

C.-S. Lin

ON UNIFORMLY CONVEX AND UNIFORMLY 2-CONVEX 2-NORMED SPACES

In [6] the author investigated the generalizations of strictly convex and strictly 2-convex 2-normed spaces (defined in [3] and [4], respectively) without using the quotient spaces, or the bounded bilinear functionals techniques. In this paper we shall define a uniformly convex 2-normed space which is 2-dimensional analogue of the concept of a uniformly convex normed space defined in [1]. Consequently, as in the case of strictly 2-convex 2-normed space, it seems natural to define a uniformly 2-convex 2-normed space. The purpose of this paper is to present characterizations of these two spaces and to study relationships among other 2-normed spaces. Our main tools used here are basic properties of a 2-norm in a 2-normed space. As it is essential let us first repeat those definitions from [5].

Recall that, when X is a linear space of dimension greater than one and $\|\cdot, \cdot\|$ a real function on $X \times X$, then X is called a 2-normed space with a 2-norm $\|\cdot, \cdot\|$, if the following conditions are satisfied:

- 1° $\|x, y\| = 0$ if and only if x and y are linearly dependent,
- 2° $\|x, y\| = \|y, x\|$,
- 3° $\|ax, y\| = |a| \|x, y\|$ for every real a ,
- 4° $\|x+y, z\| \leq \|x, z\| + \|y, z\|$.

We shall frequently use one of the basic properties that $\|ax+by, y\| = |a| \|x, y\|$ for any real numbers a and b ([5] p.5).

Definition 1. A 2-normed space X is said to be uniformly convex, if to each $\epsilon > 0$ there corresponds a $\delta(\epsilon) > 0$ such that, if $\|x, z\| = \|y, z\| = 1$, $z \notin V(x, y)$ and $\|x-y, z\| \geq \epsilon$, then $\frac{1}{2} \|x+y, z\| \leq$

$\leq 1 - \delta(\epsilon)$, where $V(x, y)$ denotes the subspace of X generated by x and y .

Definition 1 implies that ϵ must be in the interval $(0, 2]$.

As an illustration, consider a 2-pre-Hilbert space, i.e., 2-inner product space, which is characterized by the parallelogram law (Theorem 4 and 5 [2]), i.e.,

$$\|x+y, z\|^2 + \|x-y, z\|^2 = 2(\|x, z\|^2 + \|y, z\|^2).$$

If $\|x, z\| = \|y, z\| = 1$, $z \notin V(x, y)$ and $\|x-y, z\| \geq \epsilon$, then

$$\frac{1}{4}\|x+y, z\|^2 = 1 - \frac{1}{4}\|x-y, z\|^2 \leq 1 - \frac{1}{4}\epsilon^2.$$

Thus, by letting $\delta(\epsilon) = 1 - \frac{1}{2}\sqrt{4-\epsilon^2}$, we see that every 2-pre-Hilbert space is uniformly convex.

Theorem 1. For a 2-normed space X the following four statements are equivalent:

(1) X is uniformly convex;

(2) to each $\epsilon > 0$ there corresponds a $\delta(\epsilon) > 0$ such that, if $\|x, z\| = \|y, z\|$, $z \notin V(x, y)$ and $\|x-y, z\| \geq \epsilon \|x, z\|$, then

$$\frac{1}{2}\|x+y, z\| \leq (1 - \delta(\epsilon))\|x, z\|;$$

(3) to each $\epsilon > 0$ there corresponds a $\delta'(\epsilon) > 0$ such that, if $\|x-ay, z\| \geq \epsilon \|x, z\|$, where $a = \frac{\|x, z\|}{\|y, z\|}$, and $z \notin V(x, y)$, then

$$\frac{1}{2}\|x+ay, z\| \leq (1 - \delta'(\epsilon))\|x, z\|;$$

(4) to each $\epsilon > 0$ there corresponds a $\delta'(\epsilon) > 0$ such that, if $\|x-ay, z\| \geq \epsilon \|x, z\|$, with a from (3) and $z \notin V(x, y)$, then

$$\|x+y, z\| \leq \|x, z\| + \|y, z\| - \delta'(\epsilon)\|x, z\| \quad \text{or}$$

$$\|x+y, z\| \leq 3\|x, z\| - \|y, z\| - \delta'(\epsilon)\|x, z\|.$$

Proof. (1) \Rightarrow (2): Let $\|x, z\| = \|y, z\| = c$, $c \neq 0$ and $z \notin V(x, y)$, then $\|x, \frac{z}{c}\| = \|y, \frac{z}{c}\| = 1$ and $\|x-y, \frac{z}{c}\| \geq \epsilon$ imply that $\frac{1}{2}\|x+y, \frac{z}{c}\| \leq 1 - \delta(\epsilon)$, by (1), i.e., $\frac{1}{2}\|x+y, z\| \leq (1 - \delta(\epsilon))\|x, z\|$.

(2) \Rightarrow (3): $\|x, z\| = \|ay, z\|$ obviously. Replace y by ay in (2) to get (3).

(3) \Rightarrow (4): Since $\frac{1}{2}\|x+ay, z\| \leq (1 - \delta'(\epsilon))\|x, z\|$, by (3), and if

$\|y, z\| \geq \|x, z\|$, then

$$\begin{aligned} \|x+y, z\| &= \|x+ay+y(1-a), z\| \leq \|x+ay, z\| + (1-a)\|y, z\| \leq \\ &\leq 2(1-\delta'(\varepsilon))\|x, z\| + \|y, z\| - \|x, z\| = \|x, z\| + \|y, z\| - 2\delta'(\varepsilon)\|x, z\|. \end{aligned}$$

Let $\delta(\varepsilon) = 2\delta'(\varepsilon)$, so that the first inequality follows. In the case of $\|y, z\| \leq \|x, z\|$ we have

$$\|x+y, z\| \leq \|x+ay, z\| + (a-1)\|y, z\| \leq 3\|x, z\| - \|y, z\| - 2\delta'(\varepsilon)\|x, z\|.$$

(4) \Rightarrow (1): If $\|x, z\| = \|y, z\| = 1$, then $\|x+y, z\| \leq 2 - \delta'(\varepsilon)$, by (4).

We may let $\delta(\varepsilon) = \frac{1}{2}\delta'(\varepsilon)$.

Corollary 1. Let X be an uniformly convex 2-normed space.

If $x_i \in X$, $i=1, 2, \dots, n$, $y = \sum_{i=1}^n x_i$ and $\|x_k, z\| \leq \|y - \sum_{j=1}^k x_j, z\|$ for $k=1, \dots, n-1$, then

$$\|y, z\| \leq \sum_{i=1}^n \|x_i, z\| - \sum_{k=1}^{n-1} \delta(\varepsilon_k) \|x_k, z\|$$

for $z \in X$ with $z \notin V(x_1, x_2, \dots, x_n)$, where

$$\varepsilon_k = \left\| \frac{x_k}{\|x_k, z\|} - \frac{y - \sum_{j=1}^k x_j}{\|y - \sum_{j=1}^k x_j, z\|}, z \right\|, \quad k=1, 2, \dots, n-1,$$

and δ is the function from Definition 1 with $\delta(0)=0$.

Proof. Use the first inequality of (4) in Theorem 1 and induction.

Corollary 2. Let X be a uniformly convex 2-normed space.

If $x_i \in X$, $i=1, 2, \dots, n$, and $y = \sum_{i=1}^n x_i$, then

$$\|y, z\| \leq \sum_{i=1}^n (1 - 2\delta(\varepsilon_i)) \|x_i, z\| \quad \text{for } z \in X \text{ with } z \notin V(x_1, x_2, \dots, x_n),$$

where $\varepsilon_i = \left\| \frac{x_i}{\|x_i, z\|} - \frac{y}{\|y, z\|}, z \right\|$ and δ is the function from

Definition 1 with $\delta(0)=0$.

Proof. Clearly,

$$\left\| \frac{x_i}{\|x_i, z\|}, z \right\| = \left\| \frac{y}{\|y, z\|}, z \right\| = 1, \quad i=1, 2, \dots, n.$$

By the definition there exists $\delta(\varepsilon_i) > 0$ such that

$$\left\| \frac{x_i}{\|x_i, z\|} + \frac{y}{\|y, z\|}, z \right\| \leq 2(1-\delta(\varepsilon_i)),$$

or $\|x_i\|y, z\| + y\|x_i, z\|, z\| \leq 2(1-\delta(\varepsilon_i))\|x_i, z\|\|y, z\|$. Hence,

$$\begin{aligned} \left\| \|y, z\|y + y \sum_{i=1}^n \|x_i, z\|, z \right\| &= \left\| \sum_{i=1}^n (x_i\|y, z\| + y\|x_i, z\|), z \right\| \leq \\ &\leq \sum_{i=1}^n \|x_i\|y, z\| + y\|x_i, z\|, z\| \leq \sum_{i=1}^n 2(1-\delta(\varepsilon_i))\|x_i, z\|\|y, z\|, \end{aligned}$$

or

$$\|y, z\|(\|y, z\| + \sum_{i=1}^n \|x_i, z\|) \leq \sum_{i=1}^n 2(1-\delta(\varepsilon_i))\|x_i, z\|\|y, z\|.$$

Thus,

$$\|y, z\| \leq \sum_{i=1}^n (1-2\delta(\varepsilon_i))\|x_i, z\|.$$

Definition 2. A 2-normed space is said to be uniformly 2-convex, if to each $\varepsilon > 0$ there corresponds a $\delta(\varepsilon) > 0$ such that, if $\|x, y\| = \|y, z\| = \|z, x\| = 1$ and $\|x+y, z\| \geq \varepsilon$, then

$$\frac{1}{3}\|x+z, y+z\| \leq 1-\delta(\varepsilon).$$

Definition 2 implies that ε must be in the interval $(0, 2]$.

Theorem 2. For a 2-normed space X the following six statements are equivalent:

(1) X is uniformly 2-convex.

(2) To each $\varepsilon > 0$ there corresponds a $\delta(\varepsilon) > 0$ such that, if $\|x, y\| = \|y, z\| = \|z, x\| = 0$ and $\|x+y, z\| \geq \varepsilon\|x, z\|$, then

$$\frac{1}{3}\|x+z, y+z\| \leq (1-\delta(\varepsilon))\|x, z\|.$$

(3) To each $\varepsilon > 0$ there corresponds a $\delta(\varepsilon) > 0$ such that, if $\|x, y\| = \|y, z\| = 0$ and $\|x+ay, z\| \geq \varepsilon\|x, z\|$, where $a = \frac{\|x, z\|}{\|y, z\|}$, then

$$\frac{1}{3}\|x+z, ay+z\| \leq (1-\delta(\varepsilon))\|x, z\|.$$

(4) To each $\varepsilon > 0$ there corresponds a $\delta(\varepsilon) > 0$ such that, if $\|y, z\| \|x, z\| \neq 0$, $\|x, y\| = \|y, z\|$ and $\|x+ay, z\| \geq \varepsilon \|x, z\|$, where $a = \frac{\|x, z\|}{\|y, z\|}$, then

$$\|x+z, y+z\| \leq \|x, z\| + 2\|y, z\| - \delta(\varepsilon)\|x, z\|,$$

or

$$\|x+z, y+z\| \leq 5\|x, z\| - 2\|y, z\| - \delta(\varepsilon)\|x, z\|.$$

(5) To each $\varepsilon > 0$ there corresponds a $\delta(\varepsilon) > 0$ such that, if $\|x, y\| \|y, z\| \|z, x\| \neq 0$ and $\|bx+cy, z\| \geq \varepsilon \|bx, z\|$, where $b = \frac{\|y, z\|}{\|x, y\|}$ and $c = \frac{\|x, z\|}{\|x, y\|}$, then $\frac{1}{3}\|bx+z, cy+z\| \leq (1-\delta(\varepsilon))\|bx, z\|$.

(6) To each $\varepsilon > 0$ there corresponds a $\delta(\varepsilon) > 0$ such that, if $\|x, y\| \|y, z\| \|z, x\| \neq 0$ and $\|bx+cy, z\| \geq \varepsilon \|bx, z\|$, where $b = \frac{\|y, z\|}{\|x, y\|}$ and $c = \frac{\|x, z\|}{\|x, y\|}$, then

$$\|x+z, y+z\| \leq \|x, y\| + \|y, z\| + \|z, x\| - \delta(\varepsilon)\|bx, z\|,$$

$$\text{or } \|x+z, y+z\| \leq \|x, y\| (8bc+1) - 3(\|y, z\| + \|x, z\|) - \delta(\varepsilon)\|bx, z\|,$$

$$\text{or } \|x+z, y+z\| \leq \|x, y\| (2bc-1) + 3\|x, z\| - \|y, z\| - \delta(\varepsilon)\|bx, z\|,$$

$$\text{or } \|x+z, y+z\| \leq \|x, y\| (2bc-1) + 3\|y, z\| - \|x, z\| - \delta(\varepsilon)\|bx, z\|.$$

Proof. (1) \Rightarrow (2): Let $\|x, z\| = d^2$ for some $d \neq 0$, then $\frac{x}{d}, \frac{y}{d} = \frac{y}{d}, \frac{z}{d} = \frac{z}{d}, \frac{x}{d} = 1$ and $\frac{x}{d} + \frac{y}{d} + \frac{z}{d} \geq \varepsilon$, by (2). Hence, $\frac{1}{3}\|\frac{x}{d} + \frac{z}{d}, \frac{y}{d} + \frac{z}{d}\| \leq 1 - \delta(\varepsilon)$, by (1), i.e., $\frac{1}{3}\|x+z, y+z\| \leq (1-\delta(\varepsilon))\|x, z\|$.

(2) \Rightarrow (3): $\|x, ay\| = \|ay, z\| = \|x, z\| \neq 0$ obviously. Replace y by ay in (2) to get (3).

(3) \Rightarrow (4): Assume that $\|y, z\| \geq \|x, z\|$, then by (3)

$$\|x+z, y+z\| = \|x+z, ay+z+y(1-a)\| \leq \|x+z, ay+z\| + \|x+z, y\| (1-a) \leq$$

$$\leq 3(1-\delta'(\varepsilon))\|x, z\| + 2(1-a)\|y, z\| = \|x, z\| + 2\|y, z\| - 3\delta'(\varepsilon)\|x, z\|.$$

Let $\delta(\varepsilon) = 3\delta'(\varepsilon)$, so that the first inequality follows. If $\|y, z\| \leq \|x, z\|$, then

$$\begin{aligned} \|x+z, y+z\| &\leq 3(1-\delta'(\varepsilon))\|x, z\| + 2(a-1)\|y, z\| = \\ &= 5\|x, z\| - 2\|y, z\| - 3\delta'(\varepsilon)\|x, z\|. \end{aligned}$$

(4) \Rightarrow (1): If $\|x, y\| = \|y, z\| = \|z, x\| = 1$, then $\|x+z, y+z\| \leq 3 - \delta'(\varepsilon)$,

by (4). We may let $\delta(\varepsilon) = \frac{1}{3}\delta'(\varepsilon)$.

(3) \Rightarrow (5): Since $\|bx, y\| = \|y, z\| \neq 0$ and $\|bx+cy, z\| \geq \varepsilon \|bx, z\|$, where $c = \frac{\|x, z\|}{\|x, y\|} = \frac{\|bx, z\|}{\|y, z\|}$. Hence, $\frac{1}{3}\|bx+z, cy+z\| \leq (1-\delta(\varepsilon))\|bx, z\|$, by (3).

(5) \Rightarrow (6): We must consider the following four cases.

Case 1. If $\|x, y\| \geq \|x, z\|$ and $\|x, y\| \geq \|y, z\|$, then

$$\begin{aligned} \|x+z, y+z\| &= \|bx+z-x(b-1), cy+z+y(1-c)\| \leq \\ &\leq \|bx+z, cy+z\| + \|bx+z, y\|(1-c) + \|x, cy+z\|(1-b) + (1-b)(1-c)\|x, y\| \leq \\ &\leq 3(1-\delta'(\varepsilon))\|bx, z\| + 2(1-c)\|y, z\| + 2(1-b)\|x, z\| + \|x, y\| - \|y, z\| - \\ &\quad - \|x, z\| + \|bx, z\| = \|x, y\| + \|y, z\| + \|z, x\| - 3\delta'(\varepsilon)\|bx, z\|. \end{aligned}$$

Let $\delta(\varepsilon) = 3\delta'(\varepsilon)$, so that the first inequality follows.

Case 2. If $\|x, y\| \leq \|x, z\|$ and $\|x, y\| \leq \|y, z\|$, then

$$\begin{aligned} \|x+z, y+z\| &\leq 3(1-\delta'(\varepsilon))\|bx, z\| + 2(c-1)\|y, z\| + 2(b-1)\|x, z\| + \|x, y\| - \\ &\quad - \|y, z\| - \|x, z\| + \|bx, z\| = \|x, y\|(8bc+1) - 3(\|y, z\| + \|x, z\|) - 3\delta'(\varepsilon)\|bx, z\|. \end{aligned}$$

Case 3. If $\|x, z\| \geq \|x, y\| \geq \|y, z\|$, then

$$\begin{aligned} \|x+z, y+z\| &\leq 3(1-\delta'(\varepsilon))\|bx, z\| + 2(c-1)\|y, z\| + 2(1-b)\|x, z\| - \|x, y\| + \\ &\quad + \|y, z\| + \|x, z\| - \|bx, z\| = \|x, y\|(2bc-1) + 3\|x, z\| - \|y, z\| - 3\delta'(\varepsilon)\|bx, z\|. \end{aligned}$$

Case 4. If $\|y, z\| \geq \|x, y\| \geq \|x, z\|$, then we should obtain the result directly by interchanging x and y in Case 3. Of course, b and c are interchanged, too.

(6) \Rightarrow (1): If $\|x, y\| = \|y, z\| = \|z, x\| = 1$, then $b=c=1$ in (6). Thus, $\|x+z, y+z\| \leq 3-\delta'(\varepsilon)$, by (6). Let $\delta(\varepsilon) = \frac{1}{3}\delta'(\varepsilon)$. The proof is now completed.

Recall that a 2-normed space is said to be strictly convex, if $\frac{1}{2}\|x+y, z\| = \|x, z\| = \|y, z\| = 1$ and $z \notin V(x, y)$, imply $x=y$ [3].

Theorem 3. Every uniformly convex 2-normed space is strictly convex.

Proof. Let $\frac{1}{2}\|x+y, z\| = \|x, z\| = \|y, z\| = 1$ and $z \notin V(x, y)$. If $\varepsilon = \|x-y, z\| > 0$, there exists a $\delta(\varepsilon) > 0$ such that $2 = \|x+y, z\| \leq 2 - 2\delta(\varepsilon)$, as the space is uniformly convex. This is impossible unless $\delta(\varepsilon) = 0$. It follows that $\varepsilon = 0$. Consequently $x=y$, since $z \notin V(x, y)$.

We include here an alternative proof of the theorem. From

Corollary 1 we see that, if $x, y \in X$, then

$$\|x+y, z\| \leq \|x, z\| + \|y, z\| - \delta(\varepsilon) \|x, z\|$$

for $z \in X$ with $z \notin V(x, y)$, where $\varepsilon = \left\| \frac{x}{\|x, z\|} - \frac{y}{\|y, z\|}, z \right\|$. If $\|x+y, z\| = \|x, z\| + \|y, z\|$, then $\delta(\varepsilon) = 0$, and so $\varepsilon = 0$. Hence, $\frac{x}{\|x, z\|} = \frac{y}{\|y, z\|}$. By Theorem 1 in [3] (or Theorem 1, (4) in [6]), X is strictly convex.

Recall that a 2-normed space is said to be strictly 2-convex, if conditions $\frac{1}{3}\|x+z, y+z\| = \|x, y\| = \|y, z\| = \|z, x\| = 1$ imply that $z = x+y$ [4]. It is known that a strictly convex 2-normed space is strictly 2-convex, but not conversely (cf. [4] Example 2).

Theorem 4. Every uniformly 2-convex 2-normed space is strictly 2-convex.

Proof. Let $\frac{1}{3}\|x+z, y+z\| = \|x, y\| = \|y, z\| = \|z, x\| = 1$, also let $\|x+y, z\| = \varepsilon$. Then, there exists a $\delta(\varepsilon) > 0$ such that $3 = \|x+z, y+z\| \leq 3 - 3\delta(\varepsilon)$. This is impossible unless $\delta(\varepsilon) = 0$. It follows that $\varepsilon = 0$, i.e., $z = a(x+y)$ for some real a and so $1 = \|x, z\| = \|x, a(x+y)\| = |a| \|x, y\| = |a|$, that $a = -1$ leads to a contradiction, as $1 = \frac{1}{3}\|x+z, y+z\| = \frac{1}{3}\|-y, -x\| = \frac{1}{3}$, and that $a = 1$ implies $z = x+y$.

We mention that a different proof of the theorem is possible by using (6) in Theorem 2 and Theorem 6 in [2] (or Theorem 2, (6) in [6]). The arguments are similar to that of the alternative proof of Theorem 3.

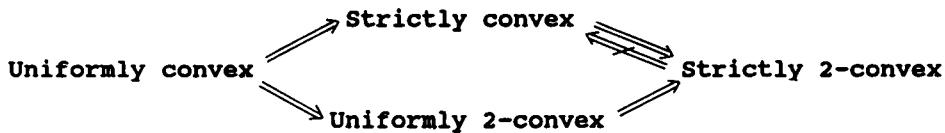
Theorem 5. Every uniformly convex 2-normed space is uniformly 2-convex.

Proof. To each $\varepsilon > 0$ there exists a $\delta'(\varepsilon) > 0$ such that, if $\|x, y\| = \|y, z\| = \|z, x\| = 1$, $z \notin V(x, y)$ and $\|x+y, z\| \geq \varepsilon$, then $\|x-y, z\| \leq 2 - 2\delta'(\varepsilon)$, since the space is uniformly convex. But

$$\begin{aligned} \|x+z, y+z\| &= \|y+z+(x-y), y+z\| = \|x-y, y+z\| \leq \\ &\leq \|x-y, y\| + \|x-y, z\| = \|x, y\| + \|x-y, z\| \leq 1 + 2 - 2\delta'(\varepsilon) = 3 - 2\delta'(\varepsilon). \end{aligned}$$

The proof is finished, if we let $\delta(\varepsilon) = \frac{2}{3}\delta'(\varepsilon)$.

In conclusion we remark that the following implications hold for a 2-normed space:



REFERENCES

- [1] J.A. Clarkson: Uniformly convex spaces, *Trans. Amer. Math. Soc.* 40 (1936) 396-414.
- [2] C. Diminnie, S. Gähler, A. White: 2-inner product spaces, *Demonstratio Math.*, 6(1973) 525-536.
- [3] C. Diminnie, S. Gähler, A. White: Strictly convex linear 2-normed spaces, *Math. Nachr.*, 59(1974) 319-324.
- [4] C. Diminnie, S. Gähler, A. White: Remarks on strictly convex and strictly 2-convex 2-normed spaces, *Math. Nachr.*, 88(1979) 363-372.
- [5] S. Gähler: Linear 2-normierte Räume, *Math. Nachr.*, 28 (1965) 1-43.
- [6] C.-S. Lin: On strictly convex and strictly 2-convex 2-normed spaces, *Math. Nachr.* (to appear).

DEPARTMENT OF MATHEMATICS, BISHOP'S UNIVERSITY
LENNOXVILLE, QUEBEC, J1M 1Z7, CANADA

Received July 14, 1989.