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ON EXPLOSION OF ONE DIMENSIONAL PROCESS 
UNDER ADDITIVE NOISE 

Let ftR1—»R1 be a continuous function and w=(wt)t*0 a 

one dimensional Wiener process on a probability space (£},?,9) . 
In this note we study a relationship between existence of a 
global or exploding solution X of the deterministic equation 
(1) dXt = f(Xt)dt, XQ=x 
and of a global or exploding solution Y of the stochastic 
equation 
(2) dYt = f(Yt)dt + dWt, Yq = x. 
We show that explosion of the deterministic solution X of (1) 
always implies explosion of the stochastic solution Y of (2). 
We construct also an example of a function f such that there 
exists a global solution X of (1) but the solution Y of (2) 
explodes with probability one. We give general conditions 
under which the converse implication takes place. 

The purpose of this note is to prove the following 
theorems 

Theorem 1. (i) Assume that f is locally Lipschitz positive 
function such that the solution X of (1) explodes. Then the 
solution Y of (2) explodes as well. 

(ii) For arbitrary a>l there exists a smooth positive 
function f satisfying f(x)*xa for large x and such that the 
solution Y of (2) explodes but the solution X of (1) exists 
globally. 

Theorem 2. Let f be positive and differentiable function 
such that 
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(3) f exp(-2f f(s)ds) dv < -Ho 
J0 

and 3M>0 such that 

(4) - al s M f 2< x)' 

then existence of a global solution of (1) implies existence 
of a global solution of (2). 

Remark. Note that (3) is satisfied if, for instance, th6re 
exists C>l/2 such that 
(5) f(x) * | , 

for x sufficiently large. 
Remark. Conditions (3) and (4) are satisfied, in parti-

cular, by non-decreasing positive function f. 
Before proving the theorems we need some preliminary 

results. To simplify notation we introduce the following 
operators defined on the space of continuous functions: 

* ( f ) - S 0 T m d s ' 
oo V V \1 

*(f) = f exp(-2f f(s)ds)f exp(2f f(s)ds) du dv. 
Jn Jn Jn J n '0 Jo Jo Jo 

The following theorem is well known, see [l]-[3]. 

Theorem 3. (i) Assume that f is positive. Equation (1) has 
a global solution iff i ( f ) = + o o . 

(ii) Equation (2) has a global solution iff • ( f ) = + o o . 

Remark. It is easy to see that, if for all x, f(x)sg(x), 
then 

• (f) a • (g) and i(f) £ *(g). 

Proof of Theorem 1. (i) To prove the theorem it is enough 
to show that $(f)s*(f) because of Theorem 3. 

We express 4 as follows 
,oo„V „V .00 

• (f) = [ f exp(-2f f(s)ds) du dv = f z(v) dv, 
J0 J0 u J0 

,v fv 
z(v) = \ exp(-21 f(s)ds) du , vsO. 

J0 u 
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The differentiate function z is a unique, non-negative 
solution of the following problem 

(6) z' (v) = l-2f(v)z(v), z(0)=0. 
From (6) we have that 1-z' (v)>0 for v>0 and 

= for v>o. 

1/2 _ 

f(v) 1-z' (v) 
On the other hand 

11/2 
(7) 2z(v) = [i?'/^,)] [2z(v) (1-z' (v))] 

1/2 
t(v)] [2z(v)(1-z'(v))]1/2. 

Integrating z and applying Holder's Inequality for de-
composition (7) we obtain for arbitrary T>0 

T 2 1* T 
(J 2z(v)dv) 5 J^ J^iy dv jQZ(v)(l-z' (v)) dv = 

= C ^ d v [ C 2 z ( v ) d v " z 2 ( t ) ] s 

* dv £z<v>d v-

Thus, as T converges to o, we get 

r00 r " 1 
2) 0

z ( v ) d v s )07M dv-
Hence $(f)*<t(f) and so the proof is finished, 
(ii) Now we show that the positive function f such that 

the solution of (2) explodes and the solution of (1) does not 
explode can be found. Let a>l and 

- = 8(x+l)g(l+cos(x+l)a+1) 
1 ' a+1 a+1 ' 2+sin(x+1) +cos(x+1) 

for xiO, but for x<0 f is any positive continuous function. 
Since, for each starting point x, we can find such xQ that 
f(xQ)=0 and then (1) has a global solution for every 
starting point. We will prove that f(f)<oo and so solution of 
(2) explodes. To simplify calculations we take a=3. 

We will need the following function 
£(x) = exp(x+l)4(2+sin(x+l)4 + cos(x+l)4). 
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B y e a s y c a l c u l a t i o n w e h a v e 

f ( x ) = ( l n ? ( x ) ) . 

H e n c e 
m V 

• ( f ) = [ r 2 ( v ) f ? 2 ( x ) d x d v . 
J o J o 

S i n c e i < 2 + s i n ( x + l ) 4 + c o s ( x + l ) 4 < 4 , t h e n 

« ( f ) s 6 4 f e x p ( - 2 ( v + l ) 4 ) f e x p ( 2 ( x + l ) 4 ) d x d v = 
J 0 J 0 

03 
co V 4 

= 6 4 f e x p ( - 2 ( v + l ) 4 ) f ) ( 2 ( x + l ) ) d x d v = 

J 0 J 0 ¿ _ . 

03 ^ 

6 4 Y L k i ( 4 k + l ) J e x p ( - 2 ( v + l ) 4 ) [ 2 k ( v + l ) 4 k + 1 - l ] d v . 

k = 0 " 0 

T o s h o w t h a t t h e a b o v e e x p r e s s i o n i s f i n i t e i t s u f f i c e s t o 

v e r i f y t h a t 

00 

- Y 1 K ! ( 4 k + l ) r e x p ( - 2 ( v + l ) 4 ) 2 4 ( v + l ) 4 k + 1 d v 

k = 0 0 

4 
i s f i n i t e . P u t t i n g t = 2 ( v + l ) w e h a v e 

00 

= B ¡ T k l ( 4 k + l ) I > P C - t ) I * " 1 ' 2 d t = 

k = 0 0 

= B r —
 r(k+v2) 

B ( 4 k + l ) r ( k + l ) ' 

k = 0 

w h e r e B = 2 ~ 5 / 2 . S i n c e r ( n ) ( x ) = ( l n x ) n r ( x ) , f o r n e N , t h e n 

T ( k + 1 ) * T ( k + 1 ) ( l + | l n ( k + l / 2 ) + | l n 2 ( k + l / 2 ) ) a 

i | l n 2 ( k + l / 2 ) r ( k + l / 2 ) 

f o r k s l . H e n c e 

I , * B I T * / * + B y 1 

fcl l n 2 ( k + l / 4 ) 

b u t 

r00
 i 

I 5 - d x < 00 . 

2 x l n x 

F o r t h a t r e a s o n I j < » a n d s o $ ( f ) < c o . 
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The fact that the function f can reach zero is not 

important. He show that we can find the positive function g 

such that *(g)<+oo and *(g)=+«o. 

Let ^jt^jtgN b e a s e 1 u e n c e o f zeros of f (i.e. f(xk)=0) 

and i1)^})^!! ^e a sequence of intervals such that xjc
eIjc

 f o r 

keN and 1 ^ 1 ^ = 0 if k*l. One can verify that f' (xk)=0, keN, 

therefore 
r i 

dv = +oo for each keN. 
f(v) 

k 
Let r be positive and continuous function such that 

L ¿(v)íy(v) d v " a k ' k e N ' 
( Ik 

00 

with y a^ = +oo. 

k=l 

If we take g=f+y, then g is positive and continuous 

function such that 00 „CD „ . i 

* ( g ) = I 0 gTVT
 d v £ & 

= +00. K 
k=l 

On the other hand g*f, so we obtain, $(g)s$(f). Hence 

$ (g) <+oo. 

Proof of Theorem 2. We show that conditions (3) and (4) 

imply that there are positive constants C^, C 2 such that 

i(f) + C 1 * C 2*(f). 

At first we notice that 

( 8 ) 3 v ( 5 f W e * P ( 2 f f ( s > d s ) ) = 

= Í1 " f 2 ( V ) 1 e x P ( 2 ( f(s)ds). 
2f (v) ' J0 

Condition (4) implies 

( 9 ) avÍ277vJ- exp( 2{%(s)ds)) * 

¡ (1+M) exp(2^ f(s)ds) 
'0 

Integrating both sides of (5) we obtain 
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1 r v 1 
<10> 2(1+M)f(v) e*P(2]of(s)ds) - 2 ( 1 + M ) f ( g ) * 

rv fu 
s I exp(2l f(s)ds)du, 

Jo Jo 

for each positive v. Hence, 

(11) $(f) * {°exp(-2^f(s)ds) [ 2(i+M)f (v) exp(2^f(s)ds) + 

" 2(1+M)f(0)] d V = 2(1+M) * ( f ) + 

" 2 U + H T f T 5 T i o e x p / ( s ) d v = c 2 * ( f ) " c i 
as a consequence of (3). 

Applying Theorem 3 we complete the proof. 

Remark. We can obtain similar result for f negative. 

Final comments 

When the paper was ready the author has learned (indirect-

ly) that the habilitation by M.Scheutzow [4] contains Theorem 

1. Our proof of the first part of the theorem seems to be much 

shorter than in the habilitation and also the example 

presented in the proof of the second part of the theorem has 

additional properties. 
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