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ON SOME APPROXIMATE METHOD FOR FREOHOLM'S INTEGRAL EQUATION 
OF THE SECOND KIND WITH BOUNDED KERNEL 

1. Introduction 

Application of the boundary element method to the elliptic 
boundary problem (c.f. [1]) requires an approximate solution 
of the Fredholm's integral equation of the second kind which, 
in the 1-dimensional case (m=l), has the form 

r" 
<P(x) - N(x,y)<A(y)dy = f(x) , x e <a;b> . J a 

The above mentioned approximate solution of this equation 
bases on solving the system of equations 

r 3 j *(x.) - E*(x.)- N(x.,y)dy = f(x.) 
j-1 3 S - l 

with variables 0(xx),0(x2),...,0(xn), where a = aQ<a1<a2< 
<an_1<an = b, x^Ojjja^, xi6(ai_1;ai> for i=2,3,...,n. 

In this paper the m-dimensional case, m * 1, is 
considered. We examine existence and uniqueness of the 
approximate solution and we estimate its error with respect to 
given approximate values of the functions N and f. 

2. Notation and assumptions 

Let m be a fixed positive integer and let R1" be the 
m-dimensional Euclidean space. 
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We assume that 
(H1) A set A is a bounded subset of Rm. Its boundary dA 
satisfies the condition: for every c > 0 there exists a finite 
number of m-dimensional closed intervals '"*,Pk w h o s e 

Lebesgue's measures are equal to IP^I,IP2I,...,IP^I, 
respectively and such that 

n 
9A c UP. and IP.| + |P_| + ... + IP. I < c . i=l 1 1 2 K 

We assume that the Lebesgue's measure of A is positive. 
Let R(A) be the set of all functions f:A >R Riemann 

integrable over A and let ]f[ = sup|f(x)|. We define in R(A) 
xeA 

the operations of adding elements and multiplying an element 
by a real number in the usual way. Moreover let Qf - g[ be the 
distance between f and g, f,g e R(A). 

The set R(A) with the above defined operations, the norm 
and the distance is a Banach space. 

Let Qk|| be the norm of a linear operator K:P >R(A), 
where P is a linear subspace of the space R(A). 

Denote by a partition of a set A into subsets 
AlfA2,...,An such that the following assumption is satisfied: 

n 
(H_) A = U A. , A. r\ A. = z for i * j and every set A.,A_, i=l 3 
...,An satisfies (H^ . 

For a partition of A, denote by Cn(A) the set of all 
functions h:A >R such that 

n 
h(x) = £ c.-^iix), 

i=l 
where (c^jOg,...,c ) e Rn and z^sA >R, i=l,2,...,n, is the 
characteristic function for A^, i.e. 

X±M = 
l,ifX 
0,ifx €A -A^ 
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Let x^ « A^ be a given point of the set A^, i=l,2,...,n 
and assume that the following assumptions are satisfied. 

(Hj) f e R(A) and N:AxA >R is a Riemann integrable 

function, i.e. there exist the integrals: J N(x,y)dxdy, 
AxA 

jN(x,y)dx for every y e A and jN(x,y)dy for every x e A. 
A A 

(H4) For every function f e R(A) the Fredholm's equation of 
the second kind 

(1) <fi(x) - jN(x,y)0(y)dy = f(x) , x e A 
A 

((I - N)0 = f for short) has in R(A) a unique solution 0. 

(Hg) The number 

(2) S(N,n) = m a x [sup flN(x,y) -N(x.,y)|dyl 
ie{l,...,n}L x€Ai ^ 1 J 

is sufficiently small. 

3. Existence of an approximate solution and error 
estimation 

Theorem. If the assumptions (H^-iHg) hold then for every 
function f e R(A) the system of equations 

n r (3) c. - I c.- N(x.,y)dy = f(x.) , 
J"1 A 

x.eA., i=l. 2 . . . . ,nf has a unique solution (c^^c^,...rc^) € R • 
If 0 e R(A) is a solution of the equation (1) then there exist 
constants d̂ ^ and d 2 depending on functions N and f such that 

n 
m a x l*(x.)-c.I s sup|0(x)- £ c.*.(x)I 

ie{l,...,n} x A xeA i=l i A 

a d 5(N,n) + d • m a x sup |f(x)-f(x.)l 
ie{l, ... ,n> xeAĵ  1 
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where x^ e A^, i=l,2,...,n. 
Proof. The system of equations (3) is equivalent to the 

equation 

(5) *n(x) - jNn(xfy)*n(y)dy = fn(x), xeA, 
A 

where 
n 

(6) N (x,y) = I N(x.,y)*.(x), 
i—X 

n 
(7) f_(x) = I ffx.Jar.ix), 

i=l A i 

n 
(8) ¿(x) = I c.*. (x) . 

i=l 
Notice that if functions N and f are defined by equalities n n 
(6) and (7) , respectively and the function satisfies the 
equation (5) then has the form of (8). Since c

n( A) c R(A)> 
to prove existence and uniqueness of a solution of the 
equation (5) it suffices to show that for every function 
geR(A) the Fredholm's equation 

(9) 0(x) - J " N n ( x , y ) i M y ) d y = g(x), xeA, 
A 

has a unique solution ^ e R(A) . 

Since the functions N, Nn, f and g are Riemann integrable, 
the Fredholm's Theorem applies to equations (1) and (9) (c.f. 
[2], pp. 47-67). It follows from these theorems and from the 
assumed uniqueness of a solution of (1) that the sum D(l) of 
the first Fredholm's series for the kernel N(x,y) is not equal 
to zero. Hence the only solution of (1) is 

(10) <t>{x) = f(x) + jK(x,y,l)f(y)dy , x € A , 
A 

where the resolvent kernel 
%lx y i) = P^'Y' 1) D(1) 

is Riemann integrable and D(x,y,l) is the sum of the second 
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Fredholm's series for the kernel N(x,y). Therefore for the 
linear operator (I-N):R(A) >R(A) (where I is the identity 
operator) there exists a continuous inverse operator 

(11) (I-N)"1 = I + X. 
If the number £(N,n) given by (2) satisfies the condition: 

1 (12) S(N,n) s 
hi-*)"1! 

then, since |N-NN| a S(N,n), uniqueness of the solution of the 
equation (9) in R(A) follows by Theorem 4 in ([3], p.212). 
Indeed, put X = Y = R(A), UQ = I - N and U = N - Nr. Then, for 
V = U Q + U = I - N n there exists a continuous inverse operator 
V - 1 = (I - N ) - 1. Moreover n 

(13) I (I-N)-1! = HV"1! s fld-N)1« = 8 (I-N)"1» . 
l-iCi-IIUi 1-] (I-N)-1! • DN—NnII 

This completes the proof of existence and uniqueness of 
solutions of equations (9) and (5) and the system of equations 
(3). Thus the sum D_(l) of the first Fredholm's series for the n 
kernel Nn(x,y) of the equation (9) is not equal to 0. Hence 
the only solutions ^ and of the equations (9) and (5), 
respectively, are 
(14) 0(x) = g(x) + j*n(x,y,l)g(y)dy, xeA, 

A 

(15) 0n(x) = fn(x) + j"*n(x,y,l)fn(y)dy, xeA, 
A 

D (x,y,l) 
where *n(x,y,l) = — p ( 1 . — is a Riemann integrable function 

n 
and Dn(x,y,l) is the sum of the second Fredholm's series for 
the kernel Nn(x,y). By (14) the linear operator 
(I-Nn):R(A) >RA) has a continuous inverse operator 
(16) ^ " V " 1 = 1 + Kn-
According to equality (143) in [2], (p.78) we get 
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(17) *(x,y,l) = N(x,y) + J * ( x , s , l ) N ( s , y ) d s 
A 

(18) *n(x,y,l) = Nn(x,y) + jKn(x,s,l)Nn(s,y)ds 
A 

for x,y € A. Notice that the equalities (10), (15)-(18) imply 

(19) 0(x) - *n(x) - f(x) - fn(x) + |Kn(x,y,l)[f(y)-fn(y)]dy 
A 

+ J[*(x,y,1)-Kn(x,y,l)]f(y)dy 
A 

and 
(20) *(x,y,1) - *n(x,y,l) - jN(s,y)[R(x,s,l)-Kn(x,s,l)]ds 

A 
= rn(x,y) , 

where 

(21) rn(x,y) = N(x,y) - Nn(x,y) + J * n ( x , s , 1 ) [ N ( s , y ) - N n ( s , y ) ] d s 
A 

For an arbitrary fixed x e A the function 

0x(s) = [R (x, s,1) - Kn(x,s,l)] e R(A) 
and 

rn(x,y) « R(A) . 

Treating the equality (20) as a Fredholm's equation with 
respect to the function and the associate to the equation 

(1) we get the equality 

(22) *(x,y,l) - *n(x,y,l) = rn(x,y) + J * ( x , s , l ) r n ( x , s ) ] d s 
A 

equivalent to (20). 

It follows from (19), (22), (21), (11), (16) and (13) that 
the solutions 0 e R(A) and 4>n e Cn(A) of the equations (1) and 
(5), respéctively, satisfy the condition 

* |I+*n|-|f-fn| + |(K-Kn)fl 

= |l+*nl • lf"f
nl + | ( l + V { { N - N n ) [ ( I + K ) f ] } » 
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* |I+*„I•!*-*„! + |l+*n|-|H-Hn|-|l+K|-|f| 

•(|'-'„l+|N-Mn|-|(I-H)"A|-|f|). -1 

This yields the inequality (4). If, for example, 

S(N,n) < i ^ , 
2-ld-») II 

then, since ||N-Nn| a S(N,n,), we can take dj = 2 • fl f || • || (I-N) "1|i' 

and d2= 2-|(I-N)"1] . 
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