

Marian Dawidowski, Ireneusz Kubiaczyk

ON BOUNDED SOLUTIONS OF HYPERBOLIC DIFFERENTIAL
INCLUSION IN BANACH SPACES

In this paper we extend the Artstein-Prikry selection theorem [2]. Using this result and a theorem on existence of a bounded solution of the Darboux problem for the hyperbolic differential equation $z''_{xy} = f(x, y, z)$ ($x \geq 0, y \geq 0$), where f is a Caratheodory function with values in a separable Banach space satisfying some regularity conditions expressed in term of the measure of noncompactness α and a Stokes type assumption [8], we prove the existence theorem for the hyperbolic differential inclusion $z''_{xy} \in F(x, y, z)$ ($x \geq 0, y \geq 0$), where the values of F are nonempty subsets of E .

1. Introduction

Let $R_+ = [0, \infty)$ and $Q = R_+ \times R_+$ be endowed with the Lebesgue (product) measure. Let $\langle E, \|\cdot\| \rangle$ be a separable Banach space and 2^E - the class of all nonempty subsets of E . The measure of noncompactness $\alpha(A)$ of nonempty bounded subset A of E is defined as the infimum of all $\varepsilon > 0$ such that there exists a finite covering of A by sets of diameter less than ε . For the properties of α we refer the reader to [3]. Denote by $C(Q, E)$ the space of all continuous functions from Q to E endowed with the topology of almost uniform convergence. For $V \subset C(Q, E)$ we denote by $V(x, y)$ the set of all $z(x, y)$ with $z \in V$. Further, we will use the standard notation. The closure of a set A and its closed convex hull will be denoted, respectively, \bar{A} and $\overline{\text{co}}A$. For $A, B \subset E$ we put $\|A\| = \sup\{\|a\| : a \in A\}$, $A \dot{-} B = A \setminus B \cup B \setminus A$.

The lemma below is an adaptation of the corresponding

result of Ambrosetti [1]. It is special result of Heinz Lemma [5].

Lemma. If P is a compact subset of Q and V is a bounded equicontinuous subset of $C(P, E)$, then

$$\alpha(\bigcup \{V(x, y) : (x, y) \in P\}) = \sup\{\alpha(V(x, y)) : (x, y) \in P\}.$$

Denote by S_∞ the set of all nonnegative real sequences. For $\xi = (\xi_n)$, $\eta = (\eta_n) \in S_\infty$ we write $\xi < \eta$ if $\xi \leq \eta$ (i.e. $\xi_n \leq \eta_n$ for $n \in \mathbb{N}$) and $\xi \neq \eta$. Let \mathbb{X} be a closed convex subset of $C(Q, E)$ and Φ be a function which assigns to each nonempty subset Z of \mathbb{X} a sequence $\Phi(Z) \in S_\infty$ such that

- (1) $\Phi(Z \cup \{z\}) = \Phi(Z)$ for $z \in \mathbb{X}$,
- (2) $\Phi(\overline{\text{co } Z}) = \Phi(Z)$,
- (3) if $\Phi(Z) = \emptyset$ (the zero sequence), then \overline{Z} is compact,
- (4) if $Z_1 \subset Z_2$, then $\Phi(Z_1) \leq \Phi(Z_2)$.

Here we use the Sadovskii fixed point theorem [7] in the following form (cf. [6]): If $T: \mathbb{X} \rightarrow \mathbb{X}$ is a continuous mapping satisfying $\Phi(T(Z)) < \Phi(Z)$ for arbitrary nonempty subset Z of \mathbb{X} with $\Phi(Z) > \emptyset$, then T has a fixed point in \mathbb{X} .

2. Existence Theorem for hyperbolic differential equation

Let $f: Q \times E \rightarrow E$. By (+) we shall denote the problem of finding a solution of the hyperbolic differential equation

$$z''_{xy} = f(x, y, z),$$

$$z(x, 0) = 0, \quad z(0, y) = 0 \quad \text{for } x > 0, \quad y > 0.$$

By a solution of the problem (+) we mean a function $z: Q \rightarrow E$ such that $z(0, y) = z(x, 0) = 0$ and

$$z''_{xy} = f(x, y, z(x, y)) \quad \text{for almost all } (x, y) \in Q.$$

Theorem 1. Assume that $f: Q \times E \rightarrow E$ satisfies the following conditions:

- (1^o) $f(\cdot, z): Q \rightarrow E$ is measurable for each $z \in E$,
- (2^o) $f(x, y, \cdot): E \rightarrow E$ is continuous for $(x, y) \in Q$,
- (3^o) $|f(x, y, z)| \leq G(x, y, \|z\|)$ for $(x, y, z) \in Q \times E$,

where $G: \mathbb{R}_+^3 \rightarrow \mathbb{R}_+$ is nondecreasing in the last variable and such that $(x, y) \mapsto G(x, y, u)$ is locally integrable for any

fixed $u \in R_+$, and $(x, y) \mapsto G(x, y, u(x, y))$ is measurable for every continuous bounded function $u: Q \rightarrow R_+$,

(4^o) the scalar inequality

$$g(x, y) \geq \int_0^x \int_0^y G(t, s, g(t, s)) dt ds$$

has a bounded solution g_0 existing on Q ,

(5^o) $\alpha(f(P \times Z)) \leq \sup\{L(x, y, \alpha(z)) : (x, y) \in P\}$

for any compact subset $P \subset Q$ and each nonempty bounded subset Z of E , where $L: R_+^3 \rightarrow R_+$ is a function such that

(a) the mapping $(x, y) \mapsto L(x, y, u)$ is continuous for each $u \in R$,

(b) $L(x, y, 0) = 0$ on Q ,

(c) $\int_0^\infty \int_0^\infty L(t, s, u) dt ds < u$ for all $u > 0$.

Then there exists a solution z of the problem (+) such that

$$\|z(x, y)\| \leq g_0(x, y) \text{ for } (x, y) \in Q.$$

Proof. Denote by \bar{x} the set of all $z \in C(Q, E)$ with $\|z(x, y)\| \leq g_0(x, y)$ on Q and

$$\|z(x_1, y_1) - z(x_2, y_2)\| \leq \int \int_A G(t, s, g_0(t, s)) dt ds$$

for $(x_1, y_1), (x_2, y_2) \in Q$, where $A = [0, x_1] \times [0, y_1] \dot{+} [0, x_2] \times [0, y_2]$.

The set \bar{x} is closed convex and almost equicontinuous subset of $C(Q, E)$.

We define a continuous mapping $T: \bar{x} \rightarrow \bar{x}$ as follows:

$$(Tz)(x, y) = \int_0^x \int_0^y f(t, s, z(t, s)) dt ds \text{ for } (x, y) \in Q, z \in \bar{x}.$$

Let n be a positive integer and $P_n = [0, n] \times [0, n]$. Let Z be a nonempty subset of \bar{x} and $W = \bigcup \{z(x, y) : (x, y) \in P_n\}$.

Fix (x, y) in P_n . For any given $\epsilon > 0$ there exists $\delta > 0$ such that $u', u'' \in [0, x]$, $v', v'' \in [0, y]$ with $|u' - u''| < \delta$ and $|v' - v''| < \delta$ implies $|L(u', v', \alpha(W)) - L(u'', v'', \alpha(W))| < \epsilon$. We divide the intervals $[0, x]$ and $[0, y]$ into m parts

$$x_0 = 0 < x_1 < \dots < x_m = x, \quad y_0 = 0 < y_1 < \dots < y_m = y$$

in such a way that $|x_i - x_{i-1}| < \delta$ and $|y_i - y_{i-1}| < \delta$ for $i=1, 2, \dots, m$. Put $P_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j]$ ($i, j=1, 2, \dots, m$). Let (σ_i, τ_j) be a point in P_{ij} such that

$$L(x, y, \alpha(W)) \leq L(\sigma_i, \tau_j, \alpha(W)) \quad \text{for } (x, y) \in P_{ij}.$$

Now, by the integral mean value theorem, our comparison condition 3° and Lemma, we obtain

$$\begin{aligned} \alpha(T(Z)(x, y)) &\leq \alpha\left(\sum_{i, j=1}^m \text{mes}(P_{ij}) \overline{co}(f(P_{ij} \times W))\right) \leq \\ &\leq \sum_{i, j=1}^m \text{mes}(P_{ij}) L(\sigma_i, \tau_j, \alpha(W)) \leq \sum_{i, j=1}^m \left(\int \int_{P_{ij}} L(u, v, \alpha(W)) dudv + \right. \\ &\quad \left. + \sum_{i, j=1}^m \int \int_{P_{ij}} |L(u, v, \alpha(W)) - L(\sigma_i, \tau_j, \alpha(W))| dudv < \right. \\ &< \int_0^x \int_0^y L(u, v, \alpha(W)) dudv + \varepsilon \cdot xy = \varepsilon \cdot xy + \\ &\quad + \int_0^x \int_0^y L(u, v, \sup\{\alpha(Z(x, y)) : (x, y) \in P_n\}) dudv. \end{aligned}$$

As $\varepsilon > 0$ is arbitrary, this implies

$$\begin{aligned} (*) \quad \sup\{\alpha(T(Z)(x, y)) : (x, y) \in P_n\} &\leq \\ &\leq \sup_{(x, y) \in Q} \int_0^x \int_0^y L(u, v, \sup\{\alpha(Z(x, y)) : (x, y) \in P_n\}) dudv \end{aligned}$$

Define

$$\Phi(Z) = (\sup_{(x, y) \in P_1} \alpha(Z(x, y)), \sup_{(x, y) \in P_2} \alpha(Z(x, y)), \dots)$$

for nonempty subset Z of \mathbb{X} . Evidently $\Phi(Z) \in S_\infty$. By the corresponding properties of α the function Φ satisfies conditions (1)-(4) listed above. From our assumption on L and inequality (*) it follows that $\Phi(F(Z)) < \Phi(Z)$ whenever $\Phi(Z) > \theta$. Thus all assumptions of Sadovski's fixed point theorem are satisfied, F has a fixed point in \mathbb{X} and the proof is complete.

Remark. This theorem extends the result of [4].

3. Existence Theorem for hyperbolic differential inclusion

Recall that a set-valued map F from a metric space Z into nonempty subsets of a metric space Y is lower semicontinuous if $z_k \rightarrow z_0$ in Z and $y_0 \in F(z_0)$, then there are $y_k \in F(z_k)$ so that $y_k \rightarrow y_0$ in Y .

We say that $F: Z \rightarrow 2^Y$ is an M -mapping if the restriction of F to Z_1 has a continuous selection whenever the restriction of F to Z_1 is lower semicontinuous.

Z. Artstein and K. Prikry proved the following theorem [2]

Theorem 2. Let P be a separable complete metric space and let μ be a finite measure on P . Let E be a separable complete metric space, equipped with its Borel structure. It is assumed that $F: P \times E \rightarrow 2^E$ is an M -mapping and

- (i) $F(t, \cdot)$ is lower semicontinuous for each fixed $t \in P$,
- (ii) $F(\cdot, \cdot)$ is measurable on $P \times E$.

Then F has a Caratheodory selection i.e. there exists a function $f: P \times E \rightarrow E$ such that

- (i) $f(\cdot, z)$ is measurable for each fixed $z \in E$,
- (ii) $f(t, \cdot)$ is continuous for each $t \in P$,
- (iii) $f(t, x) \in F(t, x)$ for $(t, x) \in P \times E$.

Remark. Above theorem is true if P is separable complete metric space such that $P = \bigcup_{n=1}^{\infty} P_n$, where P_n is closed, measurable and $\mu(P_n) < \infty$ for $n \in \mathbb{N}$.

Proof. By Theorem 2 for any $n \in \mathbb{N}$ there exists a Caratheodory selection f_n of F on P_n . We define

$$f(t, z) = f_n(t, z) \text{ if } t \in P_n \text{ and } t \notin P_m \text{ for } m < n.$$

Clearly f is a Caratheodory selection of F on P .

Now, let $F: Q \times E \rightarrow 2^E$. By (++) we shall denote the problem of finding a solution of the hyperbolic differential inclusion

$$z''_{xy} \in F(x, y, z)$$

$$z(x, 0) = z(0, y) = 0 \text{ for } (x, y) \in Q.$$

Theorem 3. It is assumed that

- (1') $F(x, y, .)$ is lower semicontinuous on E for each fixed $(x, y) \in Q$,
- (2') F is measurable on $Q \times E$,
- (3') F is an M -mapping,
- (4') $\|F(x, y, z)\| \leq G(x, y, \|z\|)$ for each $z \in E$, $(x, y) \in Q$,
- (5') $\alpha(F(P \times Z)) \leq \sup\{L(x, y, \alpha(z)) : (x, y) \in P\}$ for any compact subset $P \subset Q$ and each nonempty bounded subset $Z \subset E$, where the functions $G, L: R_+^3 \rightarrow R_+$ satisfy the conditions 3° , 4° , 5° of Theorem 4.

Then there exists a solution z of $(++)$ such that

$$\|z(x, y)\| \leq g_0(x, y) \text{ for } (x, y) \in Q.$$

Proof. By Theorem 2 and Remark there exists a Caratheodory selection f of F on Q . It is easy to see that f satisfies assumptions $1^\circ-5^\circ$ of Theorem 1. The solution of $(+)$ is a solution of $(++)$.

REFERENCES

- [1] A. Ambrosetti: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, *Rend. Sem. Mat. Univ. Padova* 39(1967), 349-360.
- [2] Z. Artstein, K. Prikry: Caratheodory selections and the Scorza Dragoni property, *J. Math. Anal. Appl.* 127(1987), 540-547.
- [3] J. Banas, K. Goebel: Measures of noncompactness in Banach spaces, *Lecture Notes in Pure and Applied Math.*, Marcel Dekker Inc., Vol. 60, New York and Basel 1980.
- [4] M. Dawidowski, I. Kubiaczyk, B. Rzepecki: An existence theorem for the hyperbolic equation $z''_{xy} = f(x, y, z)$ in Banach spaces, *Demonstratio Math.* 20(1987), 489-493.
- [5] H.P. Heinz: Theorems of Ascoli type involving measures of noncompactness, *Nonlinear Analysis*, 5(1983) 277-286.
- [6] B. Rzepecki: Remarks on Schauders fixed point principle and its applications, *Bull. Acad. Polon. Sci., Ser. Sci.*

Math. 27(1979), 473-480.

[7] B.N. Sadovskii: On fixed point principle (in Russian),
Function, Analiz. Prilozhen, (1967), 74-76.

[8] A. Stokes: The application of a fixed point theorem to a
variety of nonlinear stability problems, Proc. Nat. Acad.
Sci. USA 45(1959), 231-235.

INSTITUTE OF MATHEMATICS, ADAM MICKIEWICZ UNIVERSITY,
ul. Matejki 48/49, 60-769 POZNAŃ, POLAND

Received June 6, 1989.

