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ON BOUNDED SOLUTIONS OF HYPERBOLIC DIFFERENTIAL

INCLUSION IN BANACH SPACES

In this paper we extend the Artstein-Prikry selection
theorem [2]. Using this result and a theorem on existence of a
bounded solution of the Darboux problem for the hyperbolic
differential equation z;y = f(x,y,2) (x=20, y=0), where £ is
a Caratheodory function with values in a separable Banach
space satisfying some regularity conditions expressed in term
of the measure of noncompactness a« and a Stokes type
assumption (8], we prove the existence theorem for the
hyperbolic differential inclusion z;yeF(x,y,z) (xz0, y=0),
where the values of F are nonempty subsets of E.

1. Introduction

Let R+=[0,w) and Q=R+xR+ be endowed with the Lebesgue
(product) measure. Let <E,[-}> be a separable Banach space
and 2E - the class of all nonempty subsets of E. The measure
of noncompactness a(A) of nonempty bounded subset A of E is
defined as the infimum of all >0 such that there exists a
finite covering of A by sets of diameter less than €. For the
properties of a we refer the reader to [3). Denote by C(Q,E)
the space of all continuous functions from Q to E endowed with
the topology of almost uniform convergence. For VcC(Q,E) we
denote by V(x,y) the set of all z(x,y) with zeV. Further, we
will use the standard notation. The closure of a set A and its
closed convex hull will be denoted, respectively, A and CoA.
For A,B<E we put [A[=sup{faj : aeA}, A-~B=A\BuB\A.

The lemma below is an adaptation of the corresponding
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result of Ambrosetti [1]. It is special result of Heinz Lemma
{57.

Lemma. If P is a compact subset of Q and V is a bounded
equicontinuous subset of C(P,E), then

a(\UJ{V(x,y) : (x,y)eP}) = sup{(a(V(x,y) : (x,y)eP}.

Denote by S, the set of all nonnegative real sequences.
For £=(En), n=(nn)esm we write £<n if €£=q (i.e. £n5nn
for neN) and &#n. Let X be a closed convex subset of
C(Q,E) and & be a function which assigns to each nonempty
subset Z of ¥ a sequence O(Z)es°° such that

(1) ¢&(2v{z}) = &(2) for zeX,

(2) &(coz) = ¥(2),

(3) if @&(2)=e (the zero sequence), then Z is compact,

(4) if Zlczz,bthen o(zl)s§(zz).
Here we use the Sadovskii fixed point theorem (7] in the
following form (cf. [6]): If T:¥—¥ is a continuous mapping
satisfying &(T(Z))<?®(2) for arbitrary nonempty subset Z of ‘¥
with ©(2)>8, then T has a fixed point in X.

2. Existence Theorem for hyperbolic differential equation

Let f:QxE—E. By (+) we shall denote the problem of
finding a solution of the hyperbolic differential equation
z;éy = f({x,y,2),

z(x,0)=0, 2(0,y)=0 for x>0, y>0.
By a solution of the problem (+) we mean a function
z:Q—E such that 2z(0,y)=z(x,0)=0 and

2, = £0x,¥,2(x,y)) for almost all (x,y)eQ.

Theorem 1, Assume that f:QxE—E satisfies the following
conditions:

(1°) f(.,2):Q—E is measurable for each ze€E,

(2°) f£(x,y,.):E—E is continuous for (x,y)eQ,

(3%) f£(x,y¥,2) |sG(x,y,lz]|]) for (x,y,z)eQxE,
where G:Ri—+R+ is nondecreasing in the 1last variable and
such that (x,y) —HG(x,y,u) is 1locally integrable for any
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fixed ueR, , and (x,y) PG (x,y,u(x,y)) is measurable for
every continuous bounded function u:Q—R_,

(4°) the scalar inequality

X.y
g(x,y>=§ojoc(t,s.g(t,s))dtds

has a bounded solution 99 existing on Q,

o
(57) a(f(PxZ)ssup{L(x,y,a(Z) : (x,y)eP}

for any compact subset PcQ and each nonempty bounded subset 2

of E, where L:Ri—»R+ is a function such that

(a) the mapping (x,y)+-L(x,y,u) is continuous for each
ueR,
(b) L(x,y,0)=0 on Q,

@
(c) S x L(t,s,u)dtds<u for all u>0.
0”0

Then there exists a solution z of the problem (+) such

that
lz(x,y) |sgy(x,y) for (x,y)eQ.

Proof. Denote by I the set of all 2zeC(Q,E) with Jz(x,y)|s

Sgo(x,y) on Q and
lz(x;,v7) = 20,01 s | [ece,s,94(8,5))atas
A

for (x,,¥,),(x,,¥,)€Q, where A=(0,x,]x[0,y,] = [0,X,]x[0,y,].

The set ¥ is closed convex and almost equicontinuous
subset of C(Q,E).

We define a continuous mapping T:¥—¥ as follows:

X .y
(Tz) (x,y) = Sosof(t,s,z(t,s))dtds for (x,y)eQ, zeX.

Let n be a positive integer and Pn=[o,n]x[0,n]. Let Z be
a nonempty subset of ¥ and W=|_J{Z(x,y) : (x,y)ePn}.

Fix (x,y) in P.. For any given €>0 there exists &>0 such
that u’,u”e(0,x], V' ,v’e[0,y] with |u’-u”|<é and |V’ -v|<é
implies |L(u ,v' ,a(W)) - L(u”,v”,a(W))|<e. We divide the
intervals [0,x] and [0,y] into m parts

Xg = 0<x1<...<xm =X, Yo = 0<y1<...<ym =y
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in such a way that [%;

-X;_,1<8 and ¥Yi=¥i-q1<8 for
i=1,2,...,m. Put Pij=[xi_1,xi]x[yj_l,yj] (i,j=1,2,...,m).

Let (oi,tj) be a point in Pij such that

L(x,y,a(W)sL(o;,T5,a(W) for (x,y)eP, .

Now, by the integral mean value theorem, our comparison
condition 3° and Lemma, we obtain

m
a(T(2) (x,y)) = a[ '5_ mes(pij)a(f(pijan] s
m i.J=1 m
s E mes (P ) L(o;,T5,a(W)) = E [ S SL(u,v,a(W)]dudv +
1,J=1 1,71 Pij
nm
+ E S s|L(u,v,a(W)) - L(o,t5,a(W) |dudv <
1,7=1 Pij
X .y
< S S L(u,v,a(W))dudv + e-xy = €-xy +
070
X

Y
[ Leu,visupta(z(x,y)) : (x,y)eP })duav.

+
0’0o

As €>0 is arbitrary, this ‘implies
(*) sup{a(T(2) (x,y)) : (x,y)eP } =

X.Y
< sup SOS L(u,v,sup{a(2(x,y)) : (x,y)ePn)dudv

(x,y)e€Q 0
Define
®(Z) = ( sup a(Z(x,Y)), sup a(Z(x%X,¥)),...)

(x,y)eP1 (x,y)eP2
for nonempty subset Z of ¥. Evidently Q(Z)esm. By the cor-
responding properties of a the function & satisfies conditions
(1)-(4) listed above. From our assumption on L and inequality
(*) it follows that & (F(2))<®(2) whenever &(2)>8. Thus all
assumptions of Sadovski’s fixed point theorem are satisfied, F
has a fixed point in X and the proof is complete.

Remark. This theorem extends the result of [4].
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3. Existence Theorem for hyperbolic differential inclusion

Recall that a set-valued map F from a metric space Z into
nonempty subsets of a metric space Y is 1lower semicontinuous

if z,—z in Z and yoeF(z then there are ykeF(zk) so

0 o)l

that Y —Y, in Y.
We say that F:Z2-—2
of F to Z. has a continuous selection whenever the restriction

1

of F to Z1 is lower semicontinuous.

Z. Artstein and K. Prikry proved the following theorem [2)

Y js an M-mapping if the restriction

Theorem 2. Let P be a separable complete metric space and
let 4 be a finite measure on P. Let E be a separable complete
metric space, equipped with its Borel structure. It is assume
that F:PxE—2F is an M-mapping and

(i) F(t,.) 1is lower semicontinuous for each fixed teP,

(ii) F(.,.) 1is measurable on PxE.

Then F has a Caratheodory selection 1i.e. there exists a
function f:PxE—E such that

(.) f(.,2z) 1is measurable for each fixed zeE,

(..) £f(t,.) 1is continuous for each teP,

(...) £(t,x)eF(t,x) for (t,x)ePxE.

Remark. Above theorem is true if P is separable complete

«©
metric space such that P=|_JP , where P is closed, meas-
n=1
urable and u(Pn)<m for neN.
Proof. By Theorem 2 for any neN there exists a Caratheo-

dory selection fn of F on Pn' We define
f(t,z) = fn(t,z) if tePn and t¢Pm for m<n.

Clearly f is a Caratheodory selection of F on P.
Now, let F:QxE—azE. By (++) we shall denote the problem

of finding a solution of the hyperbolic differential inclusion
z”xyeF(x,y,z)

z(x,0) = 2z(0,y) = 0 for (x,y)eQ.
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Theorem 3. It is assumed that
(1) F(x,y,.) is lower semicontinuous on E for each fixed
(x,Y)€Q,

(2’) F is measurable on QxE,

(3’) F is an M-mapping,

(4') JF(x,y,2)] s G(x,y,z]) for each 2ze€E, (x,Y)eQ,

(5') a(F(Px2)) s sup{L(x,y,x(2Z)) : (x,y)eP} for any compact
subset PcQ and each nonempty bounded subset 2ZcE, where
the functions G,L:Ri—»R+ satisfy the conditions 3°, 4°,
5°
Then there exists a solution z of (++) such that

Iz(x,¥)| s g4(x,y) for (x,y)eQ.

of Theoren 4.

Proof. By Theorem 2 and Remark there exists a Caratheodory
selection f of F on Q. It is easy to see that f satisfies
éssumptions 1°-5° of Theorem 1. The solution of (+) is a
solution of (++).
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