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ON HERMITE AND HERMITE-FEJER INTERPOLATION
OF HIGHER ORDER

1. Introduction

There are many different methods of constructing algebraic or trigono-
metric polynomials which approximate a given continuous function f(z).
The process of finding a polynomial which coincides with the function f(z)
at certain pre-assigned points, called the nodes of interpolation, and its
successive derivatives coinciding with arbirarily chosen numbers is referred
to Hermite interpolation [10]. However, the expilicit forms of fundamental
polynomials are too complicated and, for that reason, very little is known
about the convergence behaviour of this kind of polynomials.

Let there be

(1.1) 1< Zpn <Tp1n <...<T2T1n <1

the nodes of interpolation,
2k -1
2n

the Tchebysheff nodes and f(z) a function continuous on [—1,1].
As far as convergence is concerned, Fejér [8] proved the following theo-
rems.

(1.2) Tgn = COS T, k=1,2,...,n,

THEOREM A. If Hypn—1(f,z) is a polynomial of degree at most 2n — 1
which satisfies the conditions

(1-3) H2n—1(f, 27kn) = f(xkn)’ Hén—l(f’zkn) =0,
then nanéo Hyn_1(f,z) = f(z) uniformly on [-1,1].

THEOREM B. If the polynomial Hy,—1(f,z) satisfies the conditions

1.4 Hn_ yLhn) = Tkn)s H,_ yTkn < fn = ’
( ) 2 l(f k ) f( k ) I 2n l(f k )l \/mﬂlogn
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where lim ¢, =0, then lim H,,_1(f,z) = f(z) uniformly on [-1,1].
n—roo n—o0

For the order of convergence of Ha,—;(f, ) satisfying the conditions

(15) H2n—1(f7zkn) = f(xkn), Hén—l(fazkn) = f’(zkn)’
k=1,2,...,n,

we have the following result (cf. [12]).

THEOREM C. Let f € Cl[-1,1] and Han—1(f,z) be defined by (1.5).
Then, for -1 <z <1,

|Han-1(f,2) = f(z)| < exn~tlogn Ezn_o(f'),

where ¢, (later on cz,c3,...) is an absolute constant and Eyn_2(f') is the
best approzimation of f'(x) by polynomials of degree at most 2n — 2.

Let {2k, }} be the n distinct zeros of (1 — z2)P,_3(z), where P,(z) is
the Legendre polynomial of degree n with the normalization P,(1) = 1. Let
Gr.(f,z) be the unique polynomial of degree at most 4n — 7 such that

Gn(fy_l) = f(_1)7 Gn(fvl)’: f(l)’
(1.6)  { Gul(fr2kn) = f(zhn)y GD(f,2n) =0,

Then one can easily see that

(17)  Gu(f,2) = F(-1)F(1 = 2)Po_5(2) + f(1)3(1 + 2) Pa_3(2)+

+ z—: f(zkn)Akn(z) 9
k=2
where, for k =2,3,...,n -1,
(1.8) Agn(2) = Bip + 2[(n ~ 2)(n - 1)(1 - zzkn) + 1]X
— 2 (2 — zkn)?
(1 (1 z(xin);;k ) lzn(z)7
1-—=z2

(1.9) hin(2) = T~ ka(2),

. kn
(1.10) lin(z) = Pros(2)

(2 — Zkn) Pr_ay(Tkn)
For the polynomial G,(f,z) we shall prove the following theorem.

THEOREM 1. Let f € C[-1,1] and G,(f,z) be defined by (1.6). Then,
for —1 <z <1, we have

(111)  |Gu(f,2) - f(2)] S e2n™" Z"’f( 11:;2 + 191_2) ’
k=1
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where wy(8) is the modulus of continuity of f(z) on [-1,1].

This type of estimates for Hermite-Fejér interpolation has been given in
[1}-{4], [9], [11], [13], [14], [16]-[18], [21]-[23]. One can easily see that (1.11)
is best possible for f(z) € Lipa, 0 < a < 1. We also show that the result is
precise for a = 1, by proving the following theorem.

THEOREM 2. There ezists a function f(z) € Lip 1 and a constant c3 such
that
|Ga(f,0) = £(0)| 2 e3n™'logn, n=86,8,10,....

Next, let us denote by F,(f,z) the unique polynomial of degree at most
4n — 7 satisfying the conditions

Fn(fa_1)= f(_l)a Fn(fal): f(l), F’n.(faxkn) = f(xkn),
Fylz(f’xkn) = ,Bkn, F:;,(f7zkn) = Ykn, Fyly,”(f, xkn) = ’\k'm
k=2,3,....n—1,

where z, are the zeros of P,_3(z) and Bkn, Ykn, Akn are any given numbers.
Clearly,

n n—1
(1.13) Fu(fiz)= Y f(@kn)Akn(z) + D BknBin(z)+
k=1 k=2

n-1 n-1
+ Z 7kann(z) + Z AknDkn(z)’
k=2 k=2

where z1, = 1 and z,, = —1. The fundamental polynomials Ax,(z) for
k=2,3,...,n—1 are given by (1.8) and for k = 1,n by
14z 1

-z
(1.14) An(z) = Pa_y(2), Ann(2) = —5—Pay(2);
and Bin, Ckny Dgn for k =2,3,...,n—1 by

(=2 =Dl )41,

(115) Bin(2) = (2 — 2k )hln(2) + 4

(1-2%,)°
. (z — zkn)2(1 — 22)(1 + 22, — 22240) 4 .
(1.16) Cin(z) = Aol ) lin(2),
o (=22l
(1‘17) Dkﬂ( ) 6(1 zkn) ln( )’

where hy,(z) are given by (1.9) and I, by (1.10). These are all new forms
and, as it turns out, they are very convenient for the proofs.
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THEOREM 3. Let f € C[-1,1] and F,(f,z) be given by (1.13). Let, for
k=23,...,n-1,

2
ﬂkn=0(—n—), 7kn=0( n2 ),
\/l—zi,mlogn 1—zp,
3

Akn =0 °
T\ (- 21, 1ogn )
Then lim F,(f,z) = f(z) uniformly on [-1,1].

Theorem 3 is analogous to Theorem B of Fejér. It can also be compared
with a result of Erdés and Turén [7].

2. Preliminaries
In this section we state a few known results which we shall use later on.
From [5], [19] we have, for -1 <z <1,

n-1
(2.1) Y hin(z)=1-P2_4(z) < 1.
k=2

By [20], for —1 < z < 1, we have
(22) |Paa@I <1,

1/2
(23) (1- z2)1/4|Pn_2(z)| < (%) (n~— 2)-—1/2,

2
(2.4) (1—zin)>(k—g> n2, k=2,3,...,["22],

2
25) (1-22)> (n—k—g) n?, k= ["‘2] F1een—1,

-3/2 _
(28) 1P~ (k-2) Tt k=232,

-3/2 _
27)  |PL_y(zkn)| ~ (n—k— g) n?, k= [" 2] F1m—1,

with £ = cos 8, T4, = cos O, and

(28)  1Pa—2(0)| = 3 ,14°.3, ,5.'(',; - ES(; ?:)2)

> %(n— 2)~1/2 > %n"lﬂ

(n even),

(2.9) (n - g) - (k - g)w < Ohn < (n - g) Tk,

k=23,...,n—1.
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Further, from [15] for -1 < z < 1, we also have
(- x2)1/4|P —2()|

2.10 < can 1, n Z 4,
(210 (1 - 23, )34 Py _a(2kn)| ~

2.11 A= e k—93. n_1
( . ) (1 2 )1/4] kn(z)l 65, = 4, ,...,n .

and from [6] there follows lin(2)| < 6, 6=2,3,...,n— 1.

3. Some lemmas
First, we assume z;, to be that zero of P,_,(z) which is nearest to z.
Then, as in [22], it can be seen that

ofo(29) w(3)] 55
(3-1) 1f(2) = f(zn)l < { ¢, [w,(“i:@) + wf(;—i)] ifj<k=

=j+i<n—-2
or2<k=j5-1<}j,

where ¢ is a positive integer. By (2.9), it follows that
1 2n —1
3.2 < k#+7.
(3-2) sin 10— gy — 2i— 1 7

One can also easily see that

(3.3) $in Oky < sinO + sin Oy, < 2sin 1(0 + Oky),
(3.4) sin @ < sin @ + sin O, < 2sin %(@ + Okn),
(3.5) sin 1|0 — Okn| < sin 3(O + Okn) .

LEMMA 3.1. If -1 <z <1, then
1 ifk=j
(3.6) Am@)<{%zz fj<k=j+i<n—-20r2<k=j-i<j.

’

Proof. From (1.7) there follows

n—1
(3.7) > An(z)=1-Pi_,(z) < 1.
k=2

Since Agn(z) > 0for k = 2,3,...,n — 1, the inequality (3.7) implies
(3.8) Aj(z)<1, -1<z<1,

which completes the proof of the first part of (3.6).
By [11], [14], we get

(39) hkn(l‘) S C10 1:—2, k= ] +1 5
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where hgn(z) is given by (1.9). Further, from (1.8) we have
(3.10)  Agn(z) = hi,(z) + 2[(n - 2)(n — 1)(1 — zzkp) + 1]
>((1 —2¥)(z — zkn)? 4

L(x)=01402, k=2,3,...,n—1.

(1 zkn)a
If k£ # j, due to (3.9) and (2.1), it iollows that
(311) (5} S C10 i—z

Next, consider

n?(1 - 2?)(z — zxn)?(1 - a:z,m)l (2)
(1-2%) kn
+ (1-2%)z—zkn)? 4
(1-2%,)?
Since £ = cos @, zgp, = €05 Oy, on using (2.10), (3.2), (3.4) and (3.5), we
obtain for k # j,

" C11 1-=2 1 ]
3.13 of < —
(3-13) s [(z—zkny -

(3.12) o2 <

Lo(z)=0f+0".

I/\

612[ sin? @
n? |sin? (0+0;m)s1n %Iﬂ—ﬂkn|

1
+ sin %(0 + Oky) sin %|0 - 0kn|]

C13 1 .
L2 21—] <eni?.
n? [sin® 3|0 — Ok |

Similarly, on using (2.10), (2.11), (2.4), (2.5), (3.2) and (3.5), we get for
k#3,
(3.14) o=

<

(1 —2%)(z = 2ka)? 4
(1 a“lwn)::l
< c16(nsin 1|0 - 0kal) "2 < 17
Finally, from (3.10), (3.11) and (3.14), we have the second part of (3.6). This
completes the proof of Lemma 3.1.

LEMMA 3.2. For —1 < z <1 and Dy,(z) defined by (1.17), we have

() S cisn™2z — 24|71 <

-2

D n —_
(3.15) Z (II_I;2(Z))3I/2 < cign”3logn,

(3.16) Z (llen(x)l < clgn—l .

—z2 )5/
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Proof. Due to (1.17), we have

Din( 1 — 2?)|Pus(2)P*lin(z
(3.17) Z 1D 2( ))3'/2 = ((1_z2)|)s/2|2( )lz(lz,n()l)l

(1 = 2)| Pu_a(2)PP|len(2)]
+ =L +1.
2 T Py T
On using (2.10) and (2.11), it follows that
1— 23/4Pn_ 3 1 — g2)1/4
(3-18) Il - [ ( 21: ) | - 2($)| ][( z )
(1= 23,/ Py _a ()P L(1 — 23, )1/
Further, if £ # j, from an earlier result ([15], p. 249), we havefor -1 < z <1
(1 - 12)1/4
(1 -z )4
Now, using (2.10) and (3.19), we obtain
— z2)3/4 3 — p2)1/4

= L1 -2k, 0 Py z(-’c:m)l3 (1= )/

|lJn(IL')|] < CaoM -3 .

(3.19) llin(2)] € €2187Y, k=31,

<ecgpn”? Z i1 < cp3n3 logn.

Consequently, from (3.17), (3.18), (3.20) we get (3.15), and (3.16) is obtained
from (1.17), (2.10), (2.11), (2.4), (2.5).

LEMMA 33. If -1 <z <1, then

Byn(x -
(3.21) E (1| _kz(z)zl/z < cyqnllogn,

where By, (z) is given by (1.15).
Proof. From (1.15), (3.15) and (3.16) one can easily see that

(322) Z (llfk:z(z))ll/z < Z z— :k;lllz hkn(z)',f'

n-1
2 n(Z Dipn(2z
D SRR e LU

T—2z _ _
< Z ﬁhkn(z) + casnllogn + coen”l.
k=2
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Since z;, is that zero of P,_2(z) which is nearest to z, -1 < z < 1, it is
evident that

Ji—z?
(3.23) YT <o
1- a:?n

Also, from [15], for k = 2,3,...,n — 1, we have
(3.24) n|z — Tgplhkn(z) < c28v1—22.

Now, consider

n—1
029 3 Gt = '——1\/_='-h( o)+
in
|z — Zkn| , 2
+ kz;é] \/—z—hkn = p1 + p2 .
On using (3.23), (3.24) and (2.1), it follows that
(3.26) p1 < ezgn”?
Further, making use of (2.10), (3.2)~(3.4), we obtain

lz zknl \/ 272k (1
(3.27) p2 = hkn(z) <30 ~
; \/—2— kZ#J niz — Thn |3

Okn sin* O
S c n__4 sin kn <
3 ,; sin® 1(0 + Oy ) sin® 1|6 — o] =

1
4§ :
< C32M sind L i I@ @knl < C33n
k#£j

Now, from (3.25)—(3.27) and (3.22), we obtain (3.21).
LEMMA 3.4. For —1 < z <1 and ckn(z) defined by (1.16) we have

-1

(3.28) ckn(z)>0 k=2,3,...,n—1,
(329) Z |Ckn(I)| < C347L
Proof. From (1.16) we have, for k = 2,3,...,n -1,

(z — zkn)*(1 — 22)(1 + zfm 2mzkn)
2(1 - xin)2

(3.30) cin(z) = lin(2) 2 0.
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Next, from (3.30), we get

(3.31) Z |cknia:)| < E (1 - xz)(a: Tkn)? 4 B (o)4

k kn)

1- — Zgn|?
+§( (f_)lizn;" Lo =6 +a

and, from (2.10), (2.11), (3.19),

n-1
(3'32) 61 — Z ( (:l: )(372 )ﬁkn) l n(z) <

k=2 1

< c35n”% + czgn 2 E 2earn™2.
i=1

Further, we get the relation

&= [(1 — 2:2)1/4“""(3)I] [ (1 = 22)3| Poy(2)[? ]

(-agii |02 AR, ()
(1 - 2?)|Py2(2)[*
+
,é:_, (1= 2%, )|z = @knl | Pra(kn)|*
which, on using (2.10), (2.11), (3.5) and (3.2), yields
(3.33) £ < cagn”?

Hence, from (3.31)-(3.33), we obtain (3.29).

4. Proof of Theorem 1

421

Due to uniqueness of G,(f,z) given by (1.6), it follows, by (1.7), that

(A1) 1=H1-2)Piy(2)+ M1+ 2Py + Y Akm().

Hence, we obtain

(42)  Ga(f,2)~ f(=) = [[f(1) - f(=)3(1 + z)+

+[f(-1) - f(@))3(1 - 2)IP, -2(2)+Z[f(zkn) f(2)]Akn(2)

implying, for -1 <z <1,
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(4.3) IGn(f,2)-f(2)] <
<1F(1) = f(@)3(1 + 2)Pr_y(2)+
+1£(=1) - f(2)|3(1 - 2) Py (2)+

n—1

+ Y 1f(2kn) = f(2)| Akn(z) = J1 + J2 + I3

k=2

On using Lemma 5.1 of [15] and (2.2), one can easily see that

(@8) 1= 1F) = S+ DPAs(e) < enn

(4.5)  Jy =|f(-1) = f(2)|3(1 - 2) Pa_s(z) < eq0 Wf<\/17:_z2) .

Next, (3.1) and Lemma 3.1 yield
n—-1

(4.6) J3 = z |f(zkn) - f(z)lAkn(z) = |f($jn) - f(z)lAJ'n(z)'*'
k=2
+ Y 1 (@n) = F(@)Arn() <

k#j

o) (@)
e O

k#J

isin®@ 12
o E (20 ()]
=1 :

Consequently, from (4.3)—(4.6) it follows that

Gl f,7) - f(z)|<c43wf(‘/_)+c42z [ (zsm@)+

o)) s (22) o (3)]

Now, following the same lines as in {16}, it can be seen that

|Gn(f,2z) = f(2)] £ casn”t zn:wf(\/l; z? + kl—z) .
k=1

This completes the proof of Theorem 1.
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5. Proof of Theorem 2
Let f(z) =|z|,2 =c0s@® =0,0 = 7, and n = 6,8,.... From (4.2) and
(1.8) we obtain

n—1
Ga(£,0)— £(0) = P3_,(0) + E |2 kn| Akn(0) = P_5(0)+

+§:|z,m|{h A0+ 2((n—2)(n - 1)+llﬁlin(0)}2

1

3
|

> 25t - sn 432l o) >
3 k=2 ( Icn)

>2 > n(n - 3)—=2 2] 1 0)>

~ 34 (1- kn)3 S

2(n. 2)
|2kn
> n(n - 3) Z Wtz,,(O) =
Lin-2) X
—2(0)
= —n n—-3 -2 .
(=8 2 T e el Pacaern
Hence, on using (2.6), (2.8) and (2.9), it follows that
1
7(n-2)

Cul,0) - FO) 2 cisn™? Y —

cos -
k=2 ekn

1
=(n-2
g (n-2) 1

> c4sn_2 Z =
- £ cos Oy —cos @

T(n-2)

1

= -2 >
carn g 5in 1(O + Okn) sin 1(6 — Oxn) =

1
> -1 —_— -1 .
2 C49M ’; n— 9k n 5 < Cs0M Oog T

This completes the proof of Theorem 2.
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Remark. Theorem 3 follows from (1.13), (4.2), (3.15), (3.21) and (3.29).

We omit the details.
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