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ZUN-QUAN XIA 

ON QUASIDIFFERENTIAL KERNELS 

The purpose of this paper is to explore the structure of 
guasidifferential kernels of a class of quasidifferentiable 
functions in the sense of Demyanov and Rubinov. The correspon-
ding properties and operations concerning kernels are given. 

1. Introduction 

Let f be a quasidifferentiable function defined on an open 
set ScRn in the sense of [3] and xeS. We denote by Df(x) the 
class of all equivalent quasidifferentials of f at x, by 2)f(x) 
the family of all subdifferentials of f at x, by Ef(x) the 
family of all superdifferentials of f at x, i.e., 

Ef(x) := {[flf(x),9f(x)] | f'(x;d) =p(d)+q(d) = 
= max <v,d> + min <w,d>, VdeR }, 
ve3f(x) we3f(x) 

Z)f(x) := {9f(x) | 3 a convex compact set 3f(x) : 
[9f(x),3f(x)]eDf(x)}, 

Z)f(x) := {9f(x) | 3 a convex compact set £f(x) : 
[3f(x),af(x)]€l)f(x)}, 

where p(d) is a sublinear operator and q(d) is a sublinear 
operator. According to the definition of quasidifferentiable 
functions, if f is quasidifferentiable at x, then its 
directional derivative at this point in a direction deRn can 
be represented as 

f'(x;d) = max <v,d> + min <w,d>, 
ve3f(x) we3f(x) 

or equivalently, 

AMS subject classfication: 90C. 
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(1.1) f'(x;d) = p (d)-p_(d) = max <v,d> - max <w,d>, 
ve3f(x) we-af(x) 

where both of p^d) and p2 (d) are sublinear operators, i.e., 
as the sum form of a pair of sublinear operator and super-
linear operator, or as the difference form of two sublinear 
operators, [4], [8], [13]. This kind of structure of 
derivatives of quasidifferentiable function brings on that a 
quasidifferential of a quasidifferentiable function, called 
bidifferential also in [7], is not unique, but the quasidif-
ferential class of equivalence of a quasidifferentiable 
function is unique. However, it was pointed out that there is 
no automatic way to select a representative of a 
quasidifferential class, [7]. This is one of the reasons that 
quasidifferentiable functions are not easy to be used. So far 
one has not found an automatic way, in general case, to select 
a representative of a quasidifferential class, and every 
equivalent class of quasidifferentials is too big since their 
union could cover whole space. In other words, whether there 
exists some kind of uniqueness used to describe further 
characters of quasidifferentiable functions, generally 
speaking, is still open. A recent result shows that in one-
-dimensional space this problem has been worked out [6]. The 
author proposed a definition of kernel of quasidifferentials, 
but the structure and expressions of kernel are too complicat-
ed to be used for quasidifferentiable optimization [11]. Some 
discussions on the continuity of kernel were given in [12], 
but likewise, they are too complicated to be used in studying 
convergence of numerical methods. The concepts concerning 
kernels given in [11] are presented in [12] in which their 
quasidifferentials have ©-equivalent bounded subfamilies. We 
now go back to some basic definitions and notations in [11]. 

Let [3f(x),3f(x)]eDf(x). Since 
(3f(x)+3f(x))-3f(x) = at(x)-(3f(x)-3f(x)), 

it follows from properties of quasidifferentiable functions 
that 

[3f(x)+3f(x),?f(x)-flf(x)]eDf(x). 
Thus the expression (1.1) can be replaced by 
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(1.2) f'(x;d) = max _ <v,d> - _ max _ <w,d>. 
veaf(x)+3f(x) we3f(x)-df(x) 

It is clear that 0e3f(x)-3f(x). Hence, for a af(x)eDf(x) 
the second term on the right-hand side of (1.2), 

_ max _ <w,d>, 
weSf(x)-df(x) 

is always nonnegative. One has 

f'(x;d) s max _ <v,d>, V[3f(x),df(x)]eZ)f(x). 
veaf(x)+3f(x) 

Taking the infimum to the inequality above over Df(x), we have 

f'(x;d) a inf max _ <v,d>. 
Df(x) veaf(x)+3f(x) 

Define 
f'(x;d) := inf max _ <v,d>. 

5Df(x) ve3f(x)+3f(x) 

The function f'(x;d) of deRn is called the directional 
subderivative of f at x. On the other hand, since 

_ max _ <w,d> = max _ <v,d> - f'(x;d) a 
weaf(x)-3f(x) veaf(x)+3f(x) 

a f'(x;d)-f'(x;d), 
the set 

j _ max _ <w,d> | 3f(x)e»f(x)l 
<-W€3f (X) -af (x) > 

has a finite infimum for every deRn. By f'(x;d) we denote 
it, i.e., 

f'(x;d) := inf _ max _ <w,d>. 
¡Df(x) we3f(x)-3f(x) 

It is called the directional superderivative of f at x. Now 
the directional derivative of f at x in a direction d€Rn can 
be rewritten as 
f'(x;d)= inf max _ <v,d> - inf _ max _ <w,d>= 

Z)f(x) ve3f (x)+3f (x) Df (x) we3f (x)-3f (x) 
= f'(x;d) - f'(x;d). 

For convenience of simplicity, without confusion subderivative 
and superderivative will be often used instead of directional 
subderivative and directional superderivative, respectively, 
later on. 
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Let Z)f(x) be a subfamily of Ef(x). Df(x) is said to be a 
©-equivalent bounded subfamily if the following conditions are 
satisfied: 
(CI) there exists a positive number M such that 

at(x)v/3f(x)cBm(0), V[3f(x),3f(x)]€»f(x), 
where B

M(°) denotes the Euclidean ball in R n with the 
radius M centered at origin; 

(C2) the subfamily {3f(x)+3f(x)| [3f(x),¥f(x)]eZ>f(x)} and 

the subfamily {3f(x)-3f(x)| df (x) c»f (x) >, where X>f(x): = 

:={3f(x)| 3ff(x): [3f(x),3f(x)]eCf(x)}, form a subex-
haustive family and a superexhaustive family of u.c.a.s 
of f at x, respectively, i.e., 

f'(x;«)= inf max _ <u,«> = *inf max _ <u,»> 
Df(x) ue3f(x)+3f(x) Df(x) uc£f(x)+3f(x) 

and 
f'(x;«)= inf _ max _ <u,«> = „inf _ max _ <u,«>. 

2>f(x) u«3f (x ) -d f(x) Df(x) uedf(x)-3f(x) 
For convenience of discussion without loss of generality, 
assume that the subfamily 

2>Mf(x) := {[3f (x) ,dt (x) ]€»f (x) | Vue3f(x)u3f(x): ||u||sM} 
is a ©-equivalent bounded subfamily of Df(x), i.e., let Df(x)= 
=®Mf(x). 

Some notations and definitions will be introduced below in 
order to define kernels for Df(x). To begin with, define two 
sets of sequences for any (u,x)eRnxRn as follows, 

(1.3) U(u,x) := < V l 

3{[a.f (x),a.f (x) ]}"c2)Mf (x), 

3(d.}![CRn : 

d^—»deRn, as i—x», 

u^—>U€Rn, as i—h», 

u.e Arg max <u,d.>, 
1 ueaif(x)+3if(x) 

<u,d> = lim <u^,d.>=£'(x;d) 
i-xo 

and 
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(1.4) U(u,x) := 

3{[3.f (x),3.f (x),] }"c»Mf (x), 
3{di}^cRn : 

{u.} i'l 

n as 
-.n u^—>ueR ", as 

u.€ _Arg max <u,d.>, 
1 u6aif(x)-aif(x) 

<ufd> = lim <ui,di>=f"'(x;d) i-*x> 
Define 

and 
U£(x) := {ueRn| U(u,x)*0} 

U£(x) := {ueRn| U(u,x)*a}. 
Let UQ(x) and UQ(x) be the smallest equivalent subsets of 

(x) and U£(x), respectively, where "equivalent" means that, 
for instance, 

VbebdB^(0), 3ueUQ(x) : <u,b>=f'(x;b), 
and "smallest" means that, for instance, for any equivalent 
subset U'0'(x) of U£(x) one has 

coU0(x)ccoU^'(x) . 
U(x) and U(x) are defined by convex hulls, of an<* 
respectively. It is obvious that for any deR there exist 
vectors ueU(x), ueU(x) such that 

<u,d> = f'(x;d) and <u,d> = f'(x;d) 
because of the boundedness of Z>Mf(x). Hence, U(x) and U(x) are 
nonempty, bounded and convex. They are called a sub- and 
super-kernel of f at denoted by 3 f(x) and 3*f(x), 
respectively. We call [3.f(x),3 f(x)] a quasidifferential 
kernel, or a quasikernel of f at x, briefly kernel, denoted by 
Dkf(x). 

2. Structure on kernel under some hypotheses 
A purpose of this section is to attempt to further explore 

the structure on kernel given in [11]. Under some hypotheses, 
new results presented here show that the directional 
derivative of a quasidifferentiable function at a given point 
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may be expressed as a difference of two support functions of 
kernels and the difference expression is unique. Moreover, 
relations of quasidifferentiable functions in the sense of [3] 
and [9], and of generalized gradients in the sense of [1] and 
quasidifferentials, of generalized directional derivative and 
directional derivatives of a quasidifferentiable function, are 
clarified. 

To begin with, some basic propositions and lemmas are 
given. 

Proposition 2.1. Suppose S is a nonempty compact convex 
subset of Rn. Let ueS. Then ueArg max <u',d> if and only if 

u'eS 
deN(u,S), where N(u,S) denotes the cone normal to S at ueS. 

Proof. Suppose ueArg max <u',d> for some deRn. Then one * u ' e S 

has <u,d>=5 (d|S), i.e., the relation <u'-u,d>sO holds for any 
u'eS. Therefore deN(u,S). Conversely, suppose deN(u,S). Since 
<u'-u,d>sO, Vu'eS and ueS, it follows that ueArg max <u',d>.D 

u'eS 
The following lemma is very important for our discussion 

below. It shows that a part of quasidifferentials of a q.d. 
function f have a nonempty intersection in some sense. 
Clearly, (3f (x)-3f (x)) *e. Is f ) (3f(x)+3f(x)) nonempty? 

Df (x Z)f(x) 
Lemma 2.2 [5,Th.l]. If f is quasidifferentiable at x, then 

one has that 
Pi (3f(x)+af(x))*e> 

Df (x) 
and this intersection is compact convex. • 

Define 
S: = p\ (If(x)+3f(x)) . 

Df (x) 
Obviously, for any ueS there exists at least one sequence 
{u^e ^ f (x)+3^f (x) convergent to u, where (x), a^f (x) ]e 
eDf(x). Especially, if uebdS, then there exists a sequence 
{uie bdfj^f (xj+a^f (x)) convergent to u. 

Lemma 2.3. Suppose {u^e a^f(x)+3^(x)—>ueS and assume 
furthermore that for each i, (x)+3^f (x) JnB^O) . 
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Then t h e s e t o f c l u s t e r s o f {d^}™ i s i n c l u d e d i n N ( u , S ) . 

P r o o f . Without l o s s o f g e n e r a l i t y , assume t h a t i^^}™— 

From Prop. 2 . 1 one has u.€ Arg max < u ' , d . > . T h e r e f o r e 
u ' e ^ f ( x ) + 3 i f (x) 

<u,d> = l i m 5 * ( d i | a^f ( x ) + a i t ( x ) ) = l i m c u ^ d ^ . 
i -KD i-XX> 

I f d=0, t h e n c l e a r l y , d e N ( u , S ) . Assume t h a t d*0. S i n c e 

S c ^ f ( x ) + a i f (x) , V i 

and d*0, one o b t a i n s 

( 2 . 1 ) <u'—u. ,d.>— 0, V u ' e S 

and u^ebd(3^f (x)+7Tf ( x ) ) f o r i l a r g e enough. From ( 2 . 1 ) we 

have t h a t 

< u ' , d > = l i m < u ' , d > s l i m < u . , d . > = <u,d>, V u ' e S . 
i - x o i-Xx> 

Hence d e N ( u , S ) . • 

C o r o l l a r y 1 . I f ueS and deRn such t h a t t h e r e e x i s t 

s e q u e n c e s { u ^ ^ f (x) +7)^ (x) >u and { d ^ N f u ^ ^ f (x) + 

+ 3 i f ( x ) ) } " — » d , t h e n 6 * ( d | S ) = f ' ( x ; d ) . 

P r o o f . S i n c e S c ^ f ( x ) ( x ) , one h a s 

( 2 . 2 ) 5 * ( d | S ) s f ' ( x ; d ) , VdeR n . 

On t h e o t h e r hand, a c c o r d i n g t o P r o p o s i t i o n 2 . 1 and Lemma 2 . 3 , 

we have 

( 2 . 3 ) 5 * ( d | S ) = < u , d > = l im < u . , d . > = 
i - X n 

= l i m S * ( d i | a . f ( x ) + a . f ( x ) ) a f ' ( x ; d ) . 
* 

Combining ( 2 . 2 ) and ( 2 . 3 ) , one has 5 ( d | S ) = f ' ( x ; d ) . • 

H y p o t h e s e s : 

(H+) For any deRn such t h a t Arg max < u ' , d > = { u } i s a s i n g l e t o n , 
u ' e S 

t h e r e e x i s t s e q u e n c e s { u ^ e a ^ f ( x ) ( x ) — > u and 

{ d i e N ( u i , a i f ( x j + ^ f ( x ) ) s u c h t h a t d i s one o f t h e 

c l u s t e r s of {d^}™-

(H~) The s t a t e m e n t i s s i m i l a r t o (H + ) , b u t f o r 

P | ( 3 f ( x ) - a f ( x ) ) . 

Df (x) 



166 Zun-Quan Xia 

In this paper we only study a class of quasidifferentiable 
functions satisfying hypotheses (H+) and (H ), that is, in the 
rest of this paper, whenever we say that a function f is 
guasidifferentiable, it always means that f is a quasidif-
ferentiable function satisfying hypotheses (H+) and (H ). In 
one-dimensional space, every guasidifferentiable function 
possesses the properties (H+) and (H~). But, in general case, 
whether every guasidifferentiable function possesses the 
properties (H+) and (H~) is still open. 

Corollary 2. For each debd B. (0) such that Arg max <u',d> 
u'eS 

is a singleton, the expression f'(x;d)=5 (d|S) holds. 

Proof. Let Arg max <u',d>={u}. It is clear that uebd S, 
u'eS 

otherwise, N(u,S)={0}. According to Prop. 2.2.1 and the lemma 
given above, there exist seguences {u^e^f (x) (x) —>u 
and 

{d.€N(ui,3.f (xj+^f (x)) }°->d, ||di||=l. 
In conseguence of the above corollary, one gets 

5*(d|S) = f'(x;d). • 

Lemma 2.4 ([5] Lemma 1, [4] Chapter 13). For almost all 
debd B (0), Arg max <u',d> is a singleton. • 

u'eS 
Theorem 2.5. 5*(d|S) = f'(x;d), VdeRn. 
Proof. It is sufficient to prove this theorem under the 

case where debd B^fO). Take an arbitrary debd B^O). In view 
of the lemma given above, there exist seguences {d.}. 
convergent to d and {u^}™ satisfying 

Arg max <u',d.> = {u.}, Vi. 
u'eS 1 1 

Without loss of generality , assume that the sequence { u . i s 
— + — 

convergent to a point ueS. It follows from (H )&(H ) that for 
each pair of u^ and d^, one can find a pair of ui and di such 
that 

|u.-u(||<l/i, «d^di^l/i and 
d[«N(ui,3if(x)+3if(x)). 
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Since u^—>u and d^—mS as i—kd, one has ui—>u and di—>d as 

t—ho because of ||ui-u||s|ui-ui|| + ||ui-u|| and ||di-d||s||d(-di|| + 

+ ||d^-d||. Hence, we have 

{ u j e ^ f i x j + l ^ x ) } " >u and {d(eN(u(,a^t (xj+^f (x)) }" >d. 

According to Corol. 1, the relation 5*(d|S)=f'(x;d) holds. 

Since S*(•|S) and f'(x;») are positively homogeneous, for 

each deR n one has 5*(d|S)=f'(x;d). Obviously, 5*(0|S)=f'(x;0). 

The demonstration is completed. • 

Following the same lines as above, we may obtain the 

following theorem for (3f(x)-3f(x)) and f'(x;d). 
Ef (x) 

Theorem 2.6. «*('|_Pi (3f(x)-3f(x)))=f' (x; •) • ° 
Ef (x) 

Does the equality 

P l (af(x)+3f(x)),_n (3f (x) -3f (x) )]= [3*f (x)-9*f (x) ] 
Ef (x) Ef(x) -I 

hold? The following theorem will give this question a positive 

answer. 

Theorem 2.7. f^ (3f (x) +3f (x)) =3^f (x) and 
Df (x) 

_ n (3f (x)-3f (x) )=3*f (x) . 
Ef (x) 

Proof. For each uebd S there exist sequences 

{u i€bd(3 if (xj+^f (x))" and {d i6N(u i,a if(x)+I if(x))}™ 

such that u^—>u and d^—>debd B.^0). Since for any ©-equivalent 

bounded subfamily Ef(x) of f at x the inclusion 

S c ^ n (3f (x)-3f (x)) 

Ef (x) 

holds, one has that bd S is an equivalent subset of U^(x). 

According to the definition of 3 f(x), we have 

(2.4) 3^f(x)cS. 

It will be proved below that the relation of opposite 

inclusion in (2.4) is also true. For any d€R n there exists an 
element ueArg max <u',d> such that 

u'eS 

(2.5) 6*(d|S) = <u,d> = f'(x;d). 

On the other hand, we also could find an element u^eS^ffx) 
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such that 
(2.6) < u*' d > = I' (x;d) 
by virtue of the structure of a^f(x). It follows from (2.5) 
and (2.6) that 
(2.7) 5*(d|S) =f'(x;d) s max <u,d>. 

ue3*f(x) 
One has from (2.7) and [10, Sec. 13] that 
(2.8) 3Af(x)DS. 
Thus the equality a^f(x)=S is obtained by combining (2.4) 
with (2.8). The same way used in getting 9^f(x)=S can be 
used to obtain 

a*f(x) = _ n (af(x)-af(x)). • 
Df (x) 

Note that we have [a^f(x),3*f(x)]e£f(x) and 3*f(x)=-3*f(x), 
since 3f(x)-af(x) is symmetric. 

Corollary 1. The directional derivative function of a 
guasidifferentiable function f at x can be expressed as a dif-
ference form of two support functions on the kernel of quasi-
differentials at x, i.e., 
f'(x;-) = 5*(-|a*f(x)) - 6*(-|3*f(x)) = f'(x;.)~f'(x;-)• • 

From [11], Lemma 3.2, one has 
ip(u®d)£<u,d>, VdeRn, Vuea^ffx) or Vue3*f(x), and furthermore, 

min <u®d> = max <u,d>, VdeRn, 
uea^f(x) U€a^f(x) 

mjn <u®d> = m§x <u,d>, VdeRn. 
ue3 f(x) uea f(x) 

Recently, in one-dimensional space the concrete structure of 
the kernel of quasidifferentials of a quasidifferentiable 
function at a point x has been worked out, due to Y. Gao [6], 
[14]. The kernel can be expressed by directional derivatives 
as follows. 

Theorem 2.8 ([6] Theorem 2, [14] Chapter 3, Sec. 3). In 
one-dimensional space, for any quasidifferentiable function 
fiR1—»R1 the kernel of Ef at a point x possesses following 
component forms 

(x) = [min{f'(x;1),-f'(x;-l)},max{f'(x;1),-f'(x;-l)}], 
and 
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a*f(x) = [-max{0,-f'(x;1)-f'(x;-l)},max{0,-f'(x;l)-f'(x;-l)}], 

and furthermore, there exists a quasidifferential 

[3Qf(x),aQf(x)]eZ)f(x) such that 

a*f(x) = a 0f(x)+a 0f(x), a*f(x) = a Qf(x)-a Qf(x), 

where 3Qf(x)=[-c-max{-f'(x;1),f'(x;-l)},-c+f'(x;1)] and 

aQf(x)=[c,c+max{0,-f'(x;l)-f'(x;-l)}] with arbitrarily fixed 

real-valued number c. • 

Corollary 1 ([6], Corollary 3). The directional 

differentiability of a function at a point is equivalent to 

its quasidif- ferentiability in one-dimensional space. • 

Corollary 2 ([6] Theorem 4). In one-dimensional space, the 

map- ping a^f is upper semicontinuous at xeR if and only if 

the function min{f'(•;1),-f'(•;-l)} is lower semicontinuous 

and the function max{f'(•;1),-f'(•;-l)} is upper 

semicontinuous at x. In addition, the mapping a*f is lower 

(upper) semicontinuous at xeR 1 if and only if the function 

max{0,-f'(•;l)- -f'(»;-l)} is lower (upper) semicontinuous at 

x. • 

An example is also given in [14], Chapter 3, Sec. 5, 

f(x) = x 3 / 2sin(l/x), if x>0 x e Rl_ 

X , if XiO 

It is easy to calculate the directional derivatives at OeR 1 in 

directions 1 and -1, 

f'(0;1) = lim [X3/2sin(l/X)]/X=0, 

f'(0;-l) = lim[-X-0]/A = -1. 
A+0 

Therefore, a^f(0)=[0,1] and a*f(0)=[-l,1]. Note that this 

function is quasidifferentiable at 0, but not locally Lipschi-

tzian. According to the last corollary it is not difficult to 

construct a function being quasidifferentiable, but not local-

ly Lipschitzian, in one-dimensional space. 

Evidently, it follows from Theorem 2.7 that 

epi 5*(•|a^f(x)) = cl U epi 5*(-|af(x)+3f(x)) 
Cf (x) 

and 
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e p i « * { • | a * f ( x ) ) = c l e p i S*(' | df ( x ) - 3 f ( x ) ) . 
C f ( x ) 

S i n c e a * ( « | a * £ ( x ) ) s « * ( • | 3 f ( x ) - d f ( X ) ) , V 3 f ( x ) € » f ( x ) and 
e p i ( f ' ( x ; . ) + 5 * ( - | 3 * f ( x ) ) 3 e p i ( f ' ( x ; . ) + S * ( - | 3 f ( x ) _ a f ( x ) ) , 

V d f ( x ) e V f ( x ) , i n a d d i t i o n , f ' ( x ; « ) and f ' ( x ; - ) a r e s u b l i n e a r , 
s o one h a s 
0 + ( e p i ( f ' ( x ; • ) + « * ( ' | 3 * f ( x ) ) ) D 0 + ( e p i ( f ' ( x ; • ) + « * ( • | a t ( x ) - J f ( x ) ) ) 
where 0 + C d e n o t e s t h e r e c e s s i o n c o n e o f a s e t C [ 1 0 , s e c . 8 ] . 
I n c o n s e q u e n c e o f 

e p i ( q 0 + ) = 0 + ( e p i q ) , 
where q 0 + d e n o t e s t h e r e c e s s i o n f u n c t i o n o f q , we o b t a i n 
e p i ( ( f ' ( x ; - ) + 5 * ( ' | a * f ( x ) ) ) 0 + ) D 

D e p i ( ( f ' ( x ; • ) + 5 * ( • | I f ( x ) - a t ( x ) ) ) 0 + ) . 
I t f o l l o w s from t h i s t h a t 

( f ' ( x ; - ) + 5 * ( - | 3 * f ( x ) ) ) 0 + * ( f ' ( x ; . ) + « * ( • | a f ( x ) - 3 f ( x ) ) ) 0 + , 
V 3 f ( x ) e E f ( x ) . Hence , t h e f u n c t i o n ( f ' ( x ; • ) + « * ( ' | S * f ( x ) ) w i t h 
a k e r n e l a * f ( x ) i s t h e minimum r e c e s s i o n f u n c t i o n t o { f ' ( x ; ' ) + 

+8 ( • I a f ( x ) - 3 f ( x ) ) I at(x)e»f(x)} i n a c e r t a i n s e n s e . A c t u a l l y , 
f rom [ 1 0 , C o r o l . 8 . 5 . 2 ] we h a v e 
( f ' ( x ; , ) + 5 * ( * | a * f ( x ) ) ) 0 + ) ( d ) = l i m ( ( f ' ( x ; • ) + « * ( • | a * f ( x ) ) ) \ ) ( d ) = 

X-̂ O 
= f ' ( x ; d ) + 5 * ( d | a * f ( x ) ) , 

l i k e w i s e , 
( ( f ( * ; • ) + « * ( • | 3 f ( x ) - a f ( x ) ) ) 0 + ) ( d ) = 

= f ' ( x ; d ) + 6 * ( d | 3 f ( x ) - a f ( x ) ) , V a f ( x ) e D f ( x ) . 
I t i s e a s y t o s e e t h a t a d i r e c t i o n a l l y d i f f e r e n t i a b l e f u n c t i o n 
f i s q u a s i d i f f e r e n t i a b l e a t X€R n i f and o n l y i f t h e r e e x i s t s a 
s u b l i n e a r f u n c t i o n <p s u c h t h a t f ' ( x ; •) +tp (•) i s s u b l i n e a r , 
i . e . , 

f ' ( x ; d 1 + d 2 ) - f ' ( x ; d 1 ) - f ' ( x ; d 2 ) s * > ( d 1 ) + i > ( d 2 ) - ^ ( d ^ ) , 
i . e . , f ' ( x ; •) +ip (•) i s s u b a d d i t i v e . I f f i s d i r e c t i o n a l l y 
d i f f e r e n t i a b l e a t x e R n and t h e r e e x i s t s a s u b l i n e a r f u n c t i o n <p 
s u c h t h a t F ( • ) i s s u b a d d i t i v e , where 

F ( d ) : = f ( x + d ) + » ) ( d ) - f ( x ) , 
t h e n f i s q u a s i d i f f e r e n t i a b l e a t x , s i n c e 
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F'(0;d +d ) = lira F(A(d +d )) =s 
1 2 A+0 1 2 

s lim F(Xd-) + lira F(Ad_) = F'(0;d.) + F'(0;d,) 
A*0 1 A*0 2 1 i 

and F'(0;h)=f'(x;h)+(p(h), VheRn. If f is quasidifferentiable 
at x, by definition, there exists a sublinear function <p 
satisfying the following relation 
(f' (x;*)+f>(*)) = {ueRn | <u,d>sf' (x;d)+(p(d) , VdeRn} = 9f(x). 

By virtue of this, one has 
(2.9) 9f(x) = {ueRn| <u,Ad>+f(x)s 

sf (x+Ad)+#>(Ad)+T}(x+Ad) , VdeRn, VA£)}, 
where -TJ(x+Ad) :=f (x+Ad)-f (x)-Af ' (x;d) , and TI (x+Ad) /A—»0 as 
A^O, VdeRn, and T)(X)=0. The expression (2.9) can be rewritten 
as 
(2.10) df (x) = {ueRn | <u,z-x>+f (x)sf (Z)+»)(Z-X)+TJ(Z) , VzeRn> . 
Combining <p with 7), and define I/I (z) : =<p (z-x) +TJ (z) , we have 
(2.11) df(x) = {U€Rn| <u,z-x>+f(x)sf(z)+0(z), VzeRn}. 
Clearly, ^(x)=0. The form (2.11) is similar to the one of the 
subdifferential structure of a convex function. Since TJ is at 
least Gâteaux differentiable at x and the derivative equals 
zero, the function ip is a quasidifferentiable in the sense of 
Pschenichny [9]. For convenience of distinction between the 
definitions in the sense of Demyanov and Rubinov and in the 
sense of Pschenichny, the latter is called p-quasidif-
ferentiable. Thereby, if a function f is quasidifferentiable 
at x, then there exists a p-quasidifferentiable function 0 
vanishing at x, such that f+0 is p-quasidifferentiable and 

3(f+0)(x) = 3f(x) = {ueRn| <u,z-x>+f(x)sf(z)+0(z), VzeRn}. 
For a convex function f the p-quasidifferentiable function 0 
can be taken as and in this case df(x)=3^f(x). 

A function defined in Rn, f, is said to be uniformly 
directionally differentiable at xeRn if for any e>0 there 
exists an <*0>0 such that 

|f (x+ad)-f (x)-f' (x;ad) |<ae, Vae(0,a0], VdcB^O), 
[13], [4, Ch. 3]. It is known that if f is Lipschitzian in a 
neighborhood of x and directionally differentiable at x, then 
f is uniformly directionally differentiable at x, i.e., f 
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satisfies the condition given above. 

Theorem 2.9. Suppose f is Lipschitzian in a neighborhood 

of x and guasidifferentiable at x. Then 

(2.12) |f°(x;d)-f'(x;d)| s f'(x;d), VdeR n 

and 

(2.13) a^f(x)c3f(x)+3*f(x), 

where f®(x;*) and 9f(x) are generalized directional 

derivative and generalized gradient, respectively, due to 

Clarke [1], [2]. 

Proof. Since f'(x;•)sf°(x;•), one has 

f'(x;-) - f'(x;•) s f°(x;.)-

Therefore, 

(2.14) -f'(x;•) s f°(x;-) - f'(x;-)-

We prove the converse inequality below. Since f is 

Lipschitzian at x, one has that for any deR n 

f°(x;d) = lim sup y[f(x'+Ad)-f(X')]= 
x'->x A 

A*0 

• x[ f (x+ l | x '"x+xd |
 ' «X^xtxdii J - ' M * ' - " ! - ! ^ ) ] -

A*0 

Since f is uniformly directionally differentiable at x, one 

has that for any e>0 there exists a 5>0 such that 

(2.15) f°(x;d)siim sup iff'(x;x'-x+Ad)-f'(x;x'-x)+ 
x'-»x 
A^O 

+£ (II x' -x+Ad || +1| x' -x |) ], 

for any x'-x+Ad, x'-xeB 5(0). Considering each item on the 

right hand side of (2.15), by the definition of quasidif-

ferentiable functions, we have 

(2.16) f'(x;x'-x+Ad)=S*(x'-x+Ad| (x))-5*(x'-x+Ad| 3*f(x))s 

s5*(x'-x| a^f(x))+AS*(d| (x))-6*(x'-x+Ad| 3*f(x)) 

and 

(2.17) f'(x;x'-x)=S*(x'-x| 3*f(x))-5*(x'-x| 3*f(x))t 

£S*(x'-x| a*f(x))-s*(x'-x+Ad| a*f(x))-s*(Ad| a*f(x)). 

For the last item, we have 

(2.18) |x'-x+Ad fl-jx'-x|sx|dj. 

In view of (2.15), (2.16), (2.17) and (2.18), one has 
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f°(x;d) s f'(x;d) + f'(x;d) + e. 
Taking e—>0, finally, one obtains 
(2.19) f°(x;d) - f'(x;d) s f'(x;d). 
It follows from (2.14) and (2.19) that the first assertion of 
this theorem is valid. The second assertion is easy to be 
derived from the inequality 

f'(x;d) * f°(x;d) + f'(x;d), VdeRn, 
i.e., 

5 * ( d | ( x ) ) a 5*(d|3f(x)) + 5*(d|3*f(x)). 
The demonstration is completed. • 

Remark 1. Suppose f is regular in the Clarke's sense and 
quasidifferentiable at x. Then we have 

a^f(x) = af(x) + a*f(x). • 

Remark 2. By virtue of (2.19), one has 
af(xjca^f(x) + a*f(x). 

On the other hand, under some assumptions [4, Ch. 13], one has 
3f(x) = coizfdjea^f(x)+3*f(x)| deC(f)cC(f)}, 

where 
C(f):={debd B (0)| Arg max <u,d> and 

uea^f(x) 
Arg max <u,d> are singletons}, 
U€3*f(x) 

and C(f) is such a set that m^(C(f)\C(f))=0. • 
For any quasidifferentiable function f at x the direc-

tional derivative function f'(x;-) is Lipschitzian in 
direction. It follows from Theorem 2.9 that 

|f'°(x;d,h)-f"(x;d,h)| s f"(x;d,h), Vd,heRn, 
where 

f'°(x;d,h):=[f'(x;-)]°(d;h), 
f'°(x;d,h) = max <u,h>, 

ue3f'(x;d) 
f"(x;d,h) = max <u,h>, 

ue3f'(x;d) 
3f'(x;d) = {uea^f(x)| <u,d>=f'(x;d)>, 

f"(x;d,h) = max <u,h>, 
ue3f'(x;d) 
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3f'(x;d) = {ue3*f(x)| <u,d>=f'(x;d)}. 

3. Basic calculus on kernels 

We now present some rules, partly given in [11], in which 
one could calculate kernels of f.+f_, Af, max f., etc. at a 

1 £ iel 
given point where f^, f 2, f, f^(icl) are quasidifferentiable 
at the point and A is a scalar. 

For the sake of convenience of description, define 
Ef (x) : =»f (x) +Z>f 2 (x) 

if f^ and f 2 are quasidifferentiable at x and f:=fj+f 2. 

Rule 3.1. Suppose f is def 
quasidifferentiable at x. Then 

and 

Rule 3.1. Suppose f is defined by f 1+f 2, and f^ and f 2 are 

a*f(x) = a*f 1(x) + a*f 2(x) 

3*f(x) = a*f 1(x)+3*f 2(x). 

Proof. Since 
a^f(x) = n [(8f.(x)+8f (x)) + (3f (x)+af (x))], 

Ef(x) 1 * * 
one has 

f'(x;>) = inf _ max _ <u,*> = 
»f(x) uctiafj+af^ + i a ^ + a f ^ H x ) 

= inf max _ <u,»> + inf max _ <u,»>. 
E f ^ x ) u e a f ^ x j + a f ^ x ) »f 2(x) ue3f 2(x)+3f 2(x) 

In consequence, we obtain 
5*(. |a,f(x)) = a*('|8ikf1(x)) + 6*(. |a^f2(x)) = 

= s*(. |aJkf1(x)+a^f2(x)). 
Hence, a*f(x) = a ^ f ^ x ) + a Af 2(x) holds. Likewise, a*f(x) = 

= a*f 1(x)+a*f 2(x) holds too. • 

Rule 3.2. For a quasidifferentiable function f at x and 
any scalar AeR the following formulae hold 
(3.1) (x) = xa Af(x) 
and 

a*(Af)(x) = 

or compactly 

A3*f(x), if A*0 
|A|a*(-f)(X), if A<0 
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(3.2) Dk(Af)(x) = |X|Dk((sign A)f)(x). 
Proof. Since 

[3(Af)(x),3(Af)(x)] = | A | [£( (signA) f) (x) ,~S( (signA) £) (x) ] = 
A[3f(x),3f(x), if AsO 
| a | [ - 3 f ( X ) , - a t ( X ) ] , if a < o , 

it follows that 
f)(x) = n X(af(x),af(x)) = A3^f(x), V a 6 r \ 

Df (X) 
and if A&0, then one has 

a*(Af)(x)=_ n (9(Af)(x)-a(Af)(x)) = 
D(Af) (x) 

= _ n A(af(x)-3f(x)) = A9*f (x) , 
¡Df (x) 

and if A<0, then one has 
a*(Af)(x) = _ n |A| (a(-f) (x)-a(-f) (x)) = |A|a*(-f)(x). 

2>(-f) (x) 
By the way, the following formula is also valid for A<0, 
(3 .3) a*(Af)(x) = |a| n (3f(x)-af(x)). • 

»f (x) 
Corollary 1. Suppose f^, iel are guasidifferentiable at x 

and A^, iel are scalars, where I denotes a finite index set. 
Then we have 

Dk(E A ^ M x ) = E|Ai|Dk((sign Ai)fi(x). • 
Rule 3.3. Suppose f1 and f2 are guasidifferentiable at x. 

Then 
(3.4) Dk(f1f2)(x) = |f1(x) |Dk((sign f ^ x n ^ H x ) + 

+ |f2(x)|Dk((sign f2(x))f1)(x). 
Proof. Since from the ordinary operation rules of quasi-

differentials one has 
D(f1f2)(x) = f1(x)Df2(x) + f2(x)Df1(x), 

it follows that 
E(f1f2)(x) = f1(x)Df2(x) + f2(x)»f1(x). 

Let kj^f^x) and k2:=f2(x). We have 
»(f1f2)(x) = ¡D[kxf2(x) + Jc2fx(x) ]. 

By the Corol. of Rule 3.2, it is easy to get 
Dk(f1f2)(x) = Dk[k1f2(x)+k2f1(x)] = 
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= |k1|Dk((sign k1)f2) (x) + |k2|Dk((sign ^Jfj^) (x) . • 
Rule 3.4. Suppose f̂^ and f2 are quasidifferentiable at x 

and f2(x)*0. Then 
f, 

(3.5) Dk( ̂  )(x) = [ | f2 (x) |Dk((sign f^xDf^lx) + 

+ |f1(x)|Dk((sign(-f1(x)))f2)<x)]/[f*(x)]. 
Proof. Let k1:=l/f2(x) and k2:=-f1(x)/f2(x). It is known 

that 
D(f1/f2)(x) = k1Df1(x) + k2Df2(x) = D(k1f1+k2f2)(x). 

From the rule given above, one has 
Dk(f1/f2)(x) = |k1|Dk((sign k^f1)(x)+|k2|Dk((sign *2)f2)(x). 
It follows from this that (3.5) holds. • 

Let f be a maximum of quasidifferentiable functions f^, 
iel, at a point x, where I is a finite index set. By [3, 
Th.l], [4, Th. 10.3], it is known that 

3f(x) = co{3fk(x) - ) Sfiix)! keR(x)}, 
ieR(x)\{k} 

3f(x) = ) 9fk(>0 / 
keR(x) 

where R(x);={iel| f^(x)=f(x)}. Define 
Df(x):={Df(x)| Dfi(x)e»fi(x), iel}. 

Rule 3.5. For f=max f., where f., iel are quasidiffer-
iel 

entiable at x, one has 

(3.6) a^f(x) = co U + ^ a*fi(x)], 
v€RfX\ K L x K € K W ieR(x) \{k} 

(3.7) 3*f(x) = ̂  a*f
k(x)• 

keR(x) 
Proof. To begin with, we calculate 3f(x)+3f(x) and 

3f(x)-3f(x). Observe 
3f(x)+9f(x) = co{3fk(x) - ) afiix)! keR(x)> + 

ieR(x)\{k} 
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+ ) 3 f
k
( x ) = { ) X k [ - f k ( x ) " ) 3f±(x)]| A k*0 f 

keR(x) keR(x) ieR(x)\{k} 

^k=i}+ YZZ *f*(x) • 
keR(x) 

Since for any convex sets C and C^, ieA, one has 

co ^ J C . + C = co ^J(C.+C), 
ieA ieA 

it follows that 

3f(x)+3f(x)=co U [afk(x)+afk(x)+ ) (3fi(x)-3fi(x))l 
k e R ( x ) ieR(x)\{k> 

and 

af(x)-3f(x) = ) (3fk(x)-3fk(x)). 

keR(x) 
Since 

f'(x;») = _inf _ max <u,-> = 
Z)f(x) ueflf (x) -3f (x) 

= _inf max <u, • > = 
D f k ( x ) ue^ (3f (x)-3f. (x)) 
k 6 R < x > ism) 

- 5 - i n f 5* ('l 3fk(x)-3fk(x)) = \ fA(x;•)# L , T)f fvi L , 
keR(x) l k l k e R ( x ) 

one has 

3*f(x) = ) a * f
k (

x ) • 

keR(x) 

It remains to prove (3.6). Evidently, 

f'(x;d) = 5*(d|d^f(x)) - 6*(d|a*f(x)) = 

= S*(d|3,f(x)) - 5*(d|) 3*fk(x)), VdeR n. 

keR(x) 
On the other hand, we have 

f(x;d) =
 5*(dlco U [vkM + ¿ZZ 3*fi(X)]) -

1 ' ieR(x)\{k} 

v(di y^ = s1dic° k y h f
k ( x ) + 

keR(x) xeKtxj 
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h ) a * f i ( x > ] ) - * * ( d l ) a * f
k ( x > ) ' V d e R n ' 

i e R ( x ) \ { k } keR(x) 

s i n c e 

[co u [ a * f k ( x ) - ) a * f i ( x ) ] , ^ a * f k ( x ) ] 6 g f ( x ) . 
k e R ( x ) i e R ( x ) \ { k } keR(x) 

T h e r e f o r e , one o b t a i n s 

« * ( • | a ^ f ( x ) ) = 5 * ( . | c o U [ a * f k ( x ) + ) 3 * f i ( x ) ] ] . 
k 6 R ( x ) i e R ( x ) \ { k } 

I t f o l l o w s f rom t h i s t h a t (3 .6) i s v a l i d . • 

Remark 1. We d e n o t e by 3 f ( x ) t h e i n t e r s e c t i o n 

n ( a f ( x ) - a f ( x ) ) 
Z)f (x) 

and t h e n have 3 * ( - f ) ( x ) = 3 ~ f ( x ) = - 3 f ( x ) from ( 3 . 1 ) . I t a l s o 
can be seen e a s i l y from t h e f o l l o w i n g e x p r e s s i o n s 

( - f ) ' ( x ; * ) = max <u,*> + min <u,»> = 
u e - d f ( x ) u e - 3 f ( x ) 

= 5 * ( . | - 3 f ( x ) - 3 f ( x ) ) - a * ( - | 8 £ ( x ) - M ( x ) ) = 
= 5 * ( - l - a ^ f ( x ) ) - 5 * ( • | 3 ~ f ( x ) ) . 

A c t u a l l y , i n q u a s i d i f f e r e n t i a l c a l c u l u s we need t h r e e 
d i f f e r e n t k i n d s of k e r n e l s : 3 ^ f ( x ) , 3* f (x ) and 3 ~ f ( x ) . The 
f i r s t two k e r n e l s a r e b a s i c and t h e l a s t one i s a u x i l i a r y i n 
our c a s e . Le t f :=min f . , where I i s f i n i t e and f . , i e l a r e 

i e l 1 1 

q u a s i d i f f e r e n t i a b l e a t x . S ince f ( x ) = - m a x { f ^ ( x ) | i e l } , one 
h a s 

3*f (x ) = - 3 j f c m a x { - f i ( x ) | i e l } 
and 

3* f (x ) = 3 * ( - m a x { ( - f i ) ( x ) | i e l } ) = 3 " ( m a x { ( - f i ) ( x ) | i e l } = 

n [ 3 ( m a x { ( - f . ) ( x ) | i e l } ) - 3 ( m a x { ( - f ( x ) | i e l } ) = 
C ( m a x { ( - f i ) ( x ) | i e l } ) 

0 

=Ep(x) [c° y - n -
i K ' keR (x) . , 

i .R - (*> ^ 



On quasidifferential kernels 179 

- c o U [afk(x) - J | afi(x)]], 
k€R"(x) . e R- ( x ) 

i*k 
where R~(x):={iel| f.(x)=f(x)}. Therefore, it seems that the 

^ * 
definition of kernel Dkf=[S^f,a f] of guasidifferentials for 
the quasidifferentiable function f at a given point x needs to 
be improved further, because the definition of kernel D.f= * . . . . =[d#f,3 f], proposed in [11] and improved in this paper, is 
still not very convenient for calculating the kernels of (-f) 
and min{fjJ iel}. 

Let tp be a function R m >R defined by 
y ><P(y) = max{f(x,y)| xeX} = max{f (y) | xeX}, 

where f:XxR >R and XcR is compact. 
Theorem 3.6. Suppose that f(*,y) is continuous for every 

heN(yQ) cR111, and f(x,*) is uniformly directionally differen-
tiate and uniform in xeX, i.e., for any heRm and e>0, that 
there exist scalars 5>0 and ot0>0 such that 

|f(x,y+ah) - f(x,y) - ocf£(y;d) | < ae 
is satisfied for all xeX whenever |h-d||<Sf 0<a<aQ, where N(yQ) 
is neighborhood of yQ. Then <p is uniformly directionally 
differentiable and 

<p'(y;d) = max{f£(y;d) | xeX(y)}, 
where X(y):={xeX| f (x,y)=<p(y) > and f^(y;d) :=f' (x, • ;d) (y) = 
= lim[f(x,y+Xd)-f(x,y)]/A, due to [13]. Furthermore, assume 

X+0 
that for any xeX, f(x,«)» i.e., fx(') is quasidifferentiable 
and there exist Dfx(y)=[3fx(y),3fx(y)]eEfx(y), xeX(y), 
compact sets Ax(y) and B(y) such that 

B(y) = 3fx(y) + Ax(y), VxeX(y), 
i.e., for any xeX(y), Bx(y)=B(y), where Bx(y)=3fx(y) + Ax(x). 
Then, <p is quasidifferentiable at y and 
(3.7) dtp(y) = co U [3fx(y)-Ax(y)]f a»>(y)=B(y), 

x€X(y) 
due to [15]. • 

Define, for any xeX(y), 
V x W :={ D f

x(y) = [if
x(y)-afx(y) ]€»fx(y) | 3B(y) :3fx(y)=B(y) 

and there exists at least one ^f (y) e2)f (y) such 
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that 3fz(y)=B(y) for each zeX(y)\{x}}, 
and also ^ s

f
x(y) a n d ' c a n b e d e fi n e d correspondingly. 

Using these notations, we have 
»sfx(Y) = 9, VxeX(y), 

where 7 is a subfamily of nonempty compact convex sets, 
included in each ®fx(y). Then (3.7) can be rewritten as 
(3.8) a<p(y) = CO U af (y), a<p(y)=B(y), 

xeX(y) 
where [3fx(y),B(y)]eX>sfx(y) and B(y)ey. since 

Pi [3fv(y)+B(y)]*0, _ n [B(y)-B(y)]*e, Dsfx(y) 
VxeX(y), and the fact, 

fx(y;d) = 5*(d| as*fx(y)) - «*(a| V x ( y ) ) ' 
i.e., [3sJkfx(y) ,a*fx(y) ]€Dsfx(y) , VxeX(y), where 

a_*f (y)) := n fifx(y)+B(y)] 
V x ( y > 

and 

a*fx(y) := _ n [B(y)-B(y)], 

one has from (3.7) that 
[co u y . ( y ) . V - ( y ) ] ^ ( y ) . 

xeX(y) 
where D(p(y) is defined by the collection of [ dip (y) ,~d<p (y) ] 
given by (3.8) and satisfying all assumptions in the above 
theorem. In this case, we have 

V' (y/"') = «*(• lasf
x(y)) r VxeX(y) 

= «*(• |8%(y)) , 
i.e., a*(P(y)=a*fx(y) , VxeX(y), and then 

£'(y;-) =«*(•! co u 3 f( Y)) = 5*(. |a*i>(y)), xeX(y) 
i.e., y) = co a f (y). Now we have the following 

xeX(y) S X 

rule used to evaluate the kernels of ip at y. 
Rule 3.7. Under the assumptions given in the theorem 

above, one has 
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a s * f x { # ) ' as»)(') = a s f x ( > ) f o r s o m e x e X ( ' ) - D = co U 
xeX(-) 

At the end of this part, we discuss a simple example 

concerning the addition of kernels. Let 

where f , f 2 > f 3 are defined by 

f 1(x)=|x 1|, f 2(x)=-|x 2 

f:=f 1+f 2+f 3:R 

[8], 
.„1 

and 

f3(x) = 

x 3x 1 1 2 

x 4+x 2 

1 2 

X * 0 

X=0 

T 2 respectively, where x=(x 1,x 2) eR . 

f(x) = 

lxll ~ IX2I + 4 2 
x +x X 1 x2 

Thus for any xeR , 

x*0 
x 2x 1 2 

0 , x=o . 

It is easy to check that f^, f 2, f 3 and then f are 

quasidifferentiable at 0, and that it is easy to find their 

quasidifferential kernels, 

9*f, (0) = [-1,1]x{0}, d*f (0) = 0€R2, 

a*f2(0) = {0}x[-1,1], 

3*f3(0) = OeR2, 

a f (0) = {0}x[-2,2], 
* 2 

d f (0) = OeR . J * 
Finally, we have a^f(0)=[-l,l]x[-l,l] and a f(0)={0}x[-2,2]. 
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