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ON UNIFORMLY CONVEX AND UNIFORMLY 2-CONVEX 2-NORMED SPACES

In [6] the author investigated the generalizations of
strictly convex and strictly 2-convex 2-normed spaces (defined
in [3] and [4], respectively) without using the quotient
spaces, or the bounded bilinear functionals techniques. 1In
this paper we shall define a uniformly convex 2-normed space
which is 2-dimensional analogue of the concept of a uniformly
convex normed space defined in [1]. Consequently, as in the
case of strictly 2-convex 2-normed space, it seems natural to
define a uniformly 2-convex 2-normed space. The purpose of
this paper is to present characterizations of these two spaces
and to study relationships among other 2-normed spaces. Our
main tools used here are basic properties of a 2-norm in a
2-normed space. As it is essential let us first repeat those
definitions from [5].

Recall that, when X is a linear space of dimension greater
than one and |.,.| a real function on XxX, then X is called
a 2-normed space with a 2-norm {.,.|, if the following condi-
tions are satisfied:

1° |x,y|=0 if and only if x and y are linearly dependent,
2° %, yl=ly.xl,

3° lax,y|=|a||%,y| for every real a,

o

47 lxty.z]=sx, zf+|y. 2] .

We shall frequently use one of the basic properties that
|ax+by,y| = |a]ﬂx,y" for any real numbers a and b ([5] p.5).

Definition 1, A 2-normed space X is said to be wuniformly
convex, if to each €>0 there corresponds a &(e£)>0 such that,
if |x,z|=|y,z|=1, z¢V(x,y) and |[x-y,z|ze, then %"x+y,z“s
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<1-8(¢), where V(x,y) denotes the subspace of X generated by
x and y.
Definition 1 implies that € must be in the interval (0,2].

As an illustration, consider a 2-pre-Hilbert space, 1i.e.,
2-inner product space, which is characterized by the
parallelogram law (Theorem 4 and 5 {2]), i.e.,

2 2 2 2
Ix+y,z|“+]x-y, 2] = 2(]x, 2| "+}y.2|") -
If |x,z|=|y,z|=1, 2z¢V(x,y) and |[x-y,z|ze, then

Hx+y,z)? = 1-3|x-y,z]® = 1-3€2.

Thus, by letting 6(c)=1-% V4-cz, we see thét every 2-pre-
-Hilbert space is uniformly convex.

Theorem 1. For a 2-normed space X the following four
statements are equivalent:

(1) X is uniformly convex;

(2) to each £>0 there corresponds a &8(€)>0 such that, if

I%,z|=lly,z|l, 2¢V(x,y) and |x-y,z|ze|x,z], then
1
slx+y, z|s(1-8(e)) |x,2|;

(3) to each €>0 there corresponds a &’ (€)>0 such that,

if |x-ay,z|ze|x,z|, where a=*§45* , and z#£V(x,y), then
1’

1 '
Slx+ay,z|s(1-8" (€))%, 2| ;

(4) to each £>0 there corresponds a &’ (g)>0 such that,
if |x-ay,z|ze|x,z|, with a from (3) and z€V(x,y), then

Ix+y, z|=|x, 2| +|y,z|-8" (¢)[x,2|| or
Ix+y,z||s3]x, z|-|ly,z|-8" (e) |x, 2] .
Proof. (1)»(2): Let |x,z|=|y,z]}=c, c#0 and z€V(x,Y),
2z z . 1
then |x,Z|=|y,Z|=1 ana |x-y,Z|ze imply that  Z|x+y,Z|s
. 1
=1-3(e), by (1), i.e., 5“x+y,z“5(1-6(e))“x,zﬂ.

(2)3(3): |x,2z|=]ay,z| obviously. Replace y by ay in (2)
to get (3).

(3)>(4): Since %"x+ay,z“5(1-6’(c))"x,z", by (3), and if
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ly.zl§z|x,z}, then
|x+y,z} = [x+ay+y(1-a),z] s [x+ay,z|+(1-a)fy,z| =
= 2(1-8' (e)) |x,z|+}y.z]-Ix. 2} = [x,z]+]}y.z}|-28' (e)|x,z2].

Let §&§(eg)=28’ (¢), so that the first inequality follows. In the
case of |y,z|=[x,z| we have

|x+y, z|s|x+ay, z]+(a-1) |y, z]|s3[x,2]|-]y,z]|-28' (e)|x,z2].
(4)>(1): If |x,zf=|y,z]=1, then |x+y,z|s2-8'(e), by (4).
We may let 8(€)=%8'(8).

Corollary 1. Let X be an uniformly convex 2-normed space.

n k
If x;eX, i=1,2,...,n, y = z::xi and ka,z"sny-E::xj,z" for
i=1 Jj=1
k=1,...,n-1, then
n n-1
byozl < ) bxgezl - ) ste) Iz
1=1 k=1

for zeX with zéV(xl,xz,...,xn), where

.S
x Yo EZ:Xj
= k - J=
k %, 2] k !

y - X.,2

zff, k=1,2,...,n-1,

=1
and & is the function from Definition 1 with &(0)=0.

Proof. Use the first inequality of (4) in Theorem 1 and
induction.

Corollary 2. Let X be a uniformly convex 2-normed space.
n

If xiex, i=1,2,...,n, and y= x., then

1’
n 1=1
ly.z|= (1-26(ei))ﬂxi,z" for zeX with zéV(xl,xz,...,xn),

i=1

X.
1

where ¢, = - Y z
i N"xi,zﬂ fy.z["’

Definition 1 with &(0)=0.

and 8 is the function from
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Proof., Clearly,

X,
1 .
Z| = ]'—LI[ zf =1, 1=1,2,...,n.
nxi'zﬂl ﬂ Y.z’ ’ 1<y [

By the definition there exists a(ei)>0 such that

X.
1
1E7ve Bl ot O IR U R

or || x5ly.zl + ylx;,2f,2 | s 2(1-8(e;))|x;,2|ly,z. Hence,
n n
ly.zly + vy Hxi,ZH,zn = E (x;ly zl+ylx;,2[) 2] =
1=1 1=1
n n
s 2 I xjly.z) + ylx;.2].2 | = E 2(1-8(ey)) Ix . zhly. 2|,
i=1 i=1
or
n n
by 2zl (hy. 2] + E Ix5.20) = E 2(1-3(e)) Ix;. 2]y, 2}
1=1 1=1
Thus,
n
"er" = 'S_ (1-28(ci))||xi,z||.
1=1

Definition 2. A 2-normed space is said to be uniformly
2~-convex, if to each €>0 there corresponds a 8(g)>0 such
that, if |x,y|=|y.z[=)]z,x|=1 and [x+y,z|ze, then

%ﬂx+z,y+z| s 1-8(¢).

Definition 2 implies that € must be in the interval
(0,2].

Theorem 2, For a 2-normed space X the following six
statements are equivalent:
(1) X is uniformly 2-convex.
(2) To each £€>0 there corresponds a &8(g)>0 such that, if
Ix,yl=ly.zl=}2z.x}#0 and [x+y,z|=ze|x,2}, then
%Ix+z,y+zﬂ s (1-8(€)) [|x,z].

(3) To each £€>0 there corresponds a &8(g€)>0 such that, if

Ix.yl=ly.z]|#0 and [|x+ay,z|ze|x,z|, where a=ﬂ$L§H, then
1
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%|x+z,ay+z| s (1-3(e)) §x,z].
(4) To each €>0 there corresponds a &(g)>0 such that, if
ly.zllIx,z|#0, [x,y|=]y.z} and [x+ay,z|ze|x,z|, where a=ﬂ$f§*,

then
[x+z,y+z|s|x,zj+2}y,z]|-8(e) |x,2],

or |x+z,y+z|=5)x,z]-21y,z|-8 (e} |x,2].
(5) To each €>0 there corresponds a §&(€)>0 such that, if
Ix,ylly.-z{lz,x|*0 and |bx+cy,z]ze|bx,z|, where b= x'; and
!

c=ﬁ§L§*' then %nbx+z,cy+zu s (1-8(g)) |bx,z|.
Y

(6) To each €>0 there corresponds a &(g)>0 such that, if

Ix,¥lly,z[|llz,x}#0 and |bx+cy,z|ze|bx,z|, where b=ﬂ¥L§* and
4

_Ix,z
c—*§7§*, then

Ix+z,y+z|| = ||x,yl+[y,z[+]z,x]|-8(¢) |bx,z],

or Ix+z,y+z|| s |x,y|(8bc+1)-3(]y,z}+|x,z|)-3(¢e)|bx,z|,
or Ix+z,y+z|| s |x,y] (2bc-1)+3|x,z]-|y,2|-8(¢) |bx, z|,
or © x+z,y+z| s |x,y| (2bc-1)+3]y, z|-|x, z||-8 (g) |bx, z]| .

Proof. (1)»(2): Let Hx,z“=d2 for some d#0, then “d du-

=“§,gu—ﬂ— —ﬂ—l and ng + %,gHZC, by (2). Hence,

- ' , 1.e., F|x+z,y+z -8 (e x,z|.
HE + 3.4+ Bls1-s(e), by (1) Lx+z, y+z|=(1-8(€)) |x, 2]

(2)*(3): [x,ay|=[ay,z[|=]x,2z]]#0 obviously. Replace y by ay
in (2) to get (3).

(3)»(4): Assume that |y,z|z|x,z|, then by (3)

[x+z,y+z| = |x+z,ay+z+y(1l-a)| s |x+z,ay+z|+|x+2,y[(1-a) =
s 3(1-8' (e))x,zf + 2(1-a)|y,z| = |x,z|+2]|y,z]|-38" (¢)|x,z].
Let 3&(€)=36’(€), so that the first inequality follows. 1If
ly.z|=lx,z|, then '
ix+z,y+z] = 3(1-8' (¢))[x,z||+2(a-1) }y,z| =
= 5|x,zf-2]y,z}-38 (c)|x,z].

(4)>(1): If [x,yl=ly.z]=]z,x|=1, then |x+z,y+z|s3-8’ (¢),
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by (4). We may let &(c)=348'(e).

(3)>(5): Since |bx,y|=|y,z[|#*0 and |bx+cy,z]| = e]bx,z],

X,2 bx, z 1
where c=ﬂ§f§ﬂ = *?Téwl' Hence, 5“bx+z,cy+z| s (1-5(e))|bx, 2],

by (3).
(5)3(6): We must consider the following four cases.

case 1. If |x,y|z|x,z] and |x,y|z]ly,z], then
|x+z,y+z] = |bx+z-x(b-1),cy+z+y(1-c)| =
s | bx+z,cy+z|+|bx+z,y[ (1-c) +]|x,cy+z] (1-b) +(1-b) (1-c) | x,y]s
s 3(1-8’ (g)) |bx,z|+2(1-c) |y, z||+2(1-b) |x, 2| +]x,y)-]y.z]-
=Ix,z|+|bx, 2| = |x,¥|+]y.z|+]|z,x]-33" (e)|bx,z]|.

Let &(e)=38' (¢), so that the first inequality follows.

Case 2. If |x,y[=|x,z] and |x,y|s|y.z|, then
[x+z,y+2z|| s 3(1-8° (€)) [bx,z|+2(c-1) |y, z]|+2(b-1) |x,z|+|x, Y]}~
=ly.zf-lx.z]|+]bx,z]=]x,y] (8bc+1) =3 (|y,z[+]x,z|)-358' () |bx, z].

Case 3. If |x,z|=z|x,y|=z]y,2]], then
| x+z,y+z|| = 3(1-8 (g)) |bx,z[|+2(c-1) |y, z]|+2(1-b) |x,z|-|x,¥]|+
+Hy.z|+x, 2] -|bx,z] = fx,y|(2bc-1)+3|x,2]|-|y,2]|-38’ () fbx,2].

Case 4. If |y,z|=z|x,y|z]*,2|, then we should obtain the
result directly by interchanging x and y in Case 3. Of course,
b and ¢ are interchanged, too.

(6)>(1): If |[x,y|=}y.z]|=|z,x]=1, then b=c=1 in (6). Thus,
|x+z,y+z] = 3-8’ (¢), by (6). Let 8(c)=%8’(c). The proof is
now completed.

Recall that a 2-normed space is said to be strictly
convex, if %nx+y,zﬂ=ﬂx,z|=|y,z|=1 and z¢V(x,y), imply x=y [3].

Theorem 3. Every uniformly convex 2-normed space is
strictly convex.

Proof. Let %Ix+y,z| = |x,2z] = Jy.z}=1 and z2&V(x,y). If
e=|x-y,z|>0, there exists a &(c)>0 such that 2=|x+y,z]s
=2-258(€), as the space is uniformly convex. This is impossible
unless d&(e)=0. It follows that €=0. Consequently x=y, since
z€V(xX,Y) .

We include here an alternative proof of the theorem. From
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Corollary 1 we see that, if x,yeX, then
Ix+y,z} s |x,z}+jy,.z|-8(¢e) |x,z]

for zeX with z¢V(x,y), where € = uIYEET - ]§XET'ZI° If
N ’ ’

|x+y,z}=x,z{+]y,z|, then &(€)=0, and so €=0. Hence, I§§EI=
’

=1|-;Y7[. By Theorem 1 in [3] (or Theorem 1, (4) in (6)), X is
’

strictly convex.

Recall that a 2-normed space is said to be strictly
2-convex, if conditions %ux+z,y+z"=ﬂx,yﬂ=ny,zH="z,xI=1 imply
that 2z=x+y [4]. It is known that a strictly convex 2-normed
space is strictly 2-convex, but not conversely (cf. [4]
Example 2).

Theorem 4. Every uniformly 2-convex 2-normed space is
strictly 2-convex.

Proof. Let %Ix+z,y+zl=ux,yn=ny,zﬂ=uz,xn=1, also let
Ix+y,z||=e. Then, there exists a &§(€)>0 such that 3=|x+z,y+z|s
=3-35(e). This is impossible unless &(e)=0. It follows that
€=0, i.e., z=a(x+y) for some real a and so 1="x,z|=
=|x,a(x+y) |=]a]|x,y[|=]a], that a=-1 leads to a contradiction,

as 1=%“x+z,y+z"=%"-y,-xﬂ=l, and that a=1 implies z=x+y.

We mention that a different proof of the theorem is
possible by using (6) in Theorem 2 and Theorem 6 in ([2] (or
Theorem 2, (6) in [6]). The arguments are similar to that of
the alternative proof of Theorem 3.

Theorem 5. Every uniformly convex 2-normed space is

uniformly 2-convex.

Proof. To each €>0 there exists a &’ (¢)>0 such that, if
Ix,yl=ky,zl=}z,x|=1, z£¢V(x,y) and [x+y,z[jze, then Ix-y,z]s
=2-28’ (€), since the space is uniformly convex. But

[x+z,y+z] = [y+z+(x-y),y+z]| = }x-y,y+z| =
= |x-y,y|+|x-y.2z] = [x,¥|+}x-y,2z)] = 1+2-25’ (g) = 3-28’ (e).
The proof is finished, if we let &(c) = %6'(8).

In conclusion we remark that the following implications
hold for a 2-normed space:
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Strictly convex
Uniformly convex Strictly 2-convex

Uniformly 2-convex
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