

Jan Kurek

ON THE FIRST ORDER
NATURAL OPERATORS TRANSFORMING 1-FORMS
ON MANIFOLD TO LINEAR FRAME BUNDLE

In this paper we determine all first order natural operators transforming 1-forms on manifold to linear frame bundle.

We deduce that the fundamental operators here are complete lifts and a vertical lift of a 1-form.

In the paper, we use tensor evaluation theorem developed by I. Kolař.

The author is grateful to Professor I. Kolař for suggesting the problem, valuable remarks and useful discussions.

1. Let M be a smooth n dimensional manifold. A section $\omega : M \rightarrow T^*M$ of a cotangent bundle $q_M : T^*M \rightarrow M$ define a classical field of 1-forms on the manifold M and define a linear map $\omega : TM \rightarrow \mathbb{R}$ with respect to a vector bundle structure $p_M : TM \rightarrow M$. If a 1-form ω on M has in a local chart (U, x^i) the local expression $\omega = b_i(x) dx^i$, then the linear map $\omega : TM \rightarrow \mathbb{R}$ in a local induced chart $(p_M^{-1}(U), x^i, X^i)$ on TM is of the form $\omega = b_i(x) X^i$.

Let $p : LM \rightarrow M$ be a linear frame bundle. A linear frame u at the point x on M is an linear isomorphism $u : \mathbb{R}^n \rightarrow T_x M$. In a local chart (U, x^i) on M the linear frame u is of the form $u(e_k) = x^i_k \frac{\partial}{\partial x^i}|_x$. We identify the linear frame u with $u = (X_1, \dots, X_n)$, where $X_k = u(e_k)$. A local induced chart on LM is of the form $(p^{-1}(U), x^i, x^i_k)$.

We define n maps $W^k : LM \rightarrow \mathbb{R}$ for $k = 1, \dots, n$ by formulas

$$(1.1) \quad W^k : u = (X_1, \dots, X_n) \mapsto W^k(u) = \omega(X_k),$$

where $\omega : TM \rightarrow \mathbb{R}$ is a field of 1-forms on M .

If 1-form ω on M in a local chart (U, x^i) is of the form $\omega = b_i(x) dx^i$ then the maps $W^k : LM \rightarrow \mathbb{R}$ in a local induced chart $(p^{-1}(U), x^i, x^i_k)$ are of the form $W^k = b_i(x) x^i_k$.

Consider the tangent map $TW^k : T(LM) \rightarrow T\mathbb{R} = \mathbb{R} \times \mathbb{R}$. The second component of the tangent map defines a linear map $pr_2 \circ TW^k : T(LM) \rightarrow \mathbb{R}$, where $pr_2 : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is a projection on the second factor.

DEFINITION 1. A field of 1-form ω^k for $k = 1, \dots, n$ on LM defined as the second component of the tangent map TW^k by formula

$$(1.2) \quad \omega^k = pr_2 \circ TW^k : T(LM) \rightarrow \mathbb{R}$$

is called a k -complete lift of a field of 1-forms ω on M .

DEFINITION 2. A field of 1-forms ω^0 on LM defined as image of a field of 1-forms ω on M by a dual map of the projection $p : LM \rightarrow M$ by formula

$$(1.3) \quad \omega^0 = p^* \omega = \omega \circ Tp : T(LM) \rightarrow \mathbb{R}$$

is called a vertical lift of a field of 1-forms ω on M .

If a field of 1-forms ω on M has a local expression $\omega = b_i(x) dx^i$ in a local chart (U, x^i) , then the k -complete lift ω^k for $k = 1, \dots, n$ and the vertical lift ω^0 on LM in a local induced chart $(p^{-1}(U), x^i, x^i_k)$ are of the form

$$(1.4) \quad \begin{aligned} \omega^k &= b_{ij} x^i_k dx^j + b_i dx^i_k, \\ \omega^0 &= b_i dx^i. \end{aligned}$$

We will use the tensor evaluation theorem developed by I. Kolař in [2]. Consider k copies of a vector space V and a finite number of the tensor products $\bigotimes^p V^*, \dots, \bigotimes^q V^*$ of a dual vector space V^* . We denote by $a(x_{i_1}, \dots, x_{i_p}), \dots, b(x_{j_1}, \dots, x_{j_q})$ the values of $a \in \bigotimes^p V^*$ on $x_{i_1}, \dots, x_{i_p} \in V, \dots, b \in \bigotimes^q V^*$ on $x_{j_1}, \dots, x_{j_q} \in V$.

Let $y_{i_1 \dots i_p} \in \mathbb{R}^{k^p}$ and $z_{j_1 \dots j_q} \in \mathbb{R}^{k^q}$ be canonical coordinates.

THEOREM 1, [2]. *For every smooth $GL(V)$ -invariant function $f : \bigotimes^p V^* \times \dots \times \bigotimes^q V^* \times \underbrace{V \times \dots \times V}_{k\text{-times}} \rightarrow \mathbb{R}$ there exists a smooth function $g(y_{i_1 \dots i_p}, \dots, z_{j_1 \dots j_q}) : \mathbb{R}^{k^p} \times \dots \times \mathbb{R}^{k^q} \rightarrow \mathbb{R}$ such that*

$$(1.5) \quad f(a, \dots, b, x_1, \dots, x_k) = g(a(x_{i_1}, \dots, x_{i_p}), \dots, b(x_{j_1}, \dots, x_{j_q}))$$

for any $a \in \bigotimes^p V^*, \dots, b \in \bigotimes^q V^*, x_1, \dots, x_k \in V$.

We need the following

LEMMA 2. *For every smooth $GL(\mathbb{R}^n)$ -invariant function $f : \mathbb{R}^n \times \underbrace{\mathbb{R}^n \times \dots \times \mathbb{R}^n}_{n\text{-times}} \times \mathbb{R}^{n*} \times \bigotimes^2 \mathbb{R}^{n*} \rightarrow \mathbb{R}$ there exists a smooth function $g : \mathbb{R}^{n^2+3n+2} \rightarrow \mathbb{R}$ such that*

$$(1.6) \quad \begin{aligned} f(y^i, x^i_k, b_i, b_{ij})_{k=1, \dots, n} \\ = g(y^i b_i, x^i_k b_i, y^i y^j b_{ij}, y^i x^j_k b_{ij}, x^i_k y^j b_{ij}, x^i_k x^j_l b_{ij})_{\substack{k=1, \dots, n \\ l=1, \dots, n}} \end{aligned}$$

Proof. This result follows easily from the tensor evaluation theorem [2].

2. In this part we prove the main

THEOREM 3. All first order natural operators $F : T^*M \rightarrow T^*LM$ form $(2n+1)$ -parameter family of the form

$$(2.1) \quad \begin{aligned} F : b_i dx^i \mapsto f(b_l x^l_m)_{m=1, \dots, n} [b_i dx^i] \\ + g^k (b_l x^l_m)_{m=1, \dots, n} [b_{ij} x^j_k dx^i + b_i dx^i_k] \\ + h^k (b_l x^l_m)_{m=1, \dots, n} [b_{ij} x^j_k dx^i + b_i dx^i_k], \end{aligned}$$

where f, g^k, h^k for $k = 1, \dots, n$ are arbitrary smooth function of n variables.

Proof. Any map $F : T^*M \rightarrow T^*LM$ in a local coordinates (U, x^i) on M and in the induced coordinates $(p^{-1}(U), x^i, x^i_k)$ on LM is of the form

$$(2.2) \quad F : b_i dx^i \mapsto e_i(x^l, x^l_m) dx^i + g^k_i(x^l, x^l_m) dx^i_k.$$

The first order natural operators $F : T^*M \rightarrow T^*LM$ are in bijection with natural transformation $F : J^1 T^*M \rightarrow T^*LM$ and L^2_n -equivariant maps of standard fibres $F : (J^1 T^* \mathbb{R}^n)_0 \rightarrow (T^* L \mathbb{R}^n)_0$.

The group L^2_n acts on the standard fibre $S = (J^1 T^* \mathbb{R}^n)_0$ in the form

$$(2.3) \quad \begin{aligned} \bar{b}_i &= b_j \tilde{a}^j_i \\ \bar{b}_{ij} &= b_{kl} \tilde{a}^k_i \tilde{a}^l_j + b_k \tilde{a}^k_{ij}. \end{aligned}$$

We denote by $(\tilde{a}^i_j, \tilde{a}^i_{jk})$ the coordinates of the inverse element a^{-1} to an element $a \in L^2_n$ with coordinates (a^i_j, a^i_{jk}) .

The group L^2_n acts on the standard fibre $W = (T^* L \mathbb{R}^n)_0$ by formulas

$$(2.4) \quad \begin{aligned} \bar{x}^i_k &= a^i_j x^j_k \\ \bar{e}_i &= e_j \tilde{a}^j_i + g^k_j \tilde{a}^j_{li} a^l_m x^m_k \\ \bar{g}^k_i &= g^k_j \tilde{a}^j_i. \end{aligned}$$

Any map $F : (J^1 T^* \mathbb{R}^n)_0 \rightarrow (T^* L \mathbb{R}^n)_0$ in coordinates (b_i, b_{ij}) and (x^i_k, e_i, g^k_i) is of the form

$$(2.5) \quad \begin{aligned} e_i &= F_i(x^i_k, b_i, b_{ij}) \\ g^k_i &= G^k_i(x^i_k, b_i, b_{ij}). \end{aligned}$$

Our aim is to find a general form of an L^2_n -equivariant smooth maps $F_i : \underbrace{\mathbb{R}^n \times \dots \times \mathbb{R}^n}_{n\text{-times}} \times \mathbb{R}^{n*} \times \bigotimes^2 \mathbb{R}^{n*} \rightarrow \mathbb{R}^{n*}$ and $G^k_i : \underbrace{\mathbb{R}^n \times \dots \times \mathbb{R}^n}_{n\text{-times}} \times \mathbb{R}^{n*} \times \bigotimes^2 \mathbb{R}^{n*} \rightarrow \mathbb{R}^{n*}$ for every $k = 1, \dots, n$.

Consider L^1_n -invariant smooth map $F : \mathbb{R}^n \times \underbrace{\mathbb{R}^n \times \dots \times \mathbb{R}^n}_{n\text{-times}} \times \mathbb{R}^{n*} \times \bigotimes^2 \mathbb{R}^{n*} \rightarrow \mathbb{R}$ of the form

$$(2.6) \quad F(y^i, x^i_k, b_i, b_{ij}) = F_l(x^i_k, b_i, b_{ij})y^l.$$

Considering equivariancy with respect to homotheties $y^l \mapsto cy^l$ of L^1_n -invariant map $F = F_l y^l$ of the form (1.6), we get

$$(2.7) \quad \begin{aligned} \psi(cy^i b_i, x^i_k b_i, c^2 y^i y^j b_{ij}, cy^i x^j_k b_{ij}, cx^i_k y^j b_{ij}, x^i_k x^j_l b_{ij}) \\ = c \cdot \psi(y^i b_i, x^i_k b_i, y^i y^j b_{ij}, y^i x^j_k b_{ij}, x^i_k y^j b_{ij}, x^i_k x^j_l b_{ij}). \end{aligned}$$

From this relation the map ψ is linear in $y^i \cdot b_i$, $y^i x^j_k b_{ij}$, $x^i_k y^j b_{ij}$ and independent of $y^i y^j b_{ij}$, where coefficients are $(2n+1)$ arbitrary smooth functions f, g^k, h^k for $k = 1, \dots, n$ of $n+n^2$ variables depending on $x^i_k b_i$ and $x^i_k x^j_l b_{ij}$.

Thus, every L^1_n -invariant map $F_i : \underbrace{\mathbb{R}^n \times \dots \times \mathbb{R}^n}_{n\text{-times}} \times \mathbb{R}^{n*} \times \bigotimes^2 \mathbb{R}^{n*} \rightarrow \mathbb{R}^{n*}$ is of the form

$$(2.8) \quad \begin{aligned} F_i(x^i_k, b_i, b_{ij}) = f(x^i_k b_i, x^i_k x^j_l b_{ij})b_i \\ + g^l(x^i_k b_i, x^i_k x^j_l b_{ij})b_{ij} x^j_l + h^l(x^i_k b_i, x^i_k x^j_l b_{ij})b_{ji} x^j_l, \end{aligned}$$

with arbitrary smooth functions f, g^k, h^k for $k = 1, \dots, n$ of $n+n^2$ variables.

Now, we consider smooth maps $G^k : \mathbb{R}^n \times \underbrace{\mathbb{R}^n \times \dots \times \mathbb{R}^n}_{n\text{-times}} \times \mathbb{R}^{n*} \times \bigotimes^2 \mathbb{R}^{n*} \rightarrow \mathbb{R}$ for $k = 1, \dots, n$ of the form

$$(2.9) \quad G^k(y^i, x^i_k, b_i, b_{ij}) = G^k_l(x^i_k, b_i, b_{ij})y^l.$$

Moreover, we consider a smooth map $\tilde{G}^k : \mathbb{R}^n \times \underbrace{\mathbb{R}^n \times \dots \times \mathbb{R}^n}_{n\text{-times}} \times \mathbb{R}^{n*} \times \mathbb{R}^{n*} \times \mathbb{R}^{n*} \rightarrow \mathbb{R}$ such that $\tilde{G}^k = G^k \circ \bigotimes$, i.e.

$$(2.10) \quad \tilde{G}^k(y^i, x^i_k, b_i, u_i, v_i) = G^k_l(x^i_k, b_i, u_i \cdot v_j) y^l.$$

By tensor evaluation theorem there exists n smooth functions η^k for $k = 1, \dots, n$ of $3n+3$ variables such that

$$(2.11) \quad \tilde{G}^k(y^i, x^i_k, b_i, u_i, v_j) = \eta^k(y^i b_i, y^i u_i, y^i v_i, x^i_k b_i, x^i_k u_i, x^i_k v_i).$$

Considering $Gl(1, \mathbb{R})$ invariancy for functions η^k with respect to $u_i \mapsto cu_i$, $v_i \mapsto \frac{1}{c}v_i$ for $c \in \mathbb{R} \setminus \{0\}$, we obtain the relation

$$(2.12) \quad \eta^k(\alpha, \beta, \gamma, \delta_k, \varepsilon_k, \tau_k) = \eta^k\left(\alpha, c\beta, \frac{1}{c}\gamma, \delta_k, c\varepsilon_k, \frac{1}{c}\tau_k\right).$$

By tensor evaluation theorem for $n = 1$ there exists smooth functions ζ^k for $k = 1, \dots, n$ depending on $n+1$ parameters α, δ_k i.e. $\zeta^k : \mathbb{R}^{n^2+2n+1} \rightarrow \mathbb{R}$

such that:

$$(2.13) \quad \eta^k(\alpha, \beta, \gamma, \delta_k, \varepsilon_k, \tau_k) = \zeta^k(\alpha, \delta_k; \beta \cdot \gamma, \beta \cdot \tau_k, \gamma \cdot \varepsilon_k, \varepsilon_k \cdot \tau_k).$$

Considering equivariancy with respect to homotheties $y^i \mapsto cy^i$ for every L^1_n invariant map $G^k = G^k_i y^i$ for $k = 1, \dots, n$ of the form (2.9), we get relation

$$(2.14) \quad \begin{aligned} \zeta^k(cy^i b_i, x^i_k b_i, c^2 y^i y^j b_{ij}, c y^i x^j_k b_{ij}, c x^i_k y^j b_{ij}, x^i_k x^j_l b_{ij}) \\ = c \zeta^k(y^i b_i, x^i_k b_i, y^i y^j b_{ij}, y^i x^j_k b_{ij}, x^i_k y^j b_{ij}, x^i_k x^j_l b_{ij}). \end{aligned}$$

From this relation the maps $\zeta^k : \mathbb{R}^{n^2+2n+1} \rightarrow \mathbb{R}$ for $k = 1, \dots, n$ are linear in $y^i b_i, y^i x^j_k b_{ij}, x^i_k y^j b_{ij}$ and independent of $y^i y^j b_{ij}$, where coefficients are $n+2$ arbitrary smooth functions p^k, q, r of $n+n^2$ variables depending on $x^i_k b_i$ and $x^i_k x^j_l b_{ij}$.

Thus, every L^1_n -invariant map $G^k_l : \underbrace{\mathbb{R}^n \times \dots \times \mathbb{R}^n}_{n\text{-times}} \times \mathbb{R}^{n*} \times \bigotimes^2 \mathbb{R}^{n*} \rightarrow \mathbb{R}^{n*}$ for $k = 1, \dots, n$ is of the form

$$(2.15) \quad \begin{aligned} G^k_l = p^k(x^i_m b_i, x^i_m x^j_n b_{ij}) b_l + q(x^i_m b_i, x^i_m x^j_n b_{ij}) b_{lj} x^j_k \\ + r(x^i_m b_i, x^i_m x^j_n b_{ij}) b_{jl} x^j_k \end{aligned}$$

with arbitrary smooth functions p^k, q, r for $k = 1, \dots, n$.

We will consider L^2_n -equivariancy of the map $F : (J^1 T^* \mathbb{R}^n)_0 \rightarrow (T^* L \mathbb{R}^n)_0$. If the map F is L^2_n -equivariant, then for every vector $A = (A^i_j, A^i_{jk})$ of the Lie algebra \mathfrak{l}^2_n of L^2_n the corresponding fundamental vector fields A_s on $S = (J^1 T^* \mathbb{R}^n)_0$ and A_W on $W = (T^* L \mathbb{R}^n)_0$ must be F related.

This gives the following system of differential equations for the maps F_i and G^k_i with parameters A^i_j, A^i_{ij}

$$(2.16) \quad \begin{aligned} -A^j_i G^k_j &= \frac{\partial p^k}{\partial u_{mn}} (-b_l A^l_{hj} x^h_m x^j_n) b_i - p^k A^j_i b_j \\ &+ \frac{\partial q}{\partial u_{mn}} (-b_l A^l_{hj} x^h_m x^j_n) b_{ij} x^j_k - q b_{lj} A^l_i x^j_k - q b_l A^l_{ij} x^j_k \\ &+ \frac{\partial r}{\partial u_{mn}} (-b_l A^l_{hj} x^h_m x^j_n) b_{ji} x^j_k - r b_{jl} A^l_i x^j_k - r b_l A^l_{ji} x^j_k, \end{aligned}$$

$$(2.17) \quad \begin{aligned} -A^j_i F_j - A^j_i x^l_k G^k_j &= \frac{\partial f}{\partial u_{mn}} (-b_l A^l_{hj} x^h_m x^j_n) b_i - f A^j_i b_j \\ &+ \frac{\partial g^l}{\partial u_{mn}} (-b_k A^k_{ij} x^i_m x^j_n) b_{ij} x^j_l - g^l b_{kj} A^k_i x^j_l - g^l b_k A^k_{ij} x^j_l \\ &+ \frac{\partial h^l}{\partial u_{mn}} (-b_k A^k_{ij} x^i_m x^j_n) b_{ji} x^j_l - h^l b_{jk} A^k_i x^j_l - h^l b_k A^k_{ji} x^j_l. \end{aligned}$$

Setting $A^i_j = 0$ in the first equation (2.16), we get

$$(2.18) \quad \frac{\partial p^k}{\partial u_{mn}} = 0, \quad \frac{\partial q}{\partial u_{mn}} = 0, \quad \frac{\partial r}{\partial u_{mn}} = 0,$$

$$(2.19) \quad q + r = 0.$$

By means of (2.18), we obtain that smooth functions p^k, q, r of $n + n^2$ variables u_m, u_{mn} are independent of the second variables u_{mn} .

Thus, the maps $G^k_l : \underbrace{\mathbb{R}^n \times \dots \times \mathbb{R}^n}_{n\text{-times}} \times \mathbb{R}^{n*} \times \bigotimes^2 \mathbb{R}^{n*} \rightarrow \mathbb{R}^{n*}$ for $k = 1, \dots, n$ are of the form

$$(2.20) \quad G^k_l(x^i_j, b_i, b_{ij}) = p^k(x^i_m b_i) b_l + q(x^i_m b_i) b_{lj} x^j_k - q(x^i_m b_i) b_{jl} x^j_k.$$

Now, setting $A^i_j = 0$ in the equation (2.17) and using the relation (2.19), we obtain

$$(2.21) \quad \frac{\partial f}{\partial u_{mn}} = 0, \quad \frac{\partial g^k}{\partial u_{mn}} = 0, \quad \frac{\partial h^k}{\partial u_{mn}} = 0,$$

$$(2.22) \quad p^k = g^k + h^k, \quad q = 0.$$

By means of relations (2.21), we get that smooth functions f, g^k, h^k of $n + n^2$ variables u_m, u_{mn} are independent of the variables u_{mn} .

Thus, the maps $F_l : \underbrace{\mathbb{R}^n \times \dots \times \mathbb{R}^n}_{n\text{-times}} \times \mathbb{R}^{n*} \times \bigotimes^2 \mathbb{R}^{n*} \rightarrow \mathbb{R}^{n*}$ and $G^k_l : \underbrace{\mathbb{R}^n \times \dots \times \mathbb{R}^n}_{n\text{-times}} \times \mathbb{R}^{n*} \times \bigotimes^2 \mathbb{R}^{n*} \rightarrow \mathbb{R}^{n*}$ for $k = 1, \dots, n$, are of the form

$$(2.23) \quad F_l(x^i_k, b_i, b_{ij}) = f(x^i_k b_i) b_l + g^k(x^i_m b_i) b_{lj} x^j_k + h^k(x^i_m b_i) b_{jl} x^j_k$$

$$(2.24) \quad G^k_l(x^i_m, b_i, b_{ij}) = (g^k(x^i_m b_i) + h^k(x^i_m b_i)) b_l.$$

Finally, using (2.23) and (2.24) in (2.2), we obtain the $(2n+1)$ parameter system of natural operators of the form (2.1). This proves our theorem.

The geometrical interpretation of the $(2n+1)$ parameter system (2.1) of the first order natural operators $F : T^*M \rightarrow T^*LM$ is

$$(2.25) \quad F : \omega \mapsto f(\omega(X_m)) \cdot \omega^0 + g^k(\omega(X_m)) \omega^k + h^k(\omega(X_m)) \omega^k \circ \iota_M$$

where ω^0 and ω^k are the vertical lift and k -complete lifts of 1-form ω to LM , respectively, and $\iota_M : TLM \rightarrow LTM$ is a canonical diffeomorphism.

References

- [1] I. Kolař, *Some natural operators in differential geometry*, Diff. Geom. and its Appl., Proceedings of the Conference, Brno 1986, 91–110, D. Reidel Publishing Company.
- [2] I. Kolař, P. Michor, J. Slovák, *Natural Operations in Differential Geometry*, to appear.

- [3] D. Krupka, J. Janyška, *Lectures on differential invariants*, Masaryk University, Brno, 1990.
- [4] J. Kurek, *On the first order natural operators transforming 1-forms on manifold to tangent bundle*, Annales UMCS 43 (1989), 79–83.

INSTITUTE OF MATHEMATICS
MARIA CURIE-SKŁODOWSKA UNIVERSITY
Plac Marii Curie-Skłodowskiej 1
20-031 LUBLIN, POLAND

Received September 17, 1990.

