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GLUING OF DIFFERENTIAL SPACES 

In this paper we study some geometric properties of the 
differential space which is obtained by gluing together 
differential spaces in the sense of Sikorski [13], [14]. In 
Section 1 we review some of the standard facts on Sikorski's 
differential spaces. In Section 2 we describe some basic 
notions and facts concerning the singularity which is obtained 
by gluing differential spaces together. In Section 3 some 
special cases are presented. The aim of the paper is to 
prepare mathematical methods of gluing differential spaces 
together for further applications in the theory of 
singularities of space-times [2], [1]. 

1. Preliminaries 

Let M be any set and C be any non-empty set of real 
functions on M. By r Q we denote the weakest topology on M in 
which all functions from C are continuous. For any subset AcM, 
let CA be the set of all real functions 0 on A such that, for 
any peA, there exist an open neighborhood Uerc of p and a 
function aeC such that 0|Ar>U = oc|AnU. By scC ([16]) we shall 
denote the family of all real functions on M of the form 
u ® ( o ^ , — '%)' where u e o ^ — , a n e C, n e IN and 

en = c
m(Kn). 

A set C of real functions on M is called a differential 
structure on M if C = CM = scC. The pair (M,C) is said to be a 
differential space [13]. A differential space (M,C) is said to 
be generated by CQ if C = (scC0)M. If (M,C) is a differential 



362 W. Sasin 

space'and A is a subset of M, then (A,CA) is also a 
differential space, which is called the differential subspace 
of (M,C). By a tangent vector to (M,C), at a point p e M, we 
shall mean any linear mapping v: C —> R which satisfies the 
condition 

v(oc-0) = v(a) • 0 (p) + a (p) -v(£) for a,0 «= C. 

By TpM we shall denote the tangent space to (M,C) at p e M. 
A mapping f: M —• N of a differential space (M,C) into a 
differential space (N,D) is said to be smooth if 
f*(a) := a®f e C, for every a € D. A mapping f: M —> N is 
said to be a diffeomorphism of (M,C) onto (N,D) if f is a 

smooth bijection and f - 1 is smooth. 

If f: M —> N is smooth and v e T M, then the formula P 
(f.pv) (a) = v(aof) for a € D, 

defines a vector f,pv tangent to (N,D) at f(p). 

Let X(M) be the C-module of all smooth vector fields 
tangent to (M,C). Now, let (M,C) be a differential space and 
K c M a non-empty subset. By we denote the imbedding of the 
differential subspace (K,CK) into (M,C). 

Definition 1.1. A vector field XeX(M) is said to be tan-
gent to the set K if for every peK there exists a vector v e 
TpK such that X(p) = (<-K).pv. 

Let X^(M) be the set of all smooth vector fields tangent V 
to K. Of course, X (M) is a C-submodule o f the C-module X(M). 
If K = {p} is a one - element set, then X^(M) is the 
C-submodule of all vector fields of X(M), which vanish at p. 

Definition 1.2. A subset K c M is said to be full in (M,C) 
if dim T K =- dim T M for each p e K. P P 

It is easy to see that if K is full in (M,C), then O^fM) = 
= X(M). 

V 
Proposition 1.3. For any vector field X e X (M) tangent to 

a subset K of M, there exists a unique vector field ¥ e X(K) 
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such that 

(1.1) X(p) = (tR).p Y(p) for any p e K. 

Proof. Let Y:K —> TK be the vector field defined by 

(1.2) Y(p) := (tK)7p (X(p)) for p € K. 

The smoothness of Y follows from 

(1.3) Y(fIK) = (Xf)IK for any f € C. 

Since (<-K),p
 a monomorphism for each p e K, Y satisfying 

(1.1) is unique. 

In the sequell the vector field Y defined by (1.1) will be 

called the restriction of X e 3C^(M) to the subspace (K,CK) and 

will be denoted by X|K. 

Lemma 1.4. Let (M,C) be a differential space and K c M be 

a non-empty subset. A vector field X e I(M) is tangent to K if 

and only if 

(1.4) V [fIK = g|K ^ XfIK = XglK]. 
f,geC 

Proof. (—*) Let XeX^M) . From Proposition 1.3 it follows 

that there exists a unique vector field YeX(K) satisfying 

(1.1). Let f,g e C be arbitrary functions such that f|K = g|K. 

From (1.1) it follows that 

X(p)(f) = Y(p)(fIK) = Y(p)(glK) = X(p)(g), 

for any p e K. Hence Xf|K = XglK. 

Assume that XeX(M) is a vector field satisfying 

(1.4). It is enough to show that for an arbitrary point peK 

there exists a vector veT K such that X(p) = (t„). v. Indeed. p K »p 

let v: C R —> R be a mapping defined by 

n 
(1.5) v(a) = £ «( i(f 1(P),...,f n(P))-X(f i)(p) for a € C, 

where f 1 #...,f ne C, u e S n are functions such that a|UnK = 

= w ( f ,...,f )|UnK for some open neighborhood Ue z„ of p. 
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From (1.4) it follows that (1.5) Is correct. Of course, 

v(fIK) = X(f)(p) for any f € C or equivalently (cv). v = X(p). J\ *{) 

Now, let p be an equivalence relation on (M,C) ([10], 

[16]). A function f«C is said to be consistent with p if xpy 

implies f(x) = f(y) for any x,yeM. We denote by C p the set of 

all f e C consistent with p. One can easily show that C is a 

differential structure on H. Let M/p denote the set of all 

equivalence classes of p and n^i M —> M/p be the canonical 

• -1 

mapping. We denote by C/p := (n^) (C) the differential struc-

ture on M/p coinduced on M/p by the mapping n^ ([16], [10]). 

It is easy to show that tt^I(C/p) : C/p —» C is an isomorphism 

of algebras. A subset A c M is called p-saturated if 

n" 1 (iip(K)) = A. Let us observe that the mapping 

M/p a A pi-» tt"1 (A) c M is a bijection between the family of 

p-saturated sets in M and the family of all subsets of M/p. 

Let us put OT|u e x c: U = rc"1(n^(U))It is easy to see 

that m p = I(xc/p), where r c/p is the quotient topology in the 

set M/p and x c = I ( x c ^ ) . We have t c/p =
 Tc/p a n d o n l y 

1JI = x_ [10]. Moreover, ffl = if and only if for any UeHl 
P ° p P Cp P 

and for any peU there exists a function (PeCp such that 

(p(p) = 1 and <p IM-U = 0 [9]. 

2. Some properties of gluing differential spaces together 

by diffeomorphism 

Let (M1,C1) and (M2,C2) be differential spaces. Let 

(N,D) = (M1jiM2,C1uC2) be the disjoint union [15]. By defini-

tion, feD iff fIM^eC^ and f|M 2eC 2. For f ^ ^ and f 2eC 2 we den-

ote by fj^fj t h e real function on N such that (f^fj) =f^ 

for i=l,2. Let A^ c M^ and A 2 c M 2 be arbitrary non-empty su-
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bsets such that there exists a diffeomorphism 

h: ( A L F C 1 A ) — » ( a
2 ' C 2 A L E T ph B E T H E E ^ U I V 3 1 ® 1 1 0 ® r e l a -

tion on (N,D) identifying a point peA^^ with h(p) e A2> We 

denote by [q] the equivalence class containing qeN. Of course, 

[p] = iP»h(p)} for P 6 ^ and an equivalence class [q] for 

qiA^ u A2 is a one-element set. The quotient space (N/ph,D/ph) 

is called the gluing of the differential spaces (M^C^) and 

(M2,C2) and it will be denoted by ( M^ uh M2' Cl uh C2^' c a n b e 

seen that D^ = {fsD: f|Aj=foh}. For any f^zC^ and f
2
e C 2 s u c h 

that f^lA^ = f 2 w e d e n o t e bY fi uh f2 t h e f u n c t i ° n from 

Cĵ UjjCj corresponding to the function f ^ f ^ D by the isomor-
h 

phism n* I(D/ph): D/ph —» D . 
h h 

Definition 2.1. Let K be a non-empty subset of a 
differential space (M,C). A differential subspace (K,C„) is I\ 
said to have the property of global extension in (M,C) if for 
any f«CK there is a function feC such that f|K = f. 

Lemma 2.1. If (M,C) is a differential space with smooth 
partition of unity and KcM is a non-empty closed subset of M, 
then (K,Ck) has the property of global extension in (M,C). 

Proof is standard. 

Lemma 2.2. Let (M1,C1) and (M2,C2) be disjoint differen-

tial spaces, and h: (A 1 #C 1 A ) —> ^A2'C2A ^ b e a d i f f e o m o r P h i s m 

between respective differential subspaces. If ) a n d 

(A2, C 2 A ) have the property of global extension in (M^, C.̂ ) 

and (M2, C2), respectively, then for any f e there exists a 

function f € D such that f|M. = f and for any g e C_ there 
"h 2 

is g e D such that glM_ = g. 
ph * 
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Proof. Let f e C ^ Since h: (AjyC^ ) —* ^A2'C2A ^ a 

-1 1 2 
diffeomorphism, f«h e C_. • From the property of global 

2 
extension of ( A

2' C2A ^ ^M2'C2^ ^ follows that there exists 

f e C2 such that f|A2 = f»h_1. It is easy to see that the 

function f := fuf € D and it satisfies flM, = f. 
ph 1 

Analogously, one can prove the existence of g e D for a 
pn 

function g € C2. 

Now we prove 

Proposition 2.3. Let (M^t^) and (M2,C2) be differential 

spaces and h: (A^jC^ ) —» (A2'C2A ^ a diffeomorphism o f res-

pective differential subspaces. 

Then the mappings defined by 
A A 

(2.1) L. := tt IM. and l, := n |M_, 1 P h 1 2 p h 2 
are injective. Moreover, if ) tlie property of 

^ * A 

global extension in for i=l,2, then l1 and t2 are 
diffeomorphisms onto their images. 

Proof. One can easily verify that and t2 are 
monomorphisms. Let us put 

(2.2) Mj = LjiMj) , Cj = ( C j U ^ ) ^ , for j=l,2. 

Assume that ) has the property of global extension in 

(Mj,Cj), for j=l,2.')We shall show that t^: (M^C^) —• ( M ^ C ^ 
A A A 

and t2: (M2,C2) —> (M2,C2) are diffeomorphisms. 

Let ^j: Mj —> Mj be the inverse of Lj, for j=l,2. Clearly, 

f » ^^ = f|Mj for f e Cj, j=l,2, 
A A 

where f e C,u. c_ is a function such that f°n |M. = f. 1 h 2 p. j 
A A 

Therefore, ifi. is smooth for j=l,2. Thus t. and t are J 1 £ 
diffeomorphisms. 
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One can prove 
A A 

Lemma 2.4. f e CjUhC2 if and only if flMj e Cj, for j=l,2. 
Now, we prove 
Proposition 2.5. Let (M^C^) and (M2,C2) be differential 

spaces and h: (AjyC^ ) * ̂ A2'C2A ^ b e a feomorphism 
between respective differential subspaces. 
Then for any p̂ ^ e A2 and p2 = hfp^ e A2, 

(!) n (:2).p2
Tp2

M2 = ^ I ' V - P i V 1 • 

= ^2 I A2^p 2
Tp 2

A2' 

(ii) dim((:i).piTpiM1+(:2).p2Tp2M2) = 

= dimT M,+dimT M -dimT A,. 
P1 1 2 P1 1 

Proof, (i) Since h is a diffeomorphism and 
(;2IA2).h = ^ l A ^ we have (111 A^ . p ^ A , = (^ I A.,) . p ^ A , . 

The following inclusion is evident: 

^ I ' V ' P . V 1 C ^ ^ ' P x V 1 n ll*W*2*2' 

It suffices to show that 

A A 

Let v e (L1).p Tp Mx a («.2).p Tp M2- Then there exists 

a unique pair of vectors (u ,u ) e T M. x T M_ such that 
"l P2 

V = ( V - p ^ l = (e2^p2
U2-

It can be seen that the following condition is satisfied: 
(•) Vf1€C1,f2€C2, [(f1IA1=f2.h) * u1(f1) = u2(f2)]. 

Now let w: —» IR be a function given by 
(2.3) w(g) = u1(ilM1) for g e C1A , 
where geC^ is a function such that glA^U = glA^U for some 
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open neighborhood of p.. The correctness of definition 
1 1 

(2.3) is a consequence of condition (*) . It is easy to verify 
the equality 
(2.4) ^l' Al>. P l

w = V 

A A A 
Thus v = (i-^.p^ = ( t

1l A
1).p i

w e ^l 1 Ai )«p 1
Tp 1

Ai' T h i s f i n ~ 

ishes the proof of (i). It is evident that (ii) is a conse-

quence of (i). 
Proposition 2.6. If there exist homomorphisms 

-: C 1 A —> C^ and =: C 2 A —* C2 satisfying the condition 

(2.5) alAĵ  = a and 0IA2 = (3 for any , £ e C
2A ' 

A A 
then for an arbitrary peA := L

1( A
1)/ 

V M i W = ¿i^pfi + ^ S V 2 ' 

where p̂ ^ e A^, p2 e A2 are points such that p = [p^] = 

Proof. Let w € T (M.u.M_). Let v.: C. —» IR, v_: C_ —» IR, p 1 n 2 1 1 2 2 
v3: C ^ —> R be the functions defined by 

(2.6) vx(f) = w(fuhf.h-1) for f e C ^ 

(2.7) v2(g) = w(g«huhg) for g 6 C2, 

(2.8) v3(a) = w(auhaoh-1) for a e C 1 A . 

It is easy to see that v, e T M,, v_ e T M_ and v, e T A,. 1 P x 1 2 p2 2 3 p x 1 
Let us notice that every function f,u. f_ e C,u. C_ can be 1 h 2 l h 2 
presented in the form 

(2.9) f 1 % f 2 = f x V V h + f2° h Uh f2 - f2 o h Wh fl e h _ 1-
Hence 

w ( fl uh f2 ) = "(f^hf!011) + w( f
2
o h v Jh f2 ) " w(f2ohuhf1.h"x) 

or equivalently 
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(2.10) w( f lu hf 2) = ( ^ . p ^ ( f x V 2 ) + C ^ ^ W h V " 

for any f ^ ^ € C ^ C ^ 

Therefore, 

W = (:i>.Pl
Vl + ^ 2).p 2

V2 " ^1 | A1>. P i
V3' 

Thus T p(M l U hM 2) is generated by ( ^ . p T ^ u (l2) • 

This finishes the proof. 
l *-l Denote by V 1 = ^ (IntA^ and v 2

 = L
2 ( I n t A2^ * 0 f c o u r s e » 

Vĵ e t c is an open subset of and V2« z c is an open subset 

of A2. From Proposition 2.3 it follows that if h a s 

the property of global extension in for i=l,2, then 
A A A A 
Ll' Vl : Vl —* IntA and L2'V2: V2 —* IntA are diffeomorphisms 
of the respective differential subspaces. 

Proposition 2.7. Let (M^C^) and (M2>C2) be disjoint 

differential spaces and h: (Aj^C^ ) —» ^A
2'C2A ^ b e a 

morphism of respective differential subspaces. 
Then rip I (Mĵ  - clA^ u (M2~clA2) is a diffeomorphism of the 

subspace ((M^clA^ u ^ " C l ^ ' < V C 2 V ^ c l A ^ u (M2-clA2) ) 
onto its image. 

Proof. Let [¡i be the inverse to the bijection 
Tip I(M1-clA1)u(M2~clA2). It is enough to show that 0 is smooth. 
Let € Cl u C2 b e a n a r b i t r a r Y element. It remains to show 
the smoothness of (f1iif2) ® ip. For any point 
p € (M^-clA^))u(M2~clA2) there exist an open neighborhood U of 
p disjoint with AjUA2 and a function g e D such that 

f.jif_|U = glU and glA.iiA. = 0. Of course UeJJl and g e D 
1 z 1 2 ph ph 

It is easy to see that 
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(fjUff^.lHir^U) = glirp(U), 
A where g e D/ph is the function corresponding to g by iso-• A 

morphism n I (D/ph) (i.e. g ® IT = g) . 
h h 

Thus the composition (f^uf2)e0 is smooth for any f 1Jif2«C1uC2. 
Now, we prove 
Lemma 2.8. Let (M1>C1) and (M2,C2) be differential spaces 

and h: Aĵ  —> A2 be a dif feomorphism of differential 
subspaces. Then for any dense subset A of A^ the linear ring 
Cluh|AC2 isomorPhic to the linear ring c1uj1C2" 

Proof. It is enough to prove that D = D_ . It is clear ph ph|A 
that D cD . Let f.uf.sD . It means that f.|A=(f_®h)|A. ph h IA 1 2 ph|A 1 2 

Since A is a dense subset of A^ and f^,f2°h are continuous, 
f, IA = f.«h|A. Thus f,Jif- e D . Hence D c D and consequ-1 2 1 2 ph h IA ph 
ently D = D . Now, it is evident that the composition ph|A ph 
(7Iph|A' (D/ph|A))_1 ° nph' i^/Ph^ i s a n i s o m o rP h i s m o f ciuhC2 
and ClUh|AC2. 

Remark. From Proposition 2.3 and Lemma 2.8 it follows 
that one can obtain "a new singular point" only on the 

A 

boundary FrA of the set A^t^fA^) . One can assume that A^ and 
A2 are closed subsets of M^ and M2, respectively. 

In general, the topology rc u C ^ is weaker than the 
quotient topology ^ /Ph-

Lemma 2.9. Let h: (M^C^) —» (M2,C2) be a dif feomorphism. 
If the set Aĵ  is not closed in (M^C^) and IntÂ ^ * e, then 

_ is weaker than T„ _ /p... . 
V C

2/ ph|A 1 1 2 1 
Proof. Let pQ € clÂ ^ - A^ be an arbitrary point. There 

exist an open neighborhood ^ e z c of pQ and an open set 
U2 € rc such that h(pQ) * U2 and U2 n h(Ax) = h(Ax n Ux). 
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Then the set V := U, u h(U, A IntA,) e Ml is open in x_ and 
1 1 1 p^ D 

P hj A -saturated but it does not belong to t q . In fact, 
1 Ph|A x 

there is no function <p c (C. iiC_) such that i>(Pft) =i and 1 * ph\hx
 0 

< p ( q ) = 0 for q«V. 

Example. Let h = idR: IR —> IR and A^ = (-<x>,0). Then the set 
(-1,1) u (-1,0) e '"hlA ' b u t d o e s n o t belong to x D 

1 ph| A l 

Now, we describe the module of smooth vector fields tan-

gent to ( I V W ^ W . 
A1 A2 

Definition 2.1. A pair (XlfX2) e X •L(M1)xX (M2) is said 
to be h-consistent if h.fXjJA^ = X2IA2. 

A1 A2 
Denote by ^(MjyMj) the subset of X •L(M1)xX (M2) of all 

h-consistent pairs. It is easy to see that ^ h ^ l ' 1 ^ a 

CjU^Cj-module with the standard addition and multiplication 

defined by 

(2.11) i>-(X1,X2) = (p.t1.x1,f.t2-x2), 

for <p e D/ph, (X1,X2)eXh(M1,M2) . 

For any (X1>X2) e 3Ch(M1,M2) , let X ^ u ^ be the vector 

field tangent to (MjU hM 2, c
1
u
h
c
2) defined by: 

('"l)»pXl(p) f o r p e Ml' 
(2.12) (XlUhX2)([p]) = • 

(L2).pX2(p) for p e M2. 
It is easy to see that the vector field X 1u hX 2 is tangent to 
M i ;M 2 and A = M1nM2. 

Lemma 2.10. Assume that and i2 are imbeddings. 

i the D/p^-moduli 

D/ph-module Xh(M1,M2) 

Then the D/ph~module XA (M1«-»hM2) is isomorphic to the 
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Proof. Let H : X h(M 1 #M 2) —» X A(M 1u hM 2) be the mapping 
defined by 

(2.13) H(X1,X2) - X xu hX 2 for (X1>X2) € X h(M 1 #M 2). 

A A1 A9 
For any Y e ( M! u

h
M
2)» l e t Yi € x (M!> a n d y

2
 € x (M2J b e 

the vector fields given by 

(2.14) Y1(p) = (i^)^ Y1([p]) for p € M1# 

(2.15) Y2(p) = (c2)7p Y2([p]) for p e M2. 

It is clear that H(YlfY2) = Y. Thus H is an isomorphism. 
Proposition 2.11. Assume that (M^C^) and (M2,C2) are 

differential spaces of constant differential dimension. If 
) has the property of global extension in for 

i=l,2, then X i M j U ^ ) = XA(M uhM2). 

Proof. Let X e • L e t PieAi b e a n arbitrary point. 

We will show that X([p.]) e (1,). T M,. Let Uex_ be a »it-̂ j» » p^ 1 C^ 

neighborhood of p̂ ^ such that there is a local vector basis 

Wx wn.*(U) of the Cj^-module X(M^) . Denote by a(M 1« hM ) the 

set of all singular points in the space (Miuj1
M2'CluhC2^* F r o m 

Lemma 2.8 it follows that the set is a boundary set. 
A A 

By Proposition 2.3, and l2 are imbeddings. Let us put 
A A 

W^ = for i=l,...,n. 

Then 

(2.16) XIU - aiM.u.M.) = £ pSi., 1 n ' i=l 1 

i 
where <p : U - 3(M1uhM2) —» R is a real function for i=l,...n 
and U = i^fU). Without loosing generality we may assume that 
there exist functions a^,...,^ e such that W^(otj)=5^j, 

A 

for i,j=l,...,n. For any i e {l,...,n}, let a^ be the function 

of corresponding to a^ by the isomorphism It is clear 
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that W^(a^) - 5ij» f o r i»j=l» Hence and from (2.16) it 
follows that 

X(p) («j) = <pj(p) for p e U - 3(MxwhM2), j=l,...,n. 
A A The set UnafM̂ UjjMj) is a boundary set in the subspace U. 

i _ Thus the function <p has the unique extension = (XIU) (a^) 
n i ' 

on U, for i=l,...,n. Therefore XIU = £ <p W.. Hence 
i=l x([Pj_]) e Tp Ml* Analogously, one can prove that 

A 1 1 

X([p2]) e (i-2).p Tp M2, where p2 = h(px). From Proposition 2.5 

(i) and Proposition 2.3 it follows that Xftp^]) e T ^ ^A. 
3. Some special cases 
Now let (M1,C1) and (M2,C2) be differential spaces and let 

P i e M^, i=l,2, be arbitrary points. Let *: {Pĵ } —* b e 

the natural diffeomorphism of one-element differential 
subspaces. 

Let p, be the equivalence relation on (M^iiM^C^uCj) 
identifying the points p̂ ^ and p2> Denote by (M^.M^Cj^C^) 
the quotient differential space modulo pt. 

For any f1 e c1# let i^: M^MJ —> IR 
defined by 

be the function 

(3.1) fx(P) = 
f^p) for p € Mx, 

fj^p^ for p e M2. 
For any f 2 e C2, let f2: M1IIM2 

defined by 
be the function 

(3.2) f2(P) = 
f2(p2) for p e Mx, 

f2(p) for p « M2< 

Of course, f^ and ?2 are consistent with p.. Let t^ and f2 be 
the functions of V - C 2 corresponding to and 
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f,»respectively, by the isomorphism ir* I (C.u C ). Of course, z p, J. « 
A 

f^ satisfies the condition 

(3.3) t L m f i . n , i=l,2. 

Now, we prove 

Proposition 3.1 Let (M^C^) and (M2,C2) be differential 

spaces, p^ e M^ an arbitrary point, for i=l,2. Then 
(i) Tp. ( Ml U- M2 ) = ^ l ^ P x V 1 e ^ S V 2 ' 

where p. = [px] = [p2], 

(ii) if PĴ  and p 2 are non-isolated in (M1JIM2,C1UC2) , then 
X(p.) = 0, for any vector field X e XfMjU.Mj), 

<iil> \ u , C 2 = ' c ^ c / P . ' 

(iv) if is generated by C°, i=l,2, then 

(M1U,M2,C1U<C2) is generated by the set 

< V fl € Cl> W f 2 6 C2>-
Proof. (i) Let —• C^ and =: C 2 A—» C2, where A^iP^} 

and A2={p2}, be the homomorphisms which are the identities 
(the image of a real number k is the constant function 
identically equal to k). It is obvious that these 
homomorphisms satisfy condition (2.5). From Proposition 2.6 it 
follows that 

V M 1 U ' M 2 > = ( i l > T > 1 V 1 + ^ S V 2 ' 

By Proposition 2.5(i) we have 

< : i > . P l V l " ^2).p 2
Tp 2

M2 = ^ ' ^ ' • P . V 1 = { 0 }-
A 

Thus T p ( M ^ u ^ ) is a direct sum of (O.p and 

(ii) For an arbitrary vector field X e X f M j U ^ ) let 

X 1 e X(MX) and X 2 e X(M2) be vector fields defined by 
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( 3 . 4 ) X ^ a ) = X f a ) . ^ f o r a € C 1 # 

A A 

( 3 . 5 ) X 2 (|S ) = X ( P ) . l 2 f o r P « C 2 , 
A A 

w h e r e a a n d (3 a r e f u n c t i o n s d e f i n e d b y ( 3 . 3 ) . I t i s e a s y t o 

s e e t h a t 

( 3 . 6 ) X f t ^ p ) ) - ( ^ . ^ ( p ) f o r p e M - ( P j } , j - 1 , 2 , 

( 3 . 7 ) X ( p . ) = ( L 1 ) . p i X 1 ( p 1 ) + ( t 2 ) . p 2 X 2 ( p 2 ) . 

We w i l l s h o w t h a t X j ( P j ) = 0 , f o r j = l , 2 . F r o m ( 3 . 6 ) i t f o l l o w s 

t h a t 

a n d 

X ( a ) . i r p I M 2 - { p 2 } = 0 f o r a € ^ 

X O ) < . T r p I M 1 - { p 1 > = 0 f o r 0 e C 2 . 

S i n c e p . a n d p a r e n o n - i s o l a t e d , X ( a ) « n |M, = 0 a n d 
j. i pt z 

/V A A 

X ( f J ) . 7 i IM . = 0 . O f c o u r s e , X ( a ) ®7r a n d X ( / 3 ) « j t a r e 
P« -1- P » P . 

p # - c o n s i s t e n t f u n c t i o n s . H e n c e X ( a ) « 7 T ( p . ) = 0 a n d 
P » 

( P 2 ) = 0 f o r a n y a e C ^ / 3 e C 2 > T h u s b y d e f i n i t i o n 

( 3 . 4 ) a n d ( 3 . 5 ) we h a v e 

X j ^ a H p ^ = X (c t ) » ¡ ^ ( p ^ = o f o r a n y a e c ^ 

X 2 ( | S ) ( p 2 ) = X ( p ) « t 2 ( p 2 ) = 0 f o r a n y 0 € C 2 > 

T h e r e f o r e , x 1 ( p 1 ) = 0 a n d X 2 ( p 2 ) = 0 . H e n c e ( 3 . 7 ) g i v e s 

X ( P . ) = 0 . 

( i i i ) L e t U e 5JI . I t s u f f i c e s t o s h o w t h a t f o r a n y p o i n t 
P» 

p e U t h e r e e x i s t s a f u n c t i o n a> e D s u c h t h a t 
P . 

( 3 . 8 ) <p(p) = 1 a n d <p(q) = 0 f o r q t U . 

A s s u m e t h a t p e { P j y P j } . F o r i = l , 2 , t h e r e e x i s t s a f u n c t i o n 

f i e C i s u c h t h a t ^ ( P ^ = 1 a n d f i I M i ~ ( U n M i ) = 0 . I t i s c l e a r 

t h a t t h e f u n c t i o n <p = f j ^ f 2 i s c o n s i s t e n t w i t h pt a n d s a t i s -

f i e s ( 3 . 8 ) . 

Now f o r i n s t a n c e , l e t p t { P 1 , P 2 > a n d l e t p e U n M ^ 
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There exists a function g e Cj such that g(p)=l, 9(P1)=0 and 

glM1~(Ur>M1)=0. Let <p: M 1mM 2 —> IR be the function such that 

fplMĵ  = g and <p |M2 = 0. It is evident that <p is consistent with 

p, and satisfies (3.8). 

(iv) Let f e D/p0 be an arbitrary function. It suffices to 
show that f smoothly depends on a finite number of functions 

from the set -jf^ f^ e C°| u |f2: f2 e c°j, in a neighborhood 

of p0. There exist an open neighborhood U.exr of p., an open 
1 o neigborhood U2 e x c of p2, and functions o1,...,an e C^, 

e c°' ®i € e
n ' 62 € en s u c h t h a t 

f * np IU1 = ®l ° («!#•••#«„) 

f ° "p.'"2 = ^ ' P n > ' V 

Clearly, the set V:- n~1(U1u U.) is an open neighorhood of p.. 

It is easily seen that 

flu = (o1.(olf...f«n) + e2(Plf...,Pn)-k) |U, 

where k = e 1 . ( ^ ( p ^ ,... ̂ ( p ^ ) . 

This finishes the proof.' 
Now, we prove 

Proposition 3.2. Let (M^C^) and (M2,C2) be differential 
spaces, p,̂  € M.̂  an arbitrary point, i=l,2. For a differential 
space (Z,Z), let h: {p1>xZ —» {p2>xZ be the diffeomorphism 
defined by 
(3.9) h(p1#z) = (P2,z) for z e Z. 
Then 
( 1 ) TC,XZU.C_XH = TC,xZuC_xZ / ph' 1 n 2 1 2 
(ii) the mapping $ : M^Zv^MjXZ —» (MjU.M^xZ given by: 

(3.10) *([(P,z)]) = ([p]»z) for [ (p, z) ] « M ^ x Z u ^ x Z , 

is a diffeomorphism of the differential space 
(M1xZuhM2xZ,C1xZuhC2xZ) onto the differential space 
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((KjU.MJJXZ, (CjU.C^xZ), 

( i i i ) T [ ( P l , z ) ] (
M i x Z u h M 2 x Z ) - T P l

M i ® T p 2
M 2 e T z z ' f o r z € z-

Proof, (i) Consider a set of the form UxWuVxW, where 

U 6 x is a neighborhood of p., V € t_ is a neighborhood of 

P 2 and W « tz> Clearly, the set UxWuVxW is p^-saturated and 

open in t c x Z j i C x 2 - We shall show that 

n (UxWuVxW) 6 x /p h. 
n l 2 

It suffices to show that for any point (p0,zQ) e UxWuVxW there 

exists a function (p e CjXZiiCjXZ consistent with p^ such that 

(3.11) <p(p0,z0) = 1 and (p(p,z) = 0 for (p,z) t UxWuVxW. 

Assume that p Q * p Q * p 2 and p Q e U. There exists a 

function f x e C x such that f 1(p Q)=l, f 1(p 1)=0 and f IMj-U = 0. 

It is clear that the function <p = f ^ O satisfies (3.11), where 

f^: M^xZ — • IR is the constant prolongation of f^ with respect 

to Z onto M^xZ. 

Now, let p Q = or p Q = p 2. There exist functions <p1 e ^ 

and <p2 e C 2 such that ^ ( P ^ = 1, »>1IM1-U=0, <P2(P2) = 1 and 

^2 | M2~ V = I t evident that the function ip = ^ji #>2 

satisfies (3.11), for the point (p l fz 0) and (p2,z0), where 

is the constant extension of jk onto M^xZ, for i=l,2. 

(ii) We will show that 9 and the inverse of # are smooth. 

To show the smoothness of i we shall verify the smoothness of 

^ and $ 2, where and $ 2 are the coordinates of 4 = (* l fi 2). 

For any f e c 1 # let f e C ^ Z u ^ x Z be the function defined by 

f(p) foripjZjeMj^xZ, 
(3.12) f([(P,z)]) = 

For any g e C 2 < let g e C j X Z u ^ x Z be the function defined by 

f f p ^ for(p,z)6M2xZ. 
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(3.13) g([(P,z)]) 
g(p2) for (p, z) ef^xZ, 
f(p) for(p,z)eM2xZ. 

It is easy to see that, for any f € C1 and g « C2, 
A A f»^ = f and g»^ « g. 

A A 

since g e n e r a t e d by t h e s e t f e u {g: g ® c2> 
(see Proposition 3.1(iv)), is smooth. 

For any $ e Z, the composition ^ • #2 = $, where 
ifi € c^xZu^CjXZ is the function given by 
( 3 . 1 4 ) 9 ( [ ( P , b ) ] ) =0(z) F O R ( p , z ) € M 1 x Z u M 2 x Z . 

Therefore, is smooth. 
Denote by ¥ the inverse of 4. It remains to show that, for 

any F e CJXZu^CJXZ, the composition F®0 is smooth. It suffices 
to show that F ® ip is smooth in a neighborhood of a point 
[(p,,z„)]. where z„eZ. It is clear that F«7r e (C,xZiiC_xZ) L 0' ' 0 p^ 1 2 p^ 

There exist a neighborhood U e x of p., a neighborhood 
V e zc of p2, a neighborhood W e x2 of zQ, functions 

e z' a1>"'iayi « cx» « C2, u,e e g^, 
for some k e N, such that 

F • it |UxW = u o (o1#... ,ak, ... ,0k) IUxW, h 
F . »p IVxW = e . (|31,...,pk, #lf...f^k)|VxW. 

It can be seen that 
F • 71 I UxWuVxW = ((J o (Sj , . . . . . .0k) + 

h 
+ G O . . . . . .0k) -

- (¿(a^p^,... ̂ ( P ^ -0k)) IUxWuVxW, 
where a^ ... ... ,j§k are the functions defined by (3.1) 
and (3.2). 
Hence we have the following equality 
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F » »In (UxW u VxW) = (w • (a,... fOfcf^r • • • >0k) + h 
+ e ( 0 -

- «(a1(p1)/..,ak(p1),^1,...,^k))In (UxW u VxW). 
h 

Clearly, by (i) the set IT (UXW U VXW) is an open neighborhood 
h 

of the point ((p^ zQ)]. Thus F • ̂  is smooth in a neighborhood 
of [(p̂ fZjj)]. Therefore F • ̂  is smooth. 

(iii) Since by (ii) i is a diffeomorphism, 
••[(Pl,Z)] : T[(Pl,z)]<Ml*ZVV<Z> - * * ( [ P l ] f , , « « l W « > i s 

an isomorphism, for every z e Z. Evidently, the tangent space 
T, r , (M,u„M_xZ) is isomorphic to the direct sum 

( [P^ , Z ) * 1 * 2 ' 
T[P ® T Z Z T 1 5 ] '

 F r o m Proposition 3.1 (i) it follows 

that T^p j (MjU,M2) is isomorphic to Tp M^T^ M2> Therefore, 
T[(P z)](MixZuhM2xZ^ isomorPhic to the direct sum 
T M.®T M_eT Z. P1 1 p2 2 Z 

Now, we prove 
Proposition 3.3. Let h: (M^C^ —» (M2,C2) be a diffeo-

morphism of differential spaces. Let A^ c M1 be an arbitrary 
subset and A2 = hfA^ c M2. 
Then 
(i) if Ax is closed in x then x = xc c /Ph|A , 1 1 h IÂ  2 1 2 1 

(ii) the mappings ^s Mx -» M ^ , ^ and ^s M2 M ^ , ^ 

defined by (2.1) are embeddings, 
A1 

(in) for any vector field X e ï (Mx) , if c: [-e,e] —» M ^ 
c > 0, is an integral curve of X such that c(0) e FrA^ then A A « c and » h » c are different integral curves of the 
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* —1 vector field X ' ^ ^ I A (h.°X<>h ) corresponding to the pair 

(X,h..X.h_1) € 2fh|Ai(HlfM2) by (2.13). 

Proof. We shall prove that 1)1 = t n . Let V c JJl 
P h l A l \ \ L X

 P h | A l 
and peV be an arbitrary point. It is enough to find a function 
cp € D such that 

Ph| A l 

(•) ¥>(P) = 1 and «>1 ( M ^ M ^ - V = 0. 
Without loosing generality let us assume that p e M^. There 
are sets U^ e zc and U 2 e zc such that p e XJ , 

hfUnA^ = UjnhfA^ and hfU^ c Uj. Let f e Cx be a function 

such that f(p^) = 1 and fIM1~U1 = 0. Then the function 

<p := fii(f®h 1) e D and it satisfies (•). From Proposition 
h| A^ 

2 in [9] it follows that T = x /ph . 
1 2 1 2 1 

A (ii) For any f e C^, let f be the function from ciuhlA C2 

correspoding to the function fu(f®h-1) e D . For any 
h| A. A ^ 

g e c2, let g e ^ u ^ | ̂  C 2 be the function corresponding to the 

function (g»h)ug e D .One can easy verify the equalities 
"hi A. A A A 

f • ^ = f and g ' ifi2 = g for any f e C^, g « C2, 
A 

where is the inverse of tj, for j = 1,2. 

Now, anologously to the proof of Proposition 2.3 one can 
A A 

show that and i2 are embeddings. 

(iii) The proof of (iii) is straightforward. 

4. Some remarks about quasiregular singularities 

In the rewiev article [2] a classification of 
singularities of space-times is described. If a space-time is 
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modelled by a differential space, space-time singularities can 
be regarded as points of the differential space. The theory of 
differential spaces opens some possibilities to classify 
singularities of a space-time. Such a classification is 
presented in [12]. The differential space methods turn out to 
be a very efficient tool to investigate the classical 
singularities of a space-time. 

In [2] guasiregular singularities are presented: both 
elementary guasiregular singularities and more complicated 
ones. The basic idea in producing complicated quasi-regular 
singularities is to "glue" together elementary guasiregular 
singularities. Therefore, the gluing differential spaces 
together seems to be very important as far as applications of 
differential spaces to analysis of singularities of 
space-times are concerned. Now, we recall 

Definition 4.1. [12] A pair ((M,C),(M.g)) is said to be 
the differential space-time if (M,C) is a differential space 
and (M,g) is a Lorentz submanifold, which is a dense 
differential subspace of (M.C). 

The set 3M = M-M is called the boundary of the 
differential space-time. 

Example 4.1. Let (M1,g^) and (M2,g2) be space—times such 
that dim M^ = dim M2> Let h: Aĵ  —» A2 be a diffeomorphism of a 
closed boundary differential subspace (A^C^M^J^ ) of M^ onto 

a closed boundary differential subspace (A2,C°°(M2)A ) of H^. 

The pair ((MjU^ , (M1~A,g1) n (M2-A,52)) is a differen-
— •» * * tial space-time with the boundary A, where g^ := ̂ gjlMj-A, ^ 

A A A 

is the inverse of t̂  defined by (2.1), Mj = Cj(Mj), 
for j = 1,2 and A := c^(A^). 

Definition 4.2. A boundary point p e 3M of ((M,C),(M,g)) 
is said to be the strongly guasiregular singularity if for any 
rictifiable smooth curve y: [0,a] —» M satisfying 7(a) = p and 
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?([0,a)) c M there exists a set U open in M and c>0 such that 

y((e,a)) c M and (U u {p>, Cuu{p}^ is a differential subspace 

of constant differential dimension n = dim M. 
A differential space-time ((M,C),(M,g)) is said to be a 

differential space-time with a strongly quasi-regular boundary 
if every point of the boundary 3M is strongly quasiregular. 

Now, we prove 

Lemma 4.1. Let ((M1,C1),(M1,g1>) and ((M2,C2),(M2,g2)) be 

differential spacetimes with strongly quasiregular boundaries. 
Let Aĵ  c M 1 and A2 c M2 be closed subsets and 

h: (AjyC^ ) —• ^ b e a diff e o m o rPhism. Assume that 

( M ^ C ^ and (M2,C2) are differential spaces with smooth 

partition of unity and dim M̂ ^ = dim M2 = n. Then the pair 

((HluhB2'5luh52)'(M1-FrA'51)"(M2-FrA,52)), 
where 
- • * A A . . . gj:=^jgjiMj-FrA, Mj = tj(Mj), for j = 1,2, is a differential 

space-time with a strongly quasiregular boundary. 
A A A 

Proof. Of course, the set L1(9M1) U L2(3M2) U (FrA^) is 

the boundary of ( ( M ^ i ^ » C ^ C ^ , (i^-FrA,^) u (M2-FrA,52)) . 

Let y:[0,a] —> b e a s m o o t h rectitfiable curve ending at 

a boundary point p. From Lemma 2.1 and Proposition 2.3 it fol-
A A 

lows that the mappings <. and i a r e embeddings. 

Clearly, y([0,a)) c ^ - FrA or r([0,a)) c M2~FrA. If 
A 

y([0,a)) c Mj^-FrA, then is a smooth curve in M^ ending 

at p^ = t1
1(p). There exist a set U open in M^ and e>0 such 

that (L1
1»r)((e,a)) c U and (Uu{p}»c

1Uu{p}) constant 
A A 

differential dimension n. The set U = L^iU) is open in 
A A A L 1 - L 1 a n d contains the set r((e,a)). Since t^ is a 
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diffeomorphism of M^ onto (.^(M^), the differential space 
A __ _ 

(U,(C.u. C_)A ) has the constant differential dimension 
1 n ^ Uu{p> 

n = dim M^ = dim (M^-FrA^). The prove in the case when 
A 

r([0,a)) c M 2~FrA is analogous. 
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