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S O M E P R O P E R T I E S OF T H E P R O J E C T I V E S P A C E 

Introduct ion 
In [6], with the use of the notion of vector structure of the set over 

the field, the definition and some properties were stated of n-dimensional 
generalized elementary Klein space over arbitrary field. The aim of this 
paper is to describe the construction of vector structure of projective space, 
proving that projective space is an example of generalized elementary Klein 
space. 

1. Prel iminaries 
We shall start from the definitions and some facts from the theory of 

Klein spaces (cf. [l]-[4]), which will be used in further parts of this paper. 
Consider an arbitrary nonempty set M, the group G and mapping / : 

M x G M satisfying, for each x € M and <71, g2 G G, conditions: 

f(f(x,gi),g2) = f(x,g2 / (®,e) = x, 

where e is a neutral element of G, and g2 • gi denotes a group product. The 
triplet 

(1.1) (M,G,f) 

will be called an abstract object supported by the group G. The set M 
will be called a fibre of this object. We will say that the object (1.1) is 
transitive iff the group G acts transitively on M, i.e. for each x\, x2 € M 
there exists g € G such that f(xi,g) = x2. For any g € G the mapping 
fg : M —• M, fg(x) := f(x,g) is a bijection of M onto itself, whereas 
f : G G(M), f(g) := fg is a homomorphism of G into the group G(M) 
of all transformations of the set M . This homomorphism will be called a 
representation of the object (1.1). 

The abstract object (1.1) is a Klein space iff its representation / is a 
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monomorphism. Any abstract object 

(1.2) (X,G,F) 

will be called a geometric object of a given Klein space iff it is supported by 
the same group G as Klein space (1.1). 

For an arbitrary fixed element x of the fibre X of object (1.2), the set 

forms a subgroup of G (see [2], p. 23), called a stability subgroup of this 
object in the point x. The following lemma states the basic propérty of 
stability subgroups (cf. [2], p. 26). 

LEMMA 1 .1 . If F(x0,g) = x, then = g- S£0- g'1. 
It can be also proved (see [3], p. 20), that the following is true: 

LEMMA 1 .2 . If F(xo,go) = x, then the equality F(xo,g) = x holds i f f 
9€9O-S£0. 

According to the definition given in [6], we will call the group of transfor-
mations Tjy(M) of the set M the group of quasi-translations of this set with 
quasi-domain D, where 0 ^ D C M, iff it acts straightly transitively on D 
(i.e. for each p,q G D there exists unique r G TD(M) such that r(p) = q) 
and for each r G TJJ(M) T\M\D = IDM\D. 

Let K be an arbitrary field. We will denote zero and unity of this field by 
0 and 1. Abelian group of quasi-translations TD(M) with outer operation: 
K x TD{M) —> TD(M), satisfying for each a,6 € K and ri , T2, r € 7b(Af) 
conditions: 

will be called a linear space of quasi-translations of the set M over the field 
K and denoted by TD(M, K). 

DEFINITION 1.1. Let {TD(M,K)}D^JI will be a system of linear spaces 
of quasi-translations of M over K, where A is a family of quasi-domains of 
these spaces, and let {AP(M)}PÇM be a system of groups of transformations 
of M, for each p G M and a G AP(M) satisfying condition a(p) = p. The 
pair 

will be called a vector structure of the set M over the field K, iff the following 
axioms are satisfied: 

S£:={geG : F(x,g) = x} 

(1.3) 

(1.4) ({TD(M, K)}D€A, {AP(M)}PEM) 
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V I . For every distinct D,D'EA and each RETD(M,K), T'£TD.(M,K), 
a G K, the following conditions hold: T(D') 6 A and 

r o TD,(M, K) o r " 1 = T T ( D < ) ( M , K), 

T o (a • r ' ) o T - 1 = a • (r o r ' o r - 1 ) . 

V2. For each p, q G M there exists a quasi-domain D G A such that 

V3. For each p G M, D G A and T G TD(M, K) 

T O AP(M) O R"1 = Ar(p)(M). 

V4. There exists a p £ M such that for every quasi-domains D', D" 
belongs to the family 

Av := {D G A : p G D} 
there exists a unique transformation a G AP(M) satisfying: 

(a) a(D') = D" and a o TD,(M, K) o a " 1 = 7b»(M, K), 
(b) for each a £ K and r ' G TD.(M, K) 

a o (a • r ' ) o a - 1 = a - (a or' o a - 1 ) . 

Now, let us consider the Klein space (1.1) and the vector structure (1.4) 
of the fibre of this space over K. 

DEFINITION 1.2. The vector structure (1 .4) of the fibre of Klein space 
(1.1) will be called compatible iff the following compatibility conditions are 
satisfied: 

(i) for each g G G, D G A, T G TD(M, K) and a G K 
fg o TD(M, K) o f ' 1 = TFG(D)(M, K ) , 

fgo(a-r)o f~1 =a-(fgOTO f ' 1 ) ; 

(ii) for each g Ç. G and p £ M 

fgoAp(M)of^=AJÁp)(M). 
DEFINITION 1.3. The Klein space (1 .1) will be called a generalized ele-

mentary Klein space over K, iff there exists a vector structure (1.4) of the 
fibre M over K, compatible with this space. 

It is possible, using vector structure, to define a tangent bundle for gen-
eralized elementary Klein space (see [6]). 

2. Groups of quasi-translations of projective space 
Consider the linear space Kn+1 over K and the multiplicative group 

GL(n + 1 ,K) of non-singular matrixes of the degree n + 1 with elements 
a,j G K. Let ~ be a proportionality relation in K™+1 = Kn+1 \ {0} (i.e. 
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£ ~ 77 iff there exists such a G K that 77 = for rj G if""1"1). It is easily 
observed that ~ is an equivalence relation. Let 

Pn(K):= K?+1/~ and GP(n,K) := GL(n+ 1,K)/C(n + 1, A') , 

where C(n + 1, i f ) denotes the centre of the group GL(n + 1, K). It can be 
shown (cf. [2], p. 32) that the mapping 

/ : Pn(K) x GP(n, K) - Pn(K), /([£], (A)) := 

is an effective action of GP(n, K) on the set Pn(K). The abstract object 

(2.1) (Pn(K),GP(n,K),f) 

will be called an n-dimensional projective Klein space over K. 
Let X be a family of all (n — l)-dimensional projective hyperplanes. Let 

us consider the set 

(2.2) A :={D:D C Pn(K), D = Pn(K) \ H, H <E X} 

and construct the object of subsets of the space (2.1) (see [4], p. 16) 

(2.3) ( A , G P ( n , K ) , r ) , where f\D,g) := { f ( p , g): p € D] . 

Let Do = Pn(K)\Ho, where Ho is an (n—l)-dimensional hyperplane defined 
by equation = 0. Consider also two partial subobjects (see [4], p. 16) of 
Klein space (2.1) 

(2.4) ( D 0 , S f
D ] j D o ) , fDo = f\ , 

D Q 

and 

(2.5) (D0,Sf
D',fD), /z> = /|CxS/-, DeA, 

where 5jr,o and Sp are stability subgroups of object (2.3) in D0 and D, 
respectively. Since (2.3) is a transitive object, there exists g € GP(n,K) 
such that f*(Do,g) = D. By Lemma 1.1 

S£ =9-s£o-g-\ 

It follows that the mapping 

¥>3 : ^ <Pg(9) = 9-9-9~1 

is a group homomorphism, whereas the mapping 

i>-g:D0^ D, ip-g = f-g\Do 

is a bijection. It is easily seen that these mapping satisfy the condtition 

foMP)> ^3(5)) = Tps(fD0(P, 9)) for P € D0 and g € s£o, 
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which means that objects (2.4) and (2.5) are abstractively equivalent (cf. [4], 
p. 12). It is easily noted that the set 

GD0 = { $ € GP(n, K) : g = (A), A = M 
1 0 

(°<l) 
(where 6ij,i,j = 2 , 3 , . . . , n + 1 is Kronecker's symbol) is a normal subgroup 
of the group 

SfD0 = {geGP(n,K) : g = ( 5 ) , B = ( J ^ - J L ) , (bij)eGL(n,K)} 

acting straightly transitively on Do. It follows (cf. [3], Lemma 1.4.10, p. 22) 
that fg{Go0) is a straightly transitively acting on D normal subgroup of 
the group Sp . Moreover, as is easily seen, the following equality holds: 

<Pg(GD0) = <Pg(GDo) for g e g • Sf
Do. 

In virtue of Lemma 1.2 we can observe that the definition of the group 
(2.6) GD-.= g-GDft-rx 

does not depend on the choice of g, satisfying condition f*(Do,g) = D. 
It can be checked by a direct calculation that fgo \H0 = id//0 for each 

go = GD0. It follows that 

(2.7) fg\H = id H for each g € GD, where D = Pn(K) \ H . 

Indeed, for each q € H,g € GD there exists p&Ho,g€ GP(n, K), go £ GD0 

such that q = f ( p , g ) and g = g • go • g - 1 . Thus 

f(q,9) = f(f(p,9),9-9o-g'1) = f(p,g-go) = f(f(p,go),g) = f ( p , g ) = q, 

what proves (2.7). 
We have shown that for each D G A the group GD, defined by (2.6), is a 

normal subgroup of SD , acting straightly transitively on D and satysfying 
condition (2.7). Thus the following lemma is true. 

LEMMA 2.1. For each D € A the group of transformations 

(2 .8) TD(Pn(K)) := f(GD) 

of the fibre of Klein space (2 .1) is a group of quasi-translations of the set 
Pn(K) with quasi-domain D. 

We will prove two more lemmas. 

LEMMA 2.2. For every g e GP(n, K) and D G A the equality 

(2 .9) fg o TD(Pn(K)) o f ' 1 = Tfg{D)(Pn(K)). 

holds. 
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P r o o f . Let D = fg(D). Since (2.3) is a transitive object, there exist 
g G GP(n,K) such that f*(D0,g) = D. Hence f*(D0,g• g) = D. By the 
definition (2.6) of group GD we have 

GD = g • GDQ • g~l and G^ = (g-g)- GDq • (g • g)'1, 
and, therefore, Gp — g • GD • g~l • Thus we get 

Tft(D)(Pn(K)) = 7^(Pn(K)) = f(Gj,) = f{g • GD • S"1) 

= Kg) o }{GD) o /(g-1) = fg o TD(Pn(K)) o r9> , 
what ends the proof. • 

By the definition of the group of quasi-translations (2.8) and Lemma 2.2, 
we immediately get: 

L E M M A 2 . 3 . For every D,D' G A and r E TD(Pn(K)) the following is 
true 

T(D') E A and TO TD,(Pn(K)) o r " 1 = TT{E>l)(Pn(K)). 

3. Linear spaces of quasi-translations of project ive space 
Let us consider the Klein space (2.1), its geometric object (2.3) and the 

product object (see [4], p. 43) 

(.AxPn(K), GP(n,K), f * x f ) , 

where the mapping / * x / is defined by the formula 

( / • X MD,p),g) = (r(D,g),f(p,g)). 
Since the set A := {(D,p): D 6 A, p G D} is a transitive fibre (cf. [4], p. 15) 
of this object, we can construct a transitive partial object (cf. [4], p. 15) 

(3.1) (A,GP(n,K)J), f = f* X /UGPK*) . 

Consider also the set Do defined in §2, the point 

(3.2) i>o = [(£')]> where i 1 = 1, f = 0 for i = 2 , . . . , » + 1 

and the stability subgroup 

( 3 - 3 ) s L P 0 ) = 
= | geGP(n,K): g = (A), A= ( J—^y ) > K ) € GL(n, K) J 

of object (3.1) in the point (DQ,PO)• Since (3.1) is a transitive object, there 
exists for each (D,p ) G A such g G GP(n, K) that 

(3.4) / ( ( A b P o ) , 5 ) = (£>,i>). 
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By Lemma 1.1 we get 

(3-5) S L ) = S - S ( D o , P o ) - 9 ~ 1 . 

Thus the mapping 

: S(do,po) - S(D,rV *sU) = 9 - 9 - a ' 1 

is a group isomorphism. Let A , denotes the multiplicative group of the field 
K , while C(£jCiPo)-the centre of group (3.3). Then 

C(D0)P0) = {9 € GP(n, K): g = (B), B = ( 5 — ^ ) . « 6 A ' . } . 

If C(£>|P) denotes the centre of the group (3.5), then, obviously 

C(D,P) = X-a(C(D0,p0)) = 9-C(d0,V0) • 9 • 

Consider the mapping 

d : IT. - C(£>o,po)» <*(«) = (B), where 5 = ( 5 — ^ ) 

and note that 

(3.6) d(a) -g0 • ( d ( a ) ) - 1 G for each a G A , and 50 G Cd 0 • 

By Lemma 1.2, for each g G GP(n,K) such that f((Do,po),g) = ( D , p ) we 
have g G <7 • p o j . Hence, by (3.3), we obtain 

g • d(a) • <7-1 = <7 • d(a) • g - 1 for each a G A"*. 

It follows that the definition of mapping 

(3.7) ¿£>,p A'» C ( D j P ) , d£))P = Xj 0 d 

does not depend on the choice of g satistying condition (3.4). Moreover, we 
will show that for every D G A, Pi,P2 G D, t G Gd, a G A-» the equality 

(3.8) dDtPl(a) • t • ( d o ^ a ) ) - 1 = dD>p(a) • t • ( ^ ( a ) ) " 1 

holds. 
Since Gd0 acts on Do straightly transitively, there exists jo 6 Gd0 , such 

that f(po,go) = Pi, where px = f { p i , g ~ l ) G -Do- Thus f((D0,p0),g-go) = 
(D,pi), and therefore do,Pl = XggQ°d. Hence, denoting t := g~l-t-g G G d 0 

and using (3.6) we obtain 

dD,Pl(a)-t-(dD^a))-1 -g-g0 • d(a)-g~1 -t-g0 • (d(a))_1 •g 

= 5 • d(a) • t • (dia))-1 • g = dD<p(a) • t • ( d D t P ( a ) ) - \ 

which proves (3.8). 
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Since Go and C(o,p) a r e subgroups of the group Sp , while Go is normal, 
we get 

¿jD,P(a) • t • ( ¿^^ (o ) ) - 1 G GD for every a G A',, t G GD • 
Thus, by (2.8), we obtain 

f{dDtP(a)) o r o /((dnM)-1) for each a G Km, r G TD(Pn(K)). 
Hence, in virtue of (3.8), the value of mapping 

: K x TD(Pn(K)) - TD(Pn{K)) 
defined by the formula 

C3 9) . i f a = 0 

1 ^ 1 /(¿D,P(a)) o r o f((dD>p(a))~l) if a * 0, 
does not depend on the choice of the point p € D. 

L E M M A 3.1. For every g G GP(n, A'), a € A, D G A andr G TD{Pn{K)) 
the equality 
(3.10) fg o (a • r ) o f ; 1 = a • { f g o r o / - 1 ) . 
/io/cfc irue. /n particular, /or each T G Tp(Pn(K)) 
(3.11) r o (a • r ) o r - 1 = a • (r o r o r - 1 ) . 

P r o o f . For a = 0 the equality (3.10) is obvious. Let a ^ 0 and let p 
be an arbitrary point of the set D G A. For arbitrarily fixed g G GP(n, K), 
let (D,p) := f((D,p),g). Since (3.1) is a transitive object, there exists g G 
GP(n, K) such that 

f((D0,p0),g) = (D,p) and f((D0,p0),g-g) = (D,p). 
Hence, in virtue of (3.7), we have d£>iP(a) = g • d(a) • g - 1 and 

dD,p(a) = (9 • V) ° d(a) o (g • g)'1 = g • dDiP(a) • fir-1. 

Moreover, by (2.9), we obtain T = f g o r o f f 1 e %(P n (A ' ) ) . Hence 

a • V. o / 7 1 ) = a • r = f(d^-(a)) o f o / ^ a ) ) " 1 ) 

= fg o /(dD,P(a)) o r o / ( ( ^ „ ( a ) ) " 1 ) o 

= fGO {A-T)O f - 1 , 

which proves (3.10). Since for every D G A the group of quasi-translations 
T~(Pn{K)) is a subgroup of the group f(GP(n, A)), then, by (3.10), (3.11) 
is also true. • 

L E M M A 3.2. For each D G A the group of quasi-translations 7£>(Pn(A")) 
with multiplication by elements of the field K, defined by the formula (3.9), 
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forms a linear space of quasi-translations TD(Pu(K), K) of the set Pn(K) 
over the field K. 

P r o o f . It can be easily checked by a direct calculation that for any 
a,b € K and 7"i, r 2 , r G Tr>0(Pn(K)), conditions (1.3) are satisfied. Thus, 
by lemma 3.1, they are also satisfied for any f i , r 2 , r 6 To{Pn{K)), where 
D € A. Indeed, the transitivity of the object (2.3) implies the existence of 
such g € GP(n,K) that f*(D0,g) = D and rt- = fg o rt- o / " 1 for i = 1,2. 
Thus, we have 

a • (r i o r 2 ) = a • ( f g o n o f j 1 o fg o r2 o f ' 1 ) = fg o (a • (rx o r2)) o Z"1 

= /fl 0 ( ( a • r l ) 0 ( a • Tl)) 0 f g 1 

= fg o ( a • r i ) o / - 1 o f g o ( a - r 2 ) o / - 1 

= ( a • (/a 0 r i 0 / a
- 1 ) ) 0 ( a • (/« 0 r2 0 /a"!)) = (a ' n ) o (a • r 2 ) . 

The remaining conditions (1.3) can be proved in a similar way. • 

4. Vector structure of projective space 
Let p be an arbitrary point of the fibre of projective Klein space (2.1), 

and po~point of (3.2). The transivity of the space (2.1) implies the existence 
of g G GP(n, K ) satisfying condition f(po,g) = P- By Lemma 1.1 we obtain 

S l = g - S l 0 - g ~ \ 

and hence the mapping 

t ^ V - g - g - 1 

is a group isomorphism. It is easily observed that the set 
1 (°li) 
0 (Biil 

is a normal subgroup of the group 

Sp0 = {* € GP{n,K) : g = <B), B = Q - J M ) , ( b i j ) € <? ! ( „ ,* ) J • 

Moreover, as is easy to note that the group GPo acts straightly transitively 
on the subset APo = {D e A: po 6 D} of the fibre of object (2.3). 

Let us denote 

(4 -1 ) Gp:=g-GP0-g~\ 

In § 2 we have shown that the subgroup <pg(GD0) of the group SQ acts 
straightly transitively on the set D and, moreover, that the equality (2.6) 
holds for each g satisfying condition f*(D0,g) = D. Similarly, it can be 
shown that 



350 B. Szociriski 

1° the subgroup $g(GPo) of the group acts straightly transitively on 
the set Ap = {D G A : p G D}, 

2° the definition (4.1) of the group Gp does not depend on the choice of 
g, satisfying condition / (po , g) = p. 

It is easily seen that the following lemma is true. 
LEMMA 4.1. For each p G Pn(K) the group 

(4.2) Ap(Pn(K)) := f(Gp) 
of transformations of the fibre of space (2.1), has the following properties: 

a) a(p) = p for each a G Ap(Pn(K)), 
b) for every D', D" G Ap there exists a unique a € Ap(Pn(K)) such that 

a(D') = D", 
c) for each g £ GP(n, A') 

fg o Ap(Pn(K)) o f ' 1 = AfAp](P"(K)), 
d) for each D G A and r € TD(Pn(K)) 

T 0 Ap(Pn{K)) o r - 1 = AT(p)(Pn(A')), 
e) for every a € Ap(Pn(K)), D € Ap, r e TD(Pn(K)) and aGK 

a o TD(Pn(K)) o a~l = Ta{D)(Pn(K)), 
and 

a o (o • r ) o a - 1 = a • (a o r o a - 1 ) . 
P r o o f of property c) is similar to the proof of Lemma 2.2. Since for 

each D G A and p G Pn(K) the groups of transformations (2.8) and (4.2) 
are subgroups of the group f(GP(n, K), then, in virtue of property c) and 
lemmas 2.2. and 3.1, properties d) and e) can be easily obtained. 

Using lemmas proved in this paper, we can easily check that the pair 
(4.3) ({TD(Pn(K), K)}DeA, {AP(Pn(K))UPHK)) 
satisfies axioms V1-V4 and compatibility conditions (i) and (ii). That means 
that the pair (4.3) is a vector structure of the set Pn(K) over the field 
K, compatible with Klein space (2.1). Thus we have proved the following 
theorem: 

THEOREM 4 .1 . The projective Klein space (2 .1) is a generalized elemen-
tary Klein space over the field K. 
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