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THE STRUCTURE OF THE SECOND SYMMETRIC TENSOR

OF THE BICONFORMAL MAPPING

Let M" denote an n-dimensional Riemannian space. For any
point xeM" by a decomposition of the tangent space at the
point x we mean the decomposition of Tan into a sum of two
orthogonal subspaces AP and Ad, The decomposition of
p--dimensional tangent subspaces of a smooth n-dimensional
manifold M represent a classical example of simple geometrical
structures. In order to be defined they do not need any
additional assumptions on a manifold M. The geometry of
decompositions in the case of a smooth manifold is simply a
geometry of the system of Pffaf differential equations. Among
many problems here the most important one is the question
concerning integrability of the decomposition depending on the
tensor of non-holonomy.

The purpose of this paper is to investigate the structure
of biconformal mapping of Riemannian spaces and to distinguish
different types of Riemannian spaces connected with this
notion. We obtain the following results:

1) The structure of the second symmetric tensor of the
biconformal mapping and all its components are described
and geometric characterizations are given.

2) The connection between the second symmetric tensor of the
biconformal mapping ¢ and its inverse 8! is found.

3) Several types of mappings are characterized depending on
the structure of the second symmetric tensor.

This article is a part of my doctoral dissertation ([2])
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written at the Department of Mathematics and Mechanics of
Moscow State University under a supervision of prof. A.M.
Vasiliev. I would like to express my deep gratitude for posing
the problem and for his invaluable assistance during the
preparation of the thesis.
We begin by recalling some notions and facts from
differential geometry in the form needed in this paper.
Let Mn, " be two Riemannian spaces of dimension n and
¢:M">M" a diffeomorphism.
The structural equations of these spaces are of the form
([4]) pp. 63 and 89):
dwA =,wA A w“
on M" and
—A —A (7

dw” = wu AW
on M", with .
wz + o =0, 62 + o =0, Au=1,2,...,n.

Here wh, Bh denote forms defined on sub-bundles O(Mn) and
o(M") of orthonormal repers of manifolds M" and M" respec-

A A

tively and wu, wu denote forms defined on sub-bundles Oz(Mn)

and Oz(ﬁn) of orthonormal repers of second order ([4] chap.
v, §2).
The map & can be defined by equations

W = thu
where, in the case of conformal mapping h,
A A
h* = a-s
= 2%

with natural obvious identifications given by diffeomorphism

$, where hz denotes a coefficient matrix.

Now suppose we have given for any xeM"” the decomposition
of the tangent space Tan into the sum of two orthogonal

subspaces AP and A? and similarly Tyﬁn=erKq for yei®,
where p+g=n. An orthogonal frame (ea,ei) such that eaeAp,

eieAq is called a frame adapted to the space Mo,
The following definition was suggested by A.M. Vasiliev
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([41).

Definition 1, Diffeomorphism $:M">H" is called a bi-
conformal mapping if at each point of the space M"  there
exists a decomposition of its tangent space into the pair of
orthogonal subspaces Ap, Aq; AplAq, ptg=n such that
1° 7P = ¢, (AP), B9 = 2, (A9) where ¢, :TM"HTH" and
2° restrictions of $, to AP ana a9 are conformal ones
i.e.

= a-id, ¢ = b-id
Ap ’ *lAq ’

where a and b are positive smooth functions on Mo,

The decomposition on the manifold M? in the bundle of

xl

adapted frames is given by equations:

(1) w:=0 on Ap, «,B,v=1,2,...,4,

w =0 on Aq, i,k,1=q+1,...,n, .

where wa, wi denote basic forms on Mn, i.e. (wa,wl) is a
co-frame of the frame adapted to M". Similarly we have decom-
positions ©*=0 on AP and Gi=0 on K? for the manifold M.

The structural equations in this orthonormal frame have

the form
n dw® = ngwB + szwk
(2) M
i ik i a
dw™ = W AW + WAL,
o |ee® = TEadP 4 o A"
(3) M
dwt = B;Aﬁk + Bian?,
a
where
a g _ o k _ i k _
wB + w, = 0, Wy + Wy = o, Wy + wy = o,
—a . B _ —a , =Kk _ —-i =k _
wB + Wy = o, Wy + Wy = 0, Wy + wy = 0.
The structural equations of the first tensor h, with the
local components hg, hﬁ, hz, h? of any map g:M"N" are of

the form ([2], pp. 43-50)
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[ and + n%of + nfuk - nTof - WEGY =BG o7 + 08
anf + nfuf + nfu, - b85S - nGT = nE o + B!
(4) 1
dhz + h:w; + hfw; - nZBt - héaf = h;ww + hgl 1
L an® + nEof + nfo] - nfok - 0ok = o7 4 0¥t

Definition 2. Expression of the form
h, (h% ng ,n% ,hE ¥

By’ Bk’ Dy Pay Pa1
is called a second symmetrlc tensor of the mapping ® with the

o o o k k
local components hB7' th, hkv’ hB7' hBl’ hli'

) appearing in the above formulae

Now we want to determine components of this second
symmetric tensor. Taking into account the biconformality

condition
hg = a-sg , hy =b-&
we get
o o —Q a k
. + - =
(5) SB da a(wB wB) th + thw ’
o =0 _ w? 1
(6) awy bwk hk1 + hklw ’
kK _ -k _ k o k 1
(7) bwa aw, = h + halw ’
- R 3 @’ i
(8) 1 -db + b(w wl) h17 + hllw .

Symmetrization of (5) with respect to a and g gives rise to:
o

GB da =

o 5 ¥ o k
(hg, + hﬁw)“ + (ngy + nb)w.

7 wk and looking at both sides

+ak

Now we substitute da=a7w
of this equation we have:

a _.a B
(9) 28ga, = hg, + ho.,

= h& \: B
(10) 2aBak hgx + hgy + by

where a denotes a function on M" and a,, ay its Pffafian
derivatives.

Similarly we treat the equation (8) with respect to i and
k obtaining
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K. _ nk 1,7 k 1,4, 4
§,db = (hl,‘r + hk,’)w + (hli + hki)w '

where db = b7w1 + biwl. Hence
k 1l

ky, -
(11) 281b7 = h11 + hk1'
k _ 3k 1
(12) 261bi = hli + hki’
It follows from (9) and (12)
o _ o Y §
h d,a_ + & aﬁ sﬁaa'

k _ .k _
11 = 81P3 * &3Py ~ 81By-

We will determine remaining tensor components as follows. We
differentiate externally equations (1) of the decomposition

and making use of Cartan’s lemma we get

h

k _ .k B8 k1 k _ _,«
Wy = Aan + Aalw R AaB = AkB ’
(13)
o _ .0 B o 1 k _ _,«
Wy = Pygl * A0 s Ry = TRy

where A is a non-holonomy tensor of the mapping 9.
Considering remaining equations (6) and (7) we obtain formulae

2 .2, a _ o k 8 o k 1
(14) (a®-b%)wy = (ahy g + bhygJw” + (ahy; + bhyj)e,
2 .2, .a _ o k
(15) (a“-b )AkB = ahkl + bhaB ’
2 .2, ;a _ o k
(16) (a®-b )Akl = ahkl + bhal'

Now alternation and symmetrization of the system (15),
(16) with respect to a and g gives rise to equations

a 2 .2
a(nyg - ) = (a2-p%) (ag - 25,),
a(h®, + b® ) + 2bn®_ = (a2-p?) (2%, + A% ).
k8 ¥ Pxa aB Mg * e
k _ _a.«a 1,.2_,2y/,a 8
ag = " B 8g3k * 3p(a°P7) (g + Ay,),
a _ .a 1,.2_ .2 a _ B
th = saak + iz(a b )(Akp Aka).
Other components of the second symmetric tensor we obtain by

changing indices: a—k, k—a:
« _ _b .k 1,2 2y (2K i
My = =3 %iby + ii(b a )(Aai + Aak)

Hence
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k
ai

k

1,2 .2y ,k i
h ; = &b, + 3p(b“-a%)(a ; - AL)-

Thus we have proved:

Theorem 1. Components of the second symmetric tensor of
biconformal mapping #:M">M" are of the form:

hgy = 352, = 3,8 = 35,
hg = 883, + 5=(a%-b%) (A, - A8 ),
by = - 3 8iby + za(bi-a?) (agy + A,
by = siby + oipy - 8y,
hai = 81k * gp(B°-a) (Ag; - Ag).
hig = - £ 853, + 5 (a-b%) (A% + A%.),
where a,b are smooth functions on Mn, ayr ay, ba’ bk their

Pffafian derivatives and A a non-holonomy tensor.

Now we will determine components of the tensor h2 for

1

inverse mapping & . Let us consider the map ™t = T:HP oM.

Theorem 2. Let &:M"—M" be a biconformal mapping and
8~ 1=F:M"M" its inverse. Then the components of the second
symmetric tensor of the mapping PR 1 are related to
components of the second symmetric tensor of & as follows

=0 1 a =k 1 k
h =-=nh hy. = - = h7.
By a3 By ' 1i b3 1i '
= 1 a =k 1 k
h = - —h R h = = —h
Bk a2b Bk la bza la ’
=l 1 o =k 1 k
h = - ——h R h = - — h .
kl b2a kl af azb ap

Now we look at several examples in order to explain the
geometric sense of the second symmetric tensor of ¢. To do
this we have consider equations (2) along with condition (13).
Consequently we get equations:

a _ g x B k a k 1
dw = UB AW + Aka AW o+ Aklw AW,
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k Kk 1 k a 1 k B8 o
dw Wy AW + Alaw AW + Aan AW,

where Aﬁa = -Azp and A;I = -Atl.
We describe the following five cases:

o s a ,a .k _ k . .
1 Coordinates th'hki_hai'haB vanish and coordinates

k
1i

M=MPxMd, M"=MPx¥d, ®=(%,,%,), where lenp—aﬂp, QZ:Mq—aﬁq are

conformal mappings.

hg1, h are non-zero. This case is a decomposable one i.e.

o k

. a a o .k _ Kk .
2 Coordinates hB1_th_hki_hli hai vanish and haﬁto.

Then the systems w¥=0 and wl=0 are completely integrable
and the integral submanifold determined by orthogonal decom-
position is totally geodesic.

Moreover the metric tensor under the mapping ¢ is multi-
plited by constants a (b) on the fibre AP (Aq respectively).

a _,a .k k _
8y~ ki_h h”.=0

1i el
are non-zero. In this situation the vertical

(o]

3 The following coordinates vanish h h

o k
and th, haB

systen wl=0 is completely integrable while the horizontal
one w%=0 is not, The metric tensor of the mapping & of ortho-
gonal decompositions is multiplied by a constant a. Differen-

tiation of the equation da=ak~wk implies ak-A§B=0, hence
tensors AEB are globally constant.

o . a .k .k _k . . o

4 Coordinates th-hai—hli—haB vanish while hﬁvxo,
hiito are non-zero. Then the horizontal system w*=0 is

completely integrable, but the horizontal decomposition is not
geodesic. The systen wi=o is not completely integrable. The
metric tensor of & for horizontal decomposition is multiplied
by a constant a. Similarly as above we get that tensors Aﬁl
are globally constant.

% and hk are zero. The

59
BY ap
both decompositions are completely integrable. Horizontal

All coordinates except of h

fibres are totally geodesic and their metrics transform by
means of a non-constant coefficient a which does not change
among fibres.
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