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GLUING OF DIFFERENTIAL SPACES

In this paper we study some geometric properties of the
differential space which is obtained by gluing together
differential spaces in the sense of Sikorski ({13), [14]). 1In
Section 1 we review some of the standard facts on Sikorski’s
differential spaces. In Section 2 we describe some basic
notions and facts concerning the singularity which is obtained
by gluing differential spaces together. In Section 3 some
special cases are presented. The aim of the paper is to
prepare mathematical methods of gluing differential spaces
together for further applications in the theory of
singularities of space-times [2], [1].

1. Preliminaries

Let M be any set and C be any non-empty set of real
functions on M. By To ve denote the weakest topology on M in
which all functions from C are continuous. For any subset AcM,
let CA be the set of all real functions 8 on A such that, for
any peA, there exist an open neighborhood Uetc of p and a
function aeC such that B|AnU = a|AnU. By scC ([16]) we shall
denote the family of all real functions on M of the form

W o (al,...,an), where W € Qn, Ogecesd € c, neN and

1
_ AN
€n =C (R).
A set C of real functions on M is called a differential
structure on M if C = Cy = scC. The pair (M,C) is said to be a
differential space [13]. A differential space (M,C) is said to

be generated by Co if ¢ = (SCCO)M' If (M,C) is a differential
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space'and A is a subset of M, then (A,CA) is also a
differential space, which is called the differential subspace
of (M,C). By a tangent vector to (M,C), at a point p e M, we
shall mean any linear mapping v: C — R which satisfies the
condition

v(a-B) = v(x)-B(p) + a(p)-v(B) for «,8 € C.
By T _ M we shall denote the tangent space to (M,C) at p € M.
A mapping f: M — N of a differential space (M,C) into a
differential space (N,D) is said to be smooth if
f'(a) := aof €e C, for every a € D. A mapping f: M — N |is
said to be a diffeomorphism of (M,C) onto (N,D) if f is a

smooth bijection and £ 1 is smooth.

If f: M — N is smooth and v e TpM, then the formula

(f_pv) (a) = v(aef) for o € D,
defines a vector f_pv tangent to (N,D) at f(p).

Let Y(M) be the C-module of all smooth vector fields
tangent to (M,C). Now, let (M,C) be a differential space and

K ¢ M a non-empty subset. By t, we denote the imbedding of the

K
differential subspace (K,CK) into (M,C).

Definition 1.1. A vector field XeX(M) is said to be tan-
gent to the set K if for every peK there exists a vector v e
TpK such that X(p) = (LK).pV.

Let IK(M) be the set of all smooth vector fields tangent
to K. Of course, IK(M) is a C-submodule of ' the C-module X(M).
If K= {p} is a one - element set, then IK(M) is the
C-submodule of all vector fields of X(M), which vanish at p.

Definition 1.2. A subset K ¢ M is said to be full in (M, C)
if dim TpK = dim TpM for each p € K.

It is easy to see that if K is full in (M,C), then IK(M) =
= X(M).

Proposition 1.3. For any vector field X € 1K(M) tangent to
a subset K of M, there exists a unique vector field Y e X(K)
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such that
(1.1) X(p) = (LK)'p Y(p) for any p € K.
Proof. Let Y:K — TK be the vector field defined by

(1.2) Y(P) = (L).p (X(P)) for p e K.
The smoothness of Y follows from
(1.3) Y(fIK) = (Xf)|K for any f € C.

Since (L is a monomorphism for each p € K, Y satisfying

K)'p
(1.1) is unique.

In the sequell the vector field Y defined by (1.1) will be
called the restriction of X € IK(M) to the subspace (K’CK) and
will be denoted by XIK.

Lemma 1.4, Let (M,C) be a differential space and K ¢ M be
a non-empty subset. A vector field X € X(M) is tangent to K if
and only if

(1.4) V [fIK = g|K = Xf|K = XglK].
f,geC

Proof. (=) Let XEIK(M). From Proposition 1.3 it follows
that there exists a unique vector field YeX(K) satisfying
(1.1). Let f,g € C be arbitrary functions such that f|K = glK.
From (1.1) it follows that

X(p) (£f) = Y(p) (£1K) = Y(p) (9IK) = X(p)(9),
for any p € K. Hence Xf|K = XglK.
(e=) Assume that XeX(M) is a vector field satisfying
(1.4). It is enough to show that for an arbitrary point pekK
there exists a vector veTpx such that X(p) = (LK).pV. Indeed,

let v: Ck — R be a mapping defined by

n
(1.5) v(a) = _21 Wi (£ (P)yee- £ (P)) X(£;)(P) fOr a € C,
1=

where fl,...,fne C, we 6n are functions such that «|UnK =

= wo(fl,...,fn)lUnK for some open neighborhood Ue T of p.

C
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From (1.4) it follows that (1.5) is correct. Of course,
V(fIK) = X(f)(p) for any £ € C or equivalently (LK).pV‘= X(p).

Now, let p be an equivalence relation on (M,C) ([10],
(16]). A function feC is said to be consistent with p 1if xpy
implies f(x) = £(y) for any x,yeM. We denote by Cp the set of

all f e C consistent with p. One can easily show that C is a
differential structure on M. Let M/p denote the set of all

equivalence classes of p and np: M — M/p be the canonical

(n;)-l(C) the differential struc-

mapping. We denote by C/p :
ture on M/p coinduced on M/p by the mapping np ([(16], ([10}]).
It is easy to show that n;l(g/p) : C/lp > Cp is an isomorphism
of algebras. A subset A c M is called p-saturated if
n;l(np(A)) = A. Let us observe that the mapping

M/p > A Ly n;l(A) ¢ M is a bijection between the family of
p-saturated sets in M and the family of all subsets of M/p.
Let us put mp:= {U € Tyt U = n;l(np(U))}. It is easy to see
that mp = I(tC/p), where tc/p is the quotient topology in the
set M/p and tcp = I(tc/p c/p

mp =Ts [10]. Moreover, mp = tcp if and only if for any Uemp

and for any peU there exists a function weCp such that
¢(p) = 1 and ¢|M-U = 0 [9].

). We have tc/p =T if and only if

2. Some properties of gluing differential spaces together
by diffeomorphism

Let (Ml'cl) and (Mz,cz) be differential spaces. Let
(N,D) = (Mlunz,clucz) be the disjoint union [15]. By defini-
tion, feD iff fIMleC1 and fIMzecz. 1 2
ote by fluf2 the real function on N such that (flnfz)lMi =fi

For flec and fzec we den-

for i=1,2. Let Al < Ml and A2 c Mz be arbitrary non-empty su-
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bsets such that there exists a diffeomorphism

h: (Al,clAl) — (AZ’C Let Pn be the equivalence rela-

28,)"
tion on (N,D) identifying a point peA1 with h(p) e Az' We
denote by [g] the equivalence class containing geN. Of course,
[(p] = {p,h(p)} for peA1 and an equivalence class [q] for

qul v A2 is a one-element set. The quotient space (N/ph,D/ph)
is called the gluing of the differential spaces (Ml’cl) and

(M2,C2) and it will be denoted by (M,uv, M_,C.v, C It can be

1YnM27€1YnC3) -
seen that Dph= {feD: fIAl=foh}. For any flec1 and fzec2 such

that fllA1 = f_oh, we denote by f the function from

2 1%nf2
C,uv, C, corresponding to the function f_uf_eD by the isomor-
1“h"2 1%°2%"p

phism o

phI(D/ph): D/ph — D_ .

Pn

Definition 2,1, Let K be a non-empty subset of a
differential space (M,C). A differential subspace (K,CK) is
said to have the property of global extension in (M,C) if for

any feCy there is a function feCc such that fIK = f.

Lemma 2.1. If (M,C) is a differential space with smooth
partition of unity and KcM is a non-empty closed subset of M,
then (K’CK) has the property of global extension in (M,C).

Proof is standard.
Lemma 2,2. Let (Ml'cl) and (M2,C2) be disjoint differen-

tial spaces, and h: (Al’clAl) — (A2,C2A2) be a diffeomorphism

between respective differential subspaces. If (A and

1°1a)

(A,, C ) have the property of global extension in (M., C.)
2 2A2 1 1

and (Mz’ Cz), respectively, then for any f ¢ ¢, there exists a

function f e Dp such that fIM1 = f and for any g € c2 there
h
is g e D such that gIM, = g.
Ph 2
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Proof, Let f e Cl. Since h: (Al,clAl) — (Az'czAz) is a
diffeomorphism, foh-1 € C2A . From the property of global
2

extension of (Az,c2A ) in (MZ,Cz) it follows that there exists
2

1

f e c, such that f|A, = foh". It is easy to see that the
function f := fuf € D, and it satisfies flMl = f.
h
Analogously, one can prove the existence of § € Dp for a

n
function g € C

5

Now we prove

Proposition 2,3, Let (Ml,cl) and (Mz,cz) be differential
spaces and h: (Al,clAl) — (AZ,CZAZ) a diffeomorphism of res-
pective differential subspaces.

Then the mappings defined by

(2.1) Ly = "p IM1 and L, = "p IM2,
h h
are injective. Moreover, if (Ai’CiA ) has the property of
i - N

global extension in'(Mi,Ci), for i=1,2, then Ly and L, are
diffeomorphisms onto their images.

Proof. One can easily verify that :1 and 22 are
monomorphisms. Let us put
(2.2) Mj = Lj(Mj) P Cj = (Cluhcz)ﬁj' for j=1,2.

Assume that (Aj,cjA ) has the property of global extension in

(Mj 1:

and Lyt (Mz'cz) - (Mz,cz) are diffeomorphisms.

,Cj), for j=1,2. We shall show that ¢ (Ml’cl) —_ (Ml,Cl)

Let wj: ﬁj - Mj be the inverse of :j’ for j=1,2. Clearly,

f o wj = fIMj for f € Cj, j=1,2,

where % € C.u. C, is a function such that %on IM. = £.
1 h"2 h. J

Therefore, wj is smooth for j=1,2. Thus Ly and L2 are

diffeomorphisms.
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One can prove

Lemma 2.4. f € C,u,C if and only if fIMj € C

n2 for j=1,2.
Now, we prove

jl

Proposition 2,5. Let (Ml,cl) and (Mz,cz) be differential
spaces and h: (Al,clAl) —_— (AZ’CZAZ) be a diffeomorphism
between respective differential subspaces.

Then for any p, € A2 and P, = h(pl) € Az,

n (L

(i) (¢)y, T M
1’ep, "p, 1

(L2|A2)

) T M

2)ep,Tp, M2
T_ A,
Py Py 2

(ii) dlm[(L T M. +(t

*p,'p; 1 2)'p2szM2] -

= d1mTp1M1+d1mTp2M2-d1mT 1A1'

Proof. (i) Since h is a diffeomorphism and

(L2|A2)°h = ¢, 1A

1

1+ We have (leA ) A, = (z 14A,)

T A T_ A,.
l'plpll 2'p2 p22

The following inclusion is evident:

L. 1A T A, c (L T M L T M.
(4,1 1)ep Tp 21 € 1)'p1 p,"1 " (t2)ep Tp Mo

It suffices to show that

(C)o T M. n (L,).. T M, c (¢ ) T_A..
1 PPy 1 2 P, Py 2 llA1 P Py 1
Let v € (Ll)'p p n (Lz)-pszznz' Then there exists
a unique pair of vectors (u,,u,) € T_ M. x T_ M, such that
1’72 P, 1 5 2
v = (Ll),plu1 = (1.2)'pz
It can be seen that the following condition is satisfied:
(*) Vflecl,fzecz, [(fllAl=f2oh) > ul(fl) = uz(fz)]'
Now let w: ClA — R be a function given by
1
(2.3) w(g) = ul(gIMI) for g e C1A1’

where éecl is a function such that §IA1nU = gIAan for some
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open neighborhood Uet of p,. The correctness of definition

C
1
(2.3) is a consequence of condition (*). It is easy to verify
the equality

(2.4) (CllAl),plw = (Zl),plul.

Thus v = (Ll)'plul = (LllAl).plw € (LllAl)'plTplAl' This fin-

ishes the proof of (i). It is evident that (ii) is a conse-

quence of (i).
Proposition 2.,6. If there exist homomorphisns

-2 C1A — C1 and =: C2A — C2 satisfying the condition

1 2

(2.5) aIA1 = o and BIA2 = B for any aeClAl, BECZAZ'
then for an arbitrary pea = :1(A1),
Tp(Mluhmz) = (Ll).plTplﬂl + (Lz)‘pszznz,

where P, € A € A2 are points such that p = [pl] = [pz].

1’ P
Let v,: ¢, — R, Vv,: C, — R,

Proof. Let w € Tp(MluhMZ). 1 1 2% €,
v.,: C,, — R be the functions defined by
3 1A1
(2.6) vy (f) = w(fuhfoh-T) for £ € C,

(2.7) vz(g) w(gohuhg) for g € Cz'

_ - ﬁ
(2.8) v3(a) = w(auhaoh ) for a e ClAl'
It is easy to see that vV, € Tplnl, v, € TPZMZ and vy € TplAl.

f, € C.u. C, can be

Let us notice that every function fluh 5 1YnC2

presented in the form

= -1

(2.9) fluhf2 = fluhfloh + fzohuhf2 - fzohuhfloh .
Hence

_ _ =1
w(fluhfz) = w(fluhf1°h) + w(f2°huhf2) w(fzohuhfloh )

or equivalently
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(2.10) w(fluhfz) = (Ll)'plvl (fluhfz) + (Lz).pzvz(flyhfz) -
(LllAl)_p1v3(f1uhf2),
for any fluhf2 € Cluhcz.
Therefore,
w= (Ll)'p vy + (1.2).p vy - (t.llAl).p Vi
1 2 1
Thus Tp(MluhMZ) is generated by (Ll)‘prMl v (Lz)‘pszzMz.

This finishes the proof.
_ =1 _ =1
Denote by V1 =1 (IntAl) and V2 =, (IntAz). Of course,

V,e T

1 is an open subset

is an open subset of A, and V_e T
1 1 2 C2

of Az. From Proposition 2.3 it follows that if (A

Cc

.,C., ) has
i 1Ai

the property of global extension in (Mi’ci)’ for 1i=1,2, then

IV,:Vv, — IntA and L2|V2: v, — Intz are diffeomorphisms

L1'V1iYy 2
of the respective differential subspaces.

Proposition 2.7. Let (Ml,cl) and (Mz,cz) be disjoint
differential spaces and h: (Al’clAl) — (Az,czAz) be a diffeo-

morphism of respective differential subspaces.

Then m_ [ (M, - clA.) v (M,-clA,) is a diffeomorphism of the
P 1 1 2 2
subspace ((Ml-clAl) v (MZ-CIAZ)'(CluCZ)(Ml-clAl)u(Mz-clAz))

onto its image.

Proof. Let ¢ be the inverse to the bijection
npl(Ml-clAl)u(Mz-clAz). It is enough to show that ¥ is smooth.
Let flnf2 € C,uC, be an arbitrary element. It remains to show
the smoothness of (flnfz) o Y. For any point
P € (Ml-clAl))u(Mz-clAz) there exist an open neighborhood U of
P disjoint with A1UA2 and a function g € D such that
flnleU = g|U and gIAlnA2 = 0. Of course Uemp and g € D_ .,

h Pn
It is easy to see that
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(£uf,) s¥in (V) = gim,(U),
where g € D/ph is the function corresponding to g by iso-
» -~ .
morphism m D i.e. oW = .
P phl( /py)  ( g oy 9)
Thus the composition (flufz)ow is smooth for any flnfzec uC,_.

172
Now, we prove

Lemma 2.8. Let (Ml,cl) and (MZ’CZ) be differential spaces
and h: A, — A be a diffeomorphism of differential

1 2
subspaces. Then for any dense subset A of Al’ the linear ring

cluhlAcz is isomorphic to the linear ring cluhcz.
Proof. It is enough to prove that D =D . It is clear
Ph  Pnia
that D_ <D . Let £ uf_eD . It means that £, |A=(f,-h)|A.
Ph Phia 1%2%%0p 12 1A= (fpen) |

Since A is a dense subset of Al and f1’f2°h are continuous,

fllA = fzehlA. Thus flnf2 € Dp . Hence Dp <D and consequ-

h hin  Pn
ently D =D_ . Now, it is evident that the composition
Phia  Pn
. -1 . . . .
(nphIAI(D/phIA)) ° nphl((D/ph)) is an isomorphism of Cluhc2
and CluhIAcz'

Remark. From Proposition 2.3 and Lemma 2.8 it follows
that one can obtain "a new singular point" only on the
boundary FrA of the set A:=L1(A1). One can assume that Al and

A2 are closed subsets of M. and M respectively.

1 2’

In general, the topology <t is weaker than the
CyuCy/Py

quotient topology tclncz/ph'

Lemma 2.9. Let h: (Ml,cl) — (Mz,cz) be a diffeomorphism.

If the set A1 is not closed in (Ml’cl) and IntA1 +# @, then

T is weaker than t /P .
c1“c2/‘°h|A1 CyuCy "hidy

Proof. Let Py € clA1 - A1 be an arbitrary point. There

exist an open neighborhood U, € T of p, and an open set

1 C1
U, €T and U2 n h(A

2 c such thaﬁ h(po) ¢ U 1) = h(A1 n Ul)’

2 2
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Then the set V := U1 v h(U1 n IntAl) e M is open in T, and
Pn D
-saturated but it does not belong to Th . In fact,
Phis,
lncz)ph A such that w(po) =1 and

1

P
hIA1
there is no function ¢ € (C

p(q) = 0 for qeV.

Example., Let h = idR: R — R and A1 = (=»,0). Then the set

(-1,1) v (-1,0) e M but it does not belong to T

D

hla,’
1 [
hIAl

Now, we describe the module of smooth vector fields tan-

gent to (MluhMZ,cluhcz).

A A
Definition 2.1. A pair (xl,xz) € X 1(Ml)xI 2(Mz) is said
to be h-consistent if h-(xllAl) = X2|A2.
Al A2 .
Denote by xh(Ml,Mz) the subset of X (Ml)xx (Mz) of all

h-consistent pairs. It is easy to see that 1h(M1,M2) is a

Czuhcz-module with the standard addition and multiplication
defined by
(2'11) P.(xllxz) = (V’°L1'x1:¢°"2‘x2):

for ¢ € D/ph, (xl,xz)exh(Ml,Mz).
For any (xl,xz) € Ih(Ml,Mz), let xluhx2
uth,Cluhcz) defined by:

be the vector

field tangent to (M1

(21)'px1(p) for p € Ml’
(2.12) (X,upX5) (IP)) = .
(Lz).pxz(p) for p € Mz.

It is easy to see that the vector field xluhx2 is tangent to

Ml,M2 and A = Mlan.

Lemma 2,10. Assume that :1 and :2 are imbeddings.

Then the D/ph-module IA(Mluhnz) is isomorphic to the

D/ph-module Ih(Ml,MZ).
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. A .
Proof, Let H : Ih(Ml,Mz) — X (Hluhnz) be the mapping
defined by
(2.13) n(xl,xz) = xluhx2 for (xl,xz) € xh(Ml,Hz).
A A1 A2
For any Y € X (Mluhnz), let Yl e X (Ml) and Y2 e X (Mz) be

the vector fields given by

(2.14)  Y;(p) = (L)o5 Y, ([P]) for p e My,

~

(t,)7p Yp([P)) for p e M,.

(2.15) Y, (p)

It is clear that H(Yl,vz) = Y. Thus H is an isomorphism.

Proposition 2,11, Assume that (Ml,cl) and (MZ’CZ) are
differential spaces of constant differential dimension. If
(Ai,ciA ) has the property of global extension in (Mi,ci), for

i

i=1,2, then X(M,u = 2B (M

nM2) 1VnM2) -
Proof, Let X € I(MluhMZ). Let pleA1 be an arbitrary point.

T M.. Let Uet be a
‘P, Py 1 ¢

neighborhood of P, such that there is a 1local vector basis

We will show that X([p,]) e (Zl)

w wnel(U) of the C -module'I(Ml). Denote by a(nluhmz) the

NERRY. 1
set of all singular points in the space (Mluhnz,cluhcz). From

Lemma 2.8 it follows that the set a(Mluhnz) is a boundary set.

ry

By Proposition 2.3, Ly and (., are imbeddings. Let us put

2

wi = Li_wi for i=1,...,n.

Then

~ n  a
_ i
(2.16) X|U - a(MluhMZ) = _2 3 wi,
1=1
where wl : U - a(Mluhnz) — R is a real function for 1i=1,...n
and U = Ll(U). Without loosing generality we may assume that

there exist functions Cgreee /0 € C1 such that Wi(aj)=sij,

for i,j=1,...,n. For any i € {1,...,n}, let &i be the function

L]

of C., corresponding to ay by the isomorphism :1. It is clear

1
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that ﬁi(&i) = sij’ for i,j=1,...,n. Hence and from (2.16) it
follows that

X(p)(&j) = wj(p) for p € U - a(Mu M), j=1,...,n.

The set Gna(M ) is a boundary set in the subspace 6.

1VnM2
Thus the function ¢i has the unique extension Ei:= (XIU)(ai)
N N n ..
on U, for i=1,...,n. Therefore X|U = ¥ ¢1wi. Hence
~ i=1 .
x([pl]) € (Ll) Analogously, one can prove that

) ,plTplul.
X([p,1) € (L)

'pszzuzl where P, = h(pl). From Proposition 2.5
(i) and Proposition 2.3 it follows that X([pl]) € T[p ]A.
1

3. Some special cases

Now let (Ml,cl) and (Mz,cz) be differential spaces and let
Py € M, i=1,2, be arbitrary points. Let «: {p;} — {p,} be
the natural diffeomorphism of one-element differential
subspaces.

Let p, be the equivalence relation on (Mluuz,clucz)
identifying the points 1 and P,- Denote by (M1U-M2'C1U'C2)
the quotient differential space modulo p,.

For any £, e C,, let flz M.uM, — R be the function

1’ 172
defined by
_ fl(p) for p e Hl,
(3.1) £ (p) =
fl(pl) for p e Hz.
For any f2 €C,, let f2: M,uM, — R be the function
defined by
_ f2(p2) for p € Hl,
(3.2) £, =

fz(p) for p e Hz.

of course, fl and fz are consistent with p,. Let %1 and Ez be

corresponding to f and

the functions of c.v.C 1

1 2
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fz,respectively, by the isomorphism n; I(Clu,cz). Oof course,
*

Ei satisfies the condition

a

(3.3) Ei =f, om i=1,2.

P, ’
Now, we prove
Proposition 3.1 Let (Ml,cl) and (Mz'cz)- be differential

spaces, p. € M. an arbitrary point, for i=1,2. Then
Pj i

(i) T (MuUM.) = (L.).. T_ M, o (t,).. T M
p, 1°¢ 2) 1 P, Py 1 2 *P, P, 2!
where p, = [p,] = [p,],
(ii) if P and p, are non-isolated in (Mlunz,clucz), then
X(p,) = 0, for any vector field X ¢ x(Mlu_Mz),
(iii) T =T /e
Clu‘c2 Cluc2 L

(iv) if (Mi,ci) is generated by Cg, i=1,2, then
(Mlu'Mz,clu,cz) is generated by the set

~ . ° -~ . o

{f;: £, € CJ} v {f,: £, € C,}.

Proof. (i) Let —:ClAl—e C1 and =: CzA;» Cz, where A1={p1}

and A2={p2}, be the homomorphisms which are the identities
(the image of a real number k is the constant function
identically equal to k). It is obvious that these
homomorphisms satisfy condition (2.5). From Proposition 2.6 it
follows that

Tp'(Mlu.Mz) = (Ll)'plTplnl + (Lz)‘pszzMz .

By Proposition 2.5(i) we have
L T M, n (L T M, = (LA T A, = {0}.
( 1)'p1 p, 1 ( 2)'p2 D, 2 ( 1I 1).pl p,"1 {0}

Thus T_ (M,uM is a direct sum of : T M and
p_( 1Y 2) ( ).pl P, 1

), T M.
“Vep,"p,"2

(ii) For an arbitrary vector field X € I(Mlu'Mz) let

X, € 1(M1) and X

1 € I(Mz) be vector fields defined by

2



Gluing of differential spaces 375

(3.4) xl(a) X(a)otl for a € Cl,
(3.5) xz(B) = X(B)oa.2 for B € Cz,
where a and é are functions defined by (3.3). It is easy to

see that

(3.6) x<2j(p>) - (2j).pxj(p) for p € M-{p5}, 3=1,2,

(3.7) X(P,) = (L)), Xy (P)) + (L), X, (P,) -

Cpl sz

We will show that Xj(pj) = 0, for j=1,2. From (3.6) it follows
that

0 for a € C

X(&)onp'IMz-{pz} N

and N
X(B)onp_IMl-{pl} =0 for g ecC,.

Since P, and p, are non-isolated, X(a)om IM2 = 0 and
o

P

x(§)onp‘|M1 = 0. Of course, x(&)onp and X(é)onp' are

L ]
p,~consistent functions. Hence X(a)onp (pl) = 0 and
L ]

X(E)onp (py) = 0 for any « € C,,8 € C,. Thus by definition
.
(3.4) and (3.5) we have

Xl(a)(pl) = X(a)otl(pl) =0 for any o € Cl,
X,(8) (P,) = X(B)ol,(p,) = 0 for any @ e C,.

Therefore, xl(pl) = 0 and xz(pz) = 0. Hence (3.7) gives

X(p,) = O.
(iii) Let U e mp . It suffices to show that for any point

*

p € U there exists a function ¢ € Dp such that
»

(3.8) e(p) = 1 and p(q) = 0 for q ¢ U.

Assume that p € {pl,pz}. For i=1,2, there exists a function

fi € Ci such that fi(pi) = 1 and fiIMi-(UnMi) = 0. It is clear

that the function ¢ = fluf2 is consistent with p, and satis-

fies (3.8).
Now for instance, let p ¢ {pl,pz} and let p € Uan.



376 W. Sasin

There exists a function g € C, such that g(p)=1, g(p,)=0 and

1
gIMl-(UnM1)=0. Let p: M,uM, — R be the function such that

q)IM1 = g and lez = 0. It is evident that ¢ is consistent with
p, and satisfies (3.8).

(iv) Let £ € D/p, be an arbitrary function. It suffices to
show that f smoothly depends on a finite number of functions

A

- o s . ° 3
from the set {fl' f1 € Cl} v {fz‘ f2 € Cz}, in a neighborhood

of p,. There exist an open neighborhood Ule?c1 of P,, an open

neigborhood U, € Te of p2, and. functions Qyrees @, € c®
2

2

o
Bl,...,Bn € C2' e1 € &

n 1’

n' ©3 € En such that

f o "p IU1 =0, e (al,...,an)lul,

£om, |Uy =0, ¢ (By,...sBp)IU,.

.

Clearly, the set V:= ngl(Ulu Uz) is an open neighorhood of p,.
* .

It is easily seen that
flU = (elo(al,...,an) + ez(Bll""Bn)-k)lU'
where k = o, o (al(pl),---,dn(Pl))-

This finishes the proof.
Now, we prove

Proposition 3.2, Let (Ml,cl) and (Mz,cz) be differential
spaces, p; € Mi an arbitrary point, i=1,2. For a differential
space (Z,Z), let h: {py}x2 — {p,}x2 be the diffeomorphism
defined by

(3.9) h(pl,z) = (pz,z) for z e Z.
Then
(1) T =T /p
CleuhczxZ CleuCZxZ h’
(ii) the mapping ¢ : MleuthxZ — (Mlu.Mz)xZ given by:
(3.10) ¢([(p,2)1) = ([P1,2) for [(p,z)] € M;xZu M xZ,
is a diffeomorphism of the differential space

(Mleuhuzxz,CleuhczxZ) onto the differential space
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((M]_u,uz) xZ, (Clu.cz)xl) ’

(iii) (Mleu xZ) = T_ M. eT_ M oT,2Z, for any z € Z.

T
[(Pl,z)] P, 1 °p, 2
Proof. (i) Consider a set of the form UxWuVxW, where

c is a neighborhood of Py, Ve T, is a neighborhood of
1 2
P, and W e Ty Clearly, the set UxWuVxW is ph-saturated and

We shall show that

nM2
Uect

open 1n tclxlucle'

nph(waUwa) € tcleuczxz/ph'

It suffices to show that for any point (po,zo) € UxWuVxW there

exists a function ¢ e CleuczxZ consistent with Ph such that

(3.11) w(po,zo) =1 and ¢(p,2) = 0 for (p,z) ¢ UxWuVxW.

Assume that Pg * Pyr Py * P, and Py € U. There exists a

function f1 € C, such that fl(p0)=1, fl(p1)=0 and f1|M1—U = 0.

1
It is clear that the function ¢ = fluo satisfies (3.11), where

flz M,x2 — R is the constant prolongation of fl with respect

to Z onto Mle.

Now, let Py = P, Or py = P,- There exist functions P, € C1

and p, € C, such that wl(pl) =1, wllMI-U=0, wz(pz) = 1 and

2
¢,IM,=V = 0. It is evident that the function ¢ = Elu 62

satisfies (3.11), for the point (pl,zo) and (pz,zo), where Ei
is the constant extension of Ps onto Mixz, for i=1,2.

(ii) We will show that & and the inverse of ¢ are smooth.
To show the smoothness of $ we shall verify the smoothness of
01 and Qz, where @1 and Qz are the coordinates of & = (¢1,§2).

For any f € Cyy let f € CleuhczxZ be the function defined by

£(p) for(p,z)eMle,

(3.12) £(((p,2)]) =
f(pl) for(p,z)eszz.

For any g € C let g € CleuhC xZ be the function defined by

2’ 2
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g(pz) for(sz)Enlxz:
(3.13) g(l(p,2)]) =
f(p) for(p,z)enzxz.

It is easy to see that, for any £f e C, and g € C

1 2/
foOl = f and goOl = g.
Since C1U0C2 is generated by the set {E: fe Cl} v {a: g € cz}

(see Proposition 3.1(iv)), &1 is smooth.

For any ¥ € Z, the composition y - 02 = Yy, where

¥ € C,xZv, C,xZ is the function given by

(3.14) V(l(p,2))) =¥(2) for (p,2z) € M, xZuM,xZ.

Therefore, %, is smooth.

2

Denote by ¥ the inverse of ¢&. It remains to show that, for
any F € CleuhczxZ, the composition Fey is smooth. It suffices
to show that F o ¥ is smooth in a neighborhood of a point

[(pl,zo)], where 2,€2. It is clear that Fonp € (CleuczxZ)p .

h h
There exist a neighborhood U e Te of Py, a neighborhood
1
Ve, of Py, a neighborhood W e T, of Zg, functions

2
wl,...wk e Z, Qypeoces®y € Cl’ Bl,...,Bk € C2, W, € gzk’

for some k € N, such that

F o nphIwa =W o (al,...,ak, wl,...,wk)Iwa,

F o nphIVxW =0 o (Bl,...,Bk, wl,...,wk)IVxW.

It can be seen that

F o nphlUquwa = (W o (al,...,ak,wl,...wk) +

+ e f,(Ell'-°l§klwll'°°wk) -
= w(al(pl)l"'lak(pl)iw1l°°‘wk))Iwauvxwl
where &1,..

and (3.2).
Hence we have the following equality

"&k’El""'Ek are the functions defined by (3.1)
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F » Wlnph(wa U VxH) = (0 e (a,...,qk,wl,...,wk)'+
+ 0 (ByrevesByi¥yseooty) -

- u(al(pl),..,ak(pl),wl,...,wk))Inph(wa v VxW).
Clearly, by (i) the set nph(wa v VxW) is an open neighborhood
of the point [(pl,zo)]. Thus F o ¥ is smooth in a neighborhood
of [(pl,zo)]. Therefore F o ¥ is smooth. .
(iii) since by (ii) ® is a diffeomorphism,

0_[(p1’z)] : T[(pl'z)](MleuhMZxZ) — T([pI],Z)((MIU'M2)xz) is

an isomorphism, for every z € 2. Evidently, the tangent space

T([Pll,Z)(“lu-"zxZ) is isomorphic to the direct sum

T[pll(nlu.nz) oTzZ [15]. From Proposition 3.1 (i) it follows

that T ](Mlu.M ) is isomorphic to T

M. oT
(p, 1°

Mz. Therefore,

Py Py

T[(pllz)](MIxZUhMsz) is isomorphic to the direct sunm
T M.eT M, eT_2.
P, 1P, 2 72

Now, we prove

Proposition 3.3, Let h: (M,,Cy) — (M,,C,) be a diffeo-
morphism of differential spaces. Let A, < M; be an arbitrary
subset and A2 = h(Al) < M2.

Then

(1) if A1 is closed in To v then t =Ta nc2/phIAl,

1 C1”h|A1c2 1

(ii) the mappings Lyt M1 — MluhlAIMZ and Lyt M2 — MluhlAIMZ

defined by (2.1) are embeddings, -

A

(iii) for any vector field X € X 1(Ml), if c: [-£,e] — M,

€ > 0, is an integral curve of X such that c(0) e FrAl, then

t; ° ¢ and Ly ° h o c are different integral curves of the
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vector field §:=th|A (h_oXoh-l) corresponding to the pair
1

-1
(X,h,oXeh™ ") € thAl(Ml,Mz) by (2.13).
Proof. We shall prove that M =T .LetVeMm
Pnia p Ph|a

1 hIA1 1

and peV be an arbitrary point. It is enough to find a function

p €D such that

Pnia,
(*) p(p) = 1 and ¢l (MuM,)-V = 0.

Without loosing generality let us assume that p € M There

1 cl and 02 € tcz such that p e U

h(Und;) = U,nh(A,) and h(U,) c U

1°

are sets U, e T

1!

2 Let f € C1 be a function

such that f(pl) = 1 and flMl-U1 = 0. Then the function

fu(foh-l) € Dp and it satisfies (*). From Proposition
hla
1

P

2 in [9) it follows that T =T /p .
€1%nia,%2 €1 R4

17 let £ be the function from cl“hlAlcz
1

(ii) For any £ € C

correspoding to the function fu(feh ~) € D . For any

phIAl

gecC let & € C C2 be the function corresponding to the

2’ 1hia,
function (geh)ug € Dp .One can easy verify the equalities
hiA
1

f o wl =f and g - wz = g for any f € Cl, g € c2,
where wj is the inverse of Lj, for j = 1,2.
Now, anologously to the proof of Proposition 2.3 one can

show that :1 and :2 are embeddings.

(iii) The proof of (iii) is straightforward.

4. Some remarks about quasiregular singularities

In the rewiev article (2) a classification of
singularities of space-times is described. If a space-time is
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modelled by a differential space, space-time singularities can
be regarded as points of the differential space. The theory of
differential spaces opens some possibilities to classify
singularities of a space-time. Such a classification is
presented in [12). The differential space methods turn out to
be a very efficient tool to investigate the classical
singularities of a space-time.

In (2] quasiregular singularities are presented: both
elementary quasiregular singularities and more complicated
ones. The basic idea in producing complicated quasi-regular
singularities is to "glue" together elementary gquasiregular
singularities. Therefore, the gluing differential spaces
together seems to be very important as far as applications of
differential spaces to analysis of singularities‘ of
space-times are concerned. Now, we recall

Definition 4.1. [12) A pair ((M,C),(M.g)) is said to be
the differential space-time if (M,C) is a differential space
and (M,g) 1is a Lorentz submanifold, which is a dense
differential subspace of (M.C).

The set aM = M-M is called the boundary of the
differential space-time.

Example 4,1, Let (M ) and (M ) be space—times such

292
be a diffeomorphism of a

1’9

that dim Ml = dim MZ’ Let h: A1 - A2

closed boundary differential subspace (Al,cm(Ml)A ) of Ml onto
1

a closed boundary differential subspace (Az'cm(nz)A ) of Mz.
2

The pair ((Mluhuz,cluhcz),(MI-A,al)n(Mz-A,az)) is a differen-
tial space-time with the boundary A, where §j i= w;qjlﬁj-A, wj
is the inverse of :j defined by (2.1), ﬁj =t

for j = 1,2 and A := Zl(Al).

5 M40,

Definition 4.2. A boundary point p € 3M of ((M,C),(M,q))
is said to be the strongly quasiregular singularity if for any
rictifiable smooth curve 7y: [0,a] — M satisfying 7y(a) = p and
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7([0,a)) < M there exists a set U open in M and €>0 such that
7((e,a)) < M and (U v {p}, EUu{p}) is a differential subspace
of constant differential dimension n = dim M.

A differential space-time ((M,C),(M,g)) is said to be a
differential space-time with a strongly quasi-regular boundary
if every point of the boundary 38M is strongly quasiregular.

Now, we prove

Lemma 4.1. Let ((M,,C)),(M,,q,)) and ((H,,T,),(M,,9,)) be

differential spacetimes with strongly quasiregular boundaries.
Let A, < ﬁl and A, ﬁz be closed subsets and

h: (Al,ElAl) — (AZ'EZAZ) be a diffeomorphism. Assume that

(ﬁl,El) and (EZ,EZ) are differential spaces with smooth
partition of unity and dim M, = dim M, = n. Then the pair
((ﬁluhﬁz,éluhéz),(Ml-FrA,gl)u(Mz—FrA,gz)),
where
-~ - A ~ ~ » . Y .

.i=y.g.|M.-FrA, M. = (. (M. for =1,2, is a differential
95 wjgjl j ¢ My 5 (M5) . J 12,
space-time with a strongly quasiregular boundary.

Proof. Of course, the set Ll(aMl) v LZ(BMZ) v Ll(FrAl) is

the boundary of ((Mluth,Cluhcz),(Ml—FrA,gl)u(Mz—FrA,gz)).

Let 7y:[0,a] — M be a smooth rectitfiable curve ending at

1VnM2
a boundary point p. From Lemma 2.1 and Proposition 2.3 it fol-

lows that the mappings Zl and :2 are embeddings.

Clearly, 7([0,a)) ¢ M, — FrA or %([0,a)) < ﬁz-FrA. If

1
7([0,a)) < Ml-FrA, then LI1°1 is a smooth curve in My ending
at P, = :;l(p). There exist a set U open in Ml and €>0 such

~=-1 .
that (Ll °7)((e,a)) ¢ U and (Uu{p},ClUU{p}) is of constant
differential dimension n. The set U = Ll(U) is open in
is a

Zl(Ml)—Zl(FrAl) and contains the set ¥((g,a)). Since :1
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diffeomorphism of M

(0, (€
n=4d

7([0,

(1]
(2]

[3]

[4]

[5]

(6]

(71

(8]

(91

onto :l(ﬁl), the differential space

1
1Uh62)“ ) has the constant differential dimension
Uv{p}
im “1 = dim (Ml-FrAl). The prove in the case when
a)) c ﬁz-FrA is analogous.
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