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BINORMAL LAW CHARACTERIZED BY POLYNOMIAL CONDITIONAL MOMENTS 

1. Introduction 

This paper is intended to be a continuation of 
characterization problems inspired by problem 2 of chapter 6 
(p 638 in Russian version) in [4]. That is we study a 
polynomial regression assumption in characterization of 
binormal distributions. However contrary to [2] we study 

mostly regression on r.v. R=\/(X2-2pXY+Y2) where X, Y are 
standardized and p=EXY. The technique used is also different. 
The results are proved by Hermite expansion of the 
distribution of (X,Y) and technical lemmas presented in the 
Appendix under basically the following condition: 3 A>0 

Eexp(XR2) <oo. 
In fact we will assume little bit less (it is shown in the 

Appendix) namely that either of the following two conditions 

hold: 3 C>0, k>0 V n, m * 0 either 

(A) I EHn (X) Hm((Y-pX) / / 1-p2) I S C n k m V n!m! 
or 
(A*) |EHn(Y)Hm((X-pY) / /IV") I * C n W n!m! 

here HR(X) denotes n-th Hermite polynomial i.e. 

[n/2] 
H n(x)=n!^ (-l) mx n - 2 m/ (m!2m(n-2m) !). 

m=0 

AMS(1985 revision) classification: primary 62E10, secondary 
60E99 
Keywqrds and phrases: Characterizations by conditional 
moments, Hermite polynomials, Hermite expansions. 
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We believe that the above mentioned assumption is 
superfluous. To support this belief it might be of interest to 
state that Theorems 1.1 & 3.1 of [2] were first proved under 
this assumption and later generalized. 

The main results are in Section 2. 
In order to make the formulation of the theorems shorter 

and more clear let us generalize general polynomial condition 
considered in [2]. 

Let (X,Y) be a pair of standardized IL2 random variables. 
Let p=EXY. Finally let g:IRx—>)R be Borel measurable function 
and let us denote: 

(1) F(z)= JJ pp(x,y)dxdy 
g(x,y)sZ 

where pp(x,y)=exp(-(x2-2pxy+y2)/(2(1-p2)))/(2 m/ 1-p2). 
Definition 1. We say that (X,Y) belongs to Z-General 

Polynomial Regression class associated with Normal 
distribution iff 
a) Z=g(X,Y) is distributed according to F 
b) Vktl E(Xk|Z)=Q*(Z) and E(Yk|Z)=Q2(Z) a.s. 
where i=l,2 are polynomials of degree not exceeding k. We 
write in this case (X,Y)eZ-GPRN. 

The most important cases to be considered are Z=X, Z=Y, 
Z=aX+bY, ab*0, Z=/ (X2-2pXY+Y2). 

For the first three cases we introduce the following: 
Definition 2. Suppose that the function g in the 

definition of random variable Z is such that var(Z)=l.Suppose 
further that (X,Y)e Z-GPRN and that the polynomials i=l,2 
appearing in condition b) of Definition 1 are of the form: 

Q£<z>=*i,z z*+ Q£-l(z>' Qk(z)=py,z z k + °k-l(z) 
* i where p =EXZ, p =EYZ and Q. i=l,2 are polynomials of 

X f Z y f Z K ™ 1 

degree not exceeding k-1. We say in this case that (X,Y) 
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belongs to Polynomial Regression class associated with Normal 

distribution and write (X,Y)e Z-PRN. 

2. Main Results 

We start with the following result which is closely 
related to Theorem 3.1 of [2]. This time however we will 
assume that (X,Y) are simultaneously X-GPRN and Y-GPRN. It 
turns out that in this case one more condition is required. 
Theorem 1 below gives few examples of such conditions. Namely 
we have. 

Theorem 1. Suppose (X,Y) satisfy (A) or (A*) and are both 
X-GPRN and Y-GPRN. Moreover if 0< I p I <1 and any of the 
following condition holds: 

1° R2=X2-2pXY+Y2 has exponential distribution 

2° E(Y2|R)=R2/2 a.s. 

3° E(XYIR)=pE(Y2IR) a.s. 

then (X,Y) has binormal distribution. 

Corollary 1.1 Suppose (X,Y)eY-GPRN, satisfies (A) or (A*), 

V nil E(Xn|R)=E(Yn|R) a.s. 

2 2 2 
where as usually R = X - 2pXY+Y , p=EXY and moreover that any 
of the condition 1°,2° or 3° of Theorem 1 is satisfied. If 
0<IpI<1 then (X,Y) has binormal distribution. 

Remark 1. If among the assumptions of Corollary 1.1 we 
assumed (XfY)€Y-PRN instead of (X,Y)eY-GPRN then one would not 
have to assume any of the conditions 1 , 2° or 3° of Theorem 1 
to deduce binormality of (X,Y). To show this we argue first as 
in the proof of Corollary 1.1 and then use Theorem 3.1 of [2]. 

In the next Theorem we analyze condition R-GPRN (where 
R2=X2-2pXY+Y2). Recall that the condition R-GPRN implies that 
R has exponential distribution (compare the definition of F 
given by (1)). 

Theorem 2. Suppose that (X,Y) are such that (A) or (A*) is 
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satisfied and that (X,Y)eR-GPRN. If |p|<l,then (X,Y) has 

binormal distribution. 

In the next two results we deduce normality of a random 

variable by comparing its conditional moments (first two are 

enough in fact) with the same conditional moments of some 

normal random variable conditioned upon the same random 

variable. More precisely our next result is as follows: 

Theorem 3. Suppose X and Y are independent and Y - N(0,1), 

EX=0, EX 2=l f and 3 k>0,C>0 V nelN |EHn(X)| * CnVfi! (B). 

Suppose further that: 

(2) E(XIR)=E(YIR) a.s. , E(X2|R)=E(Y2|R) a.s. 

where R 2=X 2+Y 2, then X - N(0,1). 

As a corollary we get the following result in which we 

deduce binormality of a pair of random variables (X,Y) 

assuming only some moment conditions, polynomial regressions 

of one upon the other and comparing conditional moments of 

every coefficient of the pair with similar conditional moments 

of an independent (of the pair) Gaussian random variable D 

conditioned upon sums of squares of X and D and Y and D. More 

precisely we have: 

Corollary 1.3. Let (X,Y) be a pair of standardized random 

variables satisfying condition (B) and 

V ksl E(X k|Y)=p kY k+W k_ 1(Y) a.s., E(Yk|X)=Wk(X) a.s. 

where p=EXY and W^ and W^ k*l are polynomials of the degree 

not exceeding k. Moreover let D_N(0,1) be independent 

Of (X, Y) . If E (DI R) =E (X | R) a.s. , E (D I R) =E (Y I R) a.s. 

E(D2IR)=E(X2IR) a.s. E(D2|R)=E(Y2IR) a.s. 

where R 2=X 2+D 2, R 2=Y 2+D 2, then (X,Y) has normal distribution. 

3. Proofs of the results and auxiliary lemmas 

The proofs of the results presented in section 2 are based 

on the following technical lemmas. First two of these lemmas 
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are concerned with the change of variables (X,Y) >(R,$) 

defined by Y=Rcosi, (X-pY) p ) = Rsini and finding the 

distribution of (R,t) given the the expansion of the 

distribution of (X,Y) in the form of the series (1). The 

distribution of (R,*) will be expanded in the series of 

Laguerre polynomials (R) a e INu{0} and sin(n<p) and cos(nfp) 

ns 0. The proofs of these lemmas and of the others are highly 

technical, hence will be presented in the Appendix. In this 

section we will only present the lemmas and the proofs of our 

results. 

Before we will present these lemmas let us recall the 

definition of Laguerre polynomials: 

l 4 a ) ( x ) = ^ ( - l ) m ( ^ ) x m / m ! , L s(x)
d f=L(°>(x), 

m=0 
x£0,a*0,s=0,l,... . 

n 

Let us also denote p(z)=exp(-z /2)/V,(2TT)'. We have: 

Lemma 1. (i) Let us denote 

J k , n , m ( Y ) = v / ^ i i 7 J p ( z ) H m ( z ) H n ( a z + ' 3 y ) H k ( y z + 5 y ) d z * 

For any a,i3,7,6 such that a/3rS<0 |a| = |S|, l(3| = lrl, a 2 + 0 2 = l we 

have: 

Jk,n,m<y> " 

m 

j=0 
(ii) f n(t):=|exp(itx)p(x)H n(x)dx=(it)

nexp(-t 2/2) (here i 2=-l). 

(iii) Let us denote D n m(r,fp) :=Hn(rcos(p)Hm(rsinp) . We have: 

[n/2]+[m/2] 

Dn,m< r'«» = 

So P?'
m(r)sin(n+m-2i)<p if m is odd 

[n/2]+[m/2] 

\ p",m(r)cos(n+m-2i)ï> if m is even, 

i=0 
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where 

(3) 

pn,m ( r ) = ( - 1 ) Fn,m rn+m-2i L(n+m-2i) ( r
2/ 2) 

1 2n+m"1"1(n+ni-l)! 1 i 

D2n+2m, -.n+m n!ml T . 2 ... 
n+m (^-(-i) Zn+m~ L n + m ( r / 2 ) 

and F?' m are real numbers given by: 

• F n , m = ( _ 1 ) [ m / 2 ] [
n ^ j 

iA[m/2] . 

if 2i<n+m 

if i=n+m , 

(4) 

j=0v(i-[n/2]) 

Corollary 1.2. 

(i) Characteristic function of <p ,,(t,s) of (X,Y) has the 
*» y 

following form : 

< p x,y
( t' s ) = q { t , s ) X b n , m { i t ) n ( i s ) 1 D ( 1 " p 2 ) ( n + m ) / 2/(n!mJ) 

n,m*0 

where i2=-l, q(t,s)= exp(-(t2+2pts+s2)) and 

n n 

( 5 ) bn,m= X (k)pkck+m,n-k = £ ( k ) ^ °k+n,m-k' 

k=0 k=0 

(ii) Let R,4 be new random variables defined by the 

relationships 
Y = R cos® 

(X-pY)/•(l-p2)=Rsini/ with Rao a.s. and »e (-7r,n] .Let f(r,f>) be 

the distribution of (R,$), then: 

(6) f (r,(p) = (l/ (2tt) )rexp(-r2/2) 

r 2 i 

i*l s^O 

^ (-l)"g. nLe(r'/2)/(s!2") + 's,0 s1 

S£0 
21 

+ ^ ^21 cos(2i»>)^ (-l) Sg S / 2 iL<
2 i ) (r2/2)/(2s_1(s+2i)!)) + 
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^ 2 i + l 
) ^ j j + j C O S ^ i + l ) ? ) x 

l t o 2 

+ 
ifcO 

Y ( _ 1 ) S 9 S f 2 i + l L i 2 i + 1 ) ( r 2 / 2 ) / ( 2 s - 1 ( s + 2 i + l ) ! ) + 

1*0 

r 2 i + 1 . 
) £ 2 l + 1 s i n ( ( 2 . i + l ) ( p ) x 

i S o 2 

x ^ ( - D S f S f 2 i + l L i 2 i + 1 ) ( r 2 / 2 ) / ( 2 S " 1 ( s + 2 i + l ) l ) + 

s t O 

2 i 
£ ^ s i n ( 2 i ( - l ) s f s 2 i L ( 2 i ) ( r 2 / 2 ) / ( 2 s " 1 ( s + 2 i ) l ) 

i f c l 2 s * 0 

w h e r e w e h a v e d e n o t e d : 

< 7 > g S , 0 ( k ) i ^ ) S k , 2 s - 2 k ' 
k = 0 

s + i 

( 8 ) s , 2 i 2 k , 2 s + 2 i - 2 k > F s 
k = 0 

s + i 
( 9 ) a = V c , / 7 ~ T . . 2 k + l 2 k + l , 2 s + 2 i - 2 k 

s , 2 i + l L 2 k + l , 2 s + 2 i - 2 k ^ ' p " F s 
k = 0 

s + i 

(10) f - V r> 11 - 2 . k „ 2 k , 2 s + 2 i - 2 k - l 
s , 2 i + l ¿^ c 2 k , 2 s + 2 i - 2 k - l u _ p ' ' s 

k = 0 

s + i - 1 

( 1 1 ) f . = V C f / T ~ 2 n 2 k + 1 2 k + l , 2 s + 2 i - 2 k - l 
S , 2 i ¿ ^ 2 k + l , 2 s + 2 i - 2 k - l ' ' P >> F s 

k = 0 
i k 

a n d n u m b e r s F ' s , i , k € I N u { 0 } a r e d e f i n e d b y ( 4 ) . 

Lemma 3 . S u p p o s e ( X , Y ) s a t i s f y ( A ) a n d ( A * ) . W e h a v e t h e n : 

( i ) ( X , Y ) e Y - G P R N «=> c . „ = 0 f o r k > n * 0 <=» b = 0 f o r m > n s 0 . K , n n , m 
( i i ) ( X , Y ) e Y - P R N «=» c . = 0 f o r k s n a O , k + n s l «=» 

JC / n 

<=» b = 0 f o r m t n s O , m + n s l . n , m 
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(iii)(X,Y)eX-GPRN «-» è. =0 for k>n*0 «-• b »0 forn>ms0. jv / it n ̂  in 
(iv) (X,Y)«X-PRN <=» è k n=0 for ksnfcO, k+nsl 

b =0 for nfcmfcO. m+n*l. n,m 
Remark 2. As an immediate consequence of Lemma 3 we get 

weaker version of Theorem 3.1 of [2]. Namely under assumptions 
of Theorem 3.1 and (A)and (A*) we deduce by Lemma 3 that the 
conditions (X, Y)eY-GPRN and (X,Y)eX-PRN imply that b R m=0 for 
m>nfc0 and for ntmso, m+nal. Thus we deduce that the 
characteristic function of (X,Y) is equal to c Q Qq(t,s) which 
means that (X,Y) are binormaly distributed. 

Lemma 4. Suppose that (X,Y) satisfy (A) or (A*) and at the 
same time we have both (X,Y)eX-GPRN and (X,Y)eY-GPRN. Let 
(Px Y(t,s) denote characteristic function of (X,Y), then: 

(i) ,pXfy(s,t)=q(sft)^ (-l)n(ts)nbn n(l-p2)n/(nl)2, 
n^O 

( A ) <-,.<"-*> 

< u> ck,n= 

if n-k is even 
n+k 

2 ' 2 

if n-k is odd or k>n, 

2 
(ni) the distribution of random variable U=(X-pY) //(1-p ) is 
given by: 

f<»>•*(»>£ (" P ) k(k k) bk,k H2k ( U ) / ( 2 k ) !-
kaO 

(iv) joint distribution of (U,Y) is given by the following 
formula: 

f(u,y) = p(u)p(y) 

[s/2] 

>0.0*£ (- p ) S bs,s/ s ! x 

S£2 

[ £ d-p 2)V 2 kH 2 k(y)H 2 s_ 2 k(u)/((2k)!(s-2k)!)-X 

k=0 
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[(s-l)/2] 

' Y. v ' K " K " 2 k + 1 

k=0 
(•(i-p2) ) 2 k + 1 P ~ 2 k ~ 1 H , l r . 1 (y) x 

x H 2 s_ 2 k_ 1(u)/((2k+l)l(s-l-2k)!)]| . 

We will present now the proofs of the main results. 

Proof of Theorem 1: 

(a) Clearly we have R 2 = Y 2 + U 2 where U=(X-pY)/V(l-p 2). Since 
2 

by assumption R has exponential distribution we deduce that 

g s q-0, sal which together with (7) and Lemma 4 implies that 

b. v=0 or consequently c. =0 for k+nal. k / K jv / n 

(b) Simple calculation shows that E(U 2|R)=E(Y 2|R)=R 2/2 

a.s. Thus E(Y2-U2|R)=0=R2COS2« where (R,$) are defined by 

Y=Rcosi, U=Rsin$. This however means that: 
n 

V relR+ Jcos(2fp) f (r,<p)d<p = 0 

-n 
where f(r,<p) distribution of (R,i). 

By (6) we see that this implies that g g 2=0 for s a 0. 

Inserting assertion (ii) of Lemma 4 into (8) we get for each 

s^O: 

[(s+l)/2] 

Vs*0 0 = b s + 1 > s + 1 £ ( 1 . p 2 ) k ( - P ) s - k F 2 k ' 2 s + 1 - 2 k ( 2 ^ 2 I 2 £ ) 

k=0 

which implies that n = 0 for n>0 and consequently that 

c^ = 0 for all k f n such that k+ntl. 

(c) In this case we have E(Y(X-pY)|R)=0 a.s. which means 

that: 

ir 

V reR + |sin(2(p) f (r,<p)d<p = 0. 

-ii 

Using similar arguments as in the proof of (b) we deduce 

that this condition leads to the conclusion that c. =0 for K; n 
all k f n such that k+n*l. • 
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Proof of Corollary 1.1. Condition Vn*l E(Xn|R) = E(Yn|R) 
a.s. implies that X and Y have the same distribution. Thus X 
can be exchanged with Y. Hence all the assumptions of Theorem 
1 are satisfied. • 

Proof of Theorem 2. Let random variables U,R,* be defined 
similarly as in the proof of Theorem 1. He will show that the 
assumptions lead to the conditions g .=0 for all s and i 

such that s+ifcl, and f .=0 for all s, i*0. This fact will be s , 1 
shown by induction with respect to i. 

1° g n=0 for since the density of R is equal to Sf u 
2 rexp(-r /2), r*0. 

2° Suppose that g .=0 for each s^O and j<i. Since the s# J v 
condition E(Y |R)=Qk(R) a.s. ktl where Q^ is a polynomial of 
degree not exceeding k, means that 71 

r k Jcosk»> f(r,#>)d<p = Q k ( r ) r e x p ( - r 2 / 2 ) f o r rclR+ . 

2-2n[2n]+2l-2n £ ( n ^ ) c o s ( 2 . i f k=2n 

-ir 

k 
Now since: cos <p = - D=1 

n 
2_2n Z (n+?+l)COS((2j+1)<P) ' lf k=2n+1' D=0 

we deduce from (6) that fo r i=2n+l 
n 

j=0 

2n+l T 9 s , 2 j + 1 L<2j+1)(r2/2)l=4(r/2)2n+1(r/2) 
sao2 (2j+s+l)! J 

(-l)SgSf2n+1Li2n+1)(r2/2)/((2s_1(2n+s+l)!) , 
SfcO 

because g .=0 for j<2n+i. Hence we deduce that g .,=0 for S; J Sf «IItI 
SfcO. 
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Similarly for i=2n we get: 

°2n<r> -

(-i)-g. 

j=0 s*o- <23+s> 

= (r/2)2ngn nr"|+2(r/2)—(r/2)-"i;"| x Ï 0 / 0 ( 2 ^ 2 ( r / 2 ) - ( r / 2 , - ( - ) 

x V l(2") (r2/2) , 
L- 2s •'•/s+a-U ! S S*0 2 (8«j)« 

from which we deduce that g _ =0 for s^O. s, 2n 
v Since g .=0 for s+jn and since sin <p can be expressed as s i J 

a finite linear combination of sin(kp) and cos(kp), k*0 we 

deduce in the similar way that f .=0 for every s, i*0. Now by s, 1 
(7)...(11) we deduce that c^ n=0 for k fn such that k+nsl. • 

Proof of Theorem 3. Since condition (B) is satisfied we 
deduce that the distribution g(x,y) of (XfY) satisfies (A). 
Moreover g(x,y) can be expanded as follows: 

g(x,y) = (l/(27r)exp(-(x2+y2)/2) £ e H (x)/ni 
n*0 

where e_=E(H (X)). Thus c_ =0 for m*n. n n m, n 
Now notice that condition (2) means in fact that 

E (Y | R)=E(XIR) a.s. and E(Y2|R)=E(X2IR) a.s. Using expansions 

(6) we see that this condition implies that Vs*0 g = f .=0 S f X S f i 
which implies VssO e_ =0 and Vss=0 g = f =0 which implies aST! S f ¿I S I £ 
Vs*0 e 2s = 0" completes the proof. • 

Proof of Corollary 1.4. We use Theorem 4 and deduce that 
our assumptions assure that X and Y are normally distributed. 
Now notice that (X,Y)eY-PRN and (X,Y)eX-GPRN hence we apply 
Theorem 3.1 of [2] to deduce that (X,Y) is binormal. • 
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Appendix 

He will use elements of the theory of distributions, 
however contrary to original Schwartz's approach we will 
rather use sequential one as presented in [1]. Let 9 denote 

2 the space of all rapidly decreasing functions on IR and let ¡f" 
2 be its dual i.e. the space of all tempered distributions on R 

2 ' 
Let us denote further p(x)=exp(-x /2)/V2n, xelR. 

V pe(0,1) pp(x,y)=exp(-(x2-2pxy+y2)/(2(1-p2)))/(2rr/ 1-p2), 

[n/2] 
H n(x)=n!^ (-l)mxn~2m/(m!2m(n-2m)I), 

m=0 hn(x)=exp(-x2/4) / (2i/ri)Hn(x) / (v^Wnl) , xelR, n=0,l,... . 

Functions H and h will be called Hermite polynomials and n n 
Hermite (Hermite-Weber in fact) functions respectively. 

If <pe!f and ge>" then <g , < p > will denote the inner product. 
We will use also the following,more intuitive notation: 

<2»<p>=JJ 2(x'y)i>(x'Y)dxdy=J|»,(x'y)dg(x'y)• 

Let (X,Y) be two standardized random variables defined on 
acommon probability space (£2,?,P) , such that |EXYI<1. Let £ 
denote distribution of (X,Y) (in probabilistic sense). Notice 
that f is also a tempered distribution (in the sense of the 
theory of distributions) for we have: 

V f e y | <f, <p> | = | E<p (X, Y) I <oo 

because <p is a bounded function. 

Expansion Theorem: 

Suppose that 3 C>0,k>0 V n,m s 0 either 

(A) |EHn(X)Hm((Y-pX)// 1-p2)|scnkmk/n!m! 
or 

(A ) |EHn(Y)Hm((X-pY) / A 7 7 l * C n k m V n!m! , 
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then £(x,y)// pp(x,y) is a tempered distribution and moreover 
distribution £(x,y) can be expanded in the following 
unconditionally convergent Hermite series: 

(1) (x,y)=pp(x,y) £ ^ cn(fflHn(x)Hm((y-px)//l^rT 
n=0 m=0 

if (A) is assumed 

(!') £(x,y)=Pp(x,y) £ £ °n,mHn(y)Hm((x"py)/v/ 1 - p 2 ) 

n=0 m=0 
if (A*) is assumed where: 
cn,m = EV X>V< Y- p X>/ / l-'' 2 )'Cn,m=EHn(Y)Hm((X-pY)//l-p2 ). 

Proof. First notice that under (A) we have: 

2nIJ|f(x,y)hn(x)hm((y-px)// 1-p2)/(/pp(x,y))dxdyI = 

= I EHn(X)Hm( (Y-pX) // 1-P2) I /v4l!m! I aCnkmk. 

Thus %=f/}/p is a tempered distribution (Thm.8.1.1 of [X])-
Hence g can be expanded in the Hermite series 

3(x,y) = £ £ dn mhn(x)hin((y-px)//TV7 = 
n=0 m=0 

= /pp(x,y)£ ^ c
n/mHn(x)Hm^y-Px)//:L-p2 

n=0 m=0 
where d„ =c /•(n!rn!)'. n,m n,m 

Multiplying both sides of the above eguality by y/p̂  we get 
(1). We argue similarly when assuming (A*). • 

Remark 1. Assumptions (A) and (A*) are rather complicated. 
We will give thus an example of joint distribution that 
satisfy (A) and (A*). 

Namely since |Hn(x)Isconst v^i!exp(x2/4) (Sasone [8] p.324) 
if (X,Y) are such that: Eexp(X2/4), Eexp(Y2/4)<co then (A) and 
(A*) are satisfied. 
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Proof of Lemma 1. 

(i) Since Hm(z)p(z)v'(2n) = (-l)
indm(exp(-z2/2)) /dzm we get 

immediately 

Jk,n /m
( y ) = J Hn ( a z + p y ) Hk ( y z + i y ) d m ( ( _ 1 ) 1 I I e x p (" 2 2 / 2 ) ) ' 

After integrating this expression by parts (m times) we 

obtain: 

Jkfn,m(
y> - J«P(-«2/*> * 

m 
x ( I (j)7H^ria3H»-j<"4»>TEWlirB'3 Hk-m+j(*z+5y>) -

F o 
m 

= m ! Z ( j ) | H ) a j T m " j I e X P ( " z 2 / 2 ) H n - j ( a Z + 0 y ) H l c - i + j ^
z + S y > d 2 -

3=0 
k 

Now we use formula: Hk(az+/3y) = V ^ j a ^ p * - ^ (z)Hk_j (y) 

D^O 
twice and get: 

Jexp(-z2/2)Hn_j(az+Py)Hk_m+j(rz+5y)dz= 

n-j k-m+j 

t=0 s=0 

x|exp(-z2/2)Ht(z)Hs(z)dz 

which after some computation ends the proof of (i), 

(ii)is a well known property of Hermite polynomials, 
(iii) First let us make some remarks concerning functions 

Dn,m ( r' f )-
(a) If m is even then D n m(r,.) is even. If m is odd then 

D_ _(r,.) is odd. n,m 
(b) Since H n is a polynomial of degree n, D n m(r,.) is a 

trigonometric polynomial of order at most n+m containing 

either only sinuses (m odd) or only cosines (m even). 

(c) Since Hn(x) contains only either even or only odd 

powers of x D r m(r,p) must be of the form: 
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Dn,«< r'»>-

[n/2]+[m/2] 

^ P"'m(r) sin(n+m-2t) ip if m is odd 

t=0 
[n/2]+[m/2] 

I 
t=0 

cos(n+m-2t)(p if m is even. 

(d) We have: 

r a D k , m ^ ' 1 > ^ a r " ( n + m) D
n f m(

rf<P) + n( n - 1)D n_2 f l n(
r/* >) + 

+ m(m-2)Dn>m_2(r,<p), 

a Dn,* ( r'< p ) / a< p " - ^ n - l . m + l ^ ' ^ - ^ n + l , » - ! ^ ' ^ ' 

Dn,m ( r' 7 r / 2"» > ) = Dn,m ( r'* > )-

From the above equations we get the following ones: 

(Al) 

r ( P ^ m ) ' = ( n + m ) P ^
m 

r(p£'m) = (n+m) P?' m+n (n-1) P ^ 2 , p ^ m - 2 

for 0 < i s [n / 2]+[m / 2 ] . 

(A2) 

If m=2h then 

(n+2h-2i) Pj' 2 h=nP2 _ : L' 2 h + 1 - 2 h p f 1 ' 2 1 1 - 1 

If m=2h+l then 

(n+2h+l-2i)P?' 2 h + 1=-np£ - 1' 2 h+(2h+l)P" + 1' 2 h. 

(A3) P?' n(r)=(-1)[n/2]+[m/2]+i pn im ( r ) ; r f c ( K 

(e) We get also the following equalities 

straightforward calculations: 

P ^ ° ( r ) = (-l) in!r n- 2 iL{ n- 2 i>(r 2/2)/(2 n- i- 1(n-i)!) for 2i<n 

j2n, 0 

by 

P;"'"(r)=(2n)!L n(r
2/2)/(2 nn!). 

From the first of the equations (Al) we get 

Now since p^°(r)=r n2- n + 1,pj' n(r) = (-l) [n/2] rn 2-n +l a n ( J 
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because of (A2) we deduce that: p£'n(r)-(-l)[n/2]rn4®2~n~"+1. 
Having p£'m(r),p"'°(r) isn+m and P?'m(r), n,melN after some 

computations we can check that P?'m given by (3) satisfy 
(Al). -

Proof of Corollary 1.2. 
(i) f(p,q)=Eexp(ipU+iqY) = 

= exp(-(p2+q2)/2) Y ck>j(ip)j(iq)k(^(l-p2))k/(k!ji), 

where U=(X-pY)//(1-p2), i2=-l. 
It is easy to notice that <pv v(t,s) = f (tv̂ [ 1-p2),s+pt) = A , I 

n 
= q(t,.)£ £ ((is)m/*!)((it)n/n!) £ (i)pkck+m,n_k . 

m^O n*0 k=0 

(ii) f(r,i>) = (27r)-1rexp(-r2/2) ̂  c
k,nDk,n(r'*') ̂ (l-p2) )k= 

k,n*0 
= (27r)-1rexp(-r2/2)x 

s 
X { £co.(2jf)£ £ c2k 2s_2kP2^2s-2k(r)(l-p2)k/ 

jaO s=jk=0 
((2k)!(2s-2k)!)+ 

jsO s=j k=0 
/((2k+l)!(2s-2k)!) + 

s 
£.in((2j+l )*)£ £ «2kf2.-2k+lPi-j2'"21C+lir><1^2)k/ 

s-j k-0 /((2k)!(2s-2k+l)!)+ 

j S 0 S j k _ 0 /((2k+l)!(2s-2k+l)!)}. 

Now we use Lemma 1 and change variables from s to s-i to 
get our assertion. • 
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Proof of Lemma 3. Let U=(X-pY)//(1-p2), V=(Y-pX)//(1-p2). 

First notice that (X,Y)eY-GPRN (X-GPRN) means that 

V k£l E(Hk(U)|Y)=Qk(Y) a.S. (E(Hk(V)|X)=Q^(X)a.S.) 

Similarly (X,Y)eY-PRN ((X,Y)eX-PRN) means that: 

V k*l E(Hk(U)|Y)=Qk_1(Y) a.S. (E(Hk(V)|X)=Q^_1(X)a.S.) 

Secondly since Y~N(0,1) (X-N(0,1)) we have c k Q= 0 & bQ k= 0 
for ktl (6k 0=0,& b k Q=0 for ktl) and also that 

V ktl; yelR jHk(u) f (u,y) du = p(y)Qk(y) in case of (X, Y) eY-GPRN 

and Vksl;yelR $Hk(u)f(u,y)du = piyJQj^iy) in case of 

(X,Y)eY-PRN. 

Similarly for X-GPRN and X-PRN. Now we use expansion (1) 
and get: 

(X,Y)eY-GPRN <=» c k n=0 for k>n*0 and 

(X,Y) eY-PRN «=> c. =0 for k£n£0,k+n£l since c n =0 has to k ̂  n u f u 
be excluded. Statements concerning (X,Y)eX-GPRN and 

(X,Y)eX-PRN are proved in the similar way. Now we use first 

assertion of Corollary 1.1 and get the desired assertions. • 

Proof of Lemma 4. Our assumptions assure that b = 0 for n,m 
|n-m|fcl. Thus the first assertion of our lemma we get immedi-

ately. Corollary 1.1 gives b in terms of c v . It is easy n / In iv f li 
to check that: 

n 

% n = n ? ) ( - p ) j b n - ; j , k + j k' n* 0 
j=0 

We get ii) from this formula. Since c n =0 for ntl are the o, n 
coefficients which appear in the expansion of f(u) we get iii) 

from ii). To get iv) we insert ii) into (1) and after some 

algebra we get the desired formula. • 
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