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ON SOME APPROXIMATE METHOD FOR FREDHOLM’S INTEGRAL EQUATION
OF THE SECOND KIND WITH BOUNDED KERNEL

1. Introduction

Application of the boundary element method to the elliptic
boundary problem (c.f. [1]) requires an approximate solution
of the Fredholm’s integral equation of the second kind which,
in the 1-dimensional case (m=1), has the form

b
e(x) - [ Nx,y)ey)dy = £(x) , x e <ajb> .
a

The above mentioned approximate solution of this equation
bases on solving the system of equations

a.
n p)
$(x;) - j=1¢(xj)'Ia. N(x;,y)dy = £(x;)
Jj-1
with variables ¢(x1),¢(x2),...,¢(xn), where a = ao<a1<a2<...
<a,_,<a = b, X €<agja, >, xie(ai_l;ai> for i=2,3,...,n.
In this paper the m-~dimensional case, mz1, is

considered. We examine existence and uniqueness of the
approximate solution and we estimate its error with respect to
given approximate values of the functions N and f.

2. Notation and assumptions

Let m be a fixed positive integer and let R® be the

m-dimensional Euclidean space.
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We assume that
(Hl) A set A is a bounded subset of R™. Its boundary 48A
satisfies the condition: for every £ > 0 there exists a finite
number of m-dimensional closed intervals Pl’pz""'Pk whose
Lebesgue’s measures are equal to IPll,IPZI,...,IPkI,
respectively and such that

n
A ¢ U Py and |P,| + IP,| + ... + |P <€ .

|
i=1 k

1 2

We assume that the Lebesgue’s measure of A is positive.

Let R(A) be the set of all functions f:A——R Riemann

integrable over A and let |f[] = suplf(x)|. We define in R(A)
XeA
the operations of adding elements and multiplying an element

by a real number in the usual way. Moreover let |f - g| be the
distance between f and g, f,g € R(A).

The set R(A) with the above defined operations, the norm

and the distance is a Banach space.

Let [K| be the norm of a 1linear operator K:P——R(A),
where P is a linear subspace of the space R(A).

Denote by 4 a partition of a set A into subsets
A /Ay ..o A such that the following assumption is satisfied:

n
(Bz) A= iglAi R Ai n Aj =9 for i # j and every set Al,Az,
...,An satisfies (Hl).
For a partition An of A, denote by Cn(A) the set of all
functions h:A——R such that

h(x) = T e¢;-x;(x),

[N
ne1s
=

where (cl,cz,...,cn) e R" and X;:A—R, i=1,2,...,n, is the
characteristic function for Ai, i.e.
1,ifx eAi

xi(x) = .
0,ifx eA -Ai
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Let X; € Ai be a given point of the set Ai, i=1,2,...,n
and assume that the following assumptions are satisfied.

(H3) f € R(A) and N:AxA——R is a Riemann integrable

function, i.e. there exist the integrals: I N(x,y)dxdy,
AxA

IN(x,y)dx for every y € A and IN(x,y)dy for every x € A.
A A

(H4) For every function f € R(A) the Fredholm’s equation of
the second kind

(1) ex) - [Nx,y)o(y)ay = £(x) , x € A
A
((I - N)¢ = £ for short) has in R(A) a unique solution ¢.

(HS) The number

(2 soum = moa x [sw [INGGY) - NGy ey ]

ie{1,...,n} xeAi Ai

is sufficiently small.

3. Existence of an approximate solution and error

estimation

Theorem. If the assumptions (Hl)-(Hs) hold then for every
function £ € R(A) the system of equations

n

(3) c; - I cs [Nexgyay = £0x)
3= 7 A,
J
xieAi, i=1,2,...,n, has a unique solution (cl,cz,...,cn) e R".

If ¢ € R(A) is a solution of the equation (1) then there exist
constants dl and 4, depending on functions N and f such that

n
m a x |¢(x,)-c.| = supl¢(x)- } c.x.(x)I
ie{1,...,n} 1 XeA i=1 ¥?

= dls(N,n) + dz- m a x sup lf(x)-f(xi)l
ie{1,...,n} xeAi
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where x; € Ai, i=1,2,...,n.

Proof. The system of equations (3) is equivalent to the

equation
(5) en(x) - [N (x,y)e ()Y = £ (x), xea,
A
where
n

(6) Nn(le) = iglu(inY)xi(x)l

n
(7) £a(0) = T £0¢)7; (00,

n
(8) ¢n(x) = I c;x; (0.

Notice that if functions N, and fn are defined by equalities
(6) and (7), respectively and the function ¢n satisfies the
equation (5) then ¢n has the form of (8). Since Cn(A) < R(A),
to prove existence and uniqueness of a solution of the
equation (5) it suffices to show that for every function
geR(A) the Fredholm’s equation

(9) v(x) = [N ¥)¥(ay = g(x), xea,
A

has a unique solution ¥ € R(A).

Since the functions N, Nn’ f and g are Riemann integrable,
the Fredholm’s Theorem applies to equations (1) and (9) (c.f.
[2], pPp. 47-67). It follows from these theorems and from the
assumed uniqueness of a solution of (1) that the sum D(1) of
the first Fredholm’s series for the kernel N(x,y) is not equal
to zero. Hence the only solution of (1) is

(10) ¢(x) = £(x) + [R(x,y,1)£(y)dy , x < A,
A
where the resolvent kernel

%(x,y,1) = 2 A

is Riemann integrable and D(x,y,1) is the sum of the second
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Fredholm’s series for the kernel N(x,y). Therefore for the
linear operator (I-N):R(A)——R(A) (where I is the identity
operator) there exists a continuous inverse operator

1

(11) (I-N) " = I + K.

If the number &§(N,n) given by (2) satisfies the condition:
1

(12) §(N,n) § ————y—

(- 7}

then, since IN—NnI = §(N,n), uniqueness of the solution of the
equation (9) in R(A) follows by Theorem 4 in ([3], p.212).
Indeed, put X = Y = R(4), U0 =I -Nand U=N - Nn' Then, for
vV = Uo +U=1I- Nn there exists a continuous inverse operator
vi=(1- Nn)-l. Moreover

-1 -1y . _La-npty L(x-N) 71y
(13)  J(@-N) ") = vy = — = =1 .
1-pugtpqul - -m) THp - gnen |

This completes the proof of existence and uniqueness of
solutions of equations (9) and (5) and the system of equations
(3). Thus the sum Dn(l) of the first Fredholm’s series for the
kernel Nn(x,y) of the equation (9) is not equal to 0. Hence
the only solutions y and ¢n of the equations (9) and (5),
respectively, are

(14) V(x) = g(x) + [% (x,y,1)9(y)dy, xea,
A
(15) n(x) = £.0x) + % (x,y,1)€ (v)dy, xe,
A
D, (%,¥,1)

where Rn(x,y,l) is a Riemann integrable function

ST o (M
n

and Dn(x,y,l) is the sum of the second Fredholm’s series for

the kernel Nn(x,y). By (14) the linear operator

(I-Nn):R(A)——aRA) has a continuous inverse operator

1

(16) (I-Nn)’ =I+K.

According to equality (143) in (2], (p.78) we get
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(17) ®%(x,y,1) = N(x,y) + jx(x,s;l)N(s,y)ds
A

(18) % (x,y,1) = N (x,y) + [% (x,5,1)N (s,y)ds
A
for x,y € A. Notice that the equalities (10), (15)-(18) imply

(19)  6(x) = ¢,(x) = £(x) - £.(x) + [X (x,y,1) (£(y)-£, (¥))dy
P

+ [y, 1) -% (x,y,1) )£ (y) dy
A

and
(20) %(x,¥,1) = % (x,¥,1) = [N(s,y) (%(x,5,1)-% (x,5,1)]ds
A
= T (x,y) ,
where

(21) r (x,y) = N(x,¥) = N (x,y) + fln(X.s,l)[N(s,y)-Nn(s,y)]ds
A

For an arbitrary fixed x € A the function
wx(S) = [(%X(x,s,1) - Rn(x’sll)] € R(A)
and
r (%,¥) € R(A)

Treating the equality (20) as a Fredholm’s equation with
respect to the function wx and the associate to the equation

(1) we get the equality
(22) £(x,y,1) - X (x,y,1) = £ (x,y) + [R(x,5,1)r (x,5)]1ds

A
equivalent to (20).

It follows from (19), (22), (21), (11), (16) and (13) that
the solutions ¢ € R(A) and ¢n € Cn(A) of the equations (1) and

(5), respéctively, satisfy the condition
|¢—¢n| s |I+Rn|-|f-fn| + n(x-xn)fn
= [T+R |- RE-£ ] + J(T+R) {(N=N_) [(I+R) £}
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s JI+% |- hE-£ ] + JI+%_|-[N-N_|-JT+&] - |£]
-1
f(x-N) —f

=
1-] (1-0) "1

CCUE=£ I+ IN-N_ |- | (2-8) Y- g ]

“N-N
This yields the inequality (4). If, for example,

1

$(N,n) < ———————,
2-J(I-N) |
then, since |N-N | s §(N,n,), we can take d,= Z-Hf"-“(I-N)-lﬂz

-1
and d,= 2-|(I-N) 7|

.
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