DEMONSTRATIO MATHEMATICA
Vol. XXVI No 2 1993

Janusz Zyskowski

THE DISCRETE MAXIMUM PRINCIPLE
FOR SOME OPTIMIZATION PROBLEM
OF MULTIDIMENSIONAL SYSTEMS

In monograph [2] and paper [3] the author discusses the method of metric
approximations in the problems of control theory and applies it, among other
things, to the derivation of a necessary condition in the optimization of a
one-dimensional discrete system with constraints upon the trajectories. In
the present paper, by making use of this method, we derive a necessary
condition in a multidimensional discrete system linear with respect to the
trajectory.

1. Multidimensional discrete systems

Let Z™ stand for subset of the space R™, consisting of points k£ =
(k1,k2,...,km) with integer-valued coordinates, ordered by the relation
k' < k? meaning that, for each i € {1,2,...,m}, k! < k. For a fixed
k® € Z™, denote ZT(k°) := {k | k € Z™ A k° < k}. For an arbitrary set
E, let B(Z™,E) denote the set of mapings of Z™ into E. Define a mapping
A; : B(Z™,E) — B(Z™,E) in the following way

A,¢(k) = ¢(k1, kayoou ki1, ki + lakH—la caey km), kezZ™.

The mapping (Ay¢, Az, ..., An¢d) is a mapping of the set B(Z™,E) into
B(Z™,E™).

By a multidimensional discrete system we mean the system
(1.1) Aiz(k) = fi(k,u(k),z(k)), k€ D i€ I(1,m),
where f; : Z™ x U xE — E, D := {k|lk € ZT7(k°) Nk < kN}, D := D\ {k"},
I(i,j):={klk € ZANi<k<j},z():D—E,u(:): D-U.

We shall say that, with a fixed function u(-) : D — U, system (1.1) is
fully solvable if there exists a uniquely determined mapping z(-) : D — E
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such that
(1.2) z(k%) = 2°

and system (1.1) is satisfied.

From the general theory of multidimensional discrete systems, [1], it is
known that system (1.1) is fully eolvable if and only if, for each k£ € Z™,
condition

(1.3)  fi(Ajk, u(Ajk), fi(k,u(k),z(k)))
= fj(Aik’u(Aik)) f;(k,u(k),z(k))), k € D; 7".7 € I(l,m)
is satisfied.

We shall consider a special case of system (1.1), namely, the system linear
with respect to the trajectory

(1.4) Ajz(k) = Ai(k)z(k) + fi(k,u(k)), ke D;iel(l,m)

and the homogeneous linear system, corresponding to it,

(1.5) A;z(k) = Ai(k)z(k), ke D;iel(l,m),

where A(k) := (A;1(k), A2(k),...,Am(k)) with any k € D is a linear map-
ping of E into E™, f :=(f1, fo,---y fm) : DX U — E™.

From condition (1.3) of the full solvability of system (1.1} it follows that
systems (1.4) and (1.5) are simultaneously fully solvable when the conditions
(1.6)  (4;Ai(k)) o Aj(k) = (A:iAj(k)) o As(k), keD,ijelI(l,m),
(L7)  (4;Ai(k)fi(k,u(k)) + A; fi(k, u(k))

= (AiAj(k))fi(k’u(k)) + Aifj(kau(k))v keD;ije I(lvm)
are satisfied, where o stands for the operation of the superposing of map-
pings.

2. Formulation of the problem of controlling a multidimensional
discrete system linear with respect to the trajectory
Let the multidimensional linear discrete system

(2.1) Aiz(k) = Ai(k)z(k) + fi(k,w(k)), ke D;ieclI(l,m),
with the constraints
(2.2)  u(k) = (ur(k),uz(k),...,u (k)T €eUCR", keD,
(2.3)  z(k) = (z1(k), z2(k), ...,z (k)T € 2(k) C R",

k € D; 2(k°) = {=°},
(24) ¢;(z(k),k) <0, keD;jelI(,l),
(2.5) ¢i(z(k),k)=0, keD;jelI(l+1,l+p)
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and the functional
(2-6) J (u(-)) := max{go(z(k), k)|k € D}

be given, where ¢; : R™ x D — R, while T denotes the transposition opera-
tion. we shall consider the following problem:

(2.7) J(u(-)) — inf
under constraints (2.1)~(2.5) and (1.6)-(1.7), which will be called the basic
problem.

A control u : D — U C R" will be called an admissible control if the set
U is bounded and, with that function, conditions (1.6)—(1.7) are satisfied.

3. Approximating problem
For any non-empty subset A of a finite dimensional space X, let us
introduce the following notations:

p(alA) := inf{Jla — blllb € 4},
W(a|A) := {blb € clAA |la - b|| = p(a]A)}
where cl denotes the closure operation.
Let a pair {z°(-),u°(-)} be an optimal process in basic problem (2.7).
Let us introduce the following notations:
7" := max{go(z°(k), k)|k € D},
& :=(4%0,...,0) ¢ R1tH?
¢:=(7,0,...,0) e RM*P  for y ¢ R,
ES(9) := {(z, 0, 1, - - -, Hugp) € RPHIHHPZ € 0(k);
$i(z,k) < p; for j € I(0,1);
¢i(z, k) =p; forjelI(l+1,1+p)},
8(z,k,¢) i= p((z,c)|E).
Consider now the problem of the form
(3.1) Aix(k) = A(k)s(k) + fik,u(k)), k€ D; i€ I(1,m),
1/2 » )
(32) Z(u() = [ X 8 Gk), k)] + Y llalk) - (B2 — inf,
keD keD
(3.3) u(k)eUCR", keD,
called further the problem approximating problem (2.7).
For the approximating problems, the following theorems are true:
THEOREM 1 ([5]). If the pair {z°(-),u°(-)} is an optimal process in ba-
sic problem (2.7) and the set f(k,U) is, with each k € D, a closed set,
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then, in each approzimating problem (3.1)~(3.3), there ezist optimal process
{z9(-),w%(-)} such that, for any k € D, z%(k) — z°(k) as ¢ — °.

THEOREM 2 ([5)). If the process {z%(-), v%(-)}, ¢ = (v,0,...,0) € R1+H+P,
v < 4%, is an optimal process in approzimating problem (3.1)—(3.3) and the
set E5 (@) is a closed set in a neighbourhood of the point (z9(k),c), then
{z%(-),w2(-)} is an optimal process also in the following problem:
(34)  Az(k) = Ai(k)z(k) + fi(k,u(k)), ke Dj;iel(l,m),
(35)  Aiwnpa(k)= Y F(z(k),kc), keDjiel(l,m),
keDi(k)
(3.6) Aiznpa(k)= > |a(k)—2°(k)l*, ke D;iel(l,m),
keDi(k)
(37) z(ko) = .’EO, .’En+1(k0) = 0, zn+2(k°) = 0,
(3.8) wu(k)eUCR,
(3.9)  Je(u() := [znpa(KY) + |2 (EY) = ye(kV)|?
Hle = we kNPT + enp2 (V) + [le(k™) — 2°(RV)|? — in,
where Zn41(*);Tns2() : D — R, (ye(k), we(k)) € W((z2(k), )|EE(4)),
F(a,k,¢) i= 1z - 3R + lle - welB)?, k€D,
D(k):={k[ke DAk <kAk#k}, Di(k):=D(Ak).

4. A necessary condition for optimality for an approximating
problem

We are given in the set D a system of points k%, k1,..., k", satisfying
the conditions

K >R AY (WY -k)=1, jeI(0,N-1),
i=1
called a discrete curve joining the points k° and k" and denoted by
L(K° k,...,kN). Let us introduce the following notation:

(4.1) Xpo(EN) := Aiy (KN DA, (V7). A, (K°)
where i; is such that A;;k? = k*1. It is known, [1], that, when condi-
tions (1.6) are satisfied, Xyo(k"™) does not depend on the discrete curve
joining the points k° and V. In the case when k° = kV, we accept that
Xio(kN) is the identity mapping.

Let k' be a fixed point of the discrete curve L(k®,k!,..., k"), k! £ kN.
We say that f(k',v) belongs to the set o(f(k',u(k")), f(k',U)) when v =
v(k') for some admissible control v(-) and there exists a sequence (¢,), €5 | 0,
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such that, for every s,
(4.2) Sk ug(KY)) + es(F(K' ) = f(K, ug(K))) € f(K', U).

Hence it appears that if f(k',v) € o(f(k', uS(k")), f(k',U)), then there exists
elements v; € U such that

(4.3) fi(kl,va) = fi(kl,u?(kl))+€a(fi(kla”)“fi(kl’ug(kl)))’ i€ I(1,m).
Then the control

N ' k=k,
(4.4) u(k) = {ug(k), k# kK AEED,

is an admissible control for system (3.4). Indeed, condition (1.6) is evidently
satisfied and condition (1.7) follows from the fact that, at the points k', we
have

(A;A:(k) (K, u(kh)) + A; fi(k' 4(k"))

= (A;Ai(K") £ (K, wQ(K") + €,(A; Ai(K))(fi(K, )
— fi(K', uQ(k'))) + A; fi(K, ud(k))
+ e, 4;(fi(k' ) — fiK, wQ(1)))

= [(Qi4; (k")) fi(K', ul(k") + Aifi (K, wd(k'))]
+&5[(A:4;(k)) fik',0) + A fi (K, v)]
— &5[(AiA;(K)) filK' ug (k') + Ai fi(K, (k)]

= (Aid;(K) fi(K',v,)) + Aifi (K, v,)

= (A 4; (K fi(K a(kY)) + A (K a(kh,

whereas, at the remaining points, @(k) = u2(k), that is, condition (1.7) is
also satisfied.

THEOREM 3. If {z9(-),u%(-)} is an optimal pair in approzimating prob-
lem (3.1)«(3.3) with ¢ = (7,0,...,0), ¥ < 7°, Ef;(¢) is a closed set in
a neighbourhood of the point (2%(k),c), ¥ € D, and, for each k € D,
the mappings Ai(k), i € I(1,m), are invertible, then there ezists vectors
(yc(k), we(k)) € W((2(k),c)|ES()), k € D, such that
(45)  PT(K)ATI(K)A,fi(k,wd(K)) <0, k€D, ie€l(l,m),
for v e U, and f(k,v) € o(f(k,ud(k)), f(k,U)), k € D, where
(4.6)  $(k) = AT (K)Y(Aik) - gi(k), k€D, iel(1,m),

(4.7)  p(k") = -h(kY),
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(4.8) gi(k):= > XT(Rh(E)- Y AT(k)XZ,,(k)h(k),
kec(k) keci(k)
1€ I(1,m),

(4.9)  h(k) := (22(k) = ye(k))/me + 2(22(k) — 2°(k)),

(4.10) m,:= [ Z F(a:g(‘l;),‘ls, c)] *>0,

keD
(4.11) Ck):={klke DAE>kAk#£k}, Ci(k):=C(Ak),
(4.12) A, fi(k,u2(k)) := fi(k,v) — fi(k,u%(k)), i€ I(1,m).

Proof If {z9(-),u%(-)} is an optimal process in the approximating prob-
lem, then Theorem 2 implies that it is an optimal process in problem (3.4)-
(3.9), as well.

Let L(k° k',...,kN) be an arbitrary discrete curve and k' # k% a fixed
point of this curve. For v € U such that f(k',v) € a(f(k',u(K")), F(K',U)),
define a control %(-) of form (4.4) which is admissible control for problem
(3.4)-(3.9).

Let AZ(k) := Z(k) — 2d(k), AZny1(k) := Tny1(k) — 2041 o(K), ATpy2(K)
i= Znga(k) — 294, (k), k € D, where z%,, .(-), z0,, .(-) are the solu-
tion of system (3.5)—(3.6), corresponding to the control ul(-), and Z(-),
ZTnt1(+), Tne2(-) the solution of system (3.4)-(3.6), corresponding to the
control u(-).

From the optimality of the pair {z%(-),u?(-)} and from the definition of
the function F(-,-,-) it follows that, with v < 7%, m, > 0.

Taking account of form (3.9) of the functional J,(-), we have

(413)  AJ(U(")) = Je(@(-)) = Je(T())

- 1 - - ~
= hT(kN)AZ(EN) + 5 AZ 1 (KN) + AZpya(KV) + o(|| AZ(KY)]))

where Z = (%, Zn41, Fns2)-
In view of the fact following from equation (3.5) that, for k € D,

A,‘AE,H.](IC) = Ai5n+l(k) - Aizg+l,c(k)

= AZna(k)+ ) [FER),k ) = F(z3(k), k,c)
keGi(k)

= AZup(k)+ Y [2(2(R) - ve(k))T AZ(R)]
keGi(k)

+ Y o(llaz (k)

kEGi(k)
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where G;(k) := D;(k)\ D(k), we shall get

N-1m
(4.14)  AF, 4 (kY) = Z Z(A AZ gy (K) = AiFngr (K))(KIT! — kD)
= Y 2a3(k) - yo(k)TAZ(k) + ) o[l AZ(K))-
keD keD

Analogously, making use of equation (3.6), we shall obtain
(415)  AZnpa (k) = Y 2ad(k) - <° (k)T AZ(R) + Y o |AZ(R)]))-
keD keD
Using now the easy-to-check identity
N-1m
D D WTRAAZ(K) — 9T (5T AR (K - K])
i=0 i=1
= PT(E™)AZ(k")
where §; stands for the operator inverse to the operator A;, and from (4.13),
(4.14) and (4.15), adopting ¥(kV) = —h(kN), we shall get

(4.16)  AJ(u(-) = —pT(kV) Az

N-1 m
+ o([| AZ(KN)||) = Z ZW(& kI AF (k)
j=0 i=1
— TR AAZ(R) (KT - k) + 3 T (k) Az (k)

keD
+ > o(llaz(®)])) + o(|AZ(E™)])-
keD
The form of the control u(-) implies that

(417) A AZ(k) = Ay(k)AZ(k) + fi(k, (k) - fi(k, ue(k))

_ {Ag(k)Ai(k), k#k'AkeD,

T Ad(KHAZ(KY) + .4, fi(KuQ(KY)), k=K.
So, with AZ(k®) = 0, we have, for k € C(k'),
(4.18) AT(k) = e, X (k)A (K Ay fir (K, w2(K)),
and, for the remaining k € D \ C(k'), AZ(k) = 0, where i) is an index

satisfying the condition A; k' = 71, with that 7! is a point of the discrete
curve L(k',71,...,k) joining the points k' and k.
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Let 4; be an index satisfying the condition A; k' = k't1. By the identity
(A, 45, (k) Aufi, (K ud(K) = (A; Aik(K) Ao fi, (K, wd(K))
resulting from (1.6)-(1.7) and by the invertibility of the mappings A;(k),

equality (4.18) can be written down in the form

(4.19) AZ(k) = €, X (k)A (K )AL fi (K ud(K)), k€ C(KY).

Taking account of (4.16)-(4.19) and equation (4.6), we shall obtain
N-1m

AT(E()) = D) HY R A6kt - gf (k)

j=0 t=1
— YT () Ak} AZ(KT) — pT (KT (fi(k7, (k7))
— fi(k?, ud(R(KIF = kD) + 3 BT (k) Az(K)
*eD
+ 2 ol Az(E)) + o(llAZ(EM)I)
keD
= - 53¢T(kl+1)Avfil(kl’ug(kl))
N-1m
=3 S P 6k AT (kI - k) + ) W7 (k) AZ(K)
J=0 =1 keD
+ 2 olllaz(®m)l + o(|| AZ(K™)])
keD
— &, [T (k") + T (KA (KA fi, (K, wQ(K'))
N-1 m

e[ T D@k X ()R - k)

j=4+1:i=1

= Y ATEXu®] A7 E) AL (K, wd(k)
kec(k')

+ Y o(l|AZ(R)]) + o(|| AZ(KM)]))
keD

= — e T (KA (KD Afiy (K ud(KD) + > o([|AZ(R)|))
' %eD
+ o(|| AZ(KN)]).
From the optimality of the pair {z%(-),u%(-)} it follows that
AJ(3(-))/es 2 0.
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Since ||Az(k)|| = 0(e,) and ||A§(kN)|| = 0(g,), therefore, passing to with
€, | 0, we shall get the inequality

YT (KA (KA fi (K, wg(KY)) < 0.
In view of the arbitrariness of the discrete curve L(k,k!,-..,kV) and the

point k' lying on it, we obtain inequality (4.5), which ends the proof of
Theorem 3.

5. The discrete maximum principle for the basic problem

In this section, using the limit passing in the approximating problem,
we shall derive, in the form of the discrete maximum principle, a necessary
condition for optimality for the basic problem.

For any non-empty set A of a finite dimensional space X and for any a°
belonging to the closure of the set A, let us introduce the following notation
K (a®|A) := lim sup[con(a — W (a|A))]

a—a0
where con Z := {azla > 0Nz € Z}, W(a|A) := {b]b € clAA|la - b| =
o(a|A)}, and the upper limit of multi-valued mapping @ : X — 2Y is un-
derstood as
lim sup Q(a) :={q € Y|(3a, € X)(an — a°)
o

(3gn € Q(an))(gn — 9)}-

The set K(a®|A) is called a cone of generalized normals to the non-empty
set A at the point a® € clA. The properties of such cones are fully detailed
in monograph [2], (§1-§4).

THEOREM 4. Ifz°(-) is an optimal trajectory in basic problem (2.1)-(2.6),
(1.6)«1.7), and
1) the sets f(k,U) are convez for k € D,
2) U is a compact set, 2(k) is a closed set for k € D,
3) the mappings A;(k), i € I(1,m), k € D, are invertible,
4) the functions fi(k,-), i« € I(1,m), are continuous,
5) the functions ¢;(-, k), + € I(0,l), are lower semicontinuous, while the
functions ¢;(-, k), ¢ € I(l + 1,1 + p), continuous in a neighbourhood of the
optimal trajectory, then there ezists a control u(-) satisfying (2.1)-(2.2) and
functions z*(-) : D — R™, y*(-) = (R0(-); M1(-)- -+, Migp()) : D — R1+iHr
such that

(5.1) (z*(k), —y"(k)) € K((z°(k),")|EG(4)) k€D,
(5.2) Xi(k)>0, keD, iel(0,l),
(5-3) do(k)(#o(z°(k),k)-7°) =0, keD,
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(5.4) Xi(k)(#i(2%(k),k) =0, keD, ie(I(1,l),
(5.5) D U= B + lly™(R)IP) =1,
keD
and, for any v € U and k € D, the condition
(5.6) YT(K)A7I (k) A, fi(k,uO(K)) <0, i€ I(1,m),

is satisfied, where the function ¢(-) : D — R" is a solution of the system of
equations

(5.7) Y(k) = AT(k)p(Aik) - g}(k), ke D,

with the condition

(5.8) P(kN) = —z"(kV),

where

(5.9)  gik):= Y XT(k)z"(k)-AT(k) Y XZ.(k)z*(k).
kec(k) kec(Aik)

Proof. In view of the continuity of the functions fi(k,-), ¢ € I(1,m),
and the compactness of U, the set f(k,U) is closed, that is, the assump-
tions of Theorem 1 are satisfied. Consequently, in each approximating prob-
lem (3.1)-(3.3) there are optimal processes {z9(-),12(-)} such that, for each
k € D, 2%k) — zo(k) as ¢ — . From the assumptions concerning the
functlons éi(-,k), i € I(0,1 + p), it follows that the set E5(¢) is, for each
k € D, a closed set in a nelghbourhood of the point (z%(k), ). From The-
orem 3 with ¢ = (v,0,...,0), ¥ < 4%, it follows that there exist vectors
(ye(k), we(k) € W((zo(k),c)|E. (¢)), k¥ € D, such that conditions (4.5)-
(4.7) and (4.10) are satisfied. Since the convexity of the set f(k,U) implies
that o(f(k,u2(k)), f(k,U)) = f(k,U), therefore condition (4.5) is satisfied
for each v € U. In view of the compactness of the set U, one can choose
from the set {ud(k)}, c 1 ¢®,(y"¢?), a subsequence u? (k) converging to some
u%(k) € U,k € D,as n — oc. Let 20 (-) denote the trajectory corresponding
to the control 42 (-). Since the sequence

(z(c),. (k) = Yo (k),en — we, (k))/mc
€ con((z¢, (k), en) = W((22, (k), ¢)|EG(9)))

is bounded, therefore by choosing a subsequence if necessary, the limit of
this sequence belongs to K((z°(k),c)|E5(4)). Denote this limit by (z*(k),
—y3(k)). Passing now in (4.5)—(4.10) with ¢ T ¢, we shall obtain (5.1),
(5.5)-(5.9).

The properties of cones of generalized normals ([2], th. 3.3) imply con-
ditions (5.2)—(5.4), which completes the proof of Theorem 4.
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