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ON UNIFORMLY CONVEX AND UNIFORMLY 2-CONVEX 2-NORMED SPACES 

In [6] the author investigated the generalizations of 
strictly convex and strictly 2-convex 2-normed spaces (defined 
in [3] and [4], respectively) without using the quotient 
spaces, or the bounded bilinear functionals techniques. In 
this paper we shall define a uniformly convex 2-normed space 
which is 2-dimensional analogue of the concept of a uniformly 
convex normed space defined in [1]. Consequently, as in the 
case of strictly 2-convex 2-normed space, it seems natural to 
define a uniformly 2-convex 2-normed space. The purpose of 
this paper is to present characterizations of these two spaces 
and to study relationships among other 2-normed spaces. Our 
main tools used here are basic properties of a 2-norm in a 
2-normed space. As it is essential let us first repeat those 
definitions from [5]. 

Recall that, when X is a linear space of dimension greater 
than one and ||.,. || a real function on XxX, then X is called 
a 2-normed space with a 2-norm ||.,. ||, if the following condi-
tions are satisfied: 

1° Jx,y||=0 if and only if x and y are linearly dependent, 
2° |x,y|=|y,x||, 
3° Jax,y||=|a| (x,y|| for every real a, 
4° ||x+y,z||s||x,z|| + ||y,z|| • 
He shall frequently use one of the basic properties that 

||ax+by,y| = |a||x,y|| for any real numbers a and b ([5] p.5). 

Definition 1. A 2-normed space X is said to be uniformly 
convex, if to each e>0 there corresponds a 5(e)>0 such that, 
if ||x,z|| = ||y,z||=l, z*V(x,y) and ||x-y,z||se, then |||x+y,z||s 
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sl-S(c), where V(x,y) denotes the subspace of X generated by 

x and y. 

Definition 1 implies that c must be in the interval (0,2]. 

As an illustration, consider a 2-pre-Hilbert space, i.e., 

2-inner product space, which is characterized by the 

parallelogram law (Theorem 4 and 5 [2]), i.e., 

[x+y,Z||
2+Ix-y,2l2 = 2 (||x, z||2+||y, z|2) . 

If ||x,z|| = ||y,z||=l, z*V(x,y) and |x-y,z|*e, then 

i||x+y,z||2 = l-J||x-y,z||2 * 1-Je 2. 

Thus, by letting 6(e)=l-^ v4-e 2, we see that every 2-pre-

-Hilbert space is uniformly convex. 

Theorem 1. For a 2-normed space X the following four 

statements are equivalent: 

(1) X is uniformly convex; 

(2) to each e>0 there corresponds a 5(e)>0 such that, if 

||x,z|| = ||y,z||, z*V(x,y) and ||x-y, z ||te ||x, z ||, then 

|||x+y,z|s(i-5(E)) |x,z|; 

(3) to each e>0 there corresponds a 5' (e)>0 such that, 

if ||x-ay,z||sc||x,z||, where a=j|y^~§"| > a n d ztiV(x,y) , then 

|||x+ay,z||s(i-6' (e))||x,z||; 

(4) to each c>0 there corresponds a 5' (e)>0 such that, 

if ||x—ay, z ||̂ c ||x, z ||, with a from (3) and z^V(x,y) , then 

|x+y,z|*|x,z| + |y,z|-5' (e)||x,z|| or 

||x+y,z||s3||x,z||-||y,z||-S' (e)||x,z||. 

Proof. (l)*(2): Let flx, z|| = ||y, z ||=c, c*0 and z*V(x,y), 

then ||x,||| = ||y,|||=l and ||x-y,f||*e imply that i|| x+y,§K 

si-5 (e), by (l), i.e., ||x+y,z|s(l-S(c))|x,z|. 

(2)=»(3): ||x,z|| = |ay,z|| obviously. Replace y by ay in (2) 

to get (3). 

(3)=>(4): Since |||x+ay, z || s (l-S' (e)) ||x, z ||, by (3), and if 
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||y, z||s|x, zU, then 
||x+y,z| = Jx+ay+y(1-a),z| a |x+ay,z| + (l-a) |y,z| a 

a 2(1-5'(e))|x,z|+|y,z|-|xfz| = |x,z|+|y(x|-25'(c)|x,zj. 
Let S(e)=28' (c), so that the first inequality follows. In the 
case of fly,z||s||x,z|| w e have 

|x+y,z|s|x+ay,z|+(a-l) |y, z|*3 ||x, z|-|y, z |-28' (c) |x,z|. 
(4)=>{1) : If |x,z|| = ||y,z||=l, then ||x+y,z||s2-5' (e), by (4). 

We may let 5(e)=|s' (c). 
Corollary 1. Let X be an uniformly convex 2-normed space. 

n k 
If xieX, i=l,2,...,n, y = y xi and || xk, z || s ||y-\~x.., z || for 

1=1 3=1 
k=l,...,n-l, then 

n n-1 
llY'zll * - X I 5 (ek) II 

k=l 
xk,z| 

for zeX with z*V(xlfx2,...,xn), where 

ek = JZk. 

y -

and S is the function from Definition 1 with 6(0)=0. 
Proof. Use the first inequality of (4) in Theorem 1 and 

induction. 
Corollary 2. Let X be a uniformly convex 2-normed space. 

n 

f k-1f2 f •••fn—1f 

:., then If x^eX, i=l,2,...,n, and y=\ x., 

" y , Z""^Z ( 1 - 2 5 ( ei ) ) "Xi'Z" f° r Z € X W i t h Z^V(X1'X2' • • • ' V ' 
1=1 1x. 

•n ir ~ ii y ii.: llxi'2ll lyT^T' 
Definition 1 with 5(0)=0. 

and 5 is the function from 
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Proof. Clearly, 

x i 
- JlfyTzI 

r , Z 
_ 1f i —1,2,•••fn• 

By the definition there exists 5(e^)>0 such that 

or || xi||y/z| + y||xi,z|,z || * 2 (1-5 (e.)) ||x., z| ||y, zfl. Hence, 

|ly,z||y + y ^ | x i , z | | , z | = ||^(xi||y,z||+y||xi/z||3 fz| * 

n n 
s Y j xiiy'zll + yixi'zll'z ll s 7^2(1-5(e i))|x i,z||ay,z«, 

1 = 1 i=l 
or 

Thus, 

it «1 

|y»*l(|Y»s| * y ] 2 ( l - a ( C i ) ) | x i f z | | y f E | . 

1 = 1 1=1 

n 

||y,z|| s y ^ ( i - 2 a ( e i ) ) |x l fz|. 

1=1 

Definition 2. A 2-normed space is said to be uniformly 

2-convex, if to each e>0 there corresponds a 5(e)>0 such 

that, if ||x,y|| = ||y,z[ = ||z,x|=l and flx+y,z||se, then 

i|x+z,y+z| s 1-5(e). 

Definition 2 implies that e must be in the interval 

(0,2]. 

Theorem 2. For a 2-normed space X the following six 

statements are equivalent: 

(1) X is uniformly 2-convex. 

(2) To each e>0 there corresponds a 5(e)>0 such that, if 

||x,y|| = ||y,z|| = Jz,x|*0 and flx+yjzlselxjzfl, then 

|[x+z,y+z|| a (l-S(e)) |x,z|. 

(3) To each e>0 there corresponds a 5(e)>0 such that, if 

||x,y|| = ||y,z|*0 and |x+ay,z|*c|x,z|, where then 
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j|x+z,ay+z| s (1-6(e))|x,z|. 

(4) To each e>0 there corresponds a 5(c)>0 such that, if 

|y,z||x,z|*0, ||x,y| = |y, z] and |x+ay,z|*e|x,z|, where 

then 

[x+z,y+z|a|x,z||+2||y,z||-i (c) flx,z||, 

or ¡x+z,y+z|a5|x,zJ-2||y,z||-5 (e) |x,z[. 

(5) To each e>0 there corresponds a 6(e)>0 such that, if 

||x,y||y,z||z,x|*0 and [bx+cy, z[se||bx, z|, where b~|x|y| a n d 

then i[bx+z,cy+z] s (1-S (e)) ||bx,z||. 

(6) To each e>0 there corresponds a 5(e)>0 such that, if 

||x,y|| ||y,z| ||z,x||*0 and ||bx+cy,z|te||bx,z||' w h e r e b~|x^y| a n d 

[x+z,y+z|| s |x,y|+|y,z|+|z,x|-5(c) ||bx, zfl, 

or |x+z,y+z|| s |x,y| (8bc+l)-3 (||y, z|| + ||x, z|) -5 (c) ||bx, z||, 

or (x+z,y+z|| s |x,y|(2bc-l)+3|x,z|-|y,z|-S(c)|bx,z|, 

or ||x+z,y+z|| * ||x,yj (2bc-l)+3||y,z||-||x,z||-5 (e) ||bx,z||. 

Proof. (l) + (2): Let ||x,z|=d2 for some d*0, then = 

- i J ' S H i ' l l " 1 a n d la + i»|l« f by (2). Hence, 

ill + I'd + |lal-«(e)» (!)» i-e-' §|x+z,y+z|s(l-8(e))|x,z|. 

(2)*(3): [x,ay|| = |ay,z|| = ||x,z||*0 obviously. Replace y by ay 

in (2) to get (3). 
(3)=» (4) : Assume that ||y,z||*||x,z||, then by (3) 

|x+z,y+z| = ||x+z,ay+z+y(l-a) | s |x+z,ay+z|J + ||x+z,y|| (1-a) * 

* 3(1-5' (e))|x,z| + 2(l-a)||y,z|| = |x,z|+2|y,z|-38' (c)|x,z|. 

Let 5(c)=3S'(e), so that the first inequality follows. If 

Jy,z|s||x,zfl, then 

¡x+z,y+z( * 3(1-6'(c))|x,z||+2(a-l)||y,z|| = 

= 5|x,z||-2|y,z||-35' (c) |x,z|. 

(4)=»(1): If |x,y|-|y,z|-|z,x|-l, then |x+z,y+z||s3-5' (e), 
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by (4). We may let 5(c)=j5' (e) . 

(3)=»(5): Since |bx,y|| = |y,z||*0 and |bx+cy,z| * c|bx,z|, 

where = [y^j11- Hence, |||bx+z,cy+z| * (1-5(c))|bx,z|, 

by (3). 

(5)*(6): We must consider the following four cases. 

Case 1. If ]x,y|fc|x,z| and |x,y||&|y,z|, then 

Ux+z,y+z| = |bx+z-x(b-l),cy+z+y(l-c)| * 

a |bx+z,cy+z|| + Ubx+z,y|| (1-c)+||xfcy+zj (l-b) + (l-b) (1-c) ]x,y|* 

s 3(1-5' (e)) ||bx, z|+2 (1-c) ||y,z||+2 (1-b) |x,z|+|x,y|-|y,z|-

-|x,z|+|bx,z| = |x,y|+|y,z|+|z,x|-35' (c)|bx,z|. 

Let 5(g)=35'(e), so that the first inequality follows. 

Case 2. If |x,y]s|x,z| a n d |x,y|s|y,z|, then 

||x+z,y+z|| s 3(1-5' (c))|bx,z|+2(c-l) |y,z]+2(b-l) |x,z|+|x,y|-

~IY» zI~I x» zI + I*>x»zI = Ix»y| (8bc+l) -3(|y,z| + |x,z|)-38' (e) |bx,z|. 

Case 3. If ||x,z||s|x,y||s|y,z||, then 

II x + z »y+z II 3 3(1-5' (e)) ||bx, z||+2 (c-1) |y, z||+2 (1-b) |x,z|-|x,y| + 

+|y,z|+|x,z|-|bx,z| = ||x,y||(2bc-l)+3||xizJ-||y/z||-35' (e)|bx,z|. 

Case 4. If |y, z]a||x,y|a|x, z|, then we should obtain the 

result directly by interchanging x and y in Case 3. Of course, 

b and c are interchanged, too. 

(6)=»(1) : If ||x,y| = [y,z|| = |z,x||=l, then b=c=l in (6). Thus, 

|| x+z, y+z J a 3-5' (e), by (6). Let 5(e)=j5'(e). The proof is 

now completed. 

Recall that a 2-normed space is said to be strictly 

convex, if i[x+y,z[ = ||x,z| = |y,z|=l and z^V(x,y) , imply x=y [3]. 

Theorem 3. Every uniformly convex 2-normed space is 

strictly convex. 

Proof. Let ijx+y,z| = |x,zQ = [y,z|=l and z^V(x,y). If 

e=|x-y,z|>0, there exists a 5(e)>0 such that 2=|x+y,z|s 

32-25(e), as the space is uniformly convex. This is impossible 

unless 5(c)=0. It follows that e=0. Consequently x=y, since 

z*V(x,y). 

We include here an alternative proof of the theorem. From 



Uniformly convex spaces 167 

Corollary 1 we see that, if x,yeX, then 

|x+y,z| a |x,zI+|y,z|-S(e)|x,z| 

for zeX with z*V(x,y), where e = || x* z] - -jy^-j-, zj - If 

||x+y, z| = (x/z J + |y, z||, then 5(e)=0, and so c=0. Hence, j x* z|~ 

- | j J . By Theorem 1 in [3] (or Theorem 1, (4) in [6]), X is 

strictly convex. 

Recall that a 2-normed space is said to be strictly 

2-convex, if conditions i||x+z,y+z| = 5x,y|| = |y,zj = |z,x||=l imply 

that z=x+y [4]. It is known that a strictly convex 2-normed 

space is strictly 2-convex, but not conversely (cf. [4] 

Example 2). 

Theorem 4. Every uniformly 2-convex 2-normed space is 

strictly 2-convex. 

Proof. Let j||x+z,y+z|| = ||x,y| = ||y, z| = ||z,x||=l, also let 

||x+y,z||=c. Then, there exists a 6(e)>0 such that 3=||x+z,y+z|s 

s3-35(e). This is impossible unless 5(e)=0. It follows that 

e=0, i.e., z=a(x+y) for some real a and so l=||x,z| = 

= ||x,a(x+y) || = |a| ||x,y|| = |a|, that a=-l leads to a contradiction, 

as l=i||x+z,y+z||=j||-y,-xJ=i, and that a=l implies z=x+y. 

We mention that a different proof of the theorem is 

possible by using (6) in Theorem 2 and Theorem 6 in [2] (or 

Theorem 2, (6) in [6]). The arguments are similar to that of 

the alternative proof of Theorem 3. 

Theorem 5. Every uniformly convex 2-normed space is 

uniformly 2-convex. 

Proof. To each e>0 there exists a 5' (e)>0 such that, if 

|x,y|| = |y,zl = |z,x|=l, z*V(x,y) and ||x+y,z|se, then |x-y,z|a 

s2-2S'(e), since the space is uniformly convex. But 

||x+z,y+z| = ||y+z+(x-y) ,y+zj = |x-y,y+z( s 
a ||x-y,y| + ||x-y,z|| = |x,y| + |x-yfz| s 1+2-25' (e) = 3-25' (c). 

The proof is finished, if we let 5(e) = (e). 

In conclusion we remark that the following implications 

hold for a 2-normed space: 
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Strictly convex 

Uniformly convex Strictly 2-convex 

Uniformly 2-convex 
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