DEMONSTRATIO MATHEMATICA
Vol. XXV No 1-2 1992
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ON EXPLOSION OF ONE DIMENSIONAL PROCESS

UNDER ADDITIVE NOISE

1 a

Let f:R1—5R! be a continuous function and w=(wt)t=0
one dimensional Wiener process on a probability space (Q,%,?).
In this note we study a relationship between existence of a

global or exploding solution X of the deterministic equation

(1) ax, = f(X,)dt, X =x
and of a global or exploding solution Y of the stochastic
equation

(2) ay, = f(Y,)dt + dW_, Y, = x.

We show that explosion of the deterministic solution X of (1)
always implies explosion of the stochastic solution Y of (2).
We construct also én example of a function f such that there
exists a global solution X of (1) but the solution Y of (2)
explodes with probability one. We give general conditions
under which the converse implication takes place.

The purpose of this note is to prove the following
theorenms

Theorem 1. (i) Assume that f is locally Lipschitz positive
function such that the solution X of (1) explodes. Then the
solution Y of (2) explodes as well.

(ii) For arbitrary a>1 there exists a smooth positive
function f satisfying f(x)sxa for large x and such that the
solution Y of (2) explodes but the solution X of (1) exists
globally.

Theorem 2. Let f be positive and differentiable function
such that
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® v

(3) S exp(-zg f(s)ds) dv < +»
.0 0

and 3IM>0 such that

(4) - § = et (x),

then existence of a global solution of (1) implies existence
of a global solution of (2).

Remark. Note that (3) is satisfied if, for instance, thére
exists ¢>1/2 such that
C
(5) f(x) 2 3,

for x sufficiently large.

Remark. Conditions (3) and (4) are satisfied, in parti-
cular, by non-decreasing positive function f.

Before proving the theorems we need some preliminary
results. To simplify notation we introduce the following
operators defined on the space of continuous functions:

-]
1
¥ = So T(s)
v

ds ,

@ v u
o(£) = [ exp(-2| £(s)as)[ exp(2| £(s)as) au av.
0 0 0 0

The following theorem is well known, see [1]-(3].

Theorem 3. (i) Assume that f is positive. Equation (1) has
a global solution iff ¥ (f)=+w.
(ii) Equation (2) has a global solution iff @ (f)=+w.

Remark. It is easy to see that, if for all x, f(x)sg(x),
then
¢(f) = ¢(g) and ¥(f) = ¥(g).

Proof of Theorem 1, (i) To prove the theorem it is enough
to show that & (f)=¥(f) because of Theorem 3.
We express ¥ as follows

.V v ©
o(f) = Sogoexp(-zsuf(s)ds) du dv = Soz(v) dv,

where

v v
z(v) = Soexp(-zs f(s)ds) du , vz0.
u
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The differentiable function 2z is a unique, non-negative
solution of the following problem

(6) 2’ (v) = 1-2f(v)z(v), z(0)=0.
From (6) we have that 1-z’ (v)>0 for v>0 and
1. _2z(v) for wv>o0.

f(v) 1-2"(v)
Oon the other hand

1/2
(7) 22(v) = [Z285] T 2zm -2 (10?2 -
1/2
- 1 . 1/2
= [g3y] 2z a2 M2

Integrating z and applying Holder’s Inequality for de-
composition (7) we obtain for arbitrary T>0

[STzz(v)dv]2 = ST 1 av gTz(v)(l—z’(v)) av =
0 o (V) 0
T T
= 1 _ .2
= Sof(v) dav [Sozz(v)dv .2%(T) ] s
T T
< 1
= Sof(V) dy 5022(v)dv.
Thus, as T converges to o, we get
[ o] w 1
2S°z(v)dv < jof(v) av.

Hence & (f)s¥(f) and so the proof is finished.

(ii) Now we show that the positive function f such that
the solution of (2) explodes and the solution of (1) does not
explode can be found. Let a>1 and

8 (x+1)* (1+cos (x+1) *'1)

f(x) /
2+sin(x+1)"‘+1+cos(x+1)°‘+1

for x=0, but for x<0 f is any positive continuous function.
Since, for each starting point x, we can find such X, that
f(x0)=0 and x<xo, then (1) has a global solution for every
starting point. We will prove that ¢&(f)<eo and so solution of
(2) explodes. To simplify calculations we take «=3.

We will need the following function

€(x)

exp(x+1)4(2+sin(x+1)4 + cos(x+1)4).
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By easy calculation we have
f(x) = a— (1ng(x)).

Hence
© v

#n) = | €2 efeax av.

Since % < 2+sin(x+1)4+cos(x+1)4 < 4, then
] v 4
B(f) s 64S exp (-2 (v+1) %) 5 exp(2(x+1)4)ax dv =
0

4
= 64S:exp( 2(v+1) 4 S: E:: 131%{11—1 dx av =

k=0

E 1 ® 4, .k ak+1
64 kT (ak+1) S exp(-2(v+l) ") [27(Vv+1) -1]dv.
== ]

To show that the above expression is finite it suffices to

verify that

[+ ]
@®
_ }Z: 1 _ 4,.4 4k+1
I1 = KT (4K+1) goexp( 2(v+l) )27 (v+1) dv
k=0

is finite. Putting t=2(v+1)4 we have

_ 1 ® _ k-1/2
I, =B E KRy Soexp( t) t dt
)

_ 1 I(k+1/2)
=B Z (ak+1) T (k+1) '
k=0

where B=2"°/2_ since F(n)(x)=(1nx)nr(x), for neN, then
[(k+1) = F(k+1)(1+%1n(k+1/2) + %lnz(k+1/2)) .
> %lnz(k+1/2)r(k+1/2)
for k=z1. Hence

1) = Bnt/? BE RFITE T
£ 1n? (k+1/4)

but

@

E 12 dx < © .
2 x1ln“x

For that reason Il<m and so ¢(f)<w.
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The fact that the function f can reach 2zero is not
important. We show that we can find the positive function g
such that §(g)<+o and ¥(g)=+w.

Let {Xyl}yen
and {Ik}keN be a sequence of intervals such that xkeIk

keN and Ianl=0 if k#1. One can verify that f’(xk)=0, keN,

be a sequence of zeros of f (i.e. f(xk)=0)
for

therefore

1 _ .
SI V) dv = +o for each keN.

k
Let 7y be positive and continuous function such that

1 =
J, rrovircey av = o o ke,
k

-]
with E a, = +o.

k=1

If we take g=f+y, then g 1is positive and continuous

function such that

«
= 1 -
¥(g) = So 163) av = é_lak +o.

On the other hand gzf, so we obtain, ®(g)=®(f). Hence
®(g)<tw.

Proof of Theorem 2, We show that conditions (3) and (4)

imply that there are positive constants C C, such that

1’ 72
$(£) + €, = CU(f).
At first we notice that
(8) e exp(zsvf(s)ds)) -
vi2f(v) 0
, v
- (1 - _55121 exp(zg £(s)ds) .
2f£° (v) 0
Condition (4) implies
(9) g—(—fl—— exp(zsvf(s)ds)) =
vi2f(v) 0

\4
s(14M) exp (2] £(s)as).
0

Integrating both sides of (5) we obtain
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1 v 1
(10) AN E(V) exp(ziof(s)ds) T I E(e)

v u
s S exp(ZS £(s)ds)du,
0 0
for each positive v. Hence,

] v 1 v
(11) ¥(f) = yoexp(-zsof(s)ds)[ TTAETTT exp(ziof(s)ds) +

1 1
- E?iiﬁTfTET]dv = zaem Y(R)
1 ® v -
- ETT:ﬁsziygoexp(-Zsof(s)ds)dv = C,¥(f) - ¢,

as a consequence of (3).

Applying Theorem 3 we complete the proof.

Remark. We can obtain similar result for f negative.

Final comments

When the paper was ready the author has learned (indirect-
ly) that the habilitation by M.Scheutzow [4] contains Theorem
1. our proof of the first part of the theorem seems to be much
shorter than in the habilitation and also the example
presented in the proof of the second part of the theorem has
additional properties.
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