3.19), we obtain 

|**n(®)| < C211 , k = j ± i . 

(3.20) J2 = £ 
L ( l - x L ) 9 / 4 ! ^ - 2 ( ^ n ) | 3 

(1 - * 2 ) 3 / 4 |Pn_ 2 (z) | 3 1 [ ( l - s 2 ) 1 / 4 

J I ( 1 - * L ) 1 / 4 IW*)I 

< C22 n 3 ^ * 1 < c23 " 3 log n. 
i=i 

Consequently, from (3.17), (3.18), (3.20) we get (3.15), and (3.16) is obtained 
from (1.17), (2.10), (2.11), (2.4), (2.5). 

(3.21) 

LEMMA 3 . 3 . If - I < x < 1, then 

n _ 1 |2fcnOOI El-Pfci 
fc=2 ( l " * 2 ) l / 2 

< C24« 1 logn, 

where Bkn(x) is given by (1.15). 

P r o o f . From (1.15), (3.15) and (3.16) one can easily see that 
n—1 

(3 22) V \Bkn(x)\ s ^ F 
( 3 } ^ ( i - ^ D 1 7 2 ^ ( l " 4 n ) 1 / 2 

n—1 

k—2 k=2 
n—1 

+ V 4n2 - L ^ Z i i f l L + 4 V 
n—1 

k=2 
n—1 

X Xfcn' h\n{x) + C25n 1 log n + c26n 1 

=i ( i - X L ) 1 / 2 
k=2 
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Since Xjn is that zero of Pn_2(2;) which is nearest to x, — 1 < x < 1, it is 
evident that 

(3.23) < c 2 7 

Also, from [15], for k = 2 , 3 , . . . , n — 1, we have 

(3.24) n\x - xfcn|/ifcn(x) < c 2 8 V l ^ x 2 . 

Now, consider 

( 3 - 2 5 ) £ 7 T ^ w h L ( x ) = j 7 = r h ^ ( x ) + 

k= 2 ^ XkJ y/l - Xjn 

V 1 - Xkn 

On using ( 3 . 23 ) , ( 3 . 24 ) and ( 2 . 1 ) , it follows that 

( 3 . 2 6 ) hi < c 2 9 n _ 1 . 

Further, making use of ( 2 . 10 ) , ( 3 . 2 ) - ( 3 . 4 ) , we obtain 

/o 97\ „ V^ \x~xkn| ,2 < r V / l ~ a : L ( 1 - a : 2 ) ^ ( 3 . 27 ) H u >1 kn\^) < C30 n * \ X - X u |3 ^ 
V 1 - *kn n I® 

< -4 Y^ sin Qkn sin2 6 < 

" ° 3 i n fe. sin3 i(6> + &kn) sin3 ||0 - 6kn\ ~ 

Now, from ( 3 . 2 5 ) - ( 3 . 2 7 ) and ( 3 . 22 ) , we obtain ( 3 . 21 ) . 

L E M M A 3 .4 . For — 1 < x < 1 and CFCn(x) defined by ( 1 . 1 6 ) we have 

( 3 . 2 8 ) ckn{x) > 0, k = 2 , 3 , . . . , N - 1, 

( 3 . 2 9 ) £ l ^ i < c3 4n"2 . 
k=2 fcn 

P r o o f . From (1.16) we have, for k = 2 , 3 , . . . , n — 1, 

(x - x f e n ) 2 ( l - x 2 ) ( l + x\n - 2xxkn) f4 

2 ( 1 - * L ) 2 
( 3 . 3 0 ) cjtn(x) = ^ ^ " W ^ - ^ ' l U x ) > 0 . 
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Next, from (3.30), we get 
n—1 i / \ i n—1 

(3.3D 
- x>~ • - V1 kn) k=2 kn k=2 

n—1 ^ (1 ~ X2)|x — Xfcn|3 4 

+ ( i - L ) 3 6 + 6 

and, from (2.10), (2.11), (3.19), 
n—1 

(3.32) f i = z ^ n - T 2 ^ 'fcni*) < 
fc=2 V1 kn) 

n 
- _2 , -2 --2 -2 < C35TI + C36« i C37n 

i= 1 
Further, we get the relation 

- ( l - s 2 ) i / " M s ) l l [ ( l - x 2 ) 3 / 4 | P n _ 2 ( x ) | 3 1 
6 = % 

(1 - x 2 ) | P n _ 2 ( x ) | 4 

which, on using (2.10), (2.11), (3.5) and (3.2), yields 

(3.33) 6 < c38n"2 • 

Hence, from (3.31)-(3.33), we obtain (3.29). 

4. Proof of Theorem 1 
Due to uniqueness of Gn(f,x) given by (1.6), it follows, by (1.7), that 

n—1 
(4.1) 1 = | ( 1 - x)P*_2(x) + 1(1 + x)Pn

4_2(*) + E A"»( x ) • 
k=2 

Hence, we obtain 

(4.2) G n ( f , x) - f ( x ) = [[ /( l) - / ( x ) ] i ( l + «)+ 

+ [ / ( - 1 ) - / ( x ) ] i ( l - x)]P*_2{x) + £ [ / ( x * n ) - f{x)]Akn(x) 
k=2 

implying, for — 1 < x < 1, 
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( 4 . 3 ) | G n ( f , x ) - f ( x ) \ < 

< 1/(1) - /(x)|i( l + 

+ l / ( - l ) - / ( z ) l i ( l - x ) P * _ 2 ( x ) + 

71 — 1 

+ E \ f ( X k n ) - f ( x ) \ A k n ( x ) = h + J2 + J 3 . 

On using Lemma 5.1 of [15] and (2.2), one can easily see that 

( 4 . 4 ) J x = | / ( 1 ) - / ( * ) | i ( l + x ) P * _ 2 ( x ) < c 3 9 

(4.5) h = |/( - l ) - /(x)|I(l - x ) P * _ 2 ( x ) < c40 w f • 

Next, (3.1) and Lemma 3.1 yield 
n—1 

(4.6) J s = Y l lA®*») " f ( x ) \ A U * ) = l/(®i») - /(*)l4i»(®)+ 
k—2 

+ , £ \ f ( x k n ) - f ( x ) \ A k n ( x ) < 

Mi 

< C7 + 

+ C « E 7 2 (i s i n 0 \ / i 

^ - A l T / i sin 0 \ / ¿ 2 \ 1 

Consequently, from (4.3)-(4.6) it follows that 

|G„(/, x) - /(*)| < C43 117/ + C42 E £ w/ + 

Now, following the same lines as in [16], it can be seen that 

\ G n ( f , x ) - / ( * ) | < c 4 5 n " 1 £ w f + • 

k=1 ^ ' 

This completes the proof of Theorem 1. 



Hermite and Hermite-Fejer interpolation 423 

5. Proof of Theorem 2 
Let f(x) = |x|, x = cos© = 0, 0 = f , and n = 6 , 8 , . . . . From (4.2) and 

(1.8) we obtain 
n—1 

<?„(/, 0) - /(0) = ^ _ 2 ( 0 ) + £ \xkn\Akn(0) = Pn-2m 
k=2 

+ £ |xt„||/.L(0) + |[(» - 2)(n - 1) + 1] ( 1 > 

| ( n - 2 ) 

k=2 

Hence, on using (2.6), (2.8) and (2.9), it follows that 

G „ ( / , 0 ) - / ( 0 ) > c 4 6 n - 2 £ 
k=2 

i ( n - 2 ) 

> C46n"2 ^ 

COS 0 A ; n 

1 
k=2 COS ®kn~ COS & 

| ( n - 2 ) 

_ -2 V^ t > 
" C47H ¿ i S i n K 0 + S i n H 0 ~ 0kn) ~ 

- C 4 8 7 i " 2 s 

_ ^ ( n _ 2 ) 1 
E n - 2 k + 2-C5on~llOSn-
k=2 

This completes the proof of Theorem 2. 
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Remark. Theorem 3 follows from (1.13), (4.2), (3.15), (3.21) and (3.29). 
We omit the details. 

References 

[1] D. L. Berman, A study of the process of Hermite-Fejér interpolation, Dokl. Akad. 
Nauk SSSR 187 (1969), 241-244 (in Russian). 

[2] D. L. Berman, A study of interpolation processes constructed on extended systems 
of nodes, Izv. Vyss. Ucebn. Zaved. Matematika 2 (1971), 22-31 (in Russian). 

[3] R. Bojanic, A note on the precision of interpolation by Hermite-Fejér polyno-
mials, Proceedings of the Conference on constructive theory of functions, Akadémiai 
Kiadô, Budapest (1972), 69-76. 

[4] R. Bojanic, J. Prasad, R. B. Saxena, An upper bound for the rate of convergence of 
the Hermite-Fejér process on the extended Chebyshev nodes of the second kind, J. 
Approx. Theory 26 (1979), 195-203. 

[5] E. Egervâry, P. Tur in , Notes on interpolation V (on the stability of interpolation), 
Acta Math. Acad. Sci. Hungar. 9 (1958), 259-267. 

[6] P. Erdôs, On the maximum of the fundamental functions of the ultraspherical poly-
nomials, Ann. Math. 45 (1944), 335-339. 

[7] P. Erdôs, P. Tur in , An extremal problem in the theory of interpolation, Acta Math. 
Acad. Sci. Hungar. 12 (1961), 221-234. 

[8] L. Fejér, Ûber interpolation, Gôtt . Nachr. (1916), 66-91. 
[9] S. J. Goodenough, T . M. Mills, On interpolation polynomials of the Hermite-Fejér 

type, II, Bull. Austral. Math. Soc. 23 (1981), 283-291. 
[10] C. Hermite, Sur la formule d'interpolation de Lagrange, J. Reine Angew. Math., 84 

(1878), 70-79. 
[11] T . M. Mills, A. K. Varma, On a theorem of E. Egervdry and P. Turân on the 

stability of interpolation, J. Approx. Theory 11 (1974), 275-282. 
[12] J. Prasad, Remarks on the order of convergence of the Hermite interpolation, (to 

appear). 
[13] J. Prasad, On the rate of convergence of interpolation polynomials of Hermite-Fejér 

type, Bull. Austral. Math. Soc. 19 (1978), 29-37. 
[14] J. Prasad, R. B. Saxena, Degree of convergence of quasi-Hermite-Fejér interpolation, 

Publ. Inst. Math. (Beograd) 19 (1975), 123-130. 
[15] J. Prasad, A. K. Varma, A study of some interpolatory processes based on the roots 

of Legendre polynomials, J. Approx. Theory 31 (1981), 244-252. 
[16] R. B. Saxena, A note on the rate of convergence of Hermite-Fejér interpolation 

polynomials, Canad. Math. Bull. 17 (1974), 299-301. 
[17] R. B. Saxena, K.K. Mathur, The rapidity of convergence of quasi-Hermite-Fejér 

interpolation polynomials, Acta Math. Acad. Sci. Hungar. 28 (1976), 343-347. 
[18] J. Szabadôs, On the convergence of Hermite-Fejér interpolation based on the roots 

of the Legendre polynomials, Acta Sci. Math. (Szeged) 34 (1973), 367-370. 
[19] P. Szâsz, On quasi-Hermite-Fejér interpolation, Acta Math. Acad. Sci. Hungar 10 

(1959), 413-439. 
[20] G. Szegô, Orthogonal polynomials, Amer. Math. Soc. Colloq. Pub. t. 23, 1959. 
[21] A. K. Varma, J. Prasad, A contribution to the problem of L. Fejér on Hermite-Fejér 

interpolation, J. Approx. Theory 28 (1980), 185-196. 



Hermite and Hermite-Fejer interpolation 425 

[22] P. O. H. Vertesi, Hermite-Fejer interpolation based on the roots of Jacobi polyno-
mials, Studia Sci. Math. Hungar. 5 (1970), 395-399. 

[23] P. O. H. Vertesi, On the convergence of Hermite-Fejer interpolation, Acta Math. 
Acad. Sci. Hungar. 22 (1971), 151-158. 

DEPARTMENT OF MATHEMATICS 
CALIFORNIA STATE UNIVERSITY 
LOS ANGELES, CA 90032, U.S.A. 

Received January 3, 1991. 




