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ON CONJUGACY CLASSES IN LINEAR GROUPS

Let G be a group, C a conjugacy class of G and Z the center of G.
In this paper we will show that if C ¢ Z, then [C| > |Z| for SL(n, K).
Using this fact we will show that: if the matrices V = diag(vy,...,vn),
W = diag(wn,...,wn), v # vj, w; # w; for i # j belong to G = SL(n, K)
or G = PSL(n, K), then G = C - C|(V) - CI(W), where C is any non-central
conjugacy class in G. Observe that in [2] there was calculated, on a big
computer, that C1C>2C3Cy = PSL(3, ¢) and C} = PSL(3, ¢q) for ¢ = 2, 3,4, 5,
where C; (i = 1,2,3,4)—arbitrary conjugacy class different from {1}.

First of all we will estimate the number of elements of the centralizer
C(A) of the matrix

(1) A= K1+K2+ .. '-i-K_,, where
0 1 0 0
0
1 0
K,': 0 0 .. y t1+t2+...+t,=n
0 1
ag, G -1 e @1

in the groups GL(n,¢q), SL(n, q).

Note that each matrix B € GL(n, K) is similar to a matrix of the form
(1.

LEMMA 1. Let C(A) is the centralizer of the matriz A in GL(n,q) or
SL(n,q). Then |C(A)| < ¢™*.

Proof. Let AX = XA, and let the matrix X be of the form (1). The
equation AX = X A is equivalent to the system of equation
(2) K:X;; = Xi;K;, 1,7=1,...,s.
Note that for each blocks X;; we have only one equation (2) from which we
can find entries of X;;. Let the orders of K; and K; be k and m, respectivly.



360 J. Ambrosiewicz

Then the matrix X;; is of the rank k X m. If we denote the entries of Xj;
by Ypg, (P=1,...,k; ¢=1,...,m), then from (2) we have:

0 1 0 01
0 ¥ Y1z --- Yim )
o 0 1 0 P21 Y22 - Pom
0 1 Yer Ye2 - Ykmd
A Q-1 ees Q3 ]
0 1 0 0
Y Y2 Uim 0
_ | Y21 ¥z Yom 0 0 1 0
................... 0 ]
LYkl Yk2 Ykm
-bm bm—l bl
Yo1 Y22 Yom b + 5 +b
... YimOm, ¥11 T¥1mOm-~-1, ..., ¥Ylm-1 1Yim
(3) y31 ?32 yam — | y2mbm, y21 +¥2mbm-1, ..., y2m-1+bivom
Yer Yk2  -e- Ykm Yembm, Yk1 + ¥kmbm-1, ..., Ykm-1+b1¥km

cG6 € ... Cm

where ¢, = axyir + ak_1¥2r + -+ GYir, T =1,...,m.
Comparing entries of rows 1,...,k — 1 in the equation (3) we see that
all entries of X;; can be expressed as linear combinations of

(4) Y11, Y125+ -y Yim »

If the homogenous system in the variables y;;, obtained from comparison
of the last rows of the equation (3), has zero solution then X;; = 0. If we
consider the equation (2) for j = 1,...,s in this same way, we see that all
the entries of matrices X;1, X;2,...,X;s will be expressed by entries of the
first rows theose matrices. The entries create one row of the matrix X. If
we solve all equations (2), we get s such rows. The case X = 0 is imposible
because the equations K;X;; = X;;K; have at least one nonzero solution,
for example F; (i = 1,...,s). Therefore all entries of X are functions of ns
variables. The maximal number of all matrices commuting with A is ¢™° i.e.
IC(A)| < ¢™.

Let Cl(A) denote the conjugacy class of A in G = GL(n,q) or G =
SL(n,q), where A is of the form (1).

LEMMA 2. If A & Z(G), then |CI(A)| > |Z(G)|.
Proof. From Lemma 1 we have the following inequalities

|GL(n, 9)| | |GL(n,q)|
cA = g

(8) |CI(4)| = 1<s<n,
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ISL(n,q)] , ISL(n,0)|

6 Cl(A)| = > , 1<s<n.
©) 1) = SEot 2
Now it is sufficient to show that

L
(7) (EHm > |2(GLm )l and
ISL(n 9)|

(8) > |Z2(SL(n,q))| or

(9)

The inequality (9) is stronger than (7) and (8). Thus it suffices to prove the
inequality (9) only for s = n—1, because the case s < n—1 follows from the
s = n—1 case. After easy transfomations the inequality (9) will be rewritten
to the form

(10) (@ -D@ =) (@ -1 - 1) > ¢ F (g-1).

The inequality (10) can be proved easily by induction on n. The case s =
n occurs when A is a diagonal matrix. If there are at least two different
elements on the diagonal then A is similar to the matrix considered earlier
i.e. when s < n (see [3], pp 252-253). If the matrix is a scalar matrix then
AeZ.

LEMMA 3. If K is an infinite field, G = SL(n, K'), and C' a non-central
conjugacy class in G, then |C| > |Z].

BL® 9l | 2(GL(n, 0))1

Proof. Since Z is finite, we need only prove that C is infinite. Suppose
C is finite and let A be an element of C; then C(A), the centralizer of A in
G, has a finite index in G. It follows that the core T of this centralizer is a
normal subgroup of finite index in G (see [4], Theorem 3.3.5, p. 53). Since
all normal subgroups of G are central, we have T in Z and the contradiction
|G/Z| is finite is obtained.

LEMMA 4. Let N be a subset of G, Z-center of G, M = G — Z and
IN|>|Z|. Then GC NM.

Proof. Note that the conditions

(1) V zM NN #0, (ii) YV yNOM#0
TEG yeG
are equivalent.

Consider the condition (ii). If yy N N M = 0 for yo € G, then yoN C Z
and |N| < |Z|, contra.ry to |N| > |Z|. Therefore zM NN # 0 foreach z € G
and z = n;m; ! for certain n; € N,m; € M but M~ = M,soz € NM
ie. G C NM
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THEOREM 1. If V,W € SL(n, K), V = diag(v1,...,v,), W =diag(w,,...
ooy W), U # v, w; # w; for i # j and for N C SL(n, K), with |N| > |Z|,
then SL(n,K) C N - CI(V) - C(W).

Proof. From ([1], Theorem 2) we have M = SL(n, K)— Z(SL(n, K)) C
CI(V) - C(W). Since M~ = M it follows from Lemma 4 that SL(n,K) C
N .ClV)-C(W).

From Lemmas 2, 3 we have |C| > |Z(SL(n, K))| for C ¢ Z(SL(n, K)).

Hence we have

CoroLLARY 1.1. If VW € SL(n,K), V = diag(vi,...,vn), W =
diag(wi,...,wn), v;i # vj, w; # w; for i # j and C ¢ Z conjugacy class,
then SL(n,K) C C - C(V) - CI(W).

Since |C| > |Z(PSL(n, K))| for C # {E}, then we have the next corol-
lary.

CoRrOLLARY 1.2. If VW € PSL(n,K), V = diag(vy,...,vn), W =
diag(wy,...,wy), v; # vj, w; # w; fori # j and |C| # 1, then PSL(n, K) C
C-CKV).Cy(W).
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