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ALMOST WEAKLY CONTINUOUS MULTIFUNCTIONS

1. Introduction

In 1961, Levine [10] introduced the concept of weakly continuous func-
tions in topological spaces. In 1966, Husain [6] introduced the concept of
almost continuous functions. In 1978, Smithson [29] and Vopa [17, 18] ex-
tended independently these concepts to multifunctions and defined upper
(lower) weakly continuous multifunctions and upper (lower) almost con-
tinuous multifunctions. Recently, Jankovié¢ [7] has defined almost weakly
continuous functions as a generalization of weakly continuous functions and
almost continuous functions.

The purpose of the present paper is to extend the concept of almost
weakly continuous functions to multifunctions. In §3, we obtain many char-
acterizations of upper (lower) almost weakly continuous multifunctions. In
84 (resp. 85, §6), we obtain some sufficient conditions for upper (lower)
almost weakly continuous multifunctions to be upper (lower) weakly contin-
uous (resp. upper (lower) almost continuous, continuous). It is shown in the
final section that the condition “upper almost continuous” in some results
established in [26] can be replaced by “upper almost weakly continuous”.

2. Preliminaries

Throughout the present paper, X and Y always mean topological spaces
and F: X - Y (resp. f : X — Y) always represents a multivalued (resp.
single valued) function. Let A be a subset of the space X. The closure
of A and the interior of A are denoted by Cl(A) and Int(A), respectively.
A subset A is said to be preopen [13] if A C Int(CIl(A)). The family of
all preopen sets in X is denoted by PO(X). For a point z of X, we set
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PO(X,z) = {U € PO(X)| z € U}. The complement of a preopen set is said
to be preclosed. The intersection of preclosed sets containing A is called the
preclosure [5) of A and is denoted by pCl(A). The union of preopen sets
contained in A is called the preinterior of A and is denoted by pInt(A). It
is obvious that X — p Cl(A) = pInt(X — A).

LEMMA 2.1. Let z be a point of a space X and A a subset of X. Then
the following hold for the preclosure:

(a) z € pCl(A) if and only if ANU # @ for every U € PO(X, z).

(b) A is preclosed if and only if A= pCl(A).

(c) pCl(A) = AU Cl(Int(A)).

Proof. This follows from Lemmas 2.2 and 2.3 of [5] and ([1], Theo-
rem 1.5).

For a multifunction F : X — Y, following [2], we shall denote the upper
and lower inverse of a subset B of Y by F*(B) and F~(B), respectively:

Ft(By={z € X|F(z)CB} and F (B)={z€ X | F(z)nB # 0}.

DEFINITION 2.2. A multifunction F : X — Y is said to be

(a) upper semi-continuous (u.s.c.) [2] if for each z € X and each open
set V' containing F(z), there exists an open neighborhood U of z such that
FU)cV;

(b) lower semi-continuous (l.s.c.) if for each z € X and each open set
V such that F(X) NV # @, there exists an open neighborhood U of z such
that F(u) NV # 0 for every u € U;

(c) continuous if it is u.s.c. and Ls.c.
DEFINITION 2.3. A multifunction F: X € Y is said to be

(a) upper almost continuous (u.a.c.S.) [22] if for each z € X and each
open set V containing F(z), there exists an open neighborhood U of z such
that F(U) C Int(Cl(V));

(b) lower almost continuous (l.a.c.S.) if for each z € X and each open
set V such that F(z) NV # @, there exists an open neighborhood U of z
such that F(u) N Int(Cl(V)) # 0 for every u € U.

DEFINITION 2.4. A multifunction F: X €Y is said to be

(a) upper weakly continuous (u.w.c.) [17, 29] if for each z € X and each
open set V containing F(z), there exists an open neighborhood U of z such
that F(U) C (CI(V);

(b) lower weakly continuous (l.w.c.) if for each z € X and each open set
V such that F(z) NV # @, there exists an open neighborhood U of z such
that F(u) N C(V') # @ for every u € U.
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DEFINITION 2.5. A multifunction F': X — Y is said to be

(a) upper quasi continuous (u.q.c.) [16] if for each z € X, each open set U
containing z and each open set V' containing F(z), there exists a nonempty
open set G of X such that G C U and F(G) C V;

(b) lower gquasi continuous (l.q.c.) if for each z € X, each open set U
containing z and each open set V such that F(z) NV # 0, there exists a
nonempty open set G of X such that G C U and F(g) NV # @ for every
g€G.

DEFINITION 2.6. A multifunction F : X — Y is said to be

(a) upper almost continuous (u.a.c.H.) [18, 29] if for each z € X and
each open set V of Y containing F(z), z € Int(Cl(F+(V)));

(b) lower almost continuous (l.a.c.H.) if for each z € X and each open
set V of Y such that F(z) NV # 0, z € Int(CI(F~(V))).

The following lemma is useful and will be utilized in the sequel.

LEMMA 2.7. The following are equivalent for a multifunction F : X — Y:

(a) F is u.a.c.H. (resp. lLa.c.H.).

(b) F*(V) € PO(X) (resp. F~(V) € PO(X)) for every open setV of Y.

(c) For each z € X and each open set V such that F(z) C V (resp.
F(z)nV # 0), there ezists U € PO(X,z) such that F(U) C V (resp.
Fu)nV # 0 for every u € U).

Proof. This is shown in Theorems 2.3 and 2.4 of [26].

DerFinITION 2.8. A multifunction F : X — Y is said to be

(a) upper almost weakly continuous (u.a.w.c.) if for each z € X and each
open set V containing F(z), z € Int(CI(F*(CL(V))));

(b) lower almost weakly continuous (l.a.w.c.) if for each z € X and each
open set V such that F(z)NV # @, z € Int(Cl(F~(CL(V)))).

It is shown in Theorems 4 and 6 of [17] that a multifunction F' : X —
Y is u.w.c. (resp. Lw.c.) if and only if FH(V) C Int(F*(CL(V))) (resp.
F~(V) C Int(F~(CL(V))) for every open set V of Y. Therefore, we obtain
the following diagram:

| u.g.c.(l.a.c.)
u.s.c.(l.s.c) — uw.a.c.S.(La.c.S.) — uw.c.(lw.c.) —» uva.w.c(la.w.c.)
L » u.a.c.H.(lLa.c.H.) S|

3. Characterizations
In this section we obtain many characterizations of u.w.a.c. (lL.a.w.c.)
multifunctions.
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THEOREM 3.1. The following are equivalent for a multifunction F : X
—-Y:

(a) F is v.a.w.c.

(b) F¥(V) C Int(CL(F*(CKV)))) for every open setV of Y.

(c) Cl(Int(F—(V))) C F~(CI(V)) for every open setV of Y.

(d) pCI(F~(V)) C F~(CKV)) for every open setV of Y.

(e) FY(V) C pInt(F*(CLV))) for every open setV of Y.

(f) For each x € X and each open set V containing F(z), there exists
U € PO(X,z) such that F(U) C CI(V).

Proof. (a)=(b): Let V be any open set of Y and z € F*(V). Then
F(z) ¢ V and hence z € Int(Cl(F+(CLV)))). Therefore, F+(V) C
Int(CI(F*+(CLV)))).

(b)=(c): Let V be any open set of Y. Since Y — CI(V) is open,

X — F~(CV)) = FH(Y - C(V)) C Int(CI(F*(CLY - CI(V)))))

C Int(CI(F*(Y — V))) = Int(CYX — F~(V))) = X — Cl(Int(F~(V))).
Therefore, we obtain Cl(Int(F~(V))) ¢ F~(CIV)).

(c)=>(d): Let V be any open set of Y. By Lemma 2.1, we have

pClF~(V))=F (V)UCl(Int(F~(V))) c F~(CI(V)).
(d)=(e): Let V be any open set of Y. Since Y — CI(V) is open, we have
X — pInt(F*+(CI(V))) = pCUX — F*(CYV))) = pCYF~(Y — CYV)))
CF(CY =CV))) CF~(Y-V)=X-FH(V).

Therefore, we obtain F*(V) C pInt(F*(CI(V))).

(e)=>(f): Let z € X and V be any open set containing F(z). Then
z € FY(V) C pInt(F*(CL(V))). Therefore, there exists U € PO(X,z) such
that F(U) C CI(V).

(f)=(a): Let z € X and V be any open set containing F(z). There exists

U € PO(X,z) such that F(U) C CI(V); hence U C F*(CI(V)). Therefore,
we obtain z € U C Int(CI()) C Int(CI(F+(CL(V)))).

THEOREM 3.2. The following are equivalent for a multifunction F : X
—-Y:

(a) F is La.w.c.

(b) F=(V) C Int(Cl(F~(CI(V)))) for every open setV of Y.

(c) Cl(Int(F+(V))) C F*(CLV)) for every open setV of Y.

(d) pCYF*(V)) C F¥(CV)) for every open set V of Y.

(e) F~(V) C pInt(F~(CIV))) for every open setV of Y.

(f) For each z € X and each open set V such that F(z) NV # B, there
ezists U € PO(X, z), such that F(u)NCl(V) # @ for eachu € U.
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Proof. The proof is similar to that of Theorem 3.1 and is thus omitted.

Remark 3.3. For any U € PO(X), Cl(Int(Cl(U))) = CI(U) and hence
“open set” in each statement of Theorems 3.1 and 3.2 can be replaced by
“preopen set”.

THEOREM 3.4. The following are equivalent for a multifunction F : X
-Y:

(a) F is u.a.w.c.

(b) Cl(Int(F~(Int(W)))) C F~(W) for every closed set W of Y.

(c) pCU(F~(Int(W))) C F~ (W) for every closed set W of Y.

(d) pCI(F~(Int(CI(B)))) C F~(CI(B)) for every subset B of Y.

(e) F*(Int(B)) C pInt(F*(Cl(Int(B)))) for every subset B of Y.

Proof. (a)=(b): Let W be any closed set of Y. Since Y — W is open in
Y, by Theorem 3.1 we have

X —-F~(W)=F*Y - W) c Int(CI(F*(CI(Y — W))))
= Int(Cl(F* (Y — Int(W))))
= Int(Cl(X — F~(Int(W)))) = X — Cl(Int(F~(Int(W)))).
Therefore, we obtain Cl(Int(F~(Int(W)))) C F~(W).

(b)=>(c): Let W be any closed set of Y. By Lemma 2.1, we have

pCI(F~(Int(W))) = F~(Int(W)) U Cl(Int(F~ (Int(W)))) C F~(W).

(c)=(d): This is obvious.

(d)=(e): Let B be any subset of Y. Then we have

X — pInt(F*(Cl(Int(B)))) = p CI(X — F*(Cl(Int(B))))

= pCl(F~(Y — Cl(Int(B)))) = p CI(F~ (Int(CI(Y — B))))
C F~(CY - B)) = X — Ft(Int(B)).
Therefore, we obtain F*(Int(B)) C pInt(F*(Cl(Int(B)))).

(e)=>(a): Let V be any open set of Y. Then F*(V) C pInt(F*(ClIV)))

and hence F' is u.a.w.c. by Theorem 3.1.

THEOREM 3.5. The following are equivalent for a multifunction F : X
—-Y:

(a) F is La.w.c.

(b) Cl(Int(F*(Int(W)))) C F*(W) for every closed set W of Y.
(c) pCIF+(Int(W))) C F+ (W) for every closed set W of Y.

(d) p CI(F*(Int(Cl(B)))) C F*(CI(B)) for every subset B of Y.

(e) F~(Int(B)) C pInt(F~(Cl(Int(B)))) for every subset B of Y.

Proof. The proof is similar to that of Theorem 3.4.
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A function f : X — Y is said to be almost weakly continuous [7] if
F~YV) € Int(Cl(f~1(CLV)))) for each open set V of Y. In the following
corollary “open set” in each statement can be replaced by “preopen set”.

COROLLARY 3.6. The following are equivalent for a function F : X — Y

(a) f is almost weakly continuous.

(b) Cl(Int(f~1(V))) C f~Y(CYV)) for every open setV of Y.

(c) pCI(f~1(V)) C f~Y(CYV)) for every open set V of Y.

(d) f7Y(V) C pInt(f~1(CLV))) for every open set V of Y.

(e) For each z € X and each open set V containing f(z), there ezists
U € PO(X,z) such that F(U) C CI(V).

For a multifunction ¥ : X — Y, the graph multifunction G : X —
X XY is defined as follows: Gp(z) = {z} x F(z) for every z € X.

LEMMA 3.7. The following hold for a multifunction F: X = Y:
(a) GE(Ax By=AnF*(B) and (b)) Gr(Ax B)= AnF~(B)
for every subset AC X and BCY.

Proof. We shall prove only (b). Let A and B be any subsets of X and
Y, respectively. Let £ € Gr(A X B). Then

0 £ Gr(z)N (A x B) = ({z} x F(z)) N (4 x B) = ({z} 0 4) x (F(z) N B).

Therefore, we have z € A and F(z) N B # 0 and hence z € AN F~(B).
Conversely, let £ € AN F~(B). Then z € A and F(z) N B # 0 and hence
Gr(z)N(A X B) # 0. Therefore, z € Gz(A x B). This completes the proof.

THEOREM 3.8. Let F : X — Y be a multifunction such that F(z) is
compact for eachz € X. Then F : X — Y is u.a.w.c. if and only if Gp :
X > XxY is v.a.w.c.

Proof. Necessity. Suppose that FF : X — Y is u.a.w.c. Let z € X
and W be any open set of X X Y containing Gr(z). For each y € F(z),
there exist open sets U(y) C X and V(y) C Y such that (z,y) € U(y) X
V(y) € W. The family {V(y) | y € F(z)} is an open cover of F(z) and
there exists a finite number of points, says, ¥1,¥2,-..,¥n in F(z) such that
Feyc H{V(y) |i=1,2,...,n}.Set U = N{U(w:) | + = 1,2,...,n}
and V = UY{V(y) | ¢ = 1,2,...,n}. Then U and V are open in X and
Y, respectively and {z} x F(z) C U x V C W. Since F is v.a.w.c., by
Theorem 3.1 there exists Uy € PO(X,z) such that F(Uy) C CI(V). By
Lemma 3.7, we have

UNnU, CUNFYCYV)) = GHU x C(V)) C GE(CYW)).
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Therefore, we obtain U N Up € PO(X,z) and Gr(U N Up) C CY(W). This
shows that Gr is u.a.w.c.

Sufficiency. Suppose that Gp : X — X XY is v.aw.c. Let z € X
and V be any open set of Y containing F(z). Since X x V is open in
X XY and Gp(z) C X x V, by Theorem 3.1 there exists U € PO(X, z)
such that Grp(U) C X x Cl(V) = CI(X x V). Therefore, by Lemma 3.7
U Cc GH(X x C(V)) = F+(C(V)) and hence F(U) C CI(V). This shows
that F is u.a.w.c.

THEOREM 3.9. A multifunction F : X — Y is La.w.c. if and only if
Gp: X —>XxY islaw.c.

Proof. Necessity. Suppose that F is l.a.w.c. Let z € X and W be any
open set of Y such that Gp(z) N W # 0. There exists y € F(z) such that
(z,y) € W and hence (z,y) € U X V C W for some open sets U C X and
V CY. Since F is la.w.c. and y € F(z) NV, there exists Uy € PO(X,z)
such that F(u) N C(V) # 0 for each u € Up; hence Uy C F~(CL(V)). By
Lemma 3.7, UN Uy C UNF~(CIV)) = Gp(U x CI(V)) C GR(CYW)).
Moreover, U N Uy € PO(X, z) and hence GF is lL.a.w.c.

Sufficiency. Suppose that G is l.a.w.c. Let £ € X and V be an open
set in Y such that F(z) NV # 0. Then X x V is open in X x Y and
Gr()N(X XxV)=({z}x F(z))n(X xV) = {z} x (F(z)NV) # 0. There
exists U € PO(X,z) such that Gp(u) N Cl(X X V) # @ for each u € U. By
Lemma 3.7, we obtain U C Gr(Cl(X x V)) = F~(CI(V)). This shows that
F is l.a.w.c.

A subset A of a space X is said to be semi-open [11] if there exists an
open set U of X such that U € A C CI(U). Yhe family of all semi-open sets
in X is denoted by SO(X). The complement of a semi-open set is said to be
semi-closed. The intersection of all semi-closed sets containing A is called
the semi-closure [4] of A and is denoted by sCl(A). For a multifunction
F:X — Y, a multifunction sC1F : X — Y is defined in [20] as follows:
(sCl1F)(z) = sCl(F(z)) for each z € X.

LEMMA 3.10. Let F : X — Y be a multifunction. Then (sCLF)~ (V) =
F=(V) for every V € SO(Y).

Proof. Let V be any semi-open set of Y. Let z € (s C1F)~ (V). Then
VNnsCl(F(z))=V N(sClF)(z) # 0. Since V € SO(Y), VN F(z) # § and
hence z € F~ (V). Therefore, we obtain (s C1 F)=(V') C F~ (V). Conversely,
let z € F~(V). Then @ # F(z) NV C (sClF)(z) NV and hence z €
(8 C1F)~ (V). Therefore, we obtain (s CLF)~ (V) = F~(V).

THEOREM 3.11. A multifunction F : X — Y is La.w.c. if and only if
sClF:X ->Y islauw.c
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Proof. Necessity. Suppose that F is l.a.w.c. Let £ € X and V be
any open set of Y such that (sClF)(z) NV # 0. By Lemma 3.10, we
have F(z)N'V # 0. Since F is La.w.c., by Theorem 3.2. there exists U €
PO(X, z) such that F(u)NCI(V') # 0 for every u € U. Since CI(V') € SO(Y),
by Lemma 3.10 we have v € F~(CYV)) = (sClF)~(Cl(V)) and hence
(s C1F)(u)N CKV) # 0 for every u € U. This shows that s C1 F is La.w.c.

Sufficiency. Suppose that sCLF is lLa.w.c. Let z € X and V be any
open set of Y such that F(z)NV # 0. Then (sClF)(z) NV # 0 and there
exists U € PO(X,z) such that (sCL1F)(u) N C(V) # O for every u € U.
Since C1(V) € SO(Y'), by Lemma 3.10 U C (s C1F)~(CLV)) = F~(CI(V))
and hence F(u) N Cl(V) # 0 for every u € U. Therefore, F is La.w.c.

LEMMA 3.12 (Mashhour et al. [13]). Let U and Xy be subsets of a space
X. The following properties hold:

(a) If U € PO(X) and X € SO(X), then U N Xy € PO(Xy).
(b) If U € PO(Xo) and Xo € PO(X), then U € PO(X).

LEMMA 3.13. If a multifunction F : X — Y is u.a.w.c. (resp. lLa.w.c.
and Xo € SO(X), then the restriction F|Xo : Xo — Y is u.a.w.c. (resp.
la.w.c.).

Proof. We shall prove only the case “u.a.w.c.” since another is entirely
analogous. Let z € X and V be any open set in Y containing (F|Xo)(z).
Since F is u.a.w.c. and (F|Xo)(z) = F(z), there exists U € PO(X, z) such
that F(U) C CI(V). Let Uy = UN X, then Uy € PO(Xp,z) by Lemma 3.12
and (F|Xo)(Up) = F(Up) C F(U) C C(V). This shows that F| X is u.a.w.c.

LEMMA 3.14. Let F : X — Y be a multifunction. If for each z € X there

ezists Xo € PO(X, z) such that the restriction F|Xo : Xo — Y is u.a.w.c.
(resp. lLa.w.c.), then F is u.a.w.c. (resp. l.a.w.c.).

Proof. We shall prove only the case “u.a.w.c.”. Let z € X and V be
any open set in Y containing F(z). There exists Xo € PO(X,z) such that
F|Xo : Xo — Y is u.a.w.c. and hence (F|Xo)(Up) C CI(V) for some U €
PO(Xo,z). By Lemma 3.12, Uy € PO(X,z) and F(Us) = (F|Xo)(Us) C
CI(V). Therefore, F is u.a.w.c.

A subset A of a space X is called an a-set [14] if A C Int(Cl(Int(A))).
It is shown in [15, Lemma 3.1] that a subset is an a-set if and only if it is
semi-open and preopen.

THEOREM 3.15. Let {U, | a@ € V} be a cover of X by a-sets of X.
A multifunction F : X — Y is u.a.w.c. (resp. l.a.w.c.) if and only if the
restriction F|Uy : Uy = Y is u.a.w.c. (resp. l.a.w.c.) for every a € V.

Proof. This is an immediate consequence of Lemmas 3.13 and 3.14.
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4. Sufficient conditions for a.w.c. multifunctions to be w.c.
In this section, we obtain some sufficient conditions for u.a.w.c. (resp.
l.a.w.c.) multifunctions to be u.w.c. (resp. L.w.c.).

THEOREM 4.1. If a multifunction F : X - Y is u.a.w.c. and la.c.S.,
then F is u.w.c.

Proof. Let V be any open set of Y. Since F is u.a.w.c., by Theorem 3.1
FH(V) C Int(CI(F*(CYV)))). Since CI(V) is regular closed, it follows from
[22, Theorem 2.2] that F*(Cl(V)) is closed in X. Therefore, we obtain
FH(V) C Int(F+(CI(V))) and hence it follows from [17, Theorem 6] that F’

is u.w.c.

CoROLLARY 4.2 (Popa [23]). If a multifunction F : X — Y is u.a.c.H.
and l.s.c., then F is u.w.c.

THEOREM 4.3. If a multifunction F : X — Y is lLa.w.c. and u.a.c.S.,
then F is lL.w.c.

Proof. The proof is similar to that of Theorem 4.1.

COROLLARY 4.4 (Popa [23]). If a multifunction F : X — Y is La.c.H.
and u.s.c., then F is Lw.c.

Smithson [29] and Popa [17] showed independently that if F: X — Y is
u.w.c. then CI(F~(V)) ¢ F~(CI(V)) for every open set V of Y. Clay and
Joseph [3] showed that the converse of the previous statement is also true.

LEMMA 4.5 (Clay and Joseph [3]). A multifunction F : X — Y is u.w.c.
(resp. Lw.c.) if and only if CI(F~—(V)) Cc F~(CL(V)) (resp. CI(F*(V)) C
F*(CYV))) for every open set V of Y.

THEOREM 4.6. If a multifunction F : X — Y is u.a.w.c. and l.q.c., then
F is ww.c.

Proof. Let V be any open set of Y. Since F is l.q.c., it follows from
{24, Theorem 2.4] that F~(V) C Cl(Int(F~(V))). Since F is u.a.w.c., by
Theorem 3.1 we have Cl(Int(F~(V))) C F~(CI(V)) and hence CI( F~(V)) C
F=(CIV)). It follows from Lemma 4.5 that F is u.w.c.

The following corollary and Corollary 4.2 are immediate consequences of
Theorem 4.6.

COROLLARY 4.7 (Popa [24]). If a multifunction F : X — Y is u.a.c.H.
and l.q.c., then F is u.w.c.

THEOREM 4.8. If a multifunction F : X — Y is l.a.w.c. and u.q.c., then
F is lLw.c.
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Proof. Let V be any open set of Y. Since F is u.q.c., it follows from
(24, Theorem 2.3} that F+(V) C Cl(Int(F*(V))). By Theorem 3.2, we
have Cl(Int(F*(V))) ¢ F*(CI(V)). Therefore, we obtain CI(F+(V)) C
F*(C)(V)) and hence F is l.w.c. by Lemma 4.5.

The following corollary and Corollary 4.4 are immediate consequences of
Theorem 4.8.

CoRroLLARY 4.9 (Popa [24]). If @ multifunction F : X — Y is La.c.H.
and u.q.c., then F is Lw.c.

5. Sufficient conditions for a.w.c. multifunctions to be a.c.H.

In this section, we obtain several sufficient conditions for u.a.w.c. (resp.
l.a.w.c.) multifunctions to be u.a.c.H. (resp. l.a.c.H.). Rose [28] defined a
function F : X — Y to be almost open if f(U) C Int(CI(f(U))) for every
open set U of X . It was shown in [28, Theorem 11] that a function F : X - Y
is almost open if and only if f~1(CL(V)) C CI(f~}(V)) for every open set V
of Y. We shall obtain an analogous result for multifunctions. A multifunction
F : X —> Y is said to be almost open if F(U) C Int(CI(F(U))) for every
open set U of X.

THEOREM 5.1. A multifunction F : X — Y is almost open if and only if
F~(CYV)) C CY(F~(V)) for every open setV of Y.

Proof. Necessity. Let V be any open set of Y and z € X —Cl(F~(V)).
There exists an open neighborhood U of z such that U n F~(V) = §.
Therefore, we have F(U)NV = @ and hence Int(CI(F(U))) n Cl(V) = 0.
Since F is almost open, F(U)NCl(V) = § and hence z € X — F~(Cl(V)).
Therefore, we obtain F~(CI(V)) ¢ CI(F~(V)).

Sufficiency. Suppose that F is not almost open. Then F(U)
— Int(CI(F(U))) # 0 for some open set U of X. Let V =Y — CI(F(U)).
Then V is open in Y and F(U)NV = @. Since F(U)N C(V) = F(U)n
(Y —Int(CI(F(U))))#£0,0# Un F~(CV)) C UNCIF~(V)) and hence
UnN F~(V)# 0. Therefore, we obtain F(U)N # 0. This is contradiction.

A multifunction F : X — Y is said to be nearly almost open if there
exists an open basis X = {V, | a € V} of the topology for Y such that
F~(Cl(Vy)) C CI(F~(V,)) for every a € V.

THEOREM 5.2. If a multifunction F : X — Y is la.w.c. and nearly
almost open, then F is l.a.c.H.

Proof. Let ¥ = {V, | @ € V} be an open basis of the topology for Y
such that F~(Cl(V,)) C CI(F~(V,)) for every a € V. For any open set V of
Y, there exists a subset Vg of V such that V = [J{V4 | a € V,}. Therefore,
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we obtain
F‘(V):F‘( U Va) = |J F(va)
a€EVy a€Vy
¢ |J Imt(CUF~(CVa))) C |J It(CU(F(Va)))
a€Vy a€Vy
cs(aa( Y 7)) =ms (a (- Y W)
a€Vy a€Vy

= Int(CI(F~(V))).

This shows that F~(V) € PO(X). It follows from Lemma 2.7 that F is
La.c.H.

COROLLARY 5.3. If a multifunction F : X — Y is La.w.c. and almost
open, then F is lLa.c.H.

CoROLLARY 5.4 (Popa [23]). If @ multifunction F : X — Y is Lw.c. and
if for any open set V of Y the relation F~(Cl(V')) C CY(F~(V')) holds, then
F is lLa.c.H

Proof. This is an immediate consequence of Theorem 5.1 and Corol-
lary 5.3.

A subset A of a space X is said to be a-regular [9] if for each point a € A
and each open set U of X containing a, there exists an open set G of X

such that a € G C CI(G) C U.

THEOREM 5.5. If a multifunction F' : X — Y is lLa.w.c. and F(z) is
a-regular for each z € X, then F is l.a.c.H.

Proof. Let z € X and V be any open set of Y such that F(z)NV # §.
There exists a point y € F(z)NV and y € W C CI(W) C V for some open
set W of Y. Since Fis La.w.c. and F(z)NW # 0, z € Int(CI(F~(CY(W)))) C
Int(CI(F~(V))). Therefore, F is La.c.H.

COROLLARY 5.6. If a multifunction F : X — Y is lLaw.c. and Y is
reqular, then F is l.a.c.H.

Hereafter, in this section, we shall obtain some sufficient conditions for
u.a.w.c. multifunctions to be u.a.c.H.

THEOREM 5.7. If a multifunction F : X — Y s u.a.w.c. and satisfies
F+(CYV)) € CI(F+(V)) for every open setV of Y, then F is u.a.c.H.

Proof. Let V be any open set V of Y. Since F is u.a.w.c., by Theo-
rem 3.1 F+(V) C Int(CY{F*+(CL(V)))) and hence F*(V) C Int(CI(F+(V))).
Therefore, F*(V) € PO(X) and it follows from Lemma 2.7 that Fis u.a.c.H.
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CoROLLARY 5.8 (Popa [23]). If a multifunction F : X — Y is u.w.c.
and if for any open set V of Y the relations F*(CYV)) C CI(F+(V)) holds,
then F is u.a.c. H.

A subset A of a space X is said to be a-paracompact [30] if every X-open
cover of A has an X-open X-locally finite refinement which covers A. The
following lemma is very useful in the sequel.

LeMMA 5.9 (Kovagevié [9]). If A is an a-regular a-paracompact subset
of a space X and U is an open neighborhood of A, then there exists an open
set G of X such that AC G C ClG)CU. '

THEOREM 5.10. If a multifunction F : X - Y is u.a.w.c. and if either

(a) F(z) is a-regular a-paracompact for each z € X or
(b) F(z) is closed in'Y for each z € X and Y is normal (not necessarily
Ty), then F is u.a.c.H.

Proof. Let z € X and V be any open set of Y containing F(z). Under
each condition of (a) and (b), there exists an open set W of Y such that
F(z) c W c Ci(W) C V. Since F is u.a.w.c., by Theorem 3.1 there exists
U € PO(X,z) such that F(U) C CI(W); hence F(U) C V. Therefore, by
Lemma 2.7 F is u.a.c.H.

A multifunction F : X — Y is said to be complementary continuous
(w*.c.) [17]) if F=(Fr(V)) is closed in X for every open set V of Y, where
Fr(V) denotes the frontier of V. It was shown in [17, Theorem 7] that a
multifunction F : X — Y is u.s.c. if and only if it is u.w.c. and w*.c.

THEOREM 5.11. If a multifunction F : X — Y 1is u.a.w.c. and vw*.c.,
then F is u.a.c.H.

Proof. Let z € X and V be any open set of Y containing F(z). By
Theorem 3.1, there exists U € PO(X,z) such that F(U) C Cl(V). Since
F(z) CcV, F(z)Nn Fr(V) = 0 and hence X — F~(Fr(V)) is an open niegh-
borhood of z. Set Up = UN(X — F~(Fr(V))), then we have Uy € PO(X, z)
and F(Up) C V. This shows that F is u.a.c.H.

For a multifunction F : X — Y, thesubset {(z,y) |z € X and y € F(z)}
of X XY is called the graph of F and is denoted by G(F). We say that F
has a closed graph if G(F) is a closed subset of the product space X x Y.
A space Y is said to be rim-compact if there exists an open basis X for the
topology on Y such that Fr(V) is compact for each V in X.

THEOREM 5.12. Let F : X — Y be an u.a.w.c. multifunction with a
closed graph G(F). IfY is rim-compact and F(z) is compact for eachz € X,
then F is u.a.c.H.
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Proof. Since Y is rim-compact, there exists an open basis X for the
topology on Y such that Fr(V) is compact for each V in X. Let z € X and
W be any open set containing F(z). For each y € F(z), there exists V(y) in
X such that Fr(V(y)) is compact and y € V(y) C W. Since F(z) is compact,
there exists a finite subset K of F(z) such that F(z) C U{V(y) |y € K} C
W.SetV ={V(y) | y€ K}, then VisopeninY, F(z) CV C W
and Fr(V) is compact. Since G(F) is closed, F~(Fr(V)) is closed in X and
hence Ft(Y — Fr(V)) is open in X. Since F is u.a.w.c., by Theorem 3.1
FH(V)) C pInt(F*+(CI(V))). Moreover, we obtain

FH(V) C FH(Y — Fr(V)) n pInt(F*(CK(V)))
c FH(Y — Fr(V))n FH(C(V)) = FH(V).

Therefore, F+(V) = F*(Y — Fr(V)) n pInt(F*(Cl(V))) € PO(X) and
z € FY(V) ¢ F*(W). Consequently, we obtain z € Int(Cl(F*(W))) and
hence F is un.a.c.H.

Remark 5.13. In [8], Joseph defined the concept of subclosed graphs
for multifunctions as a generalization of closed graphs and showed that if a
multifunction F : X — Y has a subclosed graph and K is a compact subset
of Y then F~(K)is closed in X [8, Theorem 3.15]. Therefore, the condition
“closed” on G(F) in Theorem 5.12 can be replaced by “subclosed”.

6. Sufficient conditions for a.w.c multifunctions to be continu-
ous

In this section, we obtain some sufficient conditions for l.a.w.c. (resp.
u.a.w.c.) multifunctions to be continuous . Some results established in [17],
[19] and [29] will be slightly improved.

LEMMA 6.1. If a multifunction F : X - Y isl.w.c. and F(z) is a-regular
for each z € X, then F is Ls.c.

Proof. Let z € X and V be any open set of Y such that F(z)NV # 0.
There exists y € F(z) NV and hence y € W C C(W) C V for some open
set W of Y since F(z) is a-regular. Since F is Lw.c. and F(z) N W # 0,
there exists an open neighborhood U of z such that F(u) N C{W) # @ for
every u € U. Therefore, we obtain F(u)NV # @ for every u € U. This shows
that F is Ls.c.

CoROLLARY 6.2 (Popa [17]). Let Y be a regular space. A multifunction
F:X —>Y isls.cifand only if F is Lw.c.

THEOREM 6.3. If a multifunction F : X - Y is u.a.w.c.,l.w.c. and F(z)
is a-regular a-paracompact for each z € X, then F is continuous.
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Proof. It follows from Lemma 6.1 that F is l.s.c. We shall show that F'is
u.s.c. Let £ € X and V be any open set of Y containing F(z). By Lemma 5.9,
there exists an open set W of Y such that F(z) C W C CI(W) C V. Since F
is Lw.c., by Lemma 4.5 we have CI(F*(W)) Cc F+(CY(W)) C F*(V). Since
F is v.a.w.c. and F(z) is a-regular a-paracompact, by Theorem 5.10 F is
u.a.c.H. and hence z € F+(W) C Int(Cl(F*(W))) by Lemma 2.7. Now, set
U = Int(Cl(F*(W))), then U is an open neighborhood of z and F(U) C V.
Therefore, F is u.s.c. and hence continuous.

The following three corollaries are immediate consequences of Lemma 4.5
and Theorem 6.3.

COROLLARY 6.4. Let F : X — Y be an u.a.w.c. multifunction and'Y be
regular. If F satisfies the following:

(a) F(z) is compact for each z € X;
(b) CI(F*(V)) Cc FH(CKV)) for every open setV of Y,

then F is continuous.

COROLLARY 6.5 (Smithson [29]). If F: X - Y is an u.a.c.H., l.s.c. and
point compact multifunction into a regular space, then F is u.s.c.

COROLLARY 6.6 (Popa [19]). Let F : X — Y be u.a.c.H. and Y regular.
If F satisfies the following:

(a) F(z) has a finite number of elements for each z € X;
(b) CI(F*(V)) C FH(CKV)) for any open setV of Y,

then F is u.s.c.

THEOREM 6.7. If a multifunction F: X - Y is La.w.c., uv.w.c. and F(z)
is a-regular for each z € X, then F is Ls.c.

Proof. Let z € X and V be any open set of Y such that F(z)NV # 0.
There exists y € F(z) NV and hence y € W C CI(W) C V for some open
set W in Y since F(z) is a-regular. By Theorem 5.5, F' is L.a.c.H. and z €
Int(CY(F~(W))). Since F is u.w.c., by Lemma 4.5 we have CI(F~(W)) C
F~(C(W)) C F~(V). Therefore, set U = Int(Cl(F~(W))), then U is an
open neighborhood of z and F(u) NV # 0 for each u € U. This shows that
F is l.s.c.

The following two corrolaries are immediate consequences of Lemma 4.5
and Theorem 6.7.

COROLLARY 6.8 (Popa [19]). Let F : X - Y be a la.c.H. multifunction
and Y a regular space. If F' has the property CI(F~(V)) C F~(CI(V)) for
every open set'V of Y, then F is Ls.c.
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COROLLARY 6.9 (Smithson [29]). If F: X — Y is a la.c.H. and u.s.c.
multifunction into a regular space Y, then F is ls.c.

LEMMA 6.10. If a multifunction F : X — Y is u.w.c. and F(z) is a-
reqular a-paracompact for each z € X, then F is u.s.c.

Proof. Let z € X and V be any open set of Y such that F(z) C V. By
Lemma 5.9, there exists an open set W such that F(z) C W C C{W) C
V. Since F is u.w.c., there exists an open nieghborhood U of z such that
F(U) ¢ Ci(W); hence F(U) C V. Therefore, F is u.s.c.

COROLLARY 6.11 (Popa [21]). Let Y be a regular space and F : X —
Y a multifunction such that F(zq) is strictly paracompact (equivalently a-
paracompact) for a point zg in X. Then F is u.s.c. at z¢ if and only if F
is u.w.c. at zg.

THEOREM 6.12. If a multifunction F : X — Y is La.w.c., v.w.c. and
F(z) is a-regular a-paracompact for each x € X, then F is continuous.

Proof. This is an immediate consequence of Theorem 6.7 and Lem-
ma 6.10.

COROLLARY 6.13. Let F : X — Y be a lLa.w.c. multifunction and Y
reqular. If F' satisfies the following:

(a) F(z) is compact for each z € X
(b) CI(F=(V)) € F~(CI(V)) for every open setV of Y,

then F' is continuous.

7. Some applications

In [26], the second author obtained several characterizations and prop-
erties of u.a.c.H. (resp. l.a.c.H.) multifunctions. It will be shown that the
condition “u.a.c.H.” in some theorems established in [26] can be replaced
by “u.a.w.c.”.

A space X is said to be strongly compact [12] if every preopen cover of
X admits a finite subcover. A space X is said to be quasi H-closed [27] if
for every open cover {U, | @ € V} of X, there exists a finite subset Vq of
V such that X = J{Cl(U,) | @ € V,o}.

THEOREM 7.1. Let F : X — Y be an u.a.w.c. surjective multifunction
such that F(z) is compact for each z € X. If X is strongly compact, then
Y is quasi H-closed.

Proof. Let {Vy | @ € V} be an open cover of Y. For each z € X, F(z)
is compact and there exists a finite subset V(z) of V such that F(z) C
U{Va | @ € V(2)}. Set V(z) = |J{Va | @ € V(2)}. Since F is u.a.w.c., by
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Theorem 3.1 there exists U(z) € PO(X, z) such that F(U(z)) C CI(V(z)).
The family {U(z)| ¢ € X} is preopen cover of X and there exists a finite
number of points, says £ — 1, 2, ..., Z, in X such that X = (J{U(z;)| i =
1,2,...,n}. Therefore, we have

Y = F(x) = F(|JU(=)) = U F(U (=) ¢ |J UV (=)

=J U ).

i=1 a€V(z;)
This shows that Y is quasi H-closed.

A space X is said to be preconnected [25] if X can not be expressed by
the union of two nonempty disjoint preopen sets.

THEOREM 7.2. Let F : X — Y be a la.w.c. (or u.a.w.c.) surjective
multifunction. If X is preconnected and F(z) is connected for each z € X,
then Y is connected.

Proof. Suppose that Y is not connected. There exist nonempty open
sets U and V of Y such that YUV =Y and UNV = §. Since F(z) is
connected for each z € X, either F(z) CU or F(z) CV.Ifz € FH(UUV),
then F(z) C UUV and hence z € F(U)U F*(V). Moreover, since F is
surjective, there exist z and y in X such that F(z) C U and F(y) C V;
hence z € F+(U) and y € F* (V). Therefore, we obtain the following:

(1) FHU)UFH(V)=Ft(UUV)=X,
(2) FHUOnFY(V)=FY(UnV)=0 and
(3) F*(U)#0 and FH(V)#0.

Next, we show that F+(U) and F* (V) are preopen in X. (i) Let F be La.w.c.
By Theorem 3.2, p CI(F*(V)) C F*(V) and hence p CI(F+(V)) = F+ (V).
it follows from Lemma 2.1 that F*(V) is preclosed. Therefore, F+(U) is
preopen in X. Similarly, we obtain F*(V) € PO(X). (ii) Let F be u.a.w.c.
By Theorem 3.1, F+(V) C pInt(F+*(Cl(V))) = pInt(F*(V)) and hence
FH(V) = pInt(F+(V)). Therefore, F*(V) is preopen in X. Similarly, we
obtain F+(U) € PO(X). Consequently, X is not preconnected.

COROLLARY 7.3 (Popa [26]). If @ multifunction F : X —» Y is a La.c.H.
(or u.a.c.H.) and punctually connected surjection and if X is preconnected,
then Y is connected.

THEOREM 74. If F: X — Y is an u.a.w.c. multifunction into a Haus-
dorff space Y and F(z) is compact for each z € X, then the graph G(F) is
preclosed in X X Y.
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Proof. Let (z,y) € X XY — G(F). Then y € Y — F(z). For each
a € F(z), there exist open sets V(a) and W(a) containing a and y, respec-
tively, such that V(a) N W(a) = @; hence Cl(V(a)) N W(A) = 0. The family
{V(a)| @ € F(z)} is an open cover of F(z) and there exists a finite num-
ber of points in F(z), says, a1,az,...,a, such that F(z) C U{V(a;)| i =
1,2,...,n}. Set V = J{V(ai)| ¢ = 1,2,...,n} and W = ({W(a;)| ¢ =
1,2,...,n}. Since F(z) C V and F is u.a.w.c., there exists U € PO(X, z)
such that F(U) C CI(V). Therefore, we obtain F(U)N W = @ and hence
(UxW)NG(F) = 0. Since (z,y) € UXxW € PO(X xY), (z,y) € p CG(F))
and by Lemma 2.1 G(F)) is preclosed.

COROLLARY 7.5 (Popa [26]). If F : X — Y is a multifunction such that

(a) F is punctually compact,
(b) F is u.a.c.H. and
(c) Y is Hausdorff,

then G(F') is preclosed in X XY .
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