DEMONSTRATIO MATHEMATICA
Vol. XXVI No 2 1993

Brunon Szocinski

SOME PROPERTIES OF THE PROJECTIVE SPACE

Introduction

In [6], with the use of the notion of vector structure of the set over
the field, the definition and some properties were stated of n-dimensional
generalized elementary Klein space over arbitrary field. The aim of this
paper is to describe the construction of vector structure of projective space,
proving that projective space is an example of generalized elementary Klein
space.

1. Preliminaries

We shall start from the definitions and some facts from the theory of
Klein spaces (cf. [1]-[4]), which will be used in further parts of this paper.

Consider an arbitrary nonempty set M, the group G and mapping f :
M x G — M satisfying, for each z € M and g¢;, g2 € G, conditions:

f(f(z,gl),.%) = f(x’.‘h 'gl), f(a:,e) =z,

where e is a neutral element of G, and g, - g; denotes a group product. The
triplet

(1.1) (M,G, f)

will be called an abstract object supported by the group G. The set M
will be called a fibre of this object. We will say that the object (1.1) is
transitive iff the group G acts transitively on M, i.e. for each z;, 20 € M
there exists ¢ € G such that f(z1,9) = z;. For any ¢ € G the mapping
fo : M —- M, f,(z) := f(z,g) is a bijection of M onto itself, whereas
f:G- G(M), f(g) := fgy is a homomorphism of G into the group G(M)
of all transformations of the set M. This homomorphism will be called a
representation of the object (1.1).

The abstract object (1.1) is a Klein space iff its representation f is a
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monomorphism. Any abstract object
(1.2) (X,G,F)

will be called a geometric object of a given Klein space iff it is supported by
the same group G as Klein space (1.1).
For an arbitrary fixed element z of the fibre X of object (1.2), the set

SF:={¢geG: F(z,g9) =z}

forms a subgroup of G (see [2], p. 23), called a stability subgroup of this
object in the point z. The following lemma states the basic property of
stability subgroups (cf. [2], p. 26).

LEMMA 1.1. If F(zo,g) = z, then §f =g - Sf; .g7L.
It can be also proved (see [3], p. 20), that the following is true:

LEMMA 1.2. If F(zq,90) = z, then the equality F(zo,g9) = = holds iff
gE€ go- Sf;.

According to the definition given in [6], we will call the group of transfor-
mations Tp(M) of the set M the group of quasi-translations of this set with
quasi-domain D, where § # D C M, iff it acts straightly transitively on D
(i.e. for each p,q € D there exists unique 7 € 7p(M) such that 7(p) = ¢q)
and for each 7 € Tp(M) 7|p\p = idan\p-

Let K be an arbitrary field. We will denote zero and unity of this field by
0 and 1. Abelian group of quasi-translations 7p(M) with outer operation:
K x Tp(M) — Tp(M), satisfying for each a,b € K and 7, 73, 7 € Tp(M)
conditions:

a-(nom)=(a-1)o(a-1)

(a+b)-7=(a-1)o(b-T)
(1.3) (1“”)'_”“'(”")

will be called a linear space of quasi-translations of the set M over the field
K and denoted by Tp(M, K).

DEeriNITION 1.1. Let {Tp(M, K)}pea will be a system of linear spaces
of quasi-translations of M over K, where A is a family of quasi-domains of
these spaces, and let {A,(M)}pepm be a system of groups of transformations
of M, for each p € M and a € A (M) satisfying condition a(p) = p. The
pair

(1.4) ({To(M, K)}pess {Ap(M)}pem)

will be called a vector structure of the set M over the field K, iff the following
axioms are satisfied:
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V1. For every distinct D, D’ € A and each r€Tp(M, K), 7' € Tp:/(M, K),
a € K, the following conditions hold: 7(D') € A and

TO TD:(M,K) o 1'-1 = Z(D’)(M’K)’

ro(a-Torl=a-(ror'or™1).

V2. For each p, ¢ € M there exists a quasi-domain D € A such that
»,q€D.

V3. Foreach pe M, D € A and 7 € Tp(M, K)

ToAp(M) o™ = Ary)(M).

V4. There exists a p € M such that for every quasi-domains D', D"

belongs to the family
Ap:={DeA: pe D}

there exists a unique transformation a € Ap(M) satisfying:

(a) a(D') = D" and a o Tp/(M, K)o a™! = Tpu(M, K),

(b) for each a € K and 7' € Tp:(M, K)

ao(a-t)oal=a-(aor’ 0a™?).

Now, let us consider the Klein space (1.1) and the vector structure (1.4)
of the fibre of this space over K.

DEFINITION 1.2. The vector structure (1.4) of the fibre of Klein space
(1.1) will be called compatible iff the following compatibility conditions are
satisfied:

(i) foreachge G, D€ A, 7 € Tp(M,K)and a € K

fy OTD(M,K)O fg_l = 7},(D)(M1K),
f.¢1°(‘1"7')°fg_1 =a"(f9°T°fg_1);
(ii) foreach g€ Gand pe M
foo Ap(M)o f1 = Ay, )(M).
DEFINITION 1.3. The Klein space (1.1) will be called a generalized ele-
mentary Klein space over K, iff there exists a vector structure (1.4) of the
fibre M over K, compatible with this space.

It is possible, using vector structure, to define a tangent bundle for gen-
eralized elementary Klein space (see [6]).

2. Groups of quasi-translations of projective space

Consider the linear space K"t! over K and the multiplicative group
GL(n + 1, K) of non-singular matrixes of the degree n + 1 with elements
a;j € K. Let ~ be a proportionality relation in K7t = K"+1\ {0} (i.e.
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& ~ 7 iff there exists such a € K that n = af for &, . € K1), It is easily
observed that ~ is an equivalence relation. Let

P*(K):= KM/~ and GP(n,K):=GL(n+1,K)/C(n+1,K),
where C(n + 1, K') denotes the centre of the group GL(n + 1, K). It can be
shown (cf. [2], p. 32) that the mapping

f: PYK)x GP(n,K) - P*(K),  [([{],(4)) := [A¢]
is an effective action of GP(n, K) on the set P*(K). The abstract object
(2.1) (P™(K),GP(n,K), f)

will be called an n-dimensional projective Klein space over K.
Let X be a family of all (» — 1)-dimensional projective hyperplanes. Let
us consider the set

(2.2) A:={D:Dc PYK), D=P*(K)\H, He X}
and construct the object of subsets of the space (2.1) (see [4], p. 16)
(2.3) (4,GP(n,K), f*), where f*(D,g):={f(p,9):p€ D}.

Let Dy = P*(K)\Hg, where Hy is an (n—1)-dimensional hyperplane defined
by equation ¢! = 0. Consider also two partial subobjects (see [4], p. 16) of
Klein space (2.1)

(2'4) (DO,S{);v fDo), fDo = leox_g{); ’
and
(2'5) (DO,Sé.,fD)’ /b= f.les{)‘7 DeA,

where § lf); and S If; are stability subgroups of object (2.3) in Dy and D,
respectively. Since (2.3) is a transitive object, there exists § € GP(n, K)
such that f*(Dy,g) = D. By Lemma 1.1 _

Sy =g-85 37,
It follows that the mapping

03:50 =85, ¢i9)=7-9-77"

is a group homomorphism, whereas the mapping
¥3:Do— D, 5= fylp,

is a bijection. It is easily seen that these mapping satisfy the condtition

fo(%3(p), 93(9)) = ¥o(fpo(p19)) forpe Dy andge€ S, ,
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which means that objects (2.4) and (2.5) are abstractively equivalent (cf. [4],
p. 12). It is easily noted that the set

1 0
Go, = {s€ GP(n,K): g= (), 4= ( )}
(ain) | (&)
(where 6;;, 4,7 = 2,3,...,n+1 is Kronecker’s symbol) is a normal subgroup
of the group
1 0

st = {oecronr): 9= (), 5= (G (b,-,-)) , (b)€GL(n, K) |

acting straightly transitively on Dy. It follows (cf. [3], Lemma 1.4.10, p. 22)
that ¢3(G Do) is a straightly transitively acting on D normal subgroup of

the group ss D - Moreover, as is easily seen, the following equality holds:

(PQ(GDo) = (pﬁ(GDo) for geyg: SDO .
In virtue of Lemma 1.2 we can observe that the definition of the group
(2.6) Gp:=9-Gp, g1

does not depend on the choice of g, satisfying condition f*(D¢,g) = D
It can be checked by a direct calculation that fy |m, = idy, for each
go = Gp,. It follows that

(2.7) folu=idy foreach g€ Gp, where D=P"(K)\H.
Indeed, for each ¢ € H, g € Gp there exists p € Hy,§ € GP(n,K), g0 € Gp,
such that ¢ = f(p,9) and g =g-go -§ . Thus

f(g,9) = F(f(,9),3-90-37") = f(2, 7 90) = f(F(P,90),9) = f(p,9) = ¢,

what proves (2.7).
We have shown that for each D € A the group Gp, defined by (2.6), is a

normal subgroup of S g, acting straightly transitively on D and satysfying
condition (2.7). Thus the following lemma is true.

LEMMA 2.1. For each D € A the group of transformations
(2.8) Tp(P"(K)) := f(Gp)

of the fibre of Klein space (2.1) is a group of quasi-translations of the set
P™(K) with quasi-domain D.
We will prove two more lemmas.

LEMMA 2.2. For every g € GP(n,K) and D € A the equality
(2.9) fo o To(P™(K)) o f = Tj,p)(P™(K)).
holds.
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Proof. Let D = f,(D). Since (2.3) is a transitive object, there exist
g € GP(n,K) such that f*(Do,g) = D. Hence f*(Do,g-g) = D. By the
definition (2.6) of group Gp we have
Gp=9-Gp,-§~' and G5=(9-9) Gp,(9-9)7",
and, therefore, G = g Gp - g~!. Thus we get
Tr.o)(P"(K)) = To(P"(K)) = f(Gp) = flg-Gp - 57")

= f(g) o f(GD) o F(g™!) = £ 0 To(P™(K)) o £,
what ends the proof. =

By the definition of the group of quasi-translations (2.8) and Lemma 2.2,
we immediately get:

LEMMA 2.3. For every D,D' € A and 7 € Tp(P™(K)) the following is
lrue ’
7(D') € A and 70 Tp:(P™(K)) o 7' = T(py)(P™(K)).

3. Linear spaces of quasi-translations of projective space
Let us consider the Klein space (2.1), its geometric object (2.3) and the
product object (see [4], p. 43)

(A x PY(K), GP(n,K), f*x [),
where the mapping f* X f is defined by the formula

(f* x f)((D,p),9) = (f*(D,9), f(p,9))-

Since the set A := {(D,p): D € A, p € D} is a transitive fibre (cf. [4], p. 15)
of this object, we can construct a transitive partial object (cf. [4], p. 15)

(3.1) (A,GP(n,K),f), [=f"xflaxcrmK) -
Consider also the set Dy defined in §2, the point

(3.2) po=[(£)), wheregl=1, ¢ =0 fori=2,...,n+1
and the stability subgroup

(3.3) S(fDO,pO) =

= {g € GP(n,K): g=(A), A= ((1) (a(:j))’ (ai;) € GL(",K)}

of object (3.1) in the point ( Dy, po). Since (3.1) is a transitive object, there
exists for each (D, p) € A such § € GP(n, K) that

(3'4) f((DO)pO)’y) = (D,p)-
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By Lemma 1.1 we get

f  _ <. cf =1
(3.5) S(D,p) = 9" 5(Dowo) "I

Thus the mapping

Xy S(fDo,Po) - S(fD,p)’ X.?J(g) =g-9 'g—l

is a group isomorphism. Let K, denotes the multiplicative group of the field
K, while C(p, »,)-the centre of group (3.3). Then

1 0
C =49g€GP(n,K): g=(B B=( ) aEK,..}.
o = {5€ P 5= (8), B = (11).
If C(p,p) denotes the centre of the group (3.5), then, obviously
Cp,p) = Xs(C(Do,p0)) = T C(Dope) " T -

Consider the mapping

1 0

d:K.— C(Domo), d(a) = (B)’ where B = (0 (aéij))

and note that

(3.6) d(a)-go-(d(a))"' € Gp, foreacha€ K. and gy € Gp,.

By Lemma 1.2, for each g € GP(n, K) such that f((Do,po),g) = (D, p) we
have g€ 7- S(fDo,Po)' Hence, by (3.3), we obtain

g-d(a)-¢g7' =g-d(a)-g~' foreachacK,.
It follows that the definition of mapping
(3.7) dp,p: Ku— C(Dy), dDp = X304
does not depend on the choice of g satistying condition (3.4). Moreover, we
will show that for every D € A, p1,p2 € D, t € Gp, a € K, the equality
(3.8) dpp,(a) -t (dp,p,(a))”! = dpp(a) - t- (dpp(a)) ™"
holds.

Since G p, acts on Dy straightly transitively, there exists go € Gp,, such
that f(po,g0) = Py, where ; = f(p1,§ ") € Do. Thus f((Do,p0),7 - go) =
(D, p1), and therefore dp », = Xg.g, ©d. Hence, denoting ¥ := g~ -t-g € Gp,
and using (3.6) we obtain
0D,53(8)t-(dp 5,(@)) " =7+ g0+ d(@)- 71 F-go- (d()) - g5 -7

=7-d(a) T-(d(@)) T =dp 5(a) -t (dp p(a)) 7,
which proves (3.8).
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Since Gp and C(p,y) are subgroups of the group § 5 , while Gp is normal,
we get

dpp(a)-t-(dpy(a))™ € Gp foreverya€ K., t€Gp.
Thus, by (2.8), we obtain
F(dp p(a)) o 7o f((dpp(a))™!) for each a € K., T € Tp(P™(K)).
Hence, in virtue of (3.8), the value of mapping
: K x Tp(P™(K)) — Tp(P™(K))
defined by the formula
{idpn(K) ifa=0
a-7=12 - -~ )
f(dpp(a))oro f((dpp(a))™!) ifa#0,
does not depend on the choice of the point p € D.

LEMMA 3.1. For everyg € GP(n,K),a € K,D € Aandt € Tp(P"(K))
the equality

(3.9)

(3.10) fgo(a'r)ofy_l:a.(fgorofg'l).
holds true. In particular, for each T € T;;(P™(K))
(3.11) Fo(a-T)oF l=a-(ForoF ).

Proof. For a = 0 the equality (3.10) is obvious. Let a # 0 and let p
be an arbitrary point of the set D € A. For arbitrarily fixed g € GP(n,K),
let (D,?) := f((D,p),9). Since (3.1) is a transitive object, there exists g €
GP(n, K) such that

f((Do,70),9) = (D,p) and  f((Do,m),9-9) = (D,p).
Hence, in virtue of (3.7), we have dp ,(a) = §-d(a)-g ' and
dp5(a) =(9-9)od(a)o(9-9)"" =g -dpy(a)-g7".
Moreover, by (2.9), we obtain 7 = f, 0 70 f; € T5(P"(K)). Hence
a-(fgorofi')=a 1= fldpz(a) 0T o f((dp5(a))™)
= fy© f(dpp(a)) o 70 f((dpa(a) ™) 0 £
=f9°(a"T)°fg_1,
which proves (3.10). Since for every D € A the group of quasi-translations

T5(P™(K)) is a subgroup of the group f(GP(n, K)), then, by (3.10), (3.11)
is also true. m

LEMMA 3.2. For each D € A the group of quasi-translations Tp(P™(K))
with multiplication by elements of the field K, defined by the formula (3.9),
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forms a linear space of quasi-translations Tp(P™(K), K) of the set P*(K)
over the field K.

Proof. It can be easily checked by a direct calculation that for any
a,b € K and 1,72, 7 € Tp,(P™(K)), conditions (1.3) are satisfied. Thus,
by lemma 3.1, they are also satisfied for any 71,72,7 € Tp(P"*(K)), where
D € A. Indeed, the transitivity of the object (2.3) implies the existence of
such § € GP(n,K) that f*(Do,g) = D and 7; = fyor0 f; for i = 1,2.
Thus, we have
a-(TL07,) =a-(fgorlofy_l oj's,01'2of$""1):fgo(a-('rlo1‘2))ofg_1

= fgo((a-m)o(a-m))o f;*
=j.,,o(a-1'1)ofg_1 ofgo(a-‘rg)ofy'1
=(a-(fyomofy))o(a-(fyomof))=(a-T1)o(a-T2).

The remaining conditions (1.3) can be proved in a similar way. m

4. Vector structure of projective space

Let p be an arbitrary point of the fibre of projective Klein space (2.1),
and po—point of (3.2). The transivity of the space (2.1) implies the existence
of § € GP(n, K) satisfying condition f(pg,§) = p. By Lemma 1.1 we obtain

_ = —-1
S§=9-55,-97",
and hence the mapping
y:5),— 5}, &=9-9-77"

is a group isomorphism. It is easily observed that the set

Gy = {geGP(n,K)= g=(A), A= ((1) ((;1,1)))}

is a normal subgroup of the group

5t,={s€ GPnK): 9= (B), B = (3 ((’,’,“)))  (b) € GL(, B
ij
Moreover, as is easy to note that the group G, acts straightly transitively
on the subset A, = {D € A: pg € D} of the fibre of object (2.3).
Let us denote

(4.1) Gp:=79-Gp, g7t

In § 2 we have shown that the subgroup ¢;(Gp,) of the group § g acts
straightly transitively on the set D and, moreover, that the equality (2.6)
holds for each g satisfying condition f*(Dy,§) = D. Similarly, it can be
shown that
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1° the subgroup #3(G,,) of the group S;{ acts straightly transitively on
theset A, ={D € A:pe€ D},
2° the definition (4.1) of the group G, does not depend on the choice of
g, satisfying condition f(po,3) = p.
It is easily seen that the following lemma is true.
LEMMA 4.1. For each p € P"(K) the group
(4.2) Ap(P™(K)) := f(G)p)
of transformations of the fibre of space (2.1), has the following properties:
a) a(p) = p for each a € A,(P™(K)),
b) for every D', D" € A, there ezists a unique a € A,(P™(K)) such that
a(DI) — D",
c) for each g € GP(n, K)
fao A(PM(K)) o f5! = As,(»(P"(K)),
d) for each D € A and T € Tp(P"(K))
7o Ap(P"(K))o = Arp)(P*(K)),
e) for every a € A,(P*(K)), D € Ap, T € TIp(P*(K)) anda € K
ao Tp(P*(K))oa™! = Typ)(P(K)),

and
ao(a-T)oal=a-(aoroa™l).

Proof of property c) is similar to the proof of Lemma 2.2. Since for
each D € A and p € P*(K) the groups of transformations (2.8) and (4.2)
are subgroups of the group f(GP(n, K), then, in virtue of property c) and
lemmas 2.2. and 3.1, properties d) and e) can be easily obtained.

Using lemmas proved in this paper, we can easily check that the pair

(4.3) ({To(P™(K), K)}pea, {Ap(P"(K))}pep(k))

satisfies axioms V1-V4 and compatibility conditions (i) and (ii). That means
that the pair (4.3) is a vector structure of the set P"(K) over the field
K, compatible with Klein space (2.1). Thus we have proved the following
theorem:

THEOREM 4.1. The projective Klein space (2.1) is a generalized elemen-
tary Klein space over the field K.
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