DEMONSTRATIO MATHEMATICA
Vol. XXV No 1-2 1992

Romuald Malecki

APPLICATION OF THE METHOD OF CONTOUR INTEGRATION
TO THE INITIAL-BOUNDARY VALUE PROBLEM
FOR A PARABOLIC SYSTEM OF EVEN ORDER

1. Statement of the problem

Using the method of contour integration, we will inves-
tigate existence and uniqueness of the solution of the mixed
problem for a parabolic (in the Petrovsky  sense) system of
order 2s. For s=1 this problem was investigated in (2]. This
paper is a continuation of [1].

Let D be a bounded domain in the Euclidean space En, nz3;
the boundary S of D is a closed Lapunov’s surface with expon-
ent k € (0,1>.

Let us consider the following initial-boundary value prob-

lem. Find a vector-function v ¢ Cis(D)nC:(0,+m) such that

(1) —lavgt't = A(x,g—x) v(x,t) for (x,t) € Dx(0,+m) ,
(2) lim+v(x,t) = ¢(x) for x e D,
t-0

(3) lim  B(z,9,5) vix,t) = ¥(z,£)  for (z,t) € Sx(0,+w) ,
Dax->zeS

where

a

(4) A, o) = 2%, 3 + 2t

(5) 2%x, ) =
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n 2s
0 F
(-1)%a%x) ) a; 4 (%)...a § (R ——,
i i =1 172 25-1 25 8xi...8xi
1°°-12s 1 2s
k +...+k
1,08 ,_ 1
(6) A (x,53)= Y %, ..k ) —ﬁ
05k1+...+kn525-1 ax1 ...axn
2s-1 a a
(7) B(zlatlax) (b (Z) + b (z)at) DT + Bl(zl a_tlﬁ) ’
a a ., _
(8) B,(2, zxrax) ~
N Ky*e .otk +1
- y Y b} (z) -2
IS X, X, 1°'
05k1+...+kn525—2 1=0 ax1 ...axn at
2s-1 _
¥4
? aZs-l
= a, . (x)...a, (x)cos(n_,x. )
i i =1 1112 12s-1 2s 2 l25 8xi...axi
1°°°7"2s 1 2s-1
with data : a%(x), al (x), b°(2),bt(z),bL (z) - the
Ky-ookp K)o Xy

square NxN matrices of functions (N = 1) ; ¢(x),¥(z,t) -
vector-functions of order N and a; (x), i,j=1,...,n, - real
functions. In limit (3), the point xeD tends to zeS along a

curve satisfying the following condition ( see{4],p.115)

. I3 _
(10) lim fz-z_|" log |x-z | =

292
X

where |x-z_| = inf ||x-€]|
x
£eS

We make the following assumptions ( see[l1]):
(I) The matrix a(x)=[aij(x)]an of functions a, . (x),
i,j=1,...,n, is symmetric and positively defined at any p01nt

xeD =DuS.
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(II) The coefficients of the operator given by (4)-(6) are

determined in the domain DODD and ao, aeczs(Do),
1 k1+...+kn
a o x eC (Do), 05k1+...+knszs—1.
1 n
.. .0 1.1 _ .
(III) The matrices b ', b ,bk Kk ! 1=1,2, are determined
1k,

and continuous on the boundary S.
(IV) The vector-function ¢(x) is determined on D and sa-
tisfies the conditions : ¢ € Cl(D) and there exists a domain

D, such that Blc D and ¢(x)=0 for x e D-D,.

(V) The components of the vector-function ¥(z,t) are the
originals of the second kind in the Zeynalov sense
(see (3], p.1692).

(VI) The matrices :
1

0 2s. 1 -1 0 2s. 1 -1 1 2s1l
(b7 (z) +A""b 7 (2z)] ~, (b (2) +A"" b (2)] z bk K (z) A
1=0 1°"""n
kl+...+kn= 0,1,...,2s-2, are bounded for zeS and AERS , Where
n+28 n
(11) Rgi= {Azlarg Al= ——, |Al= R > 0, 8¢(0, Z)}.

(VII) The system (1) is parabolic in the Petrovsky sense.

2. Existence and uniqueness of the solution of the mixed

problem

Applying formally the Laplace transformation composed with
2s-th powers of complex parameter A to (1)-(3), we obtain the

spectral problem given by (2)-(3) in [1] for aeR where

81
v(z,A) 1is an analytic continuation of the integral
+o

S exp(-Azst)W(z,t)dt on the region Ry.
0

Now we shall give Lemmas on the existence of a solution of
the mixed problem (1)-(3).

Lemma 1. Let D be a bounded domain in E" with boundary S
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which is a closed Lapunov’s surface with exponent ke (0,1>, and
I' be an infinite curve lying in Ry (see(11)), coinciding with

half-lines |argal = %gé for sufficiently large |A|. If the

assumptions (I)-(III).(V)=-(VIII) are satisfied, then the
problem (1)-(3) with ¢(x)=0 has in the space Cis(D)nCz(0,+m)

the solution which may be represented in the following form

(12) v (e, t) = =2 S 225" Lexp(a25t) u(x,Ar) dr ,
mi L

where u(x,A) is the solution of the spectral problem given by
(47) in [1]) for A € Rs.
Proof. We shall first prove that the function defined by
(12) is of the class Cis(D)nc:(0,+m). In order to do that we

must check 1locally uniform convergence at any point
(xo,to) € Dx(0,+») of the following integrals

k
_ au(x,A)
(13) { A2(S+l) lexp(AZSt)ﬁ ax
r 1 n
X, ...9X
1 n
for k=0,...,2s, k=k1+...+kn, 1=0,1,... . Let us observe that

for t>0 and for sufficiently large |Al|l, if ael, then

n+é 2s

lexp (125t) | =exp (Rea%St)=exp (12125t cos™22) = exp(-5,111%5¢),

where &.= -cos—— = sin

IO

> 0. Let Qm, Qp denote points of

the curve I' such that IOQmI=rm and lOQp|=rp, respectively. We

assume that p>m and 1lim r =to . We shall prove that

m->+w
k
(14) § a2(sth-1 exp(xzst)—}‘%l(x'—”k— o o
— 1 n
Qme > S ) Mo+
for all te (it., 3t .)c (0,+n) xe K(X.,2d(x.))c D
2%’ 3% ‘ ‘ 0'29(Xg '

where Qme is an arc of the curve T, K(xo,%d(xo)) is the ball
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with center X, and radius %d(xo) and d(xo) is the distance of

the point x. from the boundary S.

0
From the inequality (62) in [1] we obtain

k
_ 3 u(x,a)
§ A2(s+1) 1 exp(azst)——i——————i—— axl s
[ — 1 n
Qme axl ...axn
p
scf§ p2(s+l)=1 exp(—slrzst) u(r) exp;;52;+i(x)) dr ,
r x
m

where, on the basis of the assumption (V), we have

u(r):= sup sup I|¥(£,A)l — 0 .

|A|=r £es r>+o
Thus
k
§ h2(5+1)-1 exp(hzst) i u(x,Ai arl s
— 1 n
Qme axl ...axn
2(s+1)__2(s+1) _ 2s -
. ( rpﬁ Th ) (o] u(rm) exp ( alrm t) exp( crmd(x)) .
2(s+1) d(xo)n-25+k
2(s+ 2
n-2s+k rp(s 1) C u(rm) exp(-slrmsto/z) exp(-crmd(xo)/z)
s 2
2(s+1) d(xy) 728k

3

1
OI \Et ')l Xe K(xol Ed(xo)) °

for all te (%t

It means that the condition (14), i.e. 1locally uniform
convergence of the integrals (13), 1is satisfied in points
(xo,to) € Dx(0,+w) .

Applying the results (63),(65) in [1], by means of similar
considerations as above, one can show the locally uniform con-

vergence of integrals

k
_ 8 u(z,A)
§ A2(5+1) 1exp(h25t)__i______i__ dx
r oz . t...9z "
1 r-e92,

for k=0,...,2s5-2, k=kl+...+kn, 1=0,1,... and
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2s-1
§ A2(5+1)_1exp(hzst) DT
r 2

u(z,a)da for 1=0,1,...

in each point (z,t)eSx(0,+w).

Thus, the function vl(x,t) can be substituted in the
equation (1) and in the boundary condition (3). Since wu(x,A)
is the solution of the spectral problem (2)-(3) from [1],
therefore we obtain the following equation

P a vl(x,t)
(15) A(x, v, (X,8) - —F5—— =
_ s 2s-1 a _ 2s _
=21 (A(x,52)-2%%1)ar = o.

It means that vl(x,t) is the solution of the system (1). Simi-

larly, using the Zeynalov theorem (cf.[3], p.1692), we obtain

. a 3
(1le6) lim B(2,z¢,32) V,(x,t) =
Dax->zeS at’ox 1
= ﬁ§ g 225 lexp(2?%t) 1im B(z,2%S gi) u(x,Ar) da =
r Dax-»zeS

= -5 ¢ 225 Yexp(a25t) y(z,A) da = ¥(z,t) .
ni 2
Thus, A\ satisfies the boundary condition (3) . To check the
initial condition we can show that

2s8-

(17) § 22571 y(x,a) dr = 0 for xeD.

r
From the inequality (62) in [1] it results that

(18) I A28 uix,a) 1=
2s-1 exp(-elald(x)) C(x)
s C.lal suply(z,Aa)l — = '
1 £es a(x)h-2s (Al 1¥P

where b>0.

Let us denote by Fm the portion of the curve I 1lying
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inside the circle with radius r, (we assume that lim r, =to),
m0

and by e, the arc of this circle 1lying in R_. Since

3
Azs-lu(x,l) is the analytic function in Rs therefore, on the

basis of the Cauchy theorem, we obtain

§ A2s-1 u(x,A) da = lim § a2s-1 u(x,a)da = lim § Azs_lu(x,h)dl.
r

+ +c0
m-> Fm m> em

From the inequality (18), for sufficiently large m, we have

n+d
4s r
15 2% tax,nyanis c(x) § B ap = SXU(MHE)
(] n+d r 2s r
m -E m

Thus, we obtain the equality (17) which ends the proof of
Lemma 1.

Lemma 2. Let the assumptions of Lemma 1 on D,S,I’ and
(I)-(VII) be satisfied. If G(x,£,A) is the Green matrix for
the problem (2)-(3) from (1] (cf.(66)), then the problem (1)-
(3) with ¥(z,t)=0 has, in the class Cis(D)nC:(0,+w) the

solution which may be represented in the form

(19 vt = 7§ 225 Lexp (a%5¢) § Gix € M0(E)aE

Proof. Let us rewrite the function vz(x,t) in the form

(20) Vo (X, ) = vy, (x,t) + vy, (x,t),
where
(21) vy, (x,t) = 25 § 2% Tlexp(a®%t) § P(x,£,2)8(8)a8 ar ,
r D
(22)  vy,0at) = - gF g A5 7texp(a%%t) § Q(x,£,2)8(8)aE ar ,
D

and P(x,€,A) is the fundamental solution of the equation (2)
in (1) (cf.(16),(16')).

Let us check the differentiability of the function
(21), i.e. the locally uniform convergence of integrals
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k
) %P (x,€,2)
(23) § a2 leypa28%) g T g(£)ag ar
r D axll...aan

for (x,t)eDx(0,+w).

Applying the inequality (19) from (1) and using polar
coordinates, we have

k
a"P(x,€,A)
exp(~clrll|x-
(24) § — """ seyag| s o, § SXRLEIAIX-E]) 4.
5 K, X 1p T px-g|P 2K
ax1 ...axn
+o
=c, § rzs-k-lexp(—elhlr)dr s —_—ggzi s &
0 lal (Al
for k=k1+...+kn, k=0,..,2s-1, xeD. Similarly as in the proof
of Lemma 1, we can conclude that from (24) it follows the 1lo-
cally convergence of integrals (23) for k=0,...,2s-1 in each

point (x,t)eDx(0,+w). Let us estimate the integral

2s
— e § P(X,£,0) $(£)AE ,  ky+...k =25, xeD ,
ox,t...ox " P

where

(25) P(x,€,A) = PO(XIEIA) + Pl(xlglk) .

Since Pl(x,E,A) satisfies the condition (18) from [1], we
obtain the following inequalities

a25
(26) % % § P, (x,£,2) ¢(£)ag| =
axll...axn“ D
+
sc, eXP(-elglgx-Eﬂ)dE s C, § exp(-elAlr)dr = £ for xeb.
D [x-g| 0 Al

By the formula (13) from [1] determining Po ,we have

Oy (X,E,A) 2R, (X,E,)

(27) =
3% 3E;
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= L 5 A B argre,0® %) 2?17t aa .

(21!)n "
Let us observe that, by assumption (II), the matrix

—2—[(a(£)a,a)s ao(ﬁ)-kzsl]-1 exists and has singularity at
ac.,
J

faf] >+« of the same order as the matrix

[(a(&)a,a)s ao(e)-xzsI]-l. Thus, by the inequality (15) in
[1], we get the estimate

92571 3P (X,E,A) 8P, (X,E,A)
(28) X k-1 Kk + s
ax .. oxg) Lo x5 8¢ 4
s ¢ _exp(-elrlfx-£j)
Thus
425
(29) - = § Po(x,6,1) ¢(£)dE =
8x11...6xnn D
g2s71 8P, (X,E,1) 9Py (x,E,Q)
- g K] k:-1 X 3 + . $(£)ag -
ax, ...8xj3...axnn X5 €j
8% B (x,£,2)
" XK.-1 X $(£) A& = U (x,£,2)+U, (x,E,2),
3
ax1 ...axj ...axn agj

where, by assumption (IV), we have

8%5p (x,€,2)
U0aE = -f g% ¢(§) ag =
ax, ...aij...axn“ o€ 5
8%57p  (x,£,1)  24(8)
= g ) -1 k.7, ag .
ax, ...aij...axn“ Ej

From (28),(29) and the inequality (15) from (1] we obtain
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28 _ _
(30) __E—g—'—'ﬁ_ §Po(x,E,2)¢(£)AE| = C,§ exp( el:l!x S a¢ <
ax,t...ax " D D |x-¢|
1 n
C
s C2 { exp(-elrlr)dar = — for xeD.
Y Ial

The inequalities (26),(30) imply the locally uniform convergence
of integrals (23) for k=2s in any point (x,t)eDx(0,+w), so

2
V.. € st(D)nC:(0,+m).

21
In a similar way, applying the inequality (77) from ([1}],we
prove the locally uniform convergence of integrals

k
_ aQ(x,§,)
§ A2(s+1) lexp(AZSt)S —_— #(£)dE Ar
r D axll...axnn

for k=0,1,...,2s, 1=0,1,... in the point (x,t)eDx(0,+»), which

finally means, by (19), (20), that v ecis(D)ncz(o,+m). Using

2
the inequalities (19),(78), (80) from [l1] we can, in a way as
above, show the locally uniform convergence of integrals

k
- 3°G(z,§,A)
§ A2(s+1) lexp(Azst) § — #(£)dE da
r P ooz t...ez "
for k=0,...,2s-2, k=k1+...+kn, 1=0,1,... and
2s-1
§ A28 D) 1exp (a25%) 5 D TG(z,€,2) 8(6)aE ar

r D z

for 1=0,1,...in each point (z,t)eSx(0,+w). Hence, we can
introduce the boundary operator B(z'gf'gi) for t>0 under the
integral sign in (19).

Since Q(x,£,A) is the regular part of the Green function

satisfying the homogeneous equation (2) from [1], we obtain

(31) A, S v, (x,t) (x,t) =

-9,
3t 22
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= 23 § 2% tep(a®%e) § (A(x,35)-2%%D)(x,€,2) ¢(£)agar = o.
r D

Similarly, applying the formula (20) from (1], we have

(32) A, g) vy () - 3 v, (xt) =

[

=2 § 2% lexp(a%%) § (A(x,35)-A%°D)P(x,£,2) #(E)agar =
r D

- =5 6(x) g 225 loyp (a%5t)an .

We shall prove that
(33) § 225 lexp(a?®t) aa = o.
r
Let us denote by Fm the arc of I' 1lying inside the circle with

a radius r_ (we assume that lim r_ = +o ). So we have
m m

§ 225 lexp(a2St) ar = 1im § A%5 lexp(a25t) an ,
r I

mww I
§ 2257 loyp (a%5t) aa|= Ei— exp( r2St(cos™3 + i sin®%))-
r st m 2 2
m
2s n+8 N (2] 1 2s
- exp( r t(cos—i— -1i 51n—7—)) s 5t exp(-rm tsl),
where 81 = sin g > 0, Thus, for t>0 we obtain
. 2s-1 2s . : s
lim § A°" “exp(A“Tt) dx = 0 which implies (33). So (32)
mo Fm

becomes A(x,%;) v21(x,t) - gE v21(x,t) = 0 which shows,
together with (31), that the function vz(x,t) satisfies the
equation (1).

Since the Green matrix G(x,£,A) satisfies the homogeneous
boundary condition of the spectral problem (cf.(3) in [1]), we
have the equality
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lim B(z,gf,%;) vy(x,t) =

Dax-z€S
= 252 lexpa®) § 1in B(2,2%5 L)e(x,£,2)0(8) agar=o.
r D Dax-zeS
Now, we will show that
(34) lim vz(x,t) = ¢(X) for x € D.
t—)O+
From (22) we have
lim vy, (x,t) = - =% § 4?57} a(x,€,2)0(£)agar .
+ r D

t-0
The inequality (79) for k=0 from [1] implies

C
1§ QU EAEIAEN 5 Ty

Thus, applying analyticity of § Q(x,£,A)¢(€)dE in the region
D
RS' we have

(35) lim vzz(x,t) = 0.

t—)O+

Now, for t>0, we can transform v21(x,t) as follows (see (21))
8 ¢ .-1.__,.2S,.,.28 )
(36) Va3 (%, =57 § A7 exp(AT50) (ATI-A(x, ) 1§P (X, €, 1) ¢ (£) dgar+
s
ni

+

™

§ A lexp(A%St)A(x,3) §P(x,€,2)9(6)agar .
r D
By (20) from [1], we can further write

(37) Vy, (X,8) = =% $(x) g A lexp(a%5t)an +

-1 2s 3
= ; A" "exp(A°Tt) A(x,33) g P(x,E,A)9(£)AgAr .

Let us notice that applying the Zeynalov theorenm (cf}[3],
P.1692) we have
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8 ¢ alexp(a?5t)ar = 1 .
i

From (24),(25),(26), (30) we obtain the estimate

A g5) § PO EASOAEN = 137

So, taking the limit at t-0, we conclude that the integrand
function in the second integral of the formula (37) descreases

when O(IAI-Z) at IAl++o .By means of this, we can easily
prove that the limit at t->0" of the second component of the
sum (37) equals zero, so finally gives the following condition

(38) lim v21(x,t) = ¢(x) for x e D.
+
0
By (20), (35), (38), we conclude that the function vz(x,t)
satisfies the initial condition (2).

Lemmas 1 and 2 imply the following theorem .

Theorem 1. If the assumptions of Lemma 1 and Lemma 2 are
satisfied, then the initial-boundary value problem (1)-(3) has

the solution in the following form
vix,e) = 5f § 2257 Lexp (A25¢) [u(x,2) + § cx,€6(0)a00

where u(x,A) is the solution of the appropriate spectral prob-~
lem, and G(x,£,A) is the Green function for this problen.

Besides, we have the result as follows.

Theorem 2. If the assumptions of Lemma 1 and Lemma 2 are
satisfied, then the problem (1)-(3) has exactly one solution
u e cis(o)nc:(o,+a) satisfying conditions of the second-kind
orginal in Zeynalov’s sense (cf.[3], pP.1692).

Proof. Let vl(x,t) and vz(x,t) be two different solutions
of the problem (1)-(3). Then the function v(x,t)=v1(x,t)-

-vz(x,t) is the solution of the homogeneous problem

8V (x,1 8
T = ax, G vix,t) for (x,t)eDx(0,+x) ,
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lim+v(x,t) =0 for xeD,
t-0
. a 8
lim B(ZIEE'§§) vix,t) =0 for (z,t)eSx(0,+w) .
Da>x->z€S

Using the Laplace transformation composed with 2s-th powers of

the complex parameter Azs, we obtain the proper spectral
problem
d 2s
A(x15§) u(x,A) - A% u(x,a) =0 for xeD, AeRs ’
. 2s 3
lim B(z,A ,—;) u(x,A) =0 for zesS, AeRa.
Da»x->z€S
If u(x,A) is its solution, then on the basis of the inequal-
ities (62) and (63) from [1] we have u(x,A) = 0 for xeD and

AeRB. From the Zeynalov theorem (cf.[3], p.1692) it results

that v(x,t)=0 for (x,t)eDx[0,+»x), which is contradictory to

the assumption that vl(x,t),vz(x,t) are different.
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