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ALMOST WEAKLY CONTINUOUS M U L T I F U N C T I O N 

1. Introduction 
In 1961, Levine [10] introduced the concept of weakly continuous func-

tions in topological spaces. In 1966, Husain [6] introduced the concept of 
almost continuous functions. In 1978, Smithson [29] and Vopa [17, 18] ex-
tended independently these concepts to multifunctions and defined upper 
(lower) weakly continuous multifunctions and upper (lower) almost con-
tinuous multifunctions. Recently, Jankovic [7] has defined almost weakly 
continuous functions as a generalization of weakly continuous functions and 
almost continuous functions. 

The purpose of the present paper is to extend the concept of almost 
weakly continuous functions to multifunctions. In §3, we obtain many char-
acterizations of upper (lower) almost weakly continuous multifunctions. In 
§4 (resp. §5, §6), we obtain some sufficient conditions for upper (lower) 
almost weakly continuous multifunctions to be upper (lower) weakly contin-
uous (resp. upper (lower) almost continuous, continuous). It is shown in the 
final section that the condition "upper almost continuous" in some results 
established in [26] can be replaced by "upper almost weakly continuous". 

2. Preliminaries 
Throughout the present paper, X and Y always mean topological spaces 

and F : X Y (resp. f : X —> Y) always represents a multivalued (resp. 
single valued) function. Let A be a subset of the space X. The closure 
of A and the interior of A are denoted by C1(A) and Int(A), respectively. 
A subset A is said to be preopen [13] if A C Int(Cl(A)). The family of 
all preopen sets in X is denoted by PO(X). For a point x of X, we set 
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PO(X, x) = {U € PO(X)| x e U}. The complement of apreopen set is said 
to be preclosed. The intersection of preclosed sets containing A is called the 
preclosure [5] of A and is denoted by p C1(A). The union of preopen sets 
contained in A is called the preinterior of A and is denoted by plnt(A). It 
is obvious that X — p C1(A) = pInt(X — A). 

LEMMA 2 . 1 . Let X be a point of a space X and A a subset of X. Then 
the following hold for the preclosure: 

(a) x epCl (A) if and only if Af\U ^ 0 for every U € PO(A",x). 
(b) A is preclosed if and only if A — p C1(A). 
(c) p C1(A) = A (J Cl(Int(A)). 

P r o o f . This follows from Lemmas 2.2 and 2.3 of [5] and ([1], Theo-
rem 1 . 5 ) . 

For a multifunction F : X Y, following [2], we shall denote the upper 
and lower inverse of a subset B of Y by F+(B) and F~(B), respectively: 

F+(B) = {x e X | F(x) C B} and F~(B) = {x £ X | F(x) n £ ^ 0} . 

DEFINITION 2.2. A multifunction F : X Y is said to be 

(a) upper semi-continuous (u.s.c.) [2] if for each x € X and each open 
set V containing F(x), there exists an open neighborhood U of x such that 
F(U) CV-, 

(b) lower semi-continuous (l.s.c.) if for each x € X and each open set 
V such that F(X) H V ^ 0, there exists an open neighborhood U of x such 
that F(u) fl V ^ 0 for every « £ ( / ; 

(c) continuous if it is u.s.c. and l.s.c. 

DEFINITION 2 . 3 . A multifunction F : X € Y is said to be 
(a) upper almost continuous (u.a.c.S.) [22] if for each x € X and each 

open set V containing F(x), there exists an open neighborhood U of x such 
that F(U) C Int(Cl(V)); 

(b) lower almost continuous (l.a.c.S.) if for each x € X and each open 
set V such that F(x) fl V / 0, there exists an open neighborhood U of x 
such that F(u) fl Int(Cl(F)) ^ 0 for every u e U . 

DEFINITION 2.4. A multifunction F : X € Y is said to be 

(a) upper weakly continuous (u.w.c.) [17, 29] if for each and each 
open set V containing F(x), there exists an open neighborhood U of x such 
that F(U) C (C1(F); 

(b) lower weakly continuous (l.w.c.) if for each x G X and each open set 
V such that F(x) CI V / 0, there exists an open neighborhood U of x such 
that F(u) n C1(F) ^ 0 for every u G U. 
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DEFINITION 2.5. A multifunction F : X Y is said to be 
(a) upper quasi continuous (u.q.c.) [16] if for each x G X, each open set U 

containing x and each open set V containing F(x), there exists a nonempty 
open set G of X such that G C U and F(G) C V; 

(b) lower quasi continuous (l.q.c.) if for each x £ X, each open set U 
containing x and each open set V such that F(x) D V ^ 0, there exists a 
nonempty open set G of X such that G C U and F(g) fl V 0 for every 
g<ZG. 

DEFINITION 2.6. A multifunction F : X Y is said to be 
(a) upper almost continuous (u.a.c.H.) [18, 29] if for each x G X and 

each open set V of Y containing F(x), x G IntiCl^+iV))); 
(b) lower almost continuous (l.a.c.H.) if for each x G X and each open 

set V of Y such that F(x) n V ^ 0 , x 6 Int(Cl(F~(V))). 
The following lemma is useful and will be utilized in the sequel. 

LEMMA 2 . 7 . The following are equivalent for a multifunction F : X —>Y: 
(a) F is u.a.c.H. (resp. l.a.c.H.). 
(b) F+(V) G PO(X) (resp. F~(V) € PO(X)) for every open set V ofY. 
(c) For each x G X and each open set V such that F(x) C V (resp. 

F(x) N V / 0), there exists U G PO(X,x) such that F(U) C V (resp. 
F(u) n V ^ 0 for every u G U). 

P r o o f . This is shown in Theorems 2.3 and 2.4 of [26]. 

DEFINITION 2.8. A multifunction F : X Y is said to be 
(a) upper almost weakly continuous (u.a.w.c.) if for each x G X and each 

open set V containing F(x), x G Int(Cl(F+(Cl(F)))); 
(b) lower almost weakly continuous (l.a.w.c.) if for each x G X and each 

open set V such that F(x) n V ^ 0, x G Int(Cl(F-(Cl(V)))). 
It is shown in Theorems 4 and 6 of [17] that a multifunction F : X —> 

Y is u.w.c. (resp. l.w.c.) if and only if F+(V) C Int(F+(Cl(F))) (resp. 
F~(V) C Int(.F-(Cl(F))) for every open set V of Y. Therefore, we obtain 
the following diagram: 

I > u.q.c.(l.q.c.) 

u.s.c.(l.s.c) —• u.a.c.S.(l.a.c.S.) —> u.w.c.(l.w.c.) —> u.a.w.c.(l.a.w.c.) 

I • u.a.c.H.(l.a.c.H.) J" 

3. Characterizations 
In this section we obtain many characterizations of u.w.a.c. (l.a.w.c.) 

multifunctions. 



366 T . N o i r i , V . P o p a 

T H E O R E M 3 . 1 . The following are equivalent for a multifunction F : X 
Y: 

(a) F is u.a.w.c. 
( b ) F+(V) C I n t i C l i F + i C l i F ) ) ) ) for every open set V ofY. 
( c ) C l ( I n t (F~(V))) C F " ( C 1 ( F ) ) for every open set V ofY. 
(d) pC\(F~(V)) C F~(Cl(V)) for every open set V ofY. 
( e ) F+(V) C p I n t ( F + ( C l ( V ) ) ) for every open set V ofY. 
(f) For each x £ X and each open set V containing F(x), there exists 

U £ P O ( X , x ) such that F(U) C C 1 ( F ) . 

P r o o f . ( a ) = > ( b ) : L e t V b e a n y o p e n s e t o f Y a n d x £ F+(V). T h e n 

F(x) C V a n d h e n c e x £ I n t ( C l ( F + ( C l ( F ) ) ) ) . T h e r e f o r e , F+(V) C 

I n t ( C l ( F + ( C l ( F ) ) ) ) . 

( b ) = > ( c ) : L e t V b e a n y o p e n s e t o f Y. S i n c e Y — C 1 ( F ) is o p e n , 

X - F - ( C 1 ( F ) ) = F+(Y - C 1 ( F ) ) C I n t i C l i F + i C l i y - C 1 ( F ) ) ) ) ) 

C I n t ( C l ( F + ( y - V ) ) ) = I n t ( C l ( X - F~(V))) = X- C l ( I n t ( F ~ ( V ) ) ) . 

T h e r e f o r e , w e o b t a i n C l ( I n t ( F - ( V ) ) ) C F " ( C 1 ( F ) ) . 

( c ) = j - ( d ) : L e t V b e a n y o p e n s e t o f Y. B y L e m m a 2 . 1 , w e h a v e 

pC\(F~{V)) = F~(V) U C l ( I n t ( F - ( F ) ) ) C ^ " ( C I C F ) ) . 

( d ) = > - ( e ) : L e t V b e a n y o p e n s e t o f Y. S i n c e Y — C ^ V " ) is o p e n , w e h a v e 

X - . p l n t ^ + i C l O O ) ) = PCl(X - F + ( C 1 ( F ) ) ) = p C l ( F " ( y - C 1 ( F ) ) ) 

C - F - ( C 1 ( F - C 1 ( F ) ) ) C F~(Y - V) = X - F+(V). 
T h e r e f o r e , w e o b t a i n F+(V) C p I n t ( F + ( C l ( y ) ) ) . 

( e ) = > ( f ) : L e t x £ X a n d V b e a n y o p e n s e t c o n t a i n i n g F(x). T h e n 

x £ F + ( V ) C p I n t ( F + ( C l ( F ) ) ) . T h e r e f o r e , t h e r e e x i s t s U £ P O ( X , x ) s u c h 

t h a t F(U) C C 1 ( F ) . 

( f ) = > ( a ) : L e t x £ X a n d V b e a n y o p e n s e t c o n t a i n i n g F(x). T h e r e e x i s t s 

U £ P O ( X , x ) s u c h t h a t F(U) C C l ( y ) ; h e n c e U C F+(C1(F)). T h e r e f o r e , 

w e o b t a i n x £ U C I n t ( C l ( ^ ) ) C I n t ( C l ( F + ( C l ( F ) ) ) ) . 

T H E O R E M 3 . 2 . The following are equivalent for a multifunction F : X 
Y : 
(a) F is l.a.w.c. 
(b) F~(V) C Int{Cl(F-(Cl{V)))) for every open set V ofY. 
( c ) C l ( I n t ( F + ( F ) ) ) C F+(C1(V)) for every open set V ofY. 
( d ) p C K F + i F ) ) C F+(Cl(V)) for every open set V ofY. 
( e ) F~(V) C p I n t ( F " ( C l ( F ) ) ) for every open set V ofY. 
(f) For each x £ X and each open set V such that F(x) fl V / 0, there 

exists U € P O ( X , x ) , such that F(u) n C 1 ( F ) ^ 0 for each ueU. 
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P r o o f . The proof is similar to that of Theorem 3.1 and is thus omitted. 

R e m a r k 3.3. For any U G PO(X), Cl(Int(Cl(l7))) = CI(U) and hence 
"open set" in each statement of Theorems 3.1 and 3.2 can be replaced by 
"preopen set". 

T H E O R E M 3 . 4 . The following are equivalent for a multifunction F : X 

(a) F is u.a.w.c. 
(b) Cltln^f1"(Int(W)))) C F~(W) for every closed set W of Y. 
(c) pCl(F"(Int(WO)) C for every closed set W of Y. 
(d) P C1(F" (1^(01(5 ) ) ) ) C F"(C1(5) ) for every subset B ofY. 
(e) F+(lnt(B)) C plnt(F+(Cl(Int(B)))) for every subset B of Y. 

P r o o f . (a)=^(b): Let W be any closed set of Y. Since Y — W is open in 
Y, by Theorem 3.1 we have 

X - F~(W) = F+(Y -W) C Int{Cl(F+(Cl(Y - W)))) 
= Int(Cl(F+(y - Int(W)))) 
= Int(Cl(X - F~(Int(W0))) = X - Cl(Int(F"(Int(W)))). 

Therefore, we obtain Cl(Iiit(F-(Iiit(W)))) C F~(W). 
(b)=>(c): Let W be any closed set of Y. By Lemma 2.1, we have 

pCKF-CMWO)) = .F"(Int(W0) U Cl(Int(F"(Int(VF)))) C F~(W). 

(c)=>(d): This is obvious. 
(d)=>(e): Let B be any subset of Y. Then we have 

X - pInt(F+(Cl(Int(5)))) = pCl{X - F+(Cl(Int(5)))) 
= pCl{F~(Y - Cl(Int(B)))) = i>Cl(F-(Int(Cl(y - B)))) 
C F " ( C l ( y - B)) = X - F+ ( In t (5 ) ) . 

Therefore, we obtain F+(liit(B)) C pInt(F+(Cl(Int(5)))). 
(e)=>(a): Let V be any open set of Y. Then F+(V) C j>Int(F+(Cl(F))) 

and hence F is u.a.w.c. by Theorem 3.1. 

T H E O R E M 3 . 5 . The following are equivalent for a multifunction F : X 
Y: 

(a) F is l.a.w.c. 
(b) Cl(Int(F+(Int(WO))) C F+{W) for every closed set W ofY. 
(c) pCl(F + ( Int(W))) C for every closed set W ofY. 
(d) pCl(F+ (Int(Cl(fl)))) C F + (C1(5 ) ) for every subset B ofY. 
(e) F " ( I n t ( 5 ) ) C phit(F-(Cl(Int(B)))) for every subset B ofY. 

P r o o f . The proof is similar to that of Theorem 3.4. 
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A function / : X —> Y is said to be almost weakly continuous [7] if 
/ - 1 ( F ) C Int(Cl(/ - 1(Cl(F)))) for each open set V of Y. In the following 
corollary "open set" in each statement can be replaced by "preopen set". 

C O R O L L A R Y 3 . 6 . The following are equivalent for a function F : X —> Y : 

(a) / is almost weakly continuous. 
(b) Cl(Int(/_ 1(V))) C /_1(Cl(V r)) for every open set V ofY. 
(c) pdif-^V)) C / _ 1 ( C1(V)) for every open set V ofY. 
(d) / - 1 ( V ) C pInt ( / - 1 (Cl(F)) ) /or every open sei V ofY. 
(e) For each x £ X and each open set V containing f(x), there exists 

U G PO(X,x) such that F(U) C C1(V). 

For a multifunction F : X Y, the graph multifunction GF '• X —> 
X x Y is defined as follows: GF(X) = {a;} x F(x) for every x G X. 

L E M M A 3 . 7 . The following hold for a multifunction F : X Y: 

(a) G$(Ax B) = AnF+(B) and (6) Gp(A x B) = A n F~ (B) 

for every subset A C X and B C Y. 

P r o o f . We shall prove only (b). Let A and B be any subsets of X and 
y , respectively. Let x e Gp(A x B). Then 

0 ^ GF(x) n(AxB) = ({x} x F(x)) ll(AxB) = ({*} n A) x (F(x) n B). 

Therefore, we have x € A and F(x) D B 0 and hence x € A D F~(B). 
Conversely, let x e A ("1 F~{B). Then x e A and F(x) n B ^ 0 and hence 
GF(X) f l ( i x f i ) / 0 . Therefore, x £ Gp(A x B). This completes the proof. 

T H E O R E M 3 . 8 . Let F : X —*• Y be a multifunction such that F(x) is 
compact for each x G X. Then F : X —• Y is u.a.w.c. if and only if Gp • 
X —• X x Y is u.a.w.c. 

P r o o f . Necessity. Suppose that F : X —• Y is u.a.w.c. Let x G X 
and W be any open set of X x Y containing Gjr(x). For each y € 
there exist open sets U(y) C X and V(y) C Y such that (x,y) G U(y) x 
V(y) C W. The family {V(y) \ y G -f(^)} is an open cover of F(x) and 
there exists a finite number of points, says, yi, y2, • • •, yn in F{x) such that 
F(x) C U i n s . ) I * = 1 ,2 , . . . ,»} . Set U = f l { i % 0 I » = 1 ,2 , . . . , »} 
and V = U{V(2/i) | i = 1 ,2 , . . . ,n} . Then U and V are open in X and 
y , respectively and {x} x F(x) C U x V C W. Since F is u.a.w.c., by 
Theorem 3.1 there exists U0 G PO(X,x) such that F(U0) C C1(F). By 
Lemma 3.7, we have 

UnUoCUn F+(C1(F)) = G%{U x C1(F)) C G i ( a ( W ) ) . 
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Therefore, we obtain UnU0€ PO(X,x) and GF(U D U0) C Cl(VF). This 
shows that GF is u.a.w.c. 

Sufficiency. Suppose that GF '• X —> X x Y is u.a.w.c. Let x G X 
and V be any open set of Y containing F(x). Since X x V is open in 
X x Y and GF(X) C X x V, by Theorem 3.1 there exists U G PO(X,x) 
such that GF(U) C X x C1(F) = C1(X x V"). Therefore, by Lemma 3.7 
U C G%{X x C1(F)) = F+(C1(V)) and hence F{U) C C1(V). This shows 
that F is u.a.w.c. 

THEOREM 3 . 9 . A multifunction F : X —> Y is l.a.w.c. if and only if 
GF - X X xY is l.a.w.c. 

Proof . Necessity. Suppose that F is l.a.w.c. Let x G X and W be any 
open set of Y such that GF(X) D W ^ 0. There exists y G F(x) such that 
(x,y) G W and hence (x,y) G U X V C W for some open sets U C X and 
V CY. Since F is l.a.w.c. and y G F(x) n V, there exists U0 G PO(X,x) 
such that F(u) n C1(F) ^ 0 for each u G U0; hence U0 C F-(C1(V)). By 
Lemma 3.7, U n U0 C U D F" (Cl (y ) ) = Gp(U x C1(F)) C 
Moreover, U H Uo G PO(X, x) and hence GF is l.a.w.c. 

Sufficiency. Suppose that GF is l.a.w.c. Let x G X and V be an open 
set in Y such that F(x) n V / 0. Then X x V is open in X x Y and 
Gf{X) n (X x V) = ( { * } x F{x)) n ( I x F ) = {x} x (F(x) (1V) ± 0. There 
exists U G PO(X,x) such that GF{U) n C1(X X V) ^ 0 for each u G U. By 
Lemma 3.7, we obtain U C G^(C1(X x V)) = F~(C1(V)). This shows that 
F is l.a.w.c. 

A subset A of a space X is said to be semi-open [11] if there exists an 
open set U of X such that U C AC Cl(i7). Yhe family of all semi-open sets 
in X is denoted by SO(X). The complement of a semi-open set is said to be 
semi-closed. The intersection of all semi-closed sets containing A is called 
the semi-closure [4] of A and is denoted by s Cl(vl). For a multifunction 
F : X —• Y, a multifunction sCIF : X —• Y is defined in [20] as follows: 
(s CI F)(x) = s Cl(F(x)) for each x G X. 

LEMMA 3 . 1 0 . Let F : X Y be a multifunction. Then (sClF)-(V) = 
F~(V) for every V G SO(F). 

Proof . Let V be any semi-open set of Y. Let x G (sClF)~(V). Then 
vn s Cl (F(x)) = vn(s CI F)(x) 0. Since V G SO(y), V n F(x) ± 0 and 
hence x G ̂ " ( V ) . Therefore, we obtain ( s C l C F~(V). Conversely, 
let x G F~(V). Then 0 ^ F(x) CI V C (sC\F)(x) D V and hence x G 
(sClF)~(V). Therefore, we obtain ( « C l f ) - ( V ) = F~(V). 

THEOREM 3 . 1 1 . A multifunction F : X —• Y is l.a.w.c. if and only if 
sCIF: X -» Y is l.a.w.c. 
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P r o o f . Necessity. Suppose that F is l.a.w.c. Let x G X and V be 
any open set of Y such that (sClF)(a;) n V ^ 0. By Lemma 3.10, we 
have F(x) l~l V £ 0. Since F is l.a.w.c., by Theorem 3.2. there exists U G 
PO(X, x) such that F ( u ) n C l ( F ) ^ 0 for every u G U. Since C 1 ( F ) € S O ( F ) , 
by Lemma 3 . 10 we have u G F " ( C 1 ( V ) ) = (aClF)- (Cl(V)) and hence 
(s CI F)(u) D C1(F) ji 0 for every u G U. This shows that 5 CI F is l.a.w.c. 

Sufficiency. Suppose that sCIF is l.a.w.c. Let x G X and V be any 
open set of Y such that F(x) n F / 0 . Then (s CI F)(x) n F / 0 and there 
exists U G PO(X,x) such that (s CI F)(u) fl C1(F) 0 for every u G U. 
Since C1(V) € SO(F), by Lemma 3.10 U C (« C1F)"(C1(V)) = f - ( C l ( V ) ) 
and hence F(u) fl C1(F) ^ 0 for every u € U. Therefore, F is l.a.w.c. 

LEMMA 3 .12 (Mashhour et al. [13]). Let U and Xo be subsets of a space 
X. The following properties hold: 

(a) IfUe PO(X) and X0 € SO(X), then Uf)X0e PO(X0). 
(b) If U € PO(Xo) and X0 G PO(X), then U £ PO(X). 

LEMMA 3.13. If a multifunction F : X Y is u.a.w.c. (resp. l.a.w.c. 
and Xo G SO(X), then the restriction .F|Xo : Xo —»• Y is u.a.w.c. (resp. 
l.a.w.c.). 

P r o o f . We shall prove only the case "u.a.w.c." since another is entirely 
analogous. Let x 6 X0 and V be any open set in Y containing (F|X0)(x). 
Since F is u.a.w.c. and (F|Xo)(x) = F(x), there exists U G PO(X,x) such 
that F(U) C C1(F). Let U0 = UC\X0, then U0 G PO(X 0 ,x) by Lemma 3.12 
and (F\X0)(U0) = F(U0) C F{U) C C1(F). This shows that F\X0 is u.a.w.c. 

LEMMA 3.14. Let F : X —• Y be a multifunction. If for each x G X there 
exists Xo G PO(X, x) such that the restriction F|Xo : Xo Y is u.a.w.c. 
(resp. l.a.w.c.), then F is u.a.w.c. (resp. l.a.w.c.). 

P r o o f . We shall prove only the case "u.a.w.c.". Let x G X and V be 
any open set in Y containing F(x). There exists Xo G PO(X, a;) such that 
F|Xo : Xo —• Y is u.a.w.c. and hence (F|Xo)(i7o) C C1(F) for some UQ G 
PO(X 0 ,x) . By Lemma 3.12, U0 G PO(X,x) and F(U0) = (F|X0)(Ci0) C 
C1(F). Therefore, F is u.a.w.c. 

A subset A of a space X is called an a-set [14] if A C Int(Cl(Int(yl))). 
It is shown in [15, Lemma 3.1] that a subset is an a-set if and only if it is 
semi-open and preopen. 

THEOREM 3 .15 . Let {Ua \ a G V } be a cover of X by a-sets of X. 
A multifunction F : X —• Y is u.a.w.c. (resp. l.a.w.c.) if and only if the 
restriction F\Ua:Ua—*Y is u.a.w.c. (resp. l.a.w.c.) for every a G V. 

P r o o f . This is an immediate consequence of Lemmas 3.13 and 3.14. 



Almost weakly continuous multifunctions 371 

4. Sufficient conditions for a.w.c. multifunctions to be w.c. 
In this section, we obtain some sufficient conditions for u.a.w.c. (resp. 

l.a.w.c.) multifunctions to be u.w.c. (resp. l.w.c.). 

T H E O R E M 4 . 1 . If a multifunction F : X —> Y is u.a.w.c. and l.a.c.S., 
then F is u.w.c. 

P r o o f . Let V be any open set of Y. Since F is u.a.w.c., by Theorem 3.1 
C Int(Cl(F+(Cl(V)))). Since C1(F) is regular closed, it follows from 

[22, Theorem 2.2] that F + t C ^ F ) ) is closed in X. Therefore, we obtain 
F+(V) C Int(F+(Cl(V))) and hence it follows from [17, Theorem 6] that F 
is u.w.c. 

COROLLARY 4.2 (Popa [23]). If a multifunction F : X —> Y is u.a.c.H. 
and l.s.c., then F is u.w.c. 

T H E O R E M 4 . 3 . If a multifunction F : X —* Y is l.a.w.c. and u.a.c.S., 
then F is l.w.c. 

P r o o f . The proof is similar to that of Theorem 4.1. 

COROLLARY 4.4 (Popa [23]). If a multifunction F : X Y is l.a.c.H. 
and u.s.c., then F is l.w.c. 

Smithson [29] and Popa [17] showed independently that if F : X Y is 
u.w.c. then C l ( F ~ ( V ) ) C F"(C1(V)) for every open set V of Y. Clay and 
Joseph [3] showed that the converse of the previous statement is also true. 

LEMMA 4.5 (Clay and Joseph [3]). A multifunction F : X —> Y is u.w.c. 
(resp. l.w.c.) if and only if C\(F~(V)) C F"(C1(F)) {resp. C ^ F + i F ) ) C 
F+ (C1(F))) for every open set V ofY. 

THEOREM 4 . 6 . If a multifunction F : X -* Y is u.a.w.c. and l.q.c., then 
F is u.w.c. 

P r o o f . Let V be any open set of Y. Since F is l.q.c., it follows from 
[24, Theorem 2.4] that F~(V) C Cl(Int(F"(y))) . Since F is u.a.w.c., by 
Theorem 3.1 we have Cl(Int(F"(F))) C F"(C1(F)) and hence C l ( F ~ ( V ) ) C 
F~(C1(F)). It follows from Lemma 4.5 that F is u.w.c. 

The following corollary and Corollary 4.2 are immediate consequences of 
Theorem 4.6. 

COROLLARY 4.7 (Popa [24]). If a multifunction F : X Y is u.a.c.H. 
and l.q.c., then F is u.w.c. 

T H E O R E M 4 . 8 . If a multifunction F : X —> Y is l.a.w.c. and u.q.c., then 
F is l.w.c. 
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P r o o f . Let V be any open set of Y. Since F is u.q.c., it follows from 
[24, Theorem 2.3] that F+(V) C Cl(Int(F+(V))). By Theorem 3.2, we 
have Cl(Int(.F+(V))) C F+(C1(V)). Therefore, we obtain C1(F+(F)) C 
.F+(C1(V)) and hence F is l.w.c. by Lemma 4.5. 

The following corollary and Corollary 4.4 are immediate consequences of 
Theorem 4.8. 

COROLLARY 4.9 (Popa [24]). If a multifunction F : X Y is l.a.c.H. 
and u.q.c., then F is l.w.c. 

5. Sufficient conditions for a.w.c. multifunctions to be a.c.H. 
In this section, we obtain several sufficient conditions for u.a.w.c. (resp. 

l.a.w.c.) multifunctions to be u.a.c.H. (resp. l.a.c.H.). Rose [28] defined a 
function F : X —* Y to be almost open if f(U) C Int(Cl(/(i7))) for every 
open set U of X . It was shown in [28, Theorem 11] that a function F : X Y 
is almost open if and only if / - 1 (C1(V)) C Cl(/_ 1(V r)) for every open set V 
of y . We shall obtain an analogous result for multifunctions. A multifunction 
F : X Y is said to be almost open if F(U) C Int(Cl (F(U))) for every 
open set U of X. 

THEOREM 5.1 . A multifunction F : X Y is almost open if and only if 
F~(C1(V)) C C 1 ( F " ( F ) ) for every open set V ofY. 

P r o o f . Necessity. Let V be any open set of Y and x G X — C 1 ( F ~ ( V ) ) . 
There exists an open neighborhood U of x such that U fl F~(V) = 0. 
Therefore, we have F{U) n V = 0 and hence Int(Cl(F(U))) n C1(F) = 0. 
Since F is almost open, F(U) D C1(V) = 0 and hence x 6 X - f - ( C l ( V ) ) . 
Therefore, we obtain F - ( C 1 ( F ) ) C C 1 ( F " ( F ) ) . 

Sufficiency. Suppose that F is not almost open. Then F(U) 
- Int(Cl(.F(f7))) ^ 0 for some open set U of X. Let V = Y — CI (F(U)) . 
Then V is open in Y and F(U) n V = 0. Since F(U) n C1(F) = F(U) n 
(Y - Int(Cl(.F({7)))) 0, 0 £ U n F~(Cl(V)) CUD CI (F~(V)) and hence 
U n F~(V) ji 0. Therefore, we obtain F(U)D ± 0. This is contradiction. 

A multifunction F : X —• Y is said to be nearly almost open if there 
exists an open basis E = {Va \ a € V} of the topology for Y such that 
F-(Cl(V a ) ) C Cl(F"(F a ) ) for every a e V. 

THEOREM 5.2 . If a multifunction F : X —> Y is l.a.w.c. and nearly 
almost open, then F is l.a.c.H. 

P r o o f . Let £ = {Va | a € V} be an open basis of the topology for Y 
such that F"(Cl (F a ) ) C CI (F~(V a ) ) for every a € V. For any open set V of 
Y, there exists a subset Vo of V such that V = (J{Va | a G Vo}. Therefore, 
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we obtain 

= (J Va)= (J F-(Va) 
a 6 V 0 agVo 

C (J Int(Cl(F-(Cl(Fa))))C (J Int(Cl(F"(Fa))) 
oreVo a&Vo 

d n t ( c i ( U F " ( F a ) ) ) = I n t ( c i ( F - ( (J F a ) ) ) 
at GVo a € V 0 

= Int(Cl (F~(V))). 

This shows that F~(V) £ PO(X). It follows from Lemma 2.7 that F is 
l.a.c.H. 

COROLLARY 5 . 3 . If a multifunction F : X -* Y is l.a.w.c. and almost 
open, then F is l.a.c.H. 

COROLLARY 5.4 (Popa [23]). If a multifunction F : X -*Y is l.w.c. and 
if for any open set V of Y the relation F " ( C 1 ( F ) ) C C 1 ( . F " ( V ) ) holds, then 
F is l.a.c.H. 

Proof . This is an immediate consequence of Theorem 5.1 and Corol-
lary 5.3. 

A subset A of a space X is said to be a-regular [9] if for each point a £ A 
and each open set U of X containing a, there exists an open set G of X 
such that a £ G C C1(G) C U. 

THEOREM 5 . 5 . If a multifunction F : X —• Y is l.a.w.c. and F(x) is 
a-regular for each x £ X, then F is l.a.c.H. 

P r o o f . Let x £ X and V be any open set of Y such that F(x) fl V ^ 0. 
There exists a point y £ F(x) fl V and y C C1(W) C V for some open 
set W of Y. Since F i s l.a.w.c. and F(x)r\W ± 0, x £ Int(Cl(f1-(Cl(Vr)))) C 
Int(Cl(F-(V))). Therefore, F is l.a.c.H. 

COROLLARY 5 . 6 . If a multifunction F : X —• Y is l.a.w.c. and Y is 
regular, then F is l.a.c.H. 

Hereafter, in this section, we shall obtain some sufficient conditions for 
u.a.w.c. multifunctions to be u.a.c.H. 

THEOREM 5 . 7 . If a multifunction F : X —• Y is u.a.w.c. and satisfies 
F+(Cl(V)) C C1(F+(F)) for every open set V ofY, then F is u.a.c.H. 

Proof . Let V be any open set V of Y. Since F is u.a.w.c., by Theo-
rem 3.1 F+(V) C InttCl^+tCliF)))) and hence F+(V) C Int(Cl(F+(F))). 
Therefore, F+ (F) £ PO(X) and it follows from Lemma 2.7 that F is u.a.c.H. 
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C O R O L L A R Y 5.8 (Popa [23]). If a multifunction F : X —> Y is u.w.c. 
and if for any open set V ofY the relations f+(Cl (V)) C C1(F+(V)) holds, 
then F is u.a.c.H. 

A subset A of a space X is said to be a-paracompact [30] if every X-open 
cover of A has an X-open X-locally finite refinement which covers A. The 
following lemma is very useful in the sequel. 

LEMMA 5.9 (Kovacevic [9]). If A is an a-regular a-paracompact subset 
of a space X and U is an open neighborhood of A, then there exists an open 
set G of X such that AeGe C1(G) C U. 

THEOREM 5.10 . If a multifunction F : X —> Y is u.a.w.c. and if either 

(a) F(x) is a-regular a-paracompact for each x £ X or 
(b) F(x) is closed in Y for each x £ X and Y is normal (not necessarily 

Ti), then F is u.a.c.H. 

P r o o f . Let x £ X and V be any open set of Y containing F(x). Under 
each condition of (a) and (b), there exists an open set W of Y such that 
F(x) C W C Cl(jy) C V. Since F is u.a.w.c., by Theorem 3.1 there exists 
U € PO(X,x) such that F(U) C C1(W); hence F(U) C V. Therefore, by 
Lemma 2.7 F is u.a.c.H. 

A multifunction F : X —> Y is said to be complementary continuous 
(w*.c.) [17] if F~ (Fr(V)) is closed in X for every open set V of Y, where 
Fr(V) denotes the frontier of V. It was shown in [17, Theorem 7] that a 
multifunction F : X —• Y is u.s.c. if and only if it is u.w.c. and w*.c. 

T H E O R E M 5 . 1 1 . If a multifunction F : X Y is u.a.w.c. and w*.c., 
then F is u.a.c.H. 

P r o o f . Let x € X and V be any open set of Y containing F(x). By 
Theorem 3.1, there exists U € PO(X,x) such that F(U) C C1(V). Since 
F(x) C V, F(x) n Fr(V) = 0 and hence X - F~(Fr(V)) is an open niegh-
borhood of a. Set U0 = tf n p T - F " ^ ^ ) ) ) , then we have U0 € PO(X,x) 
and F(U0) C V. This shows that F is u.a.c.H. 

For a multifunction F : X —>Y, the subset {(x, y) \ x e X and y £ F(x)} 
of X x Y is called the graph of F and is denoted by G(F). We say that F 
has a closed graph if G(F) is a closed subset of the product space 1 x 7 . 
A space Y is said to be rim-compact if there exists an open basis E for the 
topology on Y such that Fr(V) is compact for each V in S. 

T H E O R E M 5 . 1 2 . Let F : X -* Y be an u.a.w.c. multifunction with a 
closed graph G(F). IfY is rim-compact and F(x) is compact for each x 6 X, 
then F is u.a.c.H. 
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P r o o f . Since Y is rim-compact, there exists an open basis S for the 
topology on Y such that Fr(V) is compact for each V in ¿7. Let x G X and 
W be any open set containing F(x). For each y G F(x), there exists V(y) in 
S such that Fr(V(y)) is compact and y G V(y) C W. Since F(x) is compact, 
there exists a finite subset K of F(x) such that F(x) C LK^Cf) I V £ K} C 
W. Set V = I y e K}, then V is open in Y, F(x) C V C W 
and Fr(V) is compact. Since G(F) is closed, F~(Fr(V)) is closed in X and 
hence F+(Y — Fr(V)) is open in X. Since F is u.a.w.c., by Theorem 3.1 
F+(V)) C pInt(F+(Cl(y))) . Moreover, we obtain 

C F+(Y - F r ( F ) ) npInt(jF1+(Cl(Vr))) 
C F+(Y - Fr(V)) n F+(Cl(V)) = F+(V). 

Therefore, F+(V) = F+(Y - Fr(V)) D pInt(F+(Cl(F))) e PO(X) and 
x G F+(V) C F+QV). Consequently, we obtain x G Int(Cl(F+(W))) and 
hence F is u.a.c.H. 

R e m a r k 5.13. In [8], Joseph defined the concept of subclosed graphs 
for multifunctions as a generalization of closed graphs and showed that if a 
multifunction F : X —>Y has a subclosed graph and if is a compact subset 
of Y then F~(K) is closed in X [8, Theorem 3.15]. Therefore, the condition 
"closed" on G(F) in Theorem 5.12 can be replaced by "subclosed". 

6. Sufficient conditions for a.w.c multifunctions to be continu-
ous 

In this section, we obtain some sufficient conditions for l.a.w.c. (resp. 
u.a.w.c.) multifunctions to be continuous . Some results established in [17], 
[19] and [29] will be slightly improved. 

LEMMA 6.1 . If a multifunction F : X —• Y is l.w.c. and F(x) is a-regular 
for each x £ X, then F is l.s.c. 

P r o o f . Let x G X and V be any open set of Y such that F(x) (~l V / 0. 
There exists y G F(x) fl V and hence y G W C C1(W) C V for some open 
set W of y since F(x) is a-regular. Since F is l.w.c. and F(x) D W ^ 0, 
there exists an open neighborhood U of x such that F(u) ("1 C1(W) ^ 0 for 
every u G U. Therefore, we obtain F(u) fl V ^ 0 for every u G U. This shows 
that F is l.s.c. 

COROLLARY 6.2 (Popa [17]). Let Y be a regular space. A multifunction 
F : X —*Y is l.s.c if and only if F is l.w.c. 

THEOREM 6.3 . If a multifunction F : X —>Y is u.a.w.c.,l.w.c. and F(x) 
is a-regular a-paracompact for each x G X, then F is continuous. 
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P r o o f. It follows from Lemma 6.1 that F is l.s.c. We shall show that F is 
u.s.c. Let x G X and V be any open set of Y containing F(x). By Lemma 5.9, 
there exists an open set W of Y such that F(x) C W C Cl(VF) C V. Since F 
is l.w.c., by Lemma 4.5 we have C1(F+(W^)) C F+(C1(W)) C F+(V). Since 
F is u.a.w.c. and F(x) is a-regular a-paracompact, by Theorem 5.10 F is 
u.a.c.H. and hence x G F+(W) C Int(Cl(-F+(W))) by Lemma 2.7. Now, set 
U = Int(Cl(F+(W))), then U is an open neighborhood of x and F(U) C V. 
Therefore, F is u.s.c. and hence continuous. 

The following three corollaries are immediate consequences of Lemma 4.5 
and Theorem 6.3. 

COROLLARY 6 . 4 . Let F : X —> Y be an u.a.w.c. multifunction and Y be 
regular. If F satisfies the following: 

(a) F(x) is compact for each x £ X; 
(b) C1(F+(V)) C F+(C1(V)) for every open set V ofY, 

then F is continuous. 

COROLLARY 6 .5 (Smithson [29]). If F : X Y is an u.a.c.Hl.s.c. and 
point compact multifunction into a regular space, then F is u.s.c. 

COROLLARY 6.6 (Popa [19]). Let F : X Y be u.a.c.H. and Y regular. 
If F satisfies the following: 

(a) F(x) has a finite number of elements for each x G X; 
(b) C1(F+(V)) C F+(C1(V)) for any open set V ofY, 

then F is u.s.c. 

T H E O R E M 6 . 7 . If a multifunction F : X —>Y is l.a.w.c., u.w.c. and F(x) 
is a-regular for each x G X, then F is l.s.c. 

P r o o f . Let x G X and V be any open set of Y such that F(x) fl V ^ 0. 
There exists y G F(x) fl V and hence y G W C Cl(VF) C V for some open 
set W in Y since F(x) is a-regular. By Theorem 5.5, F is l.a.c.H. and x G 
Int(Cl(F~(W))). Since F is u.w.c., by Lemma 4.5 we have C1(F"(W^)) C 
f - ( C l ( W ) ) C F~(V). Therefore, set U = Int(Cl(F-(W))), then U is an 
open neighborhood of x and F(u) fl V / 0 for each u G U. This shows that 
F is l.s.c. 

The following two corrolaries are immediate consequences of Lemma 4.5 
and Theorem 6.7. 

COROLLARY 6.8 (Popa [19]). Let F : X —• Y be a l.a.c.H. multifunction 
and Y a regular space. If F has the property C 1 ( . F - ( V ) ) C - F ~ ( C 1 ( V ) ) for 
every open set V ofY, then F is l.s.c. 
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C O R O L L A R Y 6 .9 (Smithson [29]). If F : X —> Y is a l.a.c.H. and u.s.c. 
multifunction into a regular space Y, then F is l.s.c. 

L E M M A 6 . 1 0 . If a multifunction F : X —*• Y is u.w.c. and F(x) is a-
regular a-paracompact for each x £ X, then F is u.s.c. 

P r o o f . Let x G X and V be any open set of y such that F(x) C V. By 
Lemma 5.9, there exists an open set W such that F(x) C W C C1(W) C 
V. Since F is u.w.c., there exists an open nieghborhood U of x such that 
F(U) C C1(W); hence F(U) C V. Therefore, F is u.s.c. 

C O R O L L A R Y 6.11 (Popa [21]). Let Y be a regular space and F : X —• 
Y a multifunction such that F(xo) is strictly paracompact (equivalently a-
paracompact) for a point xq in X. Then F is u.s.c. at xo if and only if F 
is u.w.c. at xo. 

T H E O R E M 6 . 1 2 . If a multifunction F : X Y is l.a.w.c., u.w.c. and 
F(x) is a-regular a-paracompact for each x 6 X, then F is continuous. 

P r o o f . This is an immediate consequence of Theorem 6.7 and Lem-
ma 6.10. 

C O R O L L A R Y 6 . 1 3 . Let F : X —• Y be a l.a.w.c. multifunction and Y 
regular. If F satisfies the following: 

(a) F(x) is compact for each x € X\ 
(b) C1(F"(F)) C F~(C1(F)) for every open set V ofY, 

then F is continuous. 

7. S o m e applications 
In [26], the second author obtained several characterizations and prop-

erties of u.a.c.H. (resp. l.a.c.H.) multifunctions. It will be shown that the 
condition "u.a.c.H." in some theorems established in [26] can be replaced 
by "u.a.w.c.". 

A space X is said to be strongly compact [12] if every preopen cover of 
X admits a finite subcover. A space X is said to be quasi H-closed [27] if 
for every open cover {Ua \ a € V } of X, there exists a finite subset Vo of 
Y such that X = U ( C l ( ^ a ) | a € V 0 } . 

T H E O R E M 7 . 1 . Let F : X —• Y be an u.a.w.c. surjective multifunction 
such that F(x) is compact for each x G X. If X is strongly compact, then 
Y is quasi H-closed. 

P r o o f . Let {Va \ a € V } be an open cover of Y. For each x 6 X, F(x) 
is compact and there exists a finite subset V(x) of V such that F(x) C 
U(V a | a e V(x)} . Set V(x) = |J{Va | a € V(x)} . Since F is u.a.w.c., by 
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Theorem 3.1 there exists U(x) £ PO(X,x) such that F(U(x)) C Cl(F(x)). 
The family {i7(x)| x £ X } is preopen cover of X and there exists a finite 
number of points, says x — 1, X2, ..., xn in X such that X = 1 = 

1 , 2 , . . . , n}. Therefore, we have 

Y = F(X) = F( Q U(ztj) = [J F(U(xt)) C [J C1(V(*0) 
»=i t=i ¿=1 

= U U 
i=la€V(i j) 

This shows that Y is quasi ^-closed. 

A space X is said to be preconnected [25] if X can not be expressed by 
the union of two nonempty disjoint preopen sets. 

T H E O R E M 7 . 2 . Let F : X Y be a l.a.w.c. (or u.a.w.c.) surjective 
multifunction. If X is preconnected and F{x) is connected for each x G X, 
then Y is connected. 

P r o o f . Suppose that Y is not connected. There exist nonempty open 
sets U and V of Y such that U U V = Y and U (1 V = 0. Since F(x) is 
connected for each x £ X, either F(x) C U or F(x) C V. If x G F+(U U V), 
then F(x) C U U V and hence x £ F+(U) U Moreover, since F is 
surjective, there exist x and y in X such that F(x) C U and F(y) C V; 
hence x £ F+(U) and y £ F+(V). Therefore, we obtain the following: 

(1) F+(U)U F+(V) = F+(UUV) = X, 
(2) F+(U)nF+(V) = F+(UC\V) = <D and 
(3) and F + ( F ) / 0 . 

Next, we show that F+(U) and F+(V) are preopen in X. (i) Let F be l.a.w.c. 
By Theorem 3.2, pCl(F+(F)) C F+(V) and hence pCl(F+(V)) = F+(V). 
it follows from Lemma 2.1 that F+(V) is preclosed. Therefore, F+(U) is 
preopen in X. Similarly, we obtain F+(V) £ PO(X). (ii) Let F be u.a.w.c. 
By Theorem 3.1, F+(V) C pInt(F+(Cl(V))) = plntCf+iV)) and hence 
F+(V) = pInt(F+(F)). Therefore, F+(V) is preopen in X. Similarly, we 
obtain F+(U) £ PO(X). Consequently, X is not preconnected. 

C O R O L L A R Y 7.3 (Popa [26]). If a multifunction F : X -^Y is a l.a.c.H. 
(or u.a.c.H.) and punctually connected surjection and if X is preconnected, 
then Y is connected. 

T H E O R E M 7 . 4 . If F : X Y is an u.a.w.c. multifunction into a Haus-
dorff space Y and F(x) is compact for each x £ X, then the graph G(F) is 
preclosed in X xY. 



Almost weakly continuous multifunctions 379 

P r o o f . Let (x,y) € X xY - G(F). Then y <= Y - F(x). For each 
a € F(x), there exist open sets V(a) and W(a) containing a and y, respec-
tively, such that V(a) n W{a) = 0; hence C l ^ a ) ) n W(A) - 0. The family 
{V(a)| a € -FX^)} is an open cover of F(x) and there exists a finite num-
ber of points in F(x), says, a\,ai,... ,an such that F(x) C U{^(a«')l * — 
1,2,. . . ,ra}. Set V = U { % ' ) l » = 1 , 2 , . . . , n } and W = f|{W(«i)l » = 
1 , 2 , . . . , « } . Since F(x) C V and F is u.a.w.c., there exists U € P 0 ( X , i ) 
such that F({J) C C1(V). Therefore, we obtain F{U) n W = 0 and hence 
(UxW)nG(F) = 0. Since (x,y) <= UxW € P 0 ( J x 7 ) , (x,y) £ pCl(G(F)) 
and by Lemma 2.1 G(F)) is preclosed. 

COROLLARY 7.5 (Popa [26]). If F : X -^Y is a multifunction such that 

(a) F is punctually compact, 
(b) F is u.a.c.H. and 
(c) Y is Hausdorff, 

then G(F) is preclosed in X xY. 
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