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BINORMAL LAW CHARACTERIZED BY POLYNOMIAL CONDITIONAL MOMENTS

1. Introduction

This paper is intended to be a continuation of
characterization problems inspired by problem 2 of chapter 6
(p 638 in Russian version) in [4). That is we study a
polynomial regression assumption 1in characterization of
binormal distributions. However contrary to [2] we study

mostly regression on r.v. R=V(x2-2pXY+Y2) where X, Y are
standardized and p=EXY. The technique used is also different.
The results are proved by Hermite expansion of the
distribution of (X,Y¥) and technical lemmas presented in the
Appendix under basically the following condition: 3 a>0

Eexp (AR?) <o.
In fact we will assume little bit less (it is shown in the
Appendix) namely that either of the following two conditions

hold: 3 ¢C>0, k> 0V n, mz 0 either

() |EH_(X)H_((¥-pX) /V 1-p%)1 = cn’n*V/ nim!
or

(A%) VEH_(V)H_((Xx-p¥) /¥ 1-p% )| s cn*n*/ nim!

here Hn(x) denotes n-th Hermite polynomial i.e.
[n/2]

Hn(x)=n!Z (-1) P20
n=0

/(m!2®(n-2m) ).

AMS (1985 revision) classification: primary 62E10, secondary
60E99
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We believe that the above mentioned assumption is
superfluous. To support this belief it might be of interest to
state that Theorems 1.1 & 3.1 of [2] were first proved under
this assumption and later generalized.

The main results are in Section 2.

In order to make the formulation of the theorems shorter
and more clear let us generalize general polynomial condition
considered in [2).

Let (X,Y) be a pair of standardized L, random variables.

Let p=EXY. Finally let g:Rx—R be Borel measurable function
and let us denote:

(1) Fz)= [[ p,(x,y)axay
g(x,y)sz
where p,(x,y)=exp (- (x’~2pxy+y°) / (2(1-p%))) / (2nV 1-p?).

Definition 1. We say that (X,Y) belongs to 2-General

Polynomial Regression class associated with Normal
distribution iff

a) 2=g(X,Y) is distributed according to F

b) Vk=1 E(xX*I2)=05(2) ana E(Y¥12)=0%(z) a.s.

where Q; i=1,2 are polynomials of degree not exceeding k. We
write in this case (X,Y)eZ-GPRN.
The most important cases to be considered are 2Z=X, 2=Y,

Z=aX+b¥, ab#0, z=v (X2-2pXY+Y?).
For the first three cases we introduce the following:

Definition 2. Suppose that the function g in the
definition of random variable Z is such that var(Z)=1.Suppose

further that (X,Y)e Z-GPRN and that the polynomials Qi i=1,2
appearing in condition b) of Definition 1 are of the form:

k, ~2

z7+ Q _,(2)

1 k k. 4
Q(2)=py , 2+ Qi_l(Z), Qi(2)=p§'z

where px,z=Exz, P, ,=EYZ and Q;_l i=1,2 are polynomials of

Y,
degree not exceeding k-1. We say in this case that (X,Y)
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belongs to Polynomial Regression class associated with Normal

distribution and write (X,Y)e Z-PRN.

2. Main Results

We start with the following result which 1is closely
related to Theorem 3.1 of [([2). This time however we will
assume that (X,Y) are simultaneously X-GPRN and Y-GPRN. It
turns out that in this case one more condition is required.
Theorem 1 below gives few examples of such conditions. Namely

we have.

Theorem 1, Suppose (X,Y) satisfy (A) or (A*) and are both
X-GPRN and Y-GPRN. Moreover if 0<|pl<1 and any of the
following condition holds:

o 2_,2 2

1 R%=X“=2pXY+Y has exponential distribution
2°  E(¥%IR)=R%/2 a.s.

o 2
3 E(XYIR)=pE(Y“|R) a.s.

then (X,Y) has binormal distribution.
Corollary 1.1 Suppose (X,Y)eY-GPRN, satisfies (A) or (A*),
V nz1 E(X"IR)=E(Y"IR) a.s.
2_ 2 2
where as usually R"= X"~ 2pXY+Y
of the condition 1°,2o

0<lpl<1l then (X,Y) has binormal distribution.

, P=EXY and moreover that any
or 3° of Theorem 1 is satisfied. If

Remark 1. If among the assumptions of Corollary 1.1 we
assumed (X,Y)eY-PRN instead of (X,Y)eY-GPRN then one would not

© or 3° of Theorem 1

have to assume any of the conditions 1°, 2
to deduce binormality of (X,Y). To show this we argue first as
in the proof of Corollary 1.1 and then use Theorem 3.1 of (2].

In the next Theorem we analyze condition R-GPRN (where

R?=x?-2pXY+Y?). Recall that the condition R-GPRN implies that

R has exponential distribution (compare the definition of F
given by (1)).

Theorem 2. Suppose that (X,Y) are such that (A) or (A*) is
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satisfied and that (X,Y)eR-GPRN. If |p|<l,then (X,Y) has
binormal distribution.

In the next two results we deduce normality of a random
variable by comparing its conditional moments (first two are
enough in fact) with the same conditional moments of some
normal random variable conditioned upon the same random
variable. More precisely our next result is as follows:

Theorem 3. Suppose X and Y are independent and Y ~ N(0,1),

EX=0, EX’=1, and 3 k>0,C>0 V neN IEH_(X)| = cn*vA! (B).
Suppose further that:

(2) E(XIR)=E(YIR) a.s., E(X?IR)=E(Y2IR) a.s.

where R?=x2+Y2, then X ~ N(0,1).

As a corollary we get the following result in which we
deduce binormality of a pair of random variables (X,Y)
assuming only some moment conditions, polynomial regressions
of one upon the other and comparing conditional moments of
every coefficient of the pair with similar conditional moments
of an independent (of the pair) Gaussian random variable D
conditioned upon sums of squares of X and D and Y and D. More
precisely we have:

Corollary 1.3, Let (X,Y) be a pair of standardized random
variables satisfying condition (B) and

V k21 E(XkIY)=kak+Wk_1(Y) a.s., E(vk|X)=ﬁk(X) a.s.

where p=EXY and wk and Wk kz1l are polynomials of the degree
not exceeding k. Moreover 1let D_ N(0,1) be independent
of (X,Y). If E(DIR)=E(XIR) a.s. , E(DIR)=E(YIR) a.s.

E(D?|R)=E(Xx?IR) a.s. E(D?IR)=E(Y?|R) a.s.

2 =2

where R2=x2+D , R 2

=y24p , then (X,Y) has normal distribution.

3. Proofs of the results and auxiliary lemmas

The proofs of the results presented in section 2 are based
on the following technical lemmas. First two of these lemmas
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are concerned with the change of variables (X,Y)—> (R, %)
defined by Y=Rcos®, (X-pY)/V(l-pz) = Rsind and finding the
distribution of (R,%) given the the expansion of the

distribution of (X,Y) in the form of the series (1). The
distribution of (R,%) will be expanded in the series of

Laguerre polynomials Léa)(R) a € Nu{0} and sin(ng) and cos(nyp)
nz 0. The proofs of these lemmas and of the others are highly
technical, hence will be presented in the Appendix. 1In this
section we will only present the lemmas and the proofs of our
results.

Before we will present these lemmas let us recall the
definition of Laguerre polynomials:

S
p{ =) 1" (Sha)x"me, 10l (),
m=0

xz0,az0,s=0,1,... .
Let us also denote p(z)=exp(-zz/2)/V(2n). We have:

Lemma 1. (i) Let us denote
Iy n m V=V [p(2)H (2)H_ (az+By) Hy (v2+5y) dz.

For any «,B8,7%,8 such that aB78<0 |al=|81, IB8I=I7l, a2+32=1 we
have:

Jk,n,m(Y)
m
k k-m+27j +m=-25, . j, . -3
j=0

(ii) fn(t):=Jexp(itx)p(x)ﬂn(x)dx=(it)nexp(—t2/2) (here i%=-1).

(iii) Let us denote D (r,¢):=H_(rcosg)H_(rsing). We have:
n,m n m

([n/2)+[m/2]
Pg’m(r)sin(n+m-zi)¢ if m is odad
1=0
D (r,p)= 1
e (n/2]+(m/2)
P?’m(r)cos(n+m-2i)¢ if m is even,
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where
( ph/m nim! n,m_n+m-2i _ (n+m-21i) ,_2
(r)y=(- 1) — F.''r L; (r=/2)
onim=1 1(n+m-1)! b
if 2i<n+m
(3)
2n+2m n+tm n!m! 2 _
\ Poom (¥)=(-1) _nim Lom(¥°/2) if i=n+m,

and F?’m are real numbers given by:

n m_ . 1)[m/2][n+m]

() ia{m/2] , m+n=-2i, i
e

j=0v(1i-[n/2])
Corollary 1.2.
(i) Characteristic function of Py Y(t,s) of (X,Y) has the
’
following form :
+;
g,y (E8)=act,s) D by (i6) " (18) " (1-p%) /2 (nimi)
n,mz0
.2 _ 2 2
where i"=-1, q(t,s)= exp(-(t"+2pts+s”)) and

n n
_ n) k _ n) k A
(5) P ,m= E: [k]p ®k+m,n-k = }: [k]p Ck+n,m-k"
k=0 X=0

(ii) Let R,?® be new random variables defined by the
relationships

Y = R cos®
(X-pY) /V(1-p%)=Rsin®, with R=0 a.s. and de(-m,m].Let £(r,p) be
the distribution of (R,%), then:

(6) f(r,¢)=(1/(2n))rexp(-rz/z){ E: (-1)%g, Lo (x?/2)/(s12%) +

s20
2i
¥ E: §5IACOS(2i¢)§Z (=1) gs 23l ézl)(rz/z)/(25-1(8+21)!)) +

1z1 sz0
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r2i+1
+ ;7I¥1c°s((2i+1)¢) x

=0
x 2: (<)%, 514,838 (272 /(257 (sr2841) 1) +

2i+1
+ 3171 sin((2i+1l)p) x

21
1z0

x 2:(-1)sf Lézi+1)(r2/2)/(zs-1(s+2i+1)!)+

s=0

s,2i+1

2i
r . . }: s
+ ;EI sin(2ip) (-1)7f

.LéZi)(r2/2)/(25_1(s+2i)1)}.
T1 s20

s,21

where we have denoted:
s

- s _.2,k
(7) 9s,0 ‘E: [k](l P7) "Cox,25-2k"
X=0
s+i
~ _2.k_2k,2s+2i-2k
(8) 9s,2i 'E: €2k, 2s+2i-2x(17P ) Fg' '
k=0

s+i

= /ra_ .2y, 2k+1_2k+1,2s8+2i-2k
(9) gs,2i+1‘§z Cok+1,2s+2i-2k (V(17P7)) " TFT Y .

k=0
s+i -
(10) fs,2i+1=§: c2k,25+2i-2k-1(1-p2)kF:k'25+21-2k-1 '
X=0
s+i-1
(11) fg,24 =§: °2k+1,2s+2i-2k-1(V(1-p2))2k+1F§k+1'25+2i‘2k'1

k=0
ik
s

Lemma 3. Suppose (X,Y) satisfy (A) and (A*).We have then:

and numbers F s,i,k € Nu{0} are defined by (4).

(i) (X,Y)eY-GPRN & ck,n=° for k>nz0 ¢ bn,m=° for m>n=0,

(ii) (X,Y)eY-PRN & c n=° for kznz0, k+nzl &

k,

) bn,m=° for mznz0, m+nz1.
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(iii) (X,Y) €X-GPRN ek =0 for k>nz0 e b =0 forn>mzO.
/N n,m

(iv) (X,Y)eX-PRN & & ,=0 for kznz0, k+nzl e

k,
> bn,m=° for nzmz0, m+nz1l.

Remark 2, As an immediate consequence of Lemma 3 we get
weaker version of Theorem 3.1 of [2]). Namely under assumptions
of Theorem 3.1 and (A)and (A*) we deduce by Lemma 3 that the
conditions (X,Y)eY-GPRN and (X,Y)eX-PRN imply that bn,m=° for
m>nz0 and for nzmz0, m+nzl. Thus we deduce that the
characteristic function of (X,Y) is equal to coloq(t,s) which
means that (X,Y) are binormaly distributed.

Lemma 4. Suppose that (X,Y) satisfy (A) or (A*) and at the
same time we have both (X,Y)eX-GPRN and (X,Y)eY-GPRN. Let
Px Y(t,s) denote characteristic function of (X,Y), then:

14
, n n 2, n 2
(1) oy y(s0)=a(s,t))  (-1)™es) ™, (1-p%)% (n1)?,
nzo0
n : .
_ —ny (N-K) /2 if n-k is even
[255)( P) Phtk n+k
. = T 1T
(ii) ck,n 2 2

0 if n-k is odd or k>n,

(iii) the distribution of random variable U=(X-pY)/V(1—p2) is
given by:

k(2k
£(u)= - .
W=p)) (=) *(2¥)p, Hyy (w)/ (2K)
k=0
(iv) joint distribution of (U,Y) is given by the following

formula:

£(u,y) = p(u)p(y){bo,o+§: (=) by /stx
sz2

(s/2]
2,k -2k
X[ 2;0 (1=p7)7"p "THy (Y)Hy o oy (W) /((2Kk) ! (s=2k) )~
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[(s=1)/2]
- E: (V(1-p2)) 2K+15"
k=0

x st_2k_1(u)/((2k+1)!(s-l-Zk)!)]} .

1y
e (V)

We will present now the proofs of the main results.
Proof of Theorem 1:
(a) Clearly we have R2=Y2+U2 where U=(X—pY)/V(1-p2). Since

by assumption R? has exponential distribution we deduce that

9g =0, szl which together with (7) and Lemma 4 implies that
!,
bk,k=° kzl or consequently ck,n=° for k+nz1l.

(b) Simple calculation shows that E(UZIR)=E(Y2IR)=R2/2

a.s. Thus E(Yz-Ule)=0=R2coszo where (R,®) are defined by

=Rcos®, U=Rsin®. This however means that:

V rer’ Icos(zw)f(r,w)dp =
-n
where f(r,¢) distribution of (R,®).
By (6) we see that this implies that gg =0 for s z 0.
14
Inserting assertion (ii) of Lemma 4 into (8) we get for each

sz0:
[(s+1)/2] k2K, X X
_ - s-kp2k, 28+1-2K (25+2-2
Vez0  0=b ., o4 E: (1-p%)%(=p) [ s+1-2k
k=0

which implies that bn n= 0 for n>0 and consequently that
I

% n~ 0 for all k,n such that k+nz1.
’
(c) In this case we have E(Y(X-pY)IR)=0 a.s. which means

that:
n

V rert Isin(Zw)f(r,w)dw = 0.
-n
Using similar arguments as in the proof of (b) we deduce
that this condition leads to the conclusion that ¢ =0 for

k,n
all k,n such that k+nz1. ]
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Proof of Corollary 1.1. Condition Vnz1 E(X®IR) = E(Y"IR)
a.s. implies that X and Y have the same distribution. Thus X
can be exchanged with Y. Hence all the assumptions of Theorem
1 are satisfied. [

Proof of Theorem 2. Let random variables U,R,® be defined
similarly as in the proof of Theorem 1. We will show that the
assumptions lead to the conditions gg =0 for all s and i

!

such that s+izl, and fs i=° for all s, iz0. This fact will be
1’
shown by induction with respect to i.

1° 9g o=° for szl since the density of R 1is equal to
’

rexp(-r2/2), rz0.

o

2" Suppose that 9g .=0 for each sz0 and Jj<i. -Since the

s,J
condition E(YklR)=Qk(R) a.s. kzl1 where Qe is a polynomial of
degree not exceeding k, means that

rk Icoskw f(r,p)de = Qk(r)rexp(—rz/z) for reR+.

-
2-2n[

k
Now since: cos ¢ =

n
z: [n+j cos(2]p) ,if k=2n
J=
g72n 2n+1 . . _

E: [n+3+1 cos((2j+1)p) , if k=2n+1,

we deduce from (6) that for i=2n+1l

n
Qpea (F)=(x/2) 2702 ) [ 2003 (x/2) 234
50

(-1)%g .
E: s,23+1 L(23+1)(r2/2)]=4(r/2)2n+1(r/2)2n+1 ,

s-1 . ) =3
Sz0°2 (2j+s+1)!
-1)S (2n+1) 2 s-1 '
(=1)79g, 2n+1ls (r®/2)/((27 “(2n+s+1)!)
sz0
because g_ .=0 for j<2n+l. Hence we deduce that g =0 for

s,j S,2n+1

sz0.
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Similarly for i=2n we get:

Qu(r) =

=(r/2)2n[[22]g0,0+2§: [n+3](r/2)2j Z (1795 254 (:J+S)|Lé23)(r /2)]

= (x12)%"g, o [*R)r2xr2) " x/2)?" 37

(-1) g
x E: ___:__§LEE_ L(zn)(rz/z)

1 . s
S50 (s+23)!

from which we deduce that Ie 2n=° for s=z0.
!

Since gs,j=° for s+jzl and since sinkp can be expressed as
a finite linear combination of sin(kp) and cos(kp), kz0 we
deduce in the similar way that fs,i=° for every s, iz0. Now by
(7)...(11) we deduce that ck,n=° for k,n such that k+nzl. (]

Proof of Theorem 3, Since condition (B) is satisfied we
deduce that the distribution g(x,y) of (X,Y) satisfies (a).
Moreover g(x,y) can be expanded as follows:

g(x,y)=(1/ (2m) exp (- (x*+y?) /2) I gy (x)/n!
nz

where en=E(Hn(X)). Thus cm,n=° for m=n.

Now notice that condition (2) means in fact that

E(YIR)=E(XIR) a.s. and E(Y2IR)=E(X2|R) a.s. Using expansions

(6) we see that this condition implies that Vszo0 dg 1= fs 1=0
I I

which implies Vsz0 e,541=0 and Vsz0 Is, 2™ fs,2=° which implies

Vsz0 e,_=0. This completes the proof. ]

2s
Proof of Corollary 1.4, We use Theorem 4 and deduce that
our assumptions assure that X and Y are normally distributed.
Now notice that (X,Y)eY-PRN and (X,Y)eX-GPRN hence we apply
Theorem 3.1 of [2] to deduce that (X,Y) is binormal. ]
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Appendix

We will use elements of the theory of distributions,
however contrary to original Schwartz’s approach we will
rather use sequential one as presented in [1]. Let ¢ denote
the space of all rapidly decreasing functions on R? and let ¥’
be its dual i.e. the space of all tempered distributions on R2.

Let us denote further p(x)=exp(-x2/2)/Vfﬁ, xeR.
V pe(0,1) pp(x,y)=exp(-<x2-szy+y2)/<2(1-p2)))/(2n¢ 1-p%),

(n/2]
Hn(x)=n!§: (-1)"x"" 2™ (mt2™(n-2m) 1),
n=0
hn(x)=exp(-x2/4)/(ZVﬁ)Hn(x)/(Vznn!), x€R, n=0,1,... .
Functions H and hn will be called Hermite polynomials and
Hermite (Hermite-Weber in fact) functions respectively.

If pef and ge¥’ then <g,¢> will denote the inner product.
We will use also the following,more intuitive notation:

<g.o>=[[ gy axay=[fex,vag ey

Let (X,Y) be two standardized random variables defined on
acommon probability space (Q,%,P), such that |[|EXY[<1. Let f
denote distribution of (X,Y) (in probabilistic sense). Notice
that £ is also a tempered distribution (in the sense of the
theory of distributions) for we have:

Vo e I<f,p>I=IEp(X,Y) | <o

because ¢ is a bounded function.

Expansion Theorem:
Suppose that 31 ¢>0,k>0 V n,m 2 0 either

(A) IEHn(X)Hm((Y-pX)/V 1-p2)I5anmk n!m!
or

%) |EH_(Y)H_((X-pY) /V 1-p2) 1scn¥n®V nimt
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then f£(x,y)/V pp(x,y) is a tempered distribution and moreover
distribution £(x,y) can be expanded in the following
uncondjtionally convergent Hermite series:

(1) (%,9)°p, (x,¥) ) Z Cp, ultn (VL ((y-px) 1V 1-p% )

n=0 m=0
if (A) is assumed

) 2Ry ) ) & (B ((x-py) Y 1-p 2)
n=0 m=0
if (A*) is assumed where:

Cn, n"Eip (X)Hp ((¥=pX) /¥ 1-p° ),én,m=EHn(Y)Hm((x-PY)/V 1-p% ).

Proof. First notice that under (A) we have:

2m) [ {20, )y Oy ((y=p%) Y 1-9%) [ (VR (x,3) ) axay | =

= |EH_(X)H_ ((¥-pX) 1V 1-p%) | Vaim! | scn¥n¥.

Thus g=£/¢pp is a tempered distribution (Thm.8.1.1 of ([1]).
Hence g can be expanded in the Hermite series

a(x,y) E: Dy, ahn I, ((y-px) 1V 1-p7

n=0 m=0

= Ve, x,1)) }: n,wHin XV ((y=03) 1V 1297 ),

n=0 m=0

where d =c /v (ninly.

n,m n,m

Multiplying both sides of the above equality by VS; we get
(1) . We argue similarly when assuming (A*). "

Remark 1. Assumptions (A) and (A*) are rather complicated.
We will give thus an example of joint distribution that
satisfy (A) and (Ax*).

Namely since IH (x) | sconst V—'exp(x /4) (Sasone (8] p.324)
if (X,Y) are such that Eexp(x /4), Eexp(Y /4)<o then (A) and
(A*) are satisfied.
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Proof of Lemma 1.

(1) since H_(z)p(z)V(2m)=(-1)"da"(exp(-2%/2)) /a2 we get
immediately

Iy o m(¥)=[H, (az4+BY) B (v243y) a%( (1) "exp(-2%/2)) .
After integrating this expression by parts (m times) we

obtain:

I nm) = [exp(-2%/2) x
m
m) n! j k! m-j
« | E:o[j Th3719 P (62 48) (g 7™ By (r248y) ) =
J=

n
- n)( k j.m=3 _.2
m! }:o(j](m_j]a 7 ,Iexp( z /Z)Hn_j(az+By)Hk_m+j(1z+8y)dz.
J=

k
Now we use formula: Hk(az+By)=§z [?]aJBK-JHj(z)Hk_j(y)
=0

twice and get:
Iexp(-22/2)ﬂn_j(az+By)Hk_m+j(1z+8y)dz=

n-j k-m+5

= Z Z [mt-:j] [k-2+j]“t5k+j-m-s7an-j-tHn-j-t(Y)Hk-m+j-s(Y)x
=0 s=0

xIexp(-zz/z)Ht(z)Hs(z)dz
which after some computation ends the proof of (i),

(ii)is a well known property of Hermite polynomials,
(iii) First let us make some remarks concerning functions
D, m(Er®).

(a) If m is even then D
Dn,m(r") is oda.

(b) Since H is a polynomial of degree n, Dn,m(r") is a
trigonometric polynomial of order at most n+m containing

(r,.) is even. If m is odd then
n,m

either only sinuses (m odd) or only cosines (m even).
(c) Since Hn(x) contains only either even or only odd
powers of x Dn m(r,p) must be of the form:
’
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([ [n/2)+[m/2]
M(r) sin(n+m-2t)p if m is odd
t=0
Ph,m(Fr®= 1 [n/21+[m/2)
m(r) cos(n+m-2t) ¢ if m is even,
{ =0

(d) We have:

rdDy n(r,p)/dr = (n+m)D, . (r,p)+n(n-1)D (r,p)+

n-2,m

+ m(m_z)Dn’m_z(rl¢)l

3Dn,m(r,¢)/3¢ _nDn-l,m+1(r’¢)+mDn+1,m-1(r'¢)'

Dy p(F/M/279) =D (r,9).

From the above equations we get the following ones:

{
n,m,,_ n,m
r(Py’") ’=(n+m) Py
(Al) 4 r(Pr.l’m)=(n+m)P +n(n 1)Pl:l 2, +m(m 1)Pn , =2
1 i-1 i-1
| for 0 < i = [n/2]+[m/2].
[ If m=2h then
(n+2h-2i) Pl 2Nanpl=1, 2041 5, p0+1, 20-1
1
(32) A
If m=2h+1 then
(n+2h+1-21)P}" 2h+1 _np?_112h+(2h+1)Pn+1 $2h
(A3) p?'"(r)=(_1)[n/2]+[m/2]+1 N .

(e) We get also the following equalities by
straightforward calculations:

N2, (021) 122y (2" 1 (n-1) 1) for 2i<n

o(r)=(-1)in!r
p2™ 0 (r)=(2n) 11,_(r?/2)/(2"n!).

From the first of the equations (A1) we get
m, ._ n+m
(r)—cn’mr .

Now since Pg'°(r)=r"2‘n+1,pg:n(r)=(_1)[n/2]rn2-n+1 and
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because of (A2) we deduce that: Pn,m(r)=(_1)[m/2]rn+m2-n-m+1.
0

Having Pg’m(r),Pg’o(r) isn+m and Pg’m(r), n,meN after some

computations we can check that P?'m given by (3) satisfy
(Al). ]

Proof of Corollary 1.2.
(1) f(p,q)=Eexp(ipU+iqY) =
= exp(-(p%+a%)/2) ) oy s(ip) a (v (a-e®n ¥/ ki3,
k,Jz0
2 .2
where U=(X-pY)/V(1-p°), i“=-1.

It is easy to notice that ¢x.Y(t,s) = f(tV(l-pz),s+pt) =
14

= q(t,s)E: E: ((is)™/m!) ((it)"/nt) 3: [ﬁ]pkck+m,n—k .
k=0

mz0 nz0
(i) £(r,e)=(zm Trexp(-r?/2) ) o Dy L (r,0) (V(2-p7)) -
k,nz0

= (2m) “lrexp(-r?/2)x

x { EZ°°S(23¢)§: E: 2k, 28-2k §5,25'2k<r><1-p2)k/

s=jk=0
((2k)!(2s-2k)!)+

S
+) cos((2341)0) ) ) S ae pPanst 5@ (a-p?)) P

ij s=j k=0
/ ((2k+1) ! (28-2k) !) +

S
) sn(@I+0) Y S ae oy Pass S ) (167 %y
=0 s=3 k=0 /((2K) ! (28-2k+1) 1) +

(N

S
+§:sin((2j+2)¢)§: }Zc2+1'25_2k+1p§§;1,2s-2k+1(r)( 4;:;3))2k+1/

jz0 s=j k=0 /((zk+1)!(2s-2k+1)!)}-

Now we use Lemma 1 and change variables from s to s-i to
get our assertion. »
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Proof of Lemma 3. Let U=(X-pY)/V(1-p%), V=(Y-pX)/V(1-p%).
First notice that (X,Y)eY-GPRN (X-GPRN) means that
V kz1 E(Hk(U)IY)=Qk(Y) a.s. (E(Hk(V)IX)=Qi(x)a.s.)
Similarly (X,Y)eY-PRN ((X,Y)eX-PRN) means that:

V k=1 E(H, (U) 1¥)=Q, _, (¥) a.s. (E(H,(V)IX)=Q/_,(X)a.s.)

ck,0= 0 & bO,k= 0

=0 for kz1l) and also that

Secondly since Y~N(0,1) (X~N(0,1)) we have
for kz1 (ek’°=0,& bk,o
V kzl1l; yeR SHk(u)f(u,y)du = p(y)Qk(y) in case of (X,Y)eY-GPRN
and Vkz1;yeR SHk(u)f(u,y)du = P(Y)Q_; (V) in case of
(X,Y) €Y-PRN.

Similarly for X-GPRN and X-PRN. Now we use expansion (1)

and get:
(X,Y)eY-GPRN & Sx n=° for k>nz0 and
’
(X,Y)eY-PRN & c =0 for kznz0,k+nzl since c =0 has to
k,n 0,0
be excluded. Statements concerning (X,Y) eX-GPRN and

(X,¥)eX-PRN are proved in the similar way. Now we use first
assertion of Corollary 1.1 and get the desired assertions. L]

Proof of Lemma 4. Our assumptions assure that b 0 for

n,m
In-m|{z1. Thus the first assertion of our lemma we get immedi-

ately. Corollary 1.1 gives b in terms of c . It is easy
; n,m k,n

to check that:
n

= n - j
I ) L R
3=0

We get ii) from this formula. Since ¢ n=0 for nzl are the

o,
coefficients which appear in the expansion of f(u) we get iii)
from ii). To get iv) we insert ii) into (1) and after some

algebra we get the desired formula. ]
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