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AN ITERATION PROOF OF THE MAXIMUM PRINCIPLE

1. Introduction

We give a nonstandard proof of the Maximum Principle for
linear elliptic partial differential equations of the second
order. Our intention is to present a new method for the proofs
of similar theorems, introduced by N.D. Alikakos ([1] and
T. Dlotko [2] for the studies of semi-linear partial differen-
tial equations of parabolic type.

2. Preliminaries

We will deal with the elliptic equation in divergence

form:
n n
(1) E (aij(x)ux.)xi + E bj(x)ux. + c(x)u + £(x) = 0
1,3-1 J j=1 )
considered in a bounded domain QcRn, with suitably smooth

boundary. It is assumed throughout the paper that the function
u satisfying (1) belongs to cz(ﬂ)nco(ﬁ). The partial

derivatives of the function u are denoted by u u and

x.' "X.X.

i iy
from now on all unspecified sums are to be taken from 1 to n.
The following properties of the coefficients are globally
assumed: '

(i) the functions aij and bj belong to Cl(Q) and for every

xefl and £eR"
E::aij(x)sisjzo,

1,]
(ii) the function f is globally bounded in Q.
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The following elementary lemma will be needed in the

sequel:
1

Lemma 1. Let Gm(x) = (1+xm)[1-x(1+xm) m] where m is an
integer and x is a nonnegative real number. Then

1
(2) Gy (%) 23

Proof. It is easy to verify the following sequence of

estimates:

21 1-1 1
(1+xm)[1-x(1+xm) iq = (1+xm) m[(1+xm)m- x] =

1
1-= m .m
_ m, - m 1+X -X _
= (1+x) 1 2 1 =
(1™ Pa(14x™) Txe ...+ (14T PP T20T
= ) 1
B 1 =
14 (14x™) Px o+ ..o+ (14X™) PP

from which it is clear that (2) is satisfied.

3. Main theorem

Theorem 1. If there exists a constant h>0 such that

c(x)s-h for every xefl and a function uecz(n)nco(ﬁ) satis~
fies (1), then
M
(3) fuj smax (m, =
L®(Q) ‘B
where m = sup |u(x)| and M = |£f] .
xean L™ (Q)

Proof. We define sets Ql={ xef} p(x,aﬂ)>% }, where 1 ‘is
an integer and p(x,8Q) denotes the distance from x to 4Q.
Let us fix the number 1. Since the functions aij’ b. belong to

= J
Cl(Ql), then in particular for scme constant Bl>0 we have

@) ) _(o500),
3 J

< B1 for erl.
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k
Multiplying (1) by u2 -1 (the number keN, sufficiently

large, is fixed until the limit passage at the end of the
proof of Th.1l) and integrating the result over Ql' we obtain

Zk-l
(5) Sn }::(alj x; ) “lax + sﬂ E::bjuxju dx +
1 1 3
+S cuzkdx + S fuzk-ldx = 0.
0 9
The first and second components of (5) are integrated by
parts and fourth is estimated using the HSlder inequality

(with p=2k(2k-1)—1, q=2k). We obtain the following estimate:
k
(6) K E a,.u_ cos(n,x, )u2 “las -
an i3 x]
11,)
k k
—(2k-1)S E a..u. u_ u? “2ax + 2'k§ E b,cos(n,x.)u’ ds -
Q e an J J
l1,) 1)
k k
kS (b.) u2 dx + S cu2 dx +
Q 7%y Q
13 1l
: k -k k -k
+ [K |£]2 dx]2 [s u? dx]l-2 = 0.
Ql Ql

Let us denote by |Qll the Lebesgue measure of , and let

m, := sup [u(x é .
1 xeagll (x)|, H an | i3 x cos (n,x;)

H2 = Sanllz::(bj)xjcos(n,xj)

E aijux'ux'zo, then multiplying both sides of (6) by 2k we
i 7 .
1,)

ds and

ds. Since from (i)

conclude that
k k k
k_2"-1 2 K, .2
(7) 2%m “'m, + ol H, + SQ (8,-2"n)u? ax +
1 -k k -
+ sz|nl|2 (S u? dx)l'2 z 0.
2



146 A.W. Turski

This inequality generates the estimate of the quantity

k

yk:=S u? dx. For convenience let us introduce the following

9
notation:

-k k k
=Ky . 2 .= k_27-1 2
ak.—z h Bl, Bk.-sz|91| and Tyt 2 my H1+m1 H2.
The inequality (7) then takes the form

1-27K
Ty — oYy * Byyy - 20

or equivalently

-k
1-27%_
kYx ~ Bx¥x S

where ykzo for every k and L Bk’ 7y, are nonnegative for

(8) a

sufficiently large k.

Defining the function F as follows
-k

-2
F(y) := Y(ak'ﬁky )l .
By 12X
it is easy to see that for yeI:=[[ a ] ,m] the function F
k
is increasing. The inequality (8) may be rewritten as
() F(yk) 57k-
x (B )2¥
Let us define vy :=[ — ] + a,7,€I. Our aim now is to
o k%k
show that
*
(97) F(y )=zvy
which, in the presence of (9), implies that
*
(10) yksy .

Let us note that: either 1k=0, in which case F(y*)=0=1k,
or if not, then using Lemma 1 and denoting
-k -k
alt? 2 ) 1, we find that
k

* 2 K
FY) = agn (1457 [1 - _k—:k—] = NG (K=
(1+K% )2 2

2t =,
since z-kai = 2-k(2kh-Bl)2=1 for sufficiently large k. Thus
in both cases we arrive at the inequality (9').
Next, as a consequence of (10) (for explicit y*)
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[ )7 wnd”™

or using the previous notation

% .k .-k
Kyig. (2252
11 B I T W )+ 2 M1, |

(11) Juf, Q) ( 1)my  C(27H 4mH, k )

2°h- B
It is known ([8), I.3. th.1l) that for k tendlng to infini-
ty "uHLZk — Ju| and furthermore easy calculation
L”(q,)
1

shows that the right-hand side of (11) converges to
max(ml,%). Thus from (11) we conclude that

M
(12) lof ,,  smax(my,g)-
L (Q ) 1’h
If 1 tends to infinity, then full o converges to
L”(Q,)
laj © and sup |u(x)|=m converges to m = sup|u(x)| and
L®(Q) xeaQ, xed0

then from inequality (12) we obtain the estimate (3), which
completes the proof.

Remark 1. Theorem 1 for f=0 coincides with the classical
form of the Weak Maximum Principle (see [3], [4], [6], [7]).

4. Consequences of Theorem 1

Other variants of the Maximum Principle will be obtained
as the conclusions of Theorem 1. These results are formulated
in the following Theorems 2 and 3.

Theorem 2. Let us suppose that the function c is continu-
ous and negative in the set Q and f=0. If u is a Cz(ﬂ)nco(ﬁ)
solution of (1), then

(13) fuf , = sup |u(x)].
L°(Q) xedn

Proof. If we define the sets Ql as in the previous Theorem
and fix an integer 1, then there exists a constant h,>0 such
that c(x)s—hl<0 for erl. Using Theorem 1 with f=0, for the
function u we obtain the following inequality

(14) ﬂuﬂ s sup|u(x)]|.
L® (Q ) xean
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If 1 tends to infinity, then from the continuity of the
function u, the estimate (13) follows from (14) and the proof
is completed.

The assumptions concerning the coefficient ¢ may be
weakened still further provided the properties of aij are
improved.

Theorem 3. Let us suppose that the function c is nonposi-
tive in Q, f=0 and for every xeQ and for all EeRn with £=0

Zaij (x)£i£j>0.

1,)
If a function uecz(n)nco(ﬁ) satisfies (1), then the
estimate (13) holds good.

Proof., Let A(x) denote smallest eigenvalue of the matrix
[aij(x)]i,j' Then A(x)>0 and

Zaij (x) €5 €52 (x)Zeg for xeQ
3

i,]
and from (i) it follows that the function A is continuous.
Let us define the sets nl as in Theorem 1 and fix an

integer 1. Then since Aeco(ﬁl), there exists a constant €,>0
such that a(x)ze, for all xeﬁl.
Since the set Q is bounded, then there exist positive

constants r, d d, such that for every x=(x1,...,xn)en the

1’ 72
condition dlsxi+rsd2 for i=1,...,n holds good. Let us

introduce a function v:Ql—aR with the following equality:

(15) u(x) = [l-exp(-s(x))]Iv(x)

where s(x)=§:sk(xk+r) and the positive constants Sy will be
k

chosen later (the similar function was used in [6] p. 146).

Replacing u(x) by [l-exp(-s(Xx))]V(x) in equation (1) we

obtain the equation for the function v:

(16) E (a55vy, ), + Zb'.v +c'v=0.
ij xj x5 1'%y

1,3 1
Here a&j(x) = [1-exp(-s(x))]aij(x),
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By(X) = ) 235 (X)85exp(-8(x)) + by (x) [1-exp(-8(x)))

3
and
¢ (x) = exp(-s(x)){z: [ E:(aij(x))xi+bj(x)]sj - z::aijsisj} +
J 1 1,)
+ c(x) [1-exp(-s(x))].
Since c(x)=0, then also
(17) c(x) [1-exp(-s(x)) ]=0.
Moreover,
2
(18) E:[ E:(aij)xi+bj]sj - z::aijsisj = E:A|sj| - c1§:sj
J 1 i,) 3 J
where the constant A is such that I}:(ai.) +b, | <A for
3i'x3
1
j=1,...,n.

Then for all sufficiently large constants S, we have

(19) E:Alsjl - elg:sg s -h, <0

J
where h1 is a constant. From (17), (18) and (19) it follows

that c’(x)S-hlexp(-Zskdz). Applying Theorem 1 to equation
k

(16) we obtain the inequality
vl o s sup|v(x)|
L(a))  xedn;
which for u found from (15) takes the form

(20) el T s sup
ul exp (= (X)) > (a)) xeanll

ugx!
l-exp(-s(x)) |’

Since dlsx +r5d2, then from (20) we find that

1-exp(-d2§:sk)

k

k
(21) fuf = sup|u(x) |-
L”(a,) 1-exp(-d1§:sk) xeaﬂl |
k

The constants Sy may be chosen arbitrarily 1large, thus
from (21) it follows that
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Jul , s sup |u(x)].
L®(Q,) xedQ,

After the limit passage with 1 to infinity we obtain the
required inequality (13) thus completing the proof.

5. Final remarks

The object of the present paper was to obtain new proofs
of known facts. These proofs, based on the iterative
estimation technique, are different from preceding proofs
(compare (3], (4], (6], [7)]). The iteration technique, in
contrast to classical methods, may be used to study weak solu-
tions of the elliptic equation (see [2), [4]), [5]).

It is noteworthy that the assumption (i) admits the
equality aijEO for i,j=1,...,n and then Theorem 1 covers
the case of linear equation of the first order and confirms
the Maximum Principle for this equation.
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