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THE STRUCTURE OF THE SECOND SYMMETRIC TENSOR 
OF THE BICONFORMAL MAPPING 

Let M n denote an n-dimenslonal Riemannian space. For any 
point xeMn by a decomposition of the tangent space at the 
point x we mean the decomposition of T

xM n into a sum of two 
orthogonal subspaces A^ and A*'. The decomposition of 
p—dimensional tangent subspaces of a smooth n-dimensional 
manifold M represent a classical example of simple geometrical 
structures. In order to be defined they do not need any 
additional assumptions on a manifold M. The geometry of 
decompositions in the case of a smooth manifold is simply a 
geometry of the system of Pffaf differential equations. Among 
many problems here the most important one is the question 
concerning integrability of the decomposition depending on the 
tensor of non-holonomy. 

The purpose of this paper is to investigate the structure 
of biconformal mapping of Riemannian spaces and to distinguish 
different types of Riemannian spaces connected with this 
notion. We obtain the following results: 
1) The structure of the second symmetric tensor of the 

biconformal mapping and all its components are described 
and geometric characterizations are given. 

2) The connection between the second symmetric tensor of the 
biconformal mapping $ and its inverse is found. 

3) Several types of mappings are characterized depending on 
the structure of the second symmetric tensor. 
This article is a part of my doctoral dissertation ([2]) 
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written at the Department of Mathematics and Mechanics of 
Moscow State University under a supervision of prof. A.M. 
Vasiliev. I would like to express my deep gratitude for posing 
the problem and for his invaluable assistance during the 
preparation of the thesis. 

We begin by recalling some notions and facts from 
differential geometry in the form needed in this paper. 

Let M , M" be two Riemannian spaces of dimension n and 
$:Mn—>Mn a diffeomorphism. 

The structural equations of these spaces are of the form 
([4] pp. 63 and 89): 

on M n and 

on Mn, with 

dt/ = .G/ A 

A —A. ß dw = (J^ A u 

+ uif = 0, + wif = 0, \,n=l,2,...,n. ¿x A ¿1 A 
Here denote forms defined on sub-bundles 0(Mn) and 
0(Mn) of orthonormal repers of manifolds M n and M n respec-
tively and denote forms defined on sub-bundles 0 2(M n) 

and O2(Mn) of orthonormal repers of second order ([4] chap. 
IV, §2). 

The map $ can be defined by equations 
—A .A u (j = h^w 

where, in the case of conformal mapping h, 

hA = a-SA 

with natural obvious identifications given by diffeomorphism 
$, where hA denotes a coefficient matrix. 

Now suppose we have given for any xeMn the decomposition 
of the tangent space T xM n into the sum of two orthogonal 

subspaces A p and A q and similarly TyMn=ApeA^ for yeMn, 

where p+q=n. An orthogonal frame ( e
a» ei) such that e^A^, 

e^eAq is called a frame adapted to the space Mn. 
The following definition was suggested by A.M. Vasiliev 
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([4]) . 

Definition 1. Diffeomorphism i:Mn—»Mn is called a bi-
conformal mapping if at each point of the space M n there 
exists a decomposition of its tangent space into the pair of 
orthogonal subspaces 
, o 

A piA q, p+q=n such that 

A p = $*(AP), jfl = ï A(A q) where <p. :TM *TMn 

restrictions of 
i.e. 

• J 

to A f and A- are 
and 

conformai ones 

= a-id, « J = b i d , 
A A 

where a and b are positive smooth functions on M n 

M ,n in the bundle of 

(1) u a=0 
C J 1 = 0 

The decomposition on the manifold 
adapted frames is given by equations: 

o n A P , o c , 0 , t = 1 , 2 , . . . ,q, 
on Aq, i,k,l=q+l,...,n, 

a i . 
is a 

co-frame of the frame adapted to M". Similarly we have decom-
positions w0£=0 on A p and u 1 =0 on A*' for the manifold M n. 

The structural equations in this 
the form 

where u a, u 1 denote basic forms on Mn, i.e. (u^u 1) 

orthonormal frame have 

(2) 

(3) 

where 

M' 

M n 

dua a ß 
= U _ A U p + a k 

W ^ A U 

du 1 = U j ^ A U * + i a it) A U a 

d Z f 
-a -B 

= u „ a u r p + -a -k 
U ^ A U 

dû1 -i -k = U ^ A U + —i —a U A U a 

+ » 0 , < + «S
r h 0 , + 

A"
 II 0 , 

n + s i - 0 , + h 0 , 4 + 0 . 

The structural equations of the first tensor h 1 with the 
local components ĥ jj, h£, h*, h* of any map 4:M n—>M n are of 
the form ([2], pp. 43-50) 
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(4) 

^ + + - h K - = + 

dh£ + hju{ + „««J - h ^ - = + h ^ 1 

^ + hiwJ + " h K ~ hß"i = hßr"7 + hßiul 

K + h K + h M - h K - - h i y + 

Definition 2. Expression of the form 
h 2 a p p e a r i n g in the above formulae 
is called a second symmetric tensor of the mapping $ with the 
local components h^, h£y, h^, h^. 

Now we want to determine components of this second 
symmetric tensor. Taking into account the biconformality 
condition 

we get 
(5) 

. a _ a 
hß ~ a Sß hi = b>6k 

6«. da + .(„; - z® = + pk 
(6) 

(7) 

(8) 

aw 

boj 

buk = hkyW' + hklCÜ 

- i = 
k -k-. , k 

ii*1 

S*-db + b(u* - u*) = + h^u1. 
Symmetrization of (5) with respect to a and |3 gives rise to: 

= (h?r + + (hpk
 + hak)"k' 

r k Now we substitute da=a u + a. o and looking at both sides 
i ^ of this equation we have: 

(9) 

(10) 

26-a y = h' ßr + h
1 ß 
a r' 

2Sßak = hßk + hßk + hak, J + 3k 
and a 7' its Pffafian where a denotes a function on M 

derivatives. 
Similarly we treat the equation (8) with respect to i and 

k obtaining 



Biconfonnal mapping 139 

5i d b = (hir + ^r)" 7 + (hii + ^i)" 1' 
where db = b u? + b.u1. Hence y i 
(11) 2*!fbr = h* T + hjy, 

(12) 25*^ = h ^ + hji. 
It follows from (9) and (12) 

- + *>e -
k k k i 

hli = 5lbi + 6i bl " 5 l V 
We will determine remaining tensor components as follows. He 
differentiate externally equations (1) of the decomposition 
and making use of Cartan's lemma we get 

(13) 
_ -k B „k 1 ,k _ .a 

a = a/3 + al ' Aa/S = _Akf? 

wk = V + ^cl ' al = _Akl 
where A is a non-holonomy tensor of the mapping t. 
Considering remaining equations (6) and (7) we obtain formulae 
(14) (a2-b2)W£ = (ahjp + + (ahj1 + M & ) « 1 . 

(15) - ahkl + bh£p ' 

(16) (a'-b2)*^ = ahjx + bh^. 
Now alternation and symmetrization of the system (15), 

(16) with respect to a and 0 gives rise to equations 

-4a) - (*2-b2)K* 
+ h L ) + 2 b ha P = ( * 2 - b 2 ) ( ^ + *£,)• 

Hence 

Other components of the second symmetric tensor we obtain by 
changing indices: a—>k, k—»a: 

Ki - " 1 «1». * ¿(»2-»2) P& ^ 
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Thus we have proved: 

Theorem 1. Components of the second symmetric tensor of 

biconformal mapping SrM11—>Mn are of the form: 

hlr - s>r - s>(* ~ *W> 

h u = 5 i b i + 5 i b i -

hai = 5 K + 2 B ( b 2 - a 2 ) ( A a i - A a ) c ) ' 

where a f b are smooth functions on M
n, a^, toa, b^ their 

Pffafian derivatives and A a non-holonomy tensor. 

Now we will determine components of the tensor h^ for 

inverse mapping Let us consider the map = ?:M n—>M n. 

Theorem 2. Let $:M n—>M n be a biconformal mapping and 

$ 1 =?:M n—>M n its inverse. Then the components of the second 

symmetric tensor of the mapping =7 are related to 

components of the second symmetric tensor of $ as follows 

V -
1 

" a 3 V ' 
K k -hli " 

1 h k 

¿3 h l i ' 

yra _ 

v - -
1 

a 2 b 
v.a 

/3 k ' 
trk _ 
la " 

hkl - -
1 

,2 b a 
hkl ' 

h k - 1 h k 

" a 2 b <* 
Now we look at several examples in order to explain the 

geometric sense of the second symmetric tensor of 4. To do 

this we have consider equations (2) along with condition (13). 

Consequently we get equations: 

dw a = A + A ^ G W ^ A + A ^ U * A (J1, 
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du k -= u* A u 1 + A^ au a A u 1 + A 

where A ^ - - A ^ and A ^ = - A * r 

We describe the following five cases: 

I o Coordinates h £ ß = h k i = h a i = h a ß v a n i s h a n d coordinates 

h" , h^. are non-zero. This case is a decomposable one i.e. 
pi ii 

M n=M pxM q, M^mPxM* 3, í=(« 1,í 2), where $ 1 : M P ^ M P , $ 2:M q—»M 9 are 
conformal mappings. 

2° Coordinates ^ » ^ » h ^ h ^ h ^ vanish and 

Then the systems ua=0 and u 1=0 are completely integrable 
and the integral submanifold determined by orthogonal decom-
position is totally geodesic. 

Moreover the metric tensor under the mapping • is multi-
plited by constants a (b) on the fibre A p (Aq respectively). 

3° The following coordinates vanish h ß y = h k i = h l i = ^ a i = 0 

et k and h- h _ are non-zero. In this situation the vertical Kp OCp 
system <j1=0 is completely integrable while the horizontal 
one u a=0 is not, The metric tensor of the mapping 9 of ortho-
gonal decompositions is multiplied by a constant a. Differen-

k k tiation of the equation da=a.-(j implies a. - A o=0, hence j. k k ap 
tensors A „ are globally constant. ap 

4° Coordinates h " = h k . = h k . = h k
0 vanish while h" *0, Kp al 11 up P7 

hki*° a r e n o n _ z e r o * Then the horizontal system w a=0 is 
completely integrable, but the horizontal decomposition is not 
geodesic. The system cj1=0 is not completely integrable. The 
metric tensor of $ for horizontal decomposition is multiplied 
by a constant a. Similarly as above we get that tensors A ^ 
are globally constant. 

5° All coordinates except of and h k^ are zero. The 
both decompositions are completely integrable. Horizontal 
fibres are totally geodesic and their metrics transform by 
means of a non-constant coefficient a which does not change 
among f ibres. 
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