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T H E DISCRETE M A X I M U M PRINCIPLE 
FOR SOME OPTIMIZATION PROBLEM 

OF MULTIDIMENSIONAL SYSTEMS 

In monograph [2] and paper [3] the author discusses the method of metric 
approximations in the problems of control theory and applies it, among other 
things, to the derivation of a necessary condition in the optimization of a 
one-dimensional discrete system with constraints upon the trajectories. In 
the present paper, by making use of this method, we derive a necessary 
condition in a multidimensional discrete system linear with respect to the 
trajectory. 

1. Multidimensional discrete systems 
Let Z m stand for subset of the space R m , consisting of points k = 

(k\, . . . , km) with integer-valued coordinates, ordered by the relation 
A;1 < k2 meaning that, for each i € {1,2, . . . , m } , k\ < k2. For a fixed 
k° € Z m , denote Z +(k°) := {k \ k £ Z m A k° < k}. For an arbitrary set 
E, let B(Zm,E) denote the set of mapings of Z m into E. Define a mapping 
Ai : B(Zm,E) B(Zm,E) in the following way 

Ai<j>(k) := k{ + 1 ,ki+1,...,km), k e Z m . 

The mapping (Ai<f>, A2<j>,..., Am<f) is a mapping of the set B{Zm, E) into 
B( Z m , E m ) . 

By a multidimensional discrete system we mean the system 

(1.1) Aix(k) = fi(k,u(k),x(k)), keD; ¿ e / ( l , m ) , 

where f{ : Z m x U x E E, D := {k\k G Ak < kN}, D := D\ {kN}, 
I( i , j) := {ifc|fc g Z A i < k < j], x(-) : D -»• E, «(•): D -> U. 

We shall say that, with a fixed function u(-) : D —> U, system (1.1) is 
fully solvable if there exists a uniquely determined mapping x(-) : D —* E 
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such that 

(1.2) x(k°) = x° 
and system (1.1) is satisfied. 

From the general theory of multidimensional discrete systems, [1], it is 
known that system (1.1) is fully f olvable if and only if, for each k G Z m , 
condition 

(1.3) fi(Ajk, u(Ajk), f j ( k , u(k), *(*))) 
= fj(Aik, u(Aik), fi(k, u(k), x(k))), k £ D; i,j G 1(1, m) 

is satisfied. 
We shall consider a special case of system (1.1), namely, the system linear 

with respect to the trajectory 
(1.4) Aix(k) = Ai(k)x(k) +fi(k,u(k;)), k e D-, i e 1(1,m) 
and the homogeneous linear system, corresponding to it, 

(1.5) Aix(k) = Ai(k)x(k), k G D- i G 1(1, m), 
where A(k) := (Ai(fc), Ai(k),..., Am(k)) with any k G D is a linear map-
ping of E into Em , / := ( / i , / 2 , . . . , f m ) : D x U Em. 

From condition (1.3) of the full solvability of system (1.1) it follows that 
systems (1.4) and (1.5) are simultaneously fully solvable when the conditions 

(1.6) (AjAi(k))oAj(k) = (AiAj(k))oAi(k), k G D, i,j G 1(1,m), 
(1.7) (AjMk))/^, u(k)) + Ajfi(k, u(k)) 

= (AiAj(k))fi(k, u(k)) + Aifj(k, u(k)), k G D; i,j G 1(1, m) 
are satisfied, where o stands for the operation of the superposing of map-
pings. 

2. Formulation of the problem of controlling a multidimensional 
discrete system linear with respect to the trajectory 

Let the multidimensional linear discrete system 

(2.1) Aix(k) = Ai(k)x(k) +fi(k,u(k)), k G D] i G 1(1, m), 
with the constraints 

(2.2) u(k) = (ul(k),u2(k),...,ur(k))T eU C R r , k G D, 
(2.3) x(k) = ( X l (k ) ,x 2 (k ) , . . . , x n (k ) ) T G f?(k) C IT , 

ken; f2(k°) = {z0}, 
(2.4) <j)j(x(k),k) < 0, k CD-, j e 1(1,1), 
(2.5) <f>j(x(k),k) = 0, k€D-, je 1(1+1,l + p) 
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and the functional 

(2.6) J(u(-)) •= max{<&)(x(A;), k)\k <E D} 

be given, where <f>j : R n x D —»• R , while T denotes the transposition opera-
tion. we shall consider the following problem: 

( 2 . 7 ) J(u(-)) - in f 

under constraints (2.1)-(2.5) and (1.6)—(1.7), which will be called the basic 
problem. 

A control u : D —* U C R r will be called an admissible control if the set 
U is bounded and, with that function, conditions (1.6)—(1.7) are satisfied. 

3. Approximating problem 
For any non-empty subset A of a finite dimensional space X , let us 

introduce the following notations: 

p(a\A) : = inf{ | |a — 6|||6 G A } , 

W(a\A) : = {i>|6 € clA A ||a - 6|| = p ( a | A ) } 

where cl denotes the closure operation. 
Let a pair {x ° ( - ) , i i ° ( - ) } be an optimal process in basic problem (2.7). 

Let us introduce the following notations: 

7 ° :=max{Mx°(k),k)\keD}, 

c ° : = ( 7 o , 0 , . . . , 0 ) < e R 1 + ' + p , 

c : = ( 7 , 0 , . . . , 0 ) € R 1 + i + p for 7 G R , 

ekn(<j>) : = { ( x , n o , m , . . . , f i i + p ) e R n + 1 + ' + p | x € n{k)-, 

M x > k ) < N f o r j e 7(0 ,1) ; 

<t>j{x, k) = Hj f o r j e 1(1 + 1,1 + p)}, 

Consider now the problem of the form 

(3.1) Aix(k) = A,(fc)x(A:) + / ,(&, u(Jfe)), k e D] i e 7(1, m), 

(3.2) & ( « ( . ) ) : = [ £ & ( x ( k ) , k , c ) ] 1 / 2 + £ | | z ( * ) - x°(fc)||2 - inf, 
k£D k£D 

(3.3) u(k) e U C R r , k e D, 

called further the problem approximating problem (2.7). 
For the approximating problems, the following theorems are true: 

THEOREM 1 ([5]). If the pair { x ° ( - ) ,u ° ( - ) } is an optimal process in ba-

sic problem ( 2 . 7 ) and the set f(k, U) is, with each k € D, a closed set, 
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then, in each approximating problem (3.1)-(3.3), there exist optimal process 
«"(•)} such that, for any keD, x°(Jfc) x°(Jfc) as c c°. 

Theorem 2 ([5]). If the process {x®(-), «"(•)}> c = (7,0,. . . , 0) € R 1 + , + p , 
7 < 7 0 , is an optimal process in approximating problem (3.1)-(3.3) and the 
set En(<f>) is a closed set in a neighbourhood of the point (x®(k),c), then 
{x2(')>uc(')} *8 an optimal process also in the following problem: 

(3.4) AiX(k) = Ai(k)x(k) + fi(k,u(k)), keD; i e 1(1,m), 

(3.5) Aixn+1(k)= F(x(k),k,c), k e D; i e I(l,m), 
k €Di(k) 

(3.6) AiXn+2(k) = £ ||*(*) - x°(k)||2, keD; i e 1(1, m), 

(3.7) x(k°) = x°, xn+1(k°) = 0, xn+2(k°) = 0, 

(3.8) u(k) eU C R r , 

(3.9) J cM- ) ) := [*n+i(kN) + |\x(kN) - j/c(^)||2 

+||c - ^(fc")!!2]1/2 + xn+2(kN) + \\x(kN) - x0(^)||2 - inf, 

where xn+1(-),xn+2(-) : D - R, (yc(k),wc(k)) e W((x°c(k),c)\Ekn(<f>)), 

F(x, k, c) := \\x - yc(k) ||2 + ||c - wc(k)\\2, keD, 

D(k) := {k\k eDAk<kAk^k}, D{(k) := D(A{k). 

4. A necessary condition for optimality for an approximating 
problem 

We are given in the set D a system of points k°, k1,..., kN, satisfying 
the conditions 

m 
kj+1 > kj A - k{) = 1, j e 1(0, N - 1 ) , 

1=1 
called a discrete curve joining the points k° and kN and denoted by 
L(k°, k1,..., kN). Let us introduce the following notation: 

(4.1) Xko(kN)^AiN_1(kN-i)AiN_2(kN~i)...Aio(k°) 

where i j is such that A{¡k* = It is known, [1], that, when condi-
tions (1.6) are satisfied, Xko(kN) does not depend on the discrete curve 
joining the points k° and kN. In the case when k° = kN, we accept that 
Xk° (k N ) is the identity mapping. 

Let kl be a fixed point of the discrete 
curve L(k°, k^,,,,, k^^, fc' ^ fc^. 

We say that f(k',v) belongs to the set a(f(kl,u%kl)),f(kl,U)) when v — 
v(kl) for some admissible control v(-) and there exists a sequence (es), e3 I 0, 
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such that, for every s, 

(4.2) /(* ' , u°c(k1)) + ss(f(k', v) - f(u°(fc'))) G f(kl, U). 

Hence it appears that if f(kl, v) G cr(f(kl, u®(k1)), f(kl, U)), then there exists 
elements vs G U such that 

( 4 . 3 ) fi(k',v.) = fi(klye{k,)) + et(fi(kl,v)-fi(klye(k,)))t i G 1(1,m). 

Then the control 

(4.4) * * > = - { & ) , î / S ' A M B , 

is an admissible control for system (3.4). Indeed, condition (1.6) is evidently 
satisfied and condition (1.7) follows from the fact that, at the points kl, we 
have 

«(*')) + Ajfi(kl,u(k')) 

= (AjAi(kl))fj(k', Uc(fc')) + e^AjMk'm^k^v) 

-fj(klye(k:l))) + Ajfi(klye(k1)) 

+ £sAj(fi(kt,v)-fi(kl,u°c(k'))) 

= [(AMk'vMk'y^k1)) + A i W y i k 1 ) ) ] 

+ £s[(AiAj(k'))fi(kl, V) + A J ^ k ' , v)] 

- e ^ A M k 1 ) ) / ^ 1 , u°c(k1)) + Aifj(kl, tft*'))] 

= (AiAj(kl)fi(kl,vs)) + Aifj(k',v3) 

= (AiAj(k')fi(k1, u(k1)) + A J j i k ' ^ k 1 ) , 

whereas, at the remaining points, u(k) = u®(k), that is, condition (1.7) is 
also satisfied. 

T h e o r e m 3 . If {^2(0» u c ( ' ) } ÎS an optimal pair in approximating prob-

lem (3.1)-(3.3) with c = (7,0, . . . ,0) , 7 < 7°2_E£?(<£) is a closed set in 

a neighbourhood of the point ( x ° ( f c ) , c ) , k G D, and, for each k £ D, 

the mappings Ai(fc), i G 1(1, m), are invertible, then there exists vectors 

(yc(k),wc(k)) G W((®°(*),c)|E}>(0)), k G D, such that 

( 4 . 5 ) u°e(k)) < 0 , k G D, i G 1(1, m), 

forve U, and f(k,v) G a(f(k,u°c(k)),f(k,U)), k G D, where 

( 4 . 6 ) j>(k) = Aj(k)ip(Aik) - 9i(k), keD, ie 1(1, m), 

( 4 . 7 ) i>(kN) = -h(kN), 
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( 4 . 8 ) 9i(k):= £ X£(k)h(k) - J 2 Aj(k)XlkCk)h(k), 

kec(k) 'keCi(k) 

i e 1(1,m), 

( 4 . 9 ) h(k) := (x°c(k) - yc(k))/mc + 2 ( x ° c ( k ) - x°(k)), 

(4.10) mc := [ £ F(x°c(k),k,c)Y > 0, 

keD 

( 4 . 1 1 ) C ( k ) : = { k \ k e D A k > k A k j i k } , Ci(k) := C(Aik), 

(4 .12 ) Avfi(k,u°c(k)) := f i ( k , v ) - fi(k,u°c(k)), i 6 1(1,m). 

P r o o f . If {a;2('))uc(')} a n optimal process in the approximating prob-
lem, then Theorem 2 implies that it is an optimal process in problem (3.4)-
(3.9), as well. 

Let L(k°, k 1 , . . . , kN) be an arbitrary discrete curve and kl ^ kN a fixed 
point of this curve. For v G U such that f ( k l , v ) 6 a(f(kl,u°c(kl)),f(k',U)), 
define a control «(•) of form (4.4) which is admissible control for problem 
(3.4)-(3.9). 

Let Ax(k) := x(k) - x°c(k), Axn+i(k) xn+1(k) - x°n+ltC(k), Axn+2(k) 
:= xn+2(k) - k € D, where x°+ 1 > c(-), x°n+2,c(0 are t h e solu" 
tion of system (3.5)—(3.6), corresponding to the control ti°(-), and x(-), 
z n + i ( - ) , xn +2(-) the solution of system (3.4)-(3.6), corresponding to the 
control u(-). 

From the optimality of the pair and from the definition of 
the function F(-, •) it follows that, with 7 < 7 0 , mc > 0. 

Taking account of form (3.9) of the functional Jc(•), we have 

(4.13) AJc(u(.)) := Jc(u(.)) - Jc(v°c(-)) 

= hT(kN)Ax(kN) + ^ - A x n + 1 ( k N ) + Axn+2(kN) + 0 ( | | ^ ( ^ ) | | ) 

where x = (x, x n + 1 , x n + 2 ) . 
In view of the fact following from equation (3.5) that, for k € D, 

A{Axn+1(k) = AiXn+1(k) - AiX°n+hc(k) 

= Axn+1(k)+ J 2 [F(x(k),k,c)-F(x°c(k),k,c)} 

= Axn+1(k)+ Y , {2(x0
c(k)-yc(k))TAx(k)] 

k€Gt(k) 

+ £ 
leGi(fc) 
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where Gi(k) := Di(k) \ D(k), we shall get 
N-1 m 

(4.14) Axn+1(kN) = £ X ^ A ^ Z n + i ^ ' ) - AiXn+1(V))(k{+1 - k j ) 
j=0 t=l 

= £ 2(z°(fc) - i , c ( * ) ) T ^ ( * ) + £ o(||4x(A)||). 
icgf fcec 

Analogously, making use of equation (3.6), we shall obtain 

(4.15) Axn+2(kN) = J 2 - + £ 
keD keD 

Using now the easy-to-check identity 
N-1 m 

j=o >=i 

= i>T(kN)A-£(kN) 

where stands for the operator inverse to the operator A{, and from (4.13), 
(4.14) and (4.15), adopting i/t(kN) = - h ( k N ) , we shall get 

(4.16) AJc(u(-)) = -i>T(kN)Ax(kN) + J - A x n + l ( k N ) + Axn+2(kN) 
lmc 

N-l m 

j=0 t=l 
- i/>T(ki+1)AiA5(kj)}(kl+1 - k j ) + £ hT(k)Ax(k) 

keD 

keD 

The form of the control u(-) implies that 

(4.17) AiAx(k) = Ai(k)Ax(k) + /,•(*,«(*)) - fi(k,u°c(k)) 

f Ai(k)Ax(k), k ^ k ' A k e B , 
\ Ai(k')Ax(k') + £sAvfi(kl, u°c{k% k = kl. 

So, with Ax(k°) = 0, we have, for k € C(Jb'), 

(4.18) Ax(k) = esXkl(k)Arl(kl)Avfik(k',u°c(k% 

and, for the remaining k £ D \C(kl), Ax(k) = 0, where ik is an index 
satisfying the condition A,kkl = r 1 , with that r 1 is a point of the discrete 
curve L(kl, r 1 , . . . , k) joining the points kl and k. 
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Let ii be an index satisfying the condition A{,kl = k'+1. By the identity 

(Ai^k^AMk'Xik')) = (Ai,Aik(kl))Avfi,(kl,u°(k1)) 

resulting from (1.6)—(1.7) and by the invertibility of the mappings A; (A;), 
equality (4.18) can be written down in the form 

(4.19) Ax(k) = £3Xk,(k)Ar\k')Avfit(kl,u°c(k% k € C(kl). 

Taking account of (4.16)-(4.19) and equation (4.6), we shall obtain 
N-1 m 

A W ) ) = E ^[{^(k^MSik^1) - gfiiik*1) 
j=o ¿=1 
- VT(kj+1)Ai(kj)}Ax(kj) - VT(kj+1)(fi(kj,u(kj)) 

- - kj) + J2 hT(k)Ax(k) 
k€D 

+ E 0 ( | | ^ ) | | ) + 0 ( 1 1 ^ ( ^ ) 1 1 ) 
HeD 

= -esTpT(kl+1)Avfit(kl,u0
c(k1)) 

N-1 m 

- E - H) + E hT(k)Ax(k) 
j=0 ¿=1 

+ E 0(11^)11)+ 
teD 

= - es[^T(kl) + ^ ( f c ' ) ] ^ * ' ) (*', u°c(k1)) 

N-1 m 

j=i+1j=i 
- E ^^X^A-'ik^AMk^ulik1)) 

kec(k') 
+ o(\\Ax(k)\\) + o(\\A^kN)\\) 

keD 
= -e^T(k')A-1(kl)Avfil(klyc(kl))+ E ° ( l l ^ ) l l ) 

From the optimality of the pair ^ follows that 

AJc{u(-))/ea > 0. 
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Since ||Zlx(fc)|| = 0(£4) and ||zAx(A;7V)|| = 0(£a), therefore, passing to with 
£, J. 0, we shall get the inequality 

In view of the arbitrariness of the discrete curve L(k°, k1,..., kN) and the 
point k' lying on it, we obtain inequality (4.5), which ends the proof of 
Theorem 3. 

5. The discrete maximum principle for the basic problem 
In this section, using the limit passing in the approximating problem, 

we shall derive, in the form of the discrete maximum principle, a necessary 
condition for optimality for the basic problem. 

For any non-empty set A of a finite dimensional space X and for any a° 
belonging to the closure of the set A, let us introduce the following notation 

K(a°\A) := limsup[con(a - W(a|A))] 
a—*a° 

where conZ := {az\a > 0 A z e Z}, W(a\A) := {b\b G clA A ||a - 6|| = 
£>(a|A)}, and the upper limit of multi-valued mapping Q : X —• 2y is un-
derstood as 

l imsupQ(a) :={? G Y|(3an € X)(an a0) 
a—»a0 

e Q(an))(gn - ?)}. 
The set K(a°\A) is called a cone of generalized normals to the non-empty 
set A at the point a0 G clA. The properties of such cones are fully detailed 
in monograph [2], (§l-§4). 

THEOREM 4. Ifx°(-) is an optimal trajectory in basic problem ( 2 . 1 ) - ( 2 . 6 ) , 
( 1 . 6 ) - ( L 7 ) , and _ 
1) the sets f(k, U) are convex for k G D, 
2) U is a compact set, fi(k) is a closed set for k G D, 
3) the mappings ^¿(A;), i G 1(1, m), k G D, are invertible, 
4) the functions , •), i G / ( l , m ) , are continuous, 
5) the functions <j>i(-,k), i G 1(0,1), are lower semicontinuous, while the 
functions •(•,£), i G 1(1 + 1,/ + p), continuous in a neighbourhood of the 
optimal trajectory, then there exists a control u°(-) satisfying (2.1)-{2.2) and 
functions *•(•) : ~D Rn, y*(-) = (A0(-), Ax(-), •. •, Af+P(-)) : D 
such that 
(5.1) (x'(k),-y*(k))eK((x0(¿),c0)|E^(^)) k G D, 
(5 .2 ) A < ( * ) > 0 , keD, ie 1(0,1), 
(5.3) \0(k)(4>o(x0(k),k) — 7 ° ) = 0, k eD, 
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(5.4) Xi(k)(4>i(x°(k),k) = Q, keD, i e (7(1,/), 

(5.5) ¿(||x'(fc)||a + ||y'(fc)||a) = 1, 
keD 

and, for any v e U and keD, the condition 

(5.6) VTWAtr1(A ;)zlu/i(A:,«o(A:))<0, i e I{l,m), 

is satisfied, where the function •) : D —• Rn is a solution of the system of 
equations 

(5.7) = AfikMAik) - g*(k), keD, 

with the condition 

(5.8) r/>(kN) = -x*(kN), 

where 

(5.9) tf(*):= £ Xl{k)x\k)-Aj{k) £ Xltk{k)x*(%). 
'kec(k) Hec(Aik) 

P r o o f . In view of the continuity of the functions fi(k, •), i € 7(1,m), 
and the compactness of U, the set /(fc, U) is closed, that is, the assump-
tions of Theorem 1 are satisfied. Consequently, in each approximating prob-
lem (3.1)-(3.3) there are optimal processes { i j ( - ) , «c(')} s u ch that, for each 
k e D, x®(k) —> x°(k) as c —> c°. From the assumptions concerning the 
functions <f>i(-,k), i e /(0,1 + p), it follows that the set is, for each 
keD, a closed set in a neighbourhood of the point (x°(fc),c). From The-
orem 3, with c = ( 7 , 0 , . . . , 0 ) , 7 < 7 0 , it follows that there exist vectors 
(yc(k),wc(k) e W((x°(A;),c)|E^(^)), keD, such that conditions (4.5)-
(4.7) and (4.10) are satisfied. Since the convexity of the set f(k, U) implies 
that a(f(k,u1(k)),f(k,U)) — f(k,U), therefore condition (4.5) is satisfied 
for each v e U. In view of the compactness of the set U, one can choose 
from the set c f c°,(7^7°), a subsequence u®^ (k) converging to some 
u°(k) eU,keD,asn—^ 00. Let x°Cn (•) denote the trajectory corresponding 
to the control Since the sequence 

- yc„(fc)>c„ - ®c„(k))/mc 
e c o n ( ( x l ( k ) , c n ) - W((xl(k),c)\Ekn(<t>))) 

is bounded, therefore by choosing a subsequence if necessary, the limit of 
this sequence belongs to 7i'((x0(A;),c)|E^(<^)). Denote this limit by (x*(k), 
—yo(k)). Passing now in (4.5)-(4.10) with c f c°, we shall obtain (5.1), 
(5.5)—(5.9). 

The properties of cones of generalized normals ([2], th. 3.3) imply con-
ditions (5.2)-(5.4), which completes the proof of Theorem 4. 
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