

Huzoor H. Khan

SATURATION FOR FOURIER SERIES BY MATRIX OPERATOR

Let $f(x)$ be periodic function with period 2π integrable in the Lebesgue sense over $(-\pi, \pi)$ and let $\tilde{S}_n(\tilde{f}, x)$, $n=1, 2, 3, \dots$, denote the n -th partial sum of conjugate Fourier series associated with $f(x)$, i.e.

$$\tilde{S}_n(\tilde{f}, x) = \frac{1}{\pi} \int_0^\pi [\tilde{f}(x+t) - \tilde{f}(x-t)] \frac{\cos \frac{t}{2} - \cos \frac{n+1}{2} t}{2 \sin \frac{t}{2}} dt.$$

We call

$$(1) \quad \tilde{f}(x) = \frac{1}{2\pi} \int_0^{2\pi} [f(x+t) - f(x-t)] \cot \frac{t}{2} dt$$

the conjugate function of f , if the integral in (1) exists and converges absolutely for all $(f) \in K_0$, where K_0 is a class of all continuous functions f such that $\tilde{f} \in \text{Lip } 1$.

Let $(\lambda_{n,k})$ ($n=0, 1, 2, \dots$; $k=0, 1, 2, \dots, n$; $\lambda_{n,0}=1$) be a triangular matrix of real or complex numbers. We define the matrix operator

$$(2) \quad L_n(x) = L_n(f, x) = \sum_{k=0}^n \lambda_{n,k} A_k(x)$$

and the norm of f as

$$\|f\| = \sup_{0 \leq x \leq 2\pi} |f(x)|.$$

Given a positive non-increasing function $\phi(n)$ and a class K of functions, we say that a matrix summability method $L_n(x)$ is

saturated with the order $\phi(n)$ relative to K , if

$$\|f(x) - L_n(x)\| = o(\phi(n)) \Rightarrow f(x) = \text{constant},$$

$$\|f(x) - L_n(x)\| = 0(\phi(n)) \Leftrightarrow f \in K.$$

The problem of determining the order of saturation by Cesàro means operator of the Fourier series of $f(x)$ has been considered in [3]. In [1], [2] was simultaneously discussed the saturation problem for Nörlund and generalized Nörlund means operators, and obtained the same order of saturation, i.e. (P_n/P_n) and (R_n/R_n) , respectively. The main purpose of this paper is to determine the order of saturation of the sequence $L_n(x)$ relative to the class K_0 of all continuous functions f for which $f \in \text{Lip 1}$. Our result generalizes that of Zamansky, Khan and Sahney.

Theorem. If $\{\Delta\lambda_{n,k}\}_{k=0}^n$ is the non-negative and non-decreasing sequence with respect to k , then the order of saturation of sequence $\{L_n(f, x)\}$ relative to the class K_0 is given by $\Delta\lambda_{n,0}$, where $\Delta\lambda_{n,0}$ is a positive non-increasing function of n .

Proof: By (2), we have (cf. [1])

$$\frac{1}{\pi} \int_{-\pi}^{\pi} L_n(x) \cos qx dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \sum_{k=0}^n \lambda_{n,k} A_k(x) \cos qx dx =$$

$$= \frac{1}{\pi} \sum_{k=0}^n \lambda_{n,k} \int_{-\pi}^{\pi} a_q \cos kx \cos qx dx = \lambda_{n,q} \cdot a_q.$$

Therefore,

$$\begin{aligned} |a_q - \lambda_{n,q} \cdot a_q| &= \left| \frac{1}{\pi} \int_{-\pi}^{\pi} [f(x) - L_n(x)] \cos qx dx \right| \leq \\ &\leq \frac{1}{\pi} \|f(x) - L_n(x)\| = o(\Delta\lambda_{n,0}) \end{aligned}$$

$$\text{or } a_q |1 - \lambda_{n,q}| = a_q \left[\sum_{p=0}^{q-1} \Delta\lambda_{n,p} \right] = o(\Delta\lambda_{n,0}),$$

$$a_q \left(\frac{\sum_{p=0}^{q-1} \Delta\lambda_{n,p}}{\Delta\lambda_{n,0}} \right) = o(1).$$

Taking the limit as $n \rightarrow \infty$, we see that $a_q = 0$ for each $q-1 \geq 0$.

Similarly (cf. [1]) $b_q = 0$ for each $q-1 \geq 0$. Hence, $f(x) = \frac{1}{2} a_0$ is constant.

Let $Q_n(x) = f(x) - L_n(x)$, and $\|Q_n(x)\| = O(\Delta \lambda_{n,0})$. Now, taking the N -th arithmetic mean $\sigma_N[x; Q_n]$ of the series

$$Q_n(x) \sim \sum_{k=1}^{\infty} (1 - \lambda_{n,k}) A_k(x),$$

we get

$$(3) \quad \sigma_N[x; Q_n] = \sum_{k=1}^N \left(1 - \lambda_{n,k}\right) \left(1 - \frac{k}{N+1}\right) A_k(x).$$

We have $\|Q_n\| > \|\sigma_N[x; Q_n]\|$ and so

$$\left\| \sum_{k=1}^N \left(\frac{1 - \lambda_{n,k}}{\Delta \lambda_{n,0}} \right) \left(1 - \frac{k}{N+1}\right) A_k(x) \right\| = O(1) \text{ for } N \leq n.$$

Upon taking limit as $n \rightarrow \infty$, we get

$$\left\| \sum_{k=1}^N k A_k(x) \left(1 - \frac{k}{N+1}\right) \right\| = O(1)$$

which is the $(C,1)$ means of the Fourier series $\sum_{k=1}^{\infty} [-k A_k(x)]$.

Since $-k A_k(x) = B'_k(x)$, we have $\|\tilde{\sigma}'_N(f)\| < M$ ($\tilde{\sigma}'_N(f)$ being the $(C,1)$ means of the conjugate series). Applying Lagrange's mean value theorem, we get

$$|\tilde{\sigma}'_N(f, x+t) - \tilde{\sigma}'_N(f, x)| = O(|t|) \text{ as } t \rightarrow 0.$$

Finally,

$$|\tilde{f}(x+t) - \tilde{f}(x)| \leq |\tilde{f}(x+t) - \tilde{\sigma}'_N(f, x+t)| + |\tilde{\sigma}'_N(f, x+t) - \tilde{\sigma}'_N(f, x)| + \\ + |\tilde{\sigma}'_N(f, x) - \tilde{f}(x)| = O(1) + O(|t|) + O(t) = O(|t|).$$

Therefore $\tilde{f} \in \text{Lip 1}$.

To prove the converse part, we consider

$$\tilde{s}_n(\tilde{f}, x) = \frac{1}{2\pi} \int_0^\pi [\tilde{f}(x+t) - \tilde{f}(x-t)] \frac{\cos \frac{t}{2} - \cos \frac{n+1}{2}t}{2 \sin \frac{t}{2}} dt$$

and

$$L_n(\tilde{s}_n(\tilde{f}, x)) = \sum_{k=0}^n \Delta \lambda_{n,k} \tilde{s}_k(\tilde{f}, x) =$$

$$= \sum_{k=0}^n \Delta \lambda_{n,k} \frac{1}{2\pi} \int_0^\pi [f(x+t) - f(x-t)] \cot \frac{t}{2} dt -$$

$$- \sum_{k=0}^n \Delta \lambda_{n,k} \frac{1}{2\pi} \int_0^\pi [\tilde{f}(x+t) - \tilde{f}(x-t)] \frac{\cos \frac{(k+1)}{2}t}{\sin \frac{t}{2}} dt.$$

Since $\tilde{f} \in \text{Lip 1}$ and $-f + \frac{1}{2} a_0$ is identical to \tilde{f} , we see that

$$|f(x) - L_n(x)| = \left| \frac{1}{2\pi} \int_0^\pi [\tilde{f}(x+t) - \tilde{f}(x-t)] \sum_{k=0}^n \Delta \lambda_{n,k} \frac{\cos \frac{(k+1)}{2}t}{\sin \frac{t}{2}} dt \right| \leq$$

$$\leq \frac{1}{2\pi} \int_0^{\pi/n} |\tilde{f}(x+t) - \tilde{f}(x-t)| \sum_{k=0}^n \Delta \lambda_{n,k} \frac{\cos \frac{(k+1)}{2}t}{\sin \frac{t}{2}} dt +$$

$$+ \frac{1}{2\pi} \int_{\pi/n}^\pi |\tilde{f}(x+t) - \tilde{f}(x-t)| \frac{1}{\sin \frac{t}{2}} \sum_{k=0}^n \Delta \lambda_{n,k} |\cos \frac{(k+1)}{2}t| dt = I_1 + I_2.$$

Since $|\tilde{f}(x-t) - \tilde{f}(x-t)| \leq M|t|$, M being a constant, we have

$$I_1 \leq \sum_{k=0}^n \Delta \lambda_{n,k} \int_0^{\pi/n} \frac{2M|t|}{\sin \frac{t}{2}} dt = 0(\Delta \lambda_{n,0}).$$

If we write

$$F_n(t) = \int_t^\pi \sum_{k=0}^n \Delta \lambda_{n,k} \frac{\cos \frac{(k+1)}{2}u}{\sin \frac{u}{2}} du,$$

then

$$I_2 \leq \frac{1}{2\pi} \left[f\left(\frac{x+\pi}{n}\right) - f\left(\frac{x-\pi}{n}\right) \right] F_n\left(\frac{\pi}{n}\right) +$$

$$+ \frac{1}{2\pi} \int_{\pi/n}^\pi \frac{d}{dt} [\tilde{f}(x+t) - \tilde{f}(x-t)] F_n(t) dt = I_{21} + I_{22}.$$

Since

$$F_n(t) = \int_t^\pi \frac{1}{2 \sin^2 \frac{u}{2}} \sum_{k=0}^n \Delta \lambda_{n,k} \sin(k+1)u du + o(1),$$

the second mean value theorem gives for $t \leq \xi \leq \pi$,

$$F_n(t) = \frac{1}{2 \sin^2 \frac{t}{2}} \int_t^\xi \sum_{k=0}^n \Delta \lambda_{n,k}^2 \sin(k+1)u du + o(1)$$

and, consequently,

$$F_n(t) \leq \frac{1}{2\sin^2 \frac{t}{2}} \sum_{k=0}^n \frac{|\Delta^2 \lambda_{n,k}|}{k+1} + o(1) \leq M \frac{1}{t^2} \frac{\Delta \lambda_{n,0}}{n} + o(1),$$

M being a constant. Hence, we have the estimates

$$I_{21} = O\left(\frac{1}{\pi} \cdot \frac{\pi}{n} \cdot \frac{\Delta \lambda_{n,0}}{n} \cdot \frac{n^2}{\pi^2}\right) = O(\Delta \lambda_{n,0}),$$

$$I_{22} \leq M \int_{\pi/n}^{\pi} |F_n(t)| dt = M \int_{\pi/n}^{\pi} \frac{\Delta \lambda_{n,0}}{t^2 n} dt = O(\Delta \lambda_{n,0})$$

implying $\|f(x) - L_n(x)\| = O(\Delta \lambda_{n,0})$, which completes the proof of the theorem.

REFERENCES

- [1] H. H. Khan, S. M. Rizvi: On the saturation of class of functions by (N, p_n, q_n) method, Ind. J. Pure Appl. Math. 6 (1975) 1261-1269.
- [2] D. S. Goel, A. S. B. Holland, C. Nasim, B. N. Sahney: Best approximation by a saturation class of polynomial operators, Pacific J. Math. 55 (1974) 149-155.
- [3] M. M. Zamansky: Classes de saturation de certaines procédés d'approximation des séries de Fourier des fonctions continues et applications à quelques problèmes d'approximation, Ann. Sci. Éc. Norm. Sup. 66 (1949) 19-43.

DEPARTMENT OF MATHEMATICS, ALIGARH MUSLIM UNIVERSITY,
ALIGARH - 202002 (INDIA)

Received May 22, 1989.

