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ALMOST WEAKLY CONTINUOUS FUNCTIONS

1. Introduction

Levine [6] introduced the notion of weakly continuous
function between topological spaces. Husain [4]) introduced and
studied the notion of almost continuous functions. In [9],
almost continuity is called precontinuity by Mashhour et al.
Recently, Jankovi¢ [5] has introduced the notion of almost
weakly continuous functions. Almost weak continuity is implied
by both almost continuity and weak continuity which are
independent of each other.

The purpose of the present paper is to obtain several
characterizations of almost weakly continuous functions and to
improve some of results established by Mashhour et al. [9] and
the first author {15] of this paper. In §3, we obtain several
characterizations of almost weakly continuous functions. 1In
§4, we obtain some sufficient conditions for an almost weakly
continuous function to be almost continuous. In §5, we show
that the assumption on "almost continuous" in several results
established in [9] and [15] can be replaced by "almost weakly
continuous".

2. Preliminaries

Let X be a topological space and A a subset of X. The
closure of A and the interior of A are denoted by Cl(A) and
Int(A), respectively. A subset A is said to be regular closed
(resp. regular open) if A=Cl(Int(A)) (resp. A=Int(Cl(A))). A
subset A is said to be preopen ([9] (resp. semi-open [7],
a-open [14]) if AcInt(Cl(A)) (resp. AcCl(Int(A)),
AcInt(Cl(Int(A)))). It is shown in [10, Lemma 3.1] that A is
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a-open in X if and only if A is preopen and semi-open in X.
The family of all preopen sets in X is denoted by PO(X). For a
point xeX, we set PO(X,x)={U|xeUePO(X)}. The complement of a
precpen set (resp. a-open set) is said to be preclosed (resp.
a-closed). The preclosure [2]) of A, denoted by Pcl(A), is
defined by the intersection of all preclosed sets of X con-
taining A. We notice that xePcl(A) if and only if UnAzo
for every UePO(X,x). The preinterior of A, denoted by
Pint(A), is defined by the union of all preopen sets of X
contained in A. A point xeX is said to be 6©-adherent to A if
AnCl(U)#2 for every open set U of X containing x. The set of
all 6-adherents points of A is called the 6-closure [18] of A
and is denoted by cle(A). It is shown in [18] that
Cle(U)=C1(U) for every open set U of X and Cle(U) is closed
for every subset A of X. If Cle(A)=A, then A is said to be
6-closed. The complement of a 6-closed set 1is said to be

6-open.

Definition 2.,1. A function f:X—Y is said to be weakly
continuous [6] if for each xeX and each open set V containing
f(x), there exists an open set U containing x such that
£(U)cC1(V).

Definition 2.2. A function f:X—Y is said to be almost
continuous [4] if for each xeX and each open set V containing
£(x), C1(£ Y(V)) is a neighborhood of x.

In {17, Theorem 4], Rose showed that a function f: X—Y
is almost continuous if and only if f_l(V)cInt(Cl(f—l(V)))
for every open set V of Y. Mashhour et al. defined a function
f:X—Y to be precontinuous [9] if f_l(V)ePO(X) for every
open set V of Y. It is obvious that precontinuity is

equivalent to almost continuity. We shall utilize the term
Yalmost continuous" in the sequel.

Definition 2.3, A function f:X—Y is said to be almost
weakly continuous [5] (briefly a.w.c.) if
£71(V)cInt(cl(£ 2 (c1(V)))) for every open set V of Y.
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It is shown in {6, Theorem 1] that a function f:X—Y is
weakly continuous if and only if £ 1(V)cInt(f£ l(cl(v))) for
every open set V of Y: Therefore, it follows from Examples 5.8
and 5.10 of [11] that almost weak continuity is strictly
weaker than both weak continuity.

3. Characterizations

In this section, we obtain several characterizations of
a.w.c. functions.

Theorem 3.1. The following are equivalent for a function
f:X—oY:

(a) £ is a.w.c.

(b) cl(Int(£ 1(v)))ect~l(c1(V)) for every open set V of Y.

(c) Pel(£ Y (v))e£ 1(C1(V)) for every open set V of Y.

(d) £ Y (v)cpint(£71(c1(V))) for every open set V of Y.

(e) For each point xeX and each open set V containing
f(x), there exists UePO(X,x) such that £(U)cCl(V).

Proof. (a)=%(b): This is shown in [11, Theorem 3.1].

(b)==>(c): It is shown in {1, Theorem 1.5] that Pcl(A)=
=AuCl(Int (A) for every subset A of X. Therefore, we obtain
Pcl(f-l(V))cf-l(V)) for every open set V of Y.

(c)=>(d):Let V be any open set of Y. Then Y-C1(V) is open
in Y and we have

X-Pint (£~ 1(c1(V)))=

1

=Pcl (£ 1 (Y-C1(V)))cf L (cL(Y-C1(V)))ex-£" 1 (V).

Therefore, we obtain £ 1 (V)cPint(£ 1(c1(V))).

(d)=>(e): Let xeX and V be any open set of Y containing
f(x). We have  xef L(V)cPint(f l(c1(V))). Sset U=
=Pint (£71(C1(V))), then we obtain UePO(X,x) and £(U)cCl(V).

(e)=n>(a): Let V be any open set of Y and x any point of
£71(V). There exists UePO(X,x) such that £(U)cCl(V). There-
fore, we obtain Ucf™1(C1(V)) and hence xeInt(Cl(f 1(c1(V)))).
This shows that £ 1 (V)cInt(cl(f 1(c1(v)))).
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Remark 3.2, For every VePO(Y), we have Cl(V)=
= C1(Int(C1l(V))) and hence the condition "open set V" in each
statement of Theorem 3.1 can be replaced by "preopen set V".

In (5, Theorem 4.7)], Jankovi¢ showed that a function
f:X—Y is a.w.c. if and only if f(cl(U))ccle(f(U)) for each
open set U of X. We shall obtain analogous characterizations
of a.w.c. functions.

Theorem 3,3, The following are equivalent for a function
f:X—Y: .

(a) £ is a.w.c.

(b) f(Pcl(A))cCle(f(A)) for every subset A of X.

(c) Pcl(f_l(B))cf—l(Cl (B)) for every subset B of Y.
e

(d) Pcl(f—l(Int(Cle(B))))cf-l(cle(B)) for every subset B
of Y.

(e) Pcl(f (Int(c1(v))))ct 1(Cc1(V)) for every open set V
of Y.

(£) Pcl(f (Int(cl(v))))ef 2(c1(v)) for every VePO(Y).

(g) Pel(f Y (Int(F)))ce™t

F of Y.

(F) for every regular closed set

Proof. (a)=>(b): Let A be any subset of X. Let xePcl (A)
and W be any open set containing f(x). Since f is a.w.c., by
Theorem 3.1 there exists UePO(X,Xx) such that f(U)cCl(W).
Since xePcl(A), UnAze and hence @=f(UnA)cCl(W)nf(A). There-
fore, we obtain f(x)ecle(f(A)). This shows that f(Pcl(A))c
cCle(f(A)).

(b)=(c): Let B be any subset of Y. Then we have
f(Pcl(f—l(B)))ccle(f(f-l(B)))cCIG(B).

Therefore, we obtain Pcl(f-l(B))cf-l(Cle(B)).
(c)=>(d): Let B be any subset of Y. Since Cle(B) is closed
in Y and Cle(V)=C1(V) for every open set V of Y [18,
Lemma 2], we have
Pcl(f-l(Int(Cle(B))))cf—l(cle(Int(Cle(B)))) =

- f-l(cl(Int(Cle(B))))cf-l(cl(cle(B))) = f'l(c1e(a)).
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(4)=> (e): This is obvious since Cle(V)=c1(V) for every

open set V.

(e)=»(f): This follows from Cl(Int(Cl(V)))=C1l(V) for
every VePO(Y).

(f)=»(g): Let F be any regular closed set of Y. Then we
have Int(F)ePO(Y) and hence
Pcl(£ 1 (Int(F))) = Pcl(£ 1 (Int(Cl(Int(F)))))cf L(Cl(Int(F))) =

= £ 1.

(g)=>(a): Let V be any open set of Y. Then Cl1l(V) is re-

gular closed in Y. Therefore, we obtain
Pcl (£ (v))epel (£7  (Int(c1(V))) ) et L (c1 (V).

It follows from Theorem 3.1 that f is a.w.c.

Corollary 3.4. Let Y be a regular space. The following are
equivalent for a function f:X—Y:

(a) £ is almost continuous.

(b) f-l(cle(B)) is preclosed in X for every subset B of Y.

(c) f_l(F) is preclosed in X for every O6-closed set F of Y.
(4) f_l(V) is preopen in X for every 6-open set V of Y.
(e) £ is a.w.cC.

Proof. Since Y is regular, Cle(B)=cl(B) for every subset
B of Y. Therefore, a subset F is 6-closed (resp. 6-open) in Y
if and only if it is closed (resp. open) in Y. Jankovi¢ [5]
remarks that a.w.c. functions into regular spaces are almost
continuous. Therefore, Theorem 1 of [15] completes the proof.

Lemma 3.5 (Mashhour et al. [9]). Let X be a topological

space and A and Xo subsets of X.

(1) If AePO(X) and Xo is semi-open in X, then AnxoePO(xo).
(2) If X €PO(X) and AePO(X,), then AePO(X).
It is shown in {11, Theorem 6.2.9] that if f:X—>Y is

a.w.c. and X, is open in X then the restriction flxozxo—aY

is a.w.c. The following theorem is a slight improvement of
this result.

Theorem 3.6. If a function f:X—Y is a.w.c. and Xo is

semi-open in X, then the restriction f[xozxo—aY is a.w.c.
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Proof. Let xexo
f(x). Since £ is a.w.c., by Theorem 3.1 there exists UePO(X,x)
such that f£(U)c<Cl(V). By Lemma 3.5, we have UnX ePO(xo,x)

0
and (f|x0)(Unx°)<f(U)<C1(V). This shows that f|xo is a.wv.c.

and V be any open set of Y containing

Theorem 3.7. A function f:X—Y is a.w.c. if, for each xeX,
there exists XOEPO(X,x) such that the restriction f|x0:x
—Y is a.w.c.

0—)

Proof. Let xeX and V be any open set of Y containing f(x).
There exists xoePO(x,x) such that f|x0:x6—+Y is a.w.c. and
hence (f|xo)(U)ccl(V) for some UePO(xo,x). By Lemma 3.5,

UePO(X,x) and £(U)cCl(V). This shows that f is a.w.c.

Corollary 3.8. Let {UalaeV} be a cover of a space X by
a-open sets of X. Then a function f£:X—Y is a.w.c. if and
only if the restriction f|Ua:Ua—+¥ is a.w.c. for each aeV.

Proof. This is an immediate consequence of Theorem 3.6 and
3.7.

4. Sufficient conditions for a.w.c. functions to be almost

continuous

Lemma 4.1. Let X be a topological space. If A is a=-open in
X and BePO(X), then AnBePO(X).

Proof. If 0 is open in X, then O0nCl(A)cCl(0nA) for any
subset A of X. By utilizing this result, we obtain
AnBcInt (Cl(Int(A)))nInt(Cl(B))cInt[Cl(Int(A))nInt(CL(B))]c
cInt{Cl[Int(A)nCl(B)]}]}cInt[Cl[AnB]].
This shows that AnB is preopen in X.

A function f:X—Y is said to be weak® continuous [6] if
f—l(Fr(V)) is closed in X for each open set V of Y, where
Fr(V) denotes the frontier of V. A function f:X—Y is said to
be locally weak® continuous [16] if there exists an open basis
B for the topology on Y such that f_l(Fr(V)) is closed in X
for each V in B.

Theorem 4.2. An a.w.c. function f:X—Y is almost con-
tinuous if there exists an open basis 8 for the topology on Y
such that f_l(Fr(V)) is a~closed for each V in B.
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Proof. Let f:X—Y be an a.w.c. function which satisfies
the condition of Theorem 4.2. Let xeX and W be any open set of
Y containing f(x). There exists VeB such that f(x)eVcW. Since
f is a.w.c., by Theorem 3.1 there exists UePO(X,x) such that
f(U)cCl(V). By the hypothesis, X-f-l(Fr(V)) is a-open in X.
Set U =Un[x-f-1(Fr(V))]. Then since f(x)eFr(v), we obtain

0

eroePO(x) by Lemma 4.1. Moreover, we have

£(U,)=£ (U) n(Y=Fr (V) ) cCL(V) n(¥Y~-Fr (V) ) =VcW.
It follows from [15, Theorem 1] that f is almost continuous.

The following two corollaries are immediate consequences
of Theorem 4.2. '

Corollary 4.3. If a function f:X—Y is a.w.c. 1locally
weak” continuous, then f is almost continuous.

Corollary 4.4. If a function f:X—Y is a.w.c. weak”
continuous, then f is almost continuous.

A topological space Y is said to be strongly 1locally

compact [16] if each point of Y has a closed compact neighbor-
hood. A topological space Y is said to be rim-compact if there
exists an open basis for the topology on Y such that Fr(V) is
compact for each V in 8.

Corollary 4.5. If Y is a rim-compact space and f:X—Y is
an a.w.c. function with a closed graph G(F), then f is almost
continuous.

Proof, Since Y is rim-compact, there exists an open basis
8 for the topology on Y such that Fr(V) is compact for each V
in 8. Since G(f) is closed, it follows from [3, Theorem 3.6)
that f—l(Fr(V)) is closed in X for each V in 8. Therefore, f
is locally weak” continuous and hence by Corollary 4.3 f is
almost continuous.

Corollary 4.6, If £:X—>Y is an a.w.c. function into a
strongly locally compact space Y and has a closed graph, then
f is continuous.
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Proof. Since every strongly localiy compact space is rim-
-compact, this follows immediately from Corollary 4.5 and [16,
Theorem 7].

5. Hausdorff spaces and a.w.c. functions

In this section, we shall show that the assumption "almost
continuous" in some of results established in [9] and [15] can
be replaces by "almost weakly continuous"

Theorem 5.1, If f:X—Y is an a.w.c. function and Y is a
Hausdorff space, then the graph G(f) is preclosed in XxY.

Proof. Let (x,y) be any point of XxY-G(f). Then y=f(x)
and there exist open sets V and W in Y such that f(x)eV, yeW
and VnW=2; hence Cl(V)nW#e. Since f is a.w.c., by Theorem 3.1
there exists UePO(X,x) such that £(U)cCl(V). Therefore, we
obtain f(U)nW=2¢ and hence (UxW)nG(f)=8. Since UxW is a
preopen set of XxY containing (x,y), (x,y)e€Pcl(G(f)) and
hence Pcl(G(f))=G(f). It follows from ([2, Lemma 2.3] that
G(f) is preclosed in XxY.

Corollary 5.2, (Mashhour et al. [9]; Popa [15]). If f:X—Y
is almost continuous and Y is Hausdorff, then G(f) is preclos-
ed in XxY.

A function f:X—Y is said to be almost a-continuous [13}

(resp. a-continuous [10]) if f_l(V) is a-open in X for every
regular open (resp. open) set V of Y. In {13, Remark 2.5], it
is shown that almost a-continuity is strictly weaker than
a-continuity.

Theorem 5.3. Let fl,fzzx—»Y be functions into a Hausdorff
space Y. If f1 is almost a-continuous and f2 is a.w.c., then
the set {xex|f1(x)=f2(x)} is preclosed in X.

Proof. Let A={xex|f1(x)=f2(x)} and suppose that xeX-A.
Then fl(x)tfz(x) and there exist open sets V1 and V2 such

that fl(x)evl, fz(x)eV2 and Van2=o; hence Int(Cl(Vl))n

nCl(V2)=z. Since f1 is almost a-continuous, there exists an
a-open set U, of X containing x such that f(Ul)cInt(Cl(Vl))
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[13, Theorem 3.2). Since f2 is a.w.c., by Theorem 3.1 there
exists UzePo(x,x) such that fz(Uz)cCI(Vz). We have Fl(Ul)n
nf(Uz)=z and U,nu,
(Uanz)nA=z and hence xeX-Pcl(A). This shows that A is

preclosed in X.

€PO(X,x) by Lemma 4.1. Therefore, we obtain

Corollary 5.4 (Popa [15]). Let X be a topological space
and Y a Hausdorff space. Let fland f, be functions of X into
Y. If f1 is continuous and f2 is almost continuous, then the
set {xex|f1(x)=f2(x)} is preclosed in X.

Proof. This is an immediate consequence of Theorem 5.3.

A function f:X—Y is said to be weakly a=-continuous [12]

if for each xeX and each open set V containing f(x), there
exists an a-open set U containing x such that £ (U)cCl(V).

Theorem 5.5, Let fl,fzzx—av be functions into a Urysohn
space Y. If f1 is weakly a-continuous and is a.w.c., then
the set {xex|f1(x)=f2(x)} is preclosed in X.

Proof. The proof is quite similar to that of Theorem 5.3.

Theorem 5,6, Let X be a Hausdorff space and A a subset of
X. If f£f:X—A is an a.w.c. function such that the restriction
f|A is the identity function, then A is preclosed in X.

Proof. Suppose that A is not preclosed. There exists a
point xePcl(A)-A. Since x#f(x), there exist open sets U and
V in X such that xeU, f(x)eV and UnV=0; hence UnCl(V)=a.
Since f is a.w.c., there exists GePO(X,x) such that f(G)c
cClA(VnA)ccl(V) where ClA(VnA) denotes the closure of an
open set VnA in the subspace A. Since GnUePO(X,x) and
xePcl(A), we have (GnU)nA#o. Let ae(GnU)nA. We have f(a)=aeU
and hence f(a)eX-Cl(V). This shows that f£(G)¢Cl(V). This is
a contradiction.

Corollary 5.7 (Mashhour et al. [9]). Let A be a subset of
a Hausdorff space X. If a function f:X—A is precontinuous and
f|A is the identity function, then A is a preclosed set of X.

Proof. Since every precontinuous function is a.w.c., this
follows immediately from Theorem 5.6.
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For a function f:X—Y, the graph G(f)={(x,f(x)|xeX} is
said to be strongly closed [8] if for each (X,Y) €XxY-G(£),

there exist open sets U and V containing x and Y.,
respectively, such that [UxCl(V)]nG(F)=»o.

Theorem 5.8. If f£:X—Y is a.w.c. injection with a strongly
closed graph, then X is Hausdorff.

Proof. Let Xy and x., be any distinct points of X. Since f

2
is injective, f(xl)*f(xz) and by [8, Lemma 1] there exist open

sets U and V such that xleU, f(xz)eV and f(U)nCl(V)=so.

Therefore, we have Unf—l(cl(V))=z and hence
UnInt(Cl(£ 1(c1(v))))=e. Since f is a.w.c.,
xzef—l(V)cInt(Cl(f-l(V)))) and hence X is Hausdorff.
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