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APPLICATION OF THE METHOD OF CONTOUR INTEGRATION 
TO THE INITIAL-BOUNDARY VALUE PROBLEM 
FOR A PARABOLIC SYSTEM OF EVEN ORDER 

1. Statement of the problem 

Using the method of contour integration, we will inves-
tigate existence and uniqueness of the solution of the mixed 
problem for a parabolic (in the Petrovsky sense) system of 
order 2s. For s=l this problem was investigated in [2]. This 
paper is a continuation of [1]. 

Let D be a bounded domain in the Euclidean space En, n&3; 
the boundary S of D is a closed Lapunov's surface with expon-
ent (C € ( 0, 1>. 

Let us consider the following initial-boundary value prob-
lem. Find a vector-function v e C ŝ(D)nC™(0,+co) such that 

(1) = A(x,|^) v(x,t) for (x,t) e Dx(0, +co) , 

(2) lim v(x,t) = <p(x) for x e D, 
t-»0 

(3) lim B(z,f* ) v(x,t) = *(z,t) for (z,t) « Sx(0,-ho) , 
Di>x->zeS 

where 
(4) = À°(x'fe> + Al(x'fo ' 

(5) A°(x,|-) = 
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= (-1)Sa°(x) j? a.. i (x)...ar A (x) fl2S 

. _, 1 2 2s-i2s a x . . . . a x . 
1" "" 2s 11 2s 

kj + ...+kn 

(6) A ^ x . f e - I a V . . k n ( x ) "̂Jcl JT~ ' 
0sk,+...+k S2S-1 1 n 3x, ...3x i n i n 

B(z'ft'fe>=(b°<z> + bl<z>ft> D T S _ 1 + Bi< z' h ' k > ' 
z 

<8> V z ' Jt'fe -
, k,+...+k +1 ¿ • 1 a l n 

I I bk....k ( z ) —)T Jc~ I ' 
osk.+...+k s2s-2 1=0 ax, ...ax at i n i n 

(9) D ^ - 1 = 
z 

n a 2 s _ 1 

y a. . (x)...a. . (x)cos(n ,x. ) 
. • 1 2 2s-l 2s * 2s ax....ax. 
1"*' 2s 2S-1 

with data : a°(x), a* (x) , b°(z) ̂ ( z ) ,b} t(z) - the 
Jv. • • • *v. J\< • • • Jv 

i n I n 
square NxN matrices of functions (N * 1) ; 0(x),$(z,t) 
vector-functions of order N and a^j(x), i,j = l,...,n, - real 

functions. In limit (3), the point xeD tends to z«S along a 

curve satisfying the following condition ( see[4],p.115) 
(10) lim ||z-z fl* log ||x-z ( = 0, 

~ z x 
where ||x-zx|| = inf ||x-C|| . 

We make the following assumptions ( see[l]): 

(I) The matrix a(x)=taij(x)J^xn o f functions a^j(x), 

i,j=l,...,n, is symmetric and positively defined at any point 

xeD =DuS. 
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(II) The coefficients of the operator given by (4)—(6) are 

0 2s 
determined in the domain D q 3 0 a n d a > a € C ' 

aiL . . .k e c k l + " ' 0 s k l + ' • • + k
n
s 2 s " 1 -1 n 

(III) The matrices b°, b ^ b * k , 1=1,2, are determined 
1'' ' n 

and continuous on the boundary S. 

(IV) The vector-function 0(x) is determined on D and sa-

tisfies the conditions : 0 e C 1(D) and there exists a domain 

D 1 such that D ^ D and 0(x)=O for x e D - D ^ 

(V) The components of the vector-function i(z,t) are the 

originals of the second kind in the Zeynalov sense 

(see [3], p.1692). 

(VI) The matrices : 

[b°(z) + X 2 s b 1 ( z ) ] - 1 , [b°(z) + X 2 s b 1 ( z ) ] " 1 Y bj (z) X 2 s l 

1=0 1"" n 

k_+...+k = 0,1,...,2s-2, are bounded for zeS and XeR. , where i n o 

(11) R 5 : = {X:Iarg X|s | e R > 0, 5e(0, £)}. 

(VII) The system (1) is parabolic in the Petrovsky sense. 

2. Existence and uniqueness of the solution of the mixed 

problem 

Applying formally the Laplace transformation composed with 

2s-th powers of complex parameter X to (l)-(3), we obtain the 

spectral problem given by (2)-(3) in [1] for X€R_, where o 
t/j (z,X) is an analytic continuation of the integral 

+CO 
J exp(-X st)i(z,t)dt on the region R . 
0 

Now we shall give Lemmas on the existence of a solution of 

the mixed problem (l)-(3). 

Lemma 1. Let D be a bounded domain in E n with boundary S 
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which is a closed Lapunov's surface with exponent K€(0,l>, and 
r be an infinite curve lying in R r (see(ll)), coinciding with o 
half-lines IargAI = for sufficiently large IA\. If the 

assumptions (I)-(III).(V)-(VIII) are satisfied, then the 

problem (1) — (3) with tf(x)=0 has in the space C2s(D)nC™(0, +oo) 

the solution which may be represented in the following form 

(12) v1(x,t) = J A 2 s - 1exp(A 2 st) u(x,A) dA , 

where u(x,A) is the solution of the spectral problem given by 
(47) in [1] for A € Rg. 

Proof. We shall first prove that the function defined by 

(12) is of the class C2s(D)nc"(0,+co) . In order to do that we 
must check locally uniform convergence at any point 
(x0>tQ) e Dx (0, +oo) of the following integrals 

2 (s+1) -1 2st a k u ( x ^ ) (13) $ a2(s+1) l e x p ( x2st )_ j_ d x 
r dx.1...3x n 

1 n 
for k=0,...,2s, k=k1+...+kn, 1=0,1,... . Let us observe that 

for t>0 and for sufficiently large |A|, if Aer, then 

|exp(A2st) |=exp(ReA2st)=exp( I A|2st c o s = e x p f ^ I A I 2 st) , 

where 5 = -cos^il = sin | > 0. Let Q , Q denote points of X 6 A ill P 
the curve r such that |0Q |=r and |0Q |=r , respectively. We m m P P 
assume that p>m and lim r =+oo . We shall prove that 

m-»+oo 
(14) a2(S+1)-1 e x p ( x 2 s t ) ^ u ( M L _ d A ^ Q 

V p 3x1
1... 3x n

n m-*+co 

for all t<= (|t0, |tQ)c (0, +oo) , X€ K(x0,|d(x0))c D , 

where Q Q is an arc of the curve r, K(xn,|d(x.)) is the ball m u A u 
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with center xQ and radius -d(xQ) and d(xQ) is the distance of 

the point xQ from the boundary S. 

From the inequality (62) in [1] we obtain 

, » ' « « « - I dA 

°mQ
S 

ax,1...ax n 
l n 

s c S r 2 ( s +l) ~1 exp(-6.r2st) ^ r J - ^ ^ f ^ M l dr , 
i d(x) m 

where, on the basis of the assumption (V), we have 

H(r):= sup sup |¥(£,A)| —> 0 . 
| A. | =r £eS r-»+oo 

Thus 

A 2* 5* 1*' 1 exp(A2st) dA * 

°mQp a x ^ . - . a x / 

( r 2 ( s + 1 ) - r 2 ( s + 1 ) ) C M(rm) e x p i - S ^ t ) exp(-ermd(x)) 
2(s+l) d(xQ) n-2s+k 

* 2 n-2s+k 
r* ( s + 1 ) C M(rm) exp(-51r2st0/2) exp(-ermd(x0)/2) 
2(s+l) d(xQ) n-2s+k 

for all t€ (|t0, |t 0), x6 K(xq/ |d(x0)) 

It means that the condition (14), i.e. locally uniform 
convergence of the integrals (13) , is satisfied in points 
(x0,tQ) € Dx(0, +co) . 

Applying the results (63),(65) in [1], by means of similar 
considerations as above, one can show the locally uniform con-
vergence of integrals 

x X 2< 8 + 1>- 1exp(X 2 s t) 
aku(z,A) 

3z, ...az_ i n 

dA 

for k=0,...,2s-2, k=k1+...+kn, 1=0,1,... and 
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2s-l 
J X 2 ( s + 1 ) _ 1 e x p ( X 2 s t ) D u(z,X)dX for 1=0,1,... 
r 

in each point (z, t) eSx (0, +oo) . 

Thus, the function v ^ X j t ) can be substituted in the 

equation (1) and in the boundary condition (3). Since u(x,X) 

is the solution of the spectral problem (2)-(3) from [1], 

therefore we obtain the following equation 

a 3 v (x,t) 
(15) A(x,|i)v1(x,t) = 

= jj S X ^ - ^ A i x ^ J - X ^ I J d X = 0. 

It means that v^fXjt) is the solution of the system (1). Simi-

larly, using the Zeynalov theorem (cf.[3], p.1692), we obtain 

Q Q 

(16) lim Bfz,^,^-) v (x,t) = 

= iff X X 2 s _ 1exp(X 2 st) lim B(z,X 2f |-) u(x,X) dX = 
711 T D3X-»zeS o x 

= iFT l ^ 2 S - 1exp(X 2 st) 0(z,X) dX = ¥(z,t) . 

Thus, v^ satisfies the boundary condition (3) . T o check the 

initial condition we can show that 

(17) J X 2 s _ 1 u(x,X) dX = 0 for xeD. 
r 

From the inequality (62) in [1] it results that 

(18) I X 2 s _ 1 u(x,X) 

* C ^ X I 2 5 " 1 suP|tf(z,X)| exp(-c|X|d(x)) s _ C ( X L , 
1 ?eS d(x) IXI 

where b>0. 

Let us denote by r^ the portion of the curve r lying 
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inside the circle with radius r (we assume that lim r =+oo), m _ m m-Ho 

and by 6 the arc of this circle lying in R.. Since m o 
2s—i 

X u(x,X) is the analytic function in R g , therefore, on the 

basis of the Cauchy theorem, we obtain 
S X 2 s _ 1 u(x,A) dX = lim J X 2 s _ 1 u(x,X)dX - lim J X 2 s - 1u(x,X)dX. 
r m-»+oo r m->+oo e m m 

From the inequality (18), for sufficiently large m, we have 

71+5 

IX X2s-^"u (x, X) dX | s C(X) 1 ^ T T de = ("+*) # 
e „ TI+S 2 s r „ m — m m 4s 

Thus, we obtain the equality (17) which ends the proof of 

Lemma 1. 

Lemma 2. Let the assumptions of Lemma 1 on D,S,r and 

(I)-(VII) be satisfied. If G(x,£,X) is the Green matrix for 

the problem (2)-(3) from [1] (cf.(66)), then the problem (1)-

(3) with *(z,t)=0 has, in the class C2s(D)r\C™(0,+o>) the 

solution which may be represented in the form 

(19) v (x,t) = - f J X 2 s - 1exp(X 2 st) J G(x,C,X)«(C)d? dX . 
* nx r. D 

Proof. Let us rewrite the function v2(x,t) in the form 

(20) v2(x,t) = v 2 1(x,t) + v 2 2 ( x , t ) , 

where 

(21) v (x,t) = - f J X 2 s _ 1exp(X 2 st) J P(x,?,X)0(?)d? dX , 
r D 

(22) v (x,t) = - - f J X 2 s _ 1exp(X 2 st) J Q(x,£,X)*(?)d£ dX , 
¿T 711 r D 

and P(x,£,X) is the fundamental solution of the equation (2) 

in [1] (cf.(16),(16' )). 

Let us check the differentiability of the function 

(21), i.e. the locally uniform convergence of integrals 
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(23) 
D ax.1...ax n 

i n 
for (x,t)eDx(0,+o>). 

Applying the Inequality (19) from [1] and using polar 
coordinates, we have 

(24) 
a"p(x,e,A) 

S — v ir 
D ax>...ax n 

1 n 
+00 

s exP(-cU||x-a) s 
1 D |x-C|| 

* C S r2s_k-1exp(-e|A|r)dr * , 2s-k I A I 

for k=k1+...+kn, k=0,..,2s-l, xeD. Similarly as in the proof 
of Lemma 1, we can conclude that from (24) it follows the lo-
cally convergence of integrals (23) for k=0,...,2s-l in each 
point (x,t) eDx ( 0 , + o o ) . Let us estimate the integral 

a 2s 

where 
(25) 

— £ ^ S P(x,?,A) 0(C)d€ , kj + . . .kn=2s, xeD , 
ax1...ax n D 
l n 

P(X,C,A) = P0(x,e,A) + P1(X,?,A) 

Since P (x,£,A) satisfies the condition (18) from [1], we 
obtain the following inequalities 

.2s 
(26) 

ax.1...ax n D 
l n 

J P ^ x ^ A ) 0(C)d? 

C.S exP(~clxl|x~?B)dg S c_ J^expf-eIAIr)dr s -JL for xeD. 
XD U X-C || 2 0 IA I 

By the formula (13) from [1] determining PQ ,we have 

(27) 
3P0(x,e,A) aP0(x,C,A) 

ax. 
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i _ n j ei(x-C,a) [ ( a m a , a ) s a 0 ( e ) . A 2 s i r l d a 

(2n) £ n 

Let us observe that, by assumption (II), the matrix 

(a(C)a,a)s a°(C)-A 2 sI] - 1 exists and has singularity at 
a € j 

|a| -»+00 of the same order as the matrix 

[(a(£)a,a)s a°(e)-A 2 sI] - 1. Thus, by the inequality (15) in 

[1], we get the estimate 

,2s-l 

(28) 
a' 

" I T k ^ l Jc 
ax, ...ax.J...ax 1 D n 

3Pn(x,e,A) aPn(x,?,A) 

ax. 

s C e x p ( - e U l M x - d ) 
n-l 

Thus 

(29) 
,2s 

ax/...ax n D 

x n 

Tj- S P 0(x,e,M = 

= s 

a 2s-l 

n k. k.-l k 1 
D ax. ...ax.3...ax n I 1 j n 

a 2 s P0(x,e,A) 

" n K 
ax,...ax. 3...ax n 

1 ] n 

ap (x,e,x) ap (x,£,x) 
— + — 

ax. 
-

*(£) de = U ^ x , ^ , A)+U2 (x,£,A), 

where, by assumption (IV), we have 

U2(x,£,A) = -J 
a 2 sp Q(x,e,A) 

= S 

n V " 1 k " 
ax. ...ax.J...ax ae. 

1 ] n 

a 2 s - 1P 0(x,£,A) a<p(S) 

d? = 

D a x * 1 . . ^ : * . « « * * i ] n 

From (28),(29) and the inequality (15) from [1] we obtain 
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(30) 
a 2 s 

ax. 1...ax_ n D 

i n 

p exp(-eUI|x-g|) d . 

+» c 
a C_ J exp(-e|X|r)dr * for xeD. 

* 0 |x| 

The inequalities (26),(30) imply the locally uniform convergence 

of integrals (23) for k=2s in any point (x,t)€Dx(0,+a>), so 

v 2 1 6 ^ S(D)nC»(0, +»). 

In a similar way, applying the inequality (77) from [l],we 

prove the locally uniform convergence of integrals 

2(s+11-1 2st 3kQ(x,e,A) 
x A ' ' exp(X ) J j- j - dX 
r D a x 7 . . . a x n 

l n 

for k=0,1,..., 2s, 1=0,1,... in the point (x,t) eDx (0,+co), which 

finally means, by (19), (20), that v2eC
2s(D)nC™(0,+a>). Using 

the inequalities (19),(78), (80) from [1] we can, in a way as 

above, show the locally uniform convergence of integrals 

2 fs+H-l 2st 3kG(z,C,X) 
s X 2 ( s + 1 ) exp(X ) s j - «(C)de dX 
r D 

dZ, ...dZ l n 

for k=0,...,2s-2, k=k 1+...+k n, 1=0,1,... and 

2s-l 
X X 2 ( s + 1 ) " 1 e x p ( X 2 s t ) S D G(z,C,X)«(€)dC dX 
r D Az 

for 1=0,1,...in each point (z,t)eSx(0,+co) . Hence, we can 

d d introduce the boundary operator B( z»gt'3x^ f o r t > 0 u n d e r t h e 

integral sign in (19). 

Since Q(x,£,X) is the regular part of the Green function 

satisfying the homogeneous equation (2) from [1], we obtain 

(31) A f x , ^ ) V 2 2(x,t) - | t v 2 2 ( x ' t ) = 
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= HI £ * 2 S - 1exp(* 2 st) S (A(x,!£)-A2sI)Q(x,efX) *(£)d?dX = 0. 

Similarly, applying the formula (20) from [1], we have 

(32) A(x'fe> v 2 1 ( x , t ) * It ^ l * * ' ^ = 

= irf £ ^ 2 S _ 1exp(X 2 st) J (A(*f|5)-*2"l)P(*,€,X) «(C)d?dX = 

= " HI * ( x ) £ X2s_1exp(X2st)dX . 

We shall prove that 

(33) J X 2 s _ 1exp(X 2 st) dX = 0. 
r 

Let us denote by r^ the arc of r lying inside the circle with 

a radius r (we assume that lim r = +oo ) . So we have m ' _ „ m 

S X 2 s _ 1exp(X 2 st) dX = lim J X 2 s _ 1exp(X 2 st) dX , 
T m-*» r m 

s X 2 s _ 1exp(X 2 st) dX 
rm 

1 
2 st exp( r

2st(cos^±£ + i s i n ^ ) ) -

- exp( r 2 s t ( c o s ^ - i sinZj*)) S il e xP(" rm S t Sl> 

t 
where = sin ^ > 0. Thus, for t>0 we obtain 

lim J X 2 s - 1exp(X 2 st) dX = 0 which implies (33). So (32) 
m-xo r m 

a a 
becomes a(x,^) v21(x,t) - v21(x,t) = 0 which shows, 

together with (31), that the function v2(x,t) satisfies the 
equation (1). 

Since the Green matrix G(x,£,X) satisfies the homogeneous 
boundary condition of the spectral problem (cf.(3) in [1]), we 
have the equality 
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lim v (x,t) = 
Dsx+zeS a z a x * 

= =? X A 2 s _ 1exp(X 2 st) S lim B(z,A2? |~)G(x,£,A)*(e)dedA=0. 
711 T D D9X-+Z6S o x 

Now, we will show that 

(34) lim v,(x,t) = 0(x) for x e D. 

t+0+ 

From (22) we have 

lim v (x,t) = - -f J X 2 s _ 1S Q(x,£,A)*(OdedA . 
t-»0+ r D 

The inequality (79) for k=0 from [1] implies 

D U l 2 s + n 1 

Thus, applying analyticity of J Q(x,£,A)0(£)d£ in the region 
D 

R 5, we have 

(35) lim v22(x,t) = 0. 

t-»0+ 

Now, for t>0, we can transform v21(x,t) as follows (see (21)) 

(36) v 2 1 ( x , t ) = 4 s A_1exp(A2st)[X2sI-A(x,|^)]SP(x,C,X)«(e)dedA+ 

+ iFT £ ^_1exp(X2st)A(x,|^) JP(x,5,X)«(OdCdA . 

By (20) from [1], we can further write 

(37) v21(x,t) = ^ «(x) S A_1exp(A2st)dA + 

+ if £ A - 1exp(X 2 st) A(X,|^) S P(x,?,A)«(C)dCdA . 

Let us notice that applying the Zeynalov theorem (cf.[3], 
p.1692) we have 
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^ $ A_1exp(A2st)dA - 1 . 

From (24),(25),(26), (30) we obtain the estimate 

IA(x,fj) J P(x,i,A)*(e)dei ^ fXT • 

So, taking the limit at t-+0, we conclude that the integrand 
function in the second integral of the formula (37) descreases 

_2 
when 0(|X| ) at IXl-H-oo .By means of this, we can easily 
prove that the limit at t-»0 of the second component of the 
sum (37) equals zero, so finally gives the following condition 
(38) lim v,.(x,t) - «(x) for x € D. 

+ 
t->0 

By (20), (35), (38), we conclude that the function v2(x,t) 
satisfies the initial condition (2). 

Lemmas 1 and 2 imply the following theorem . 
Theorem 1. If the assumptions of Lemma 1 and Lemma 2 are 

satisfied, then the initial-boundary value problem (l)-(3) has 
the solution in the following form 

v(x,t) - -f J A2s_1exp(A2st)[u(x,A) + J G(x,S,A)*(£)de]dA , n i r D 
where u(x,A) is the solution of the appropriate spectral prob-
lem, and G(x,£,A) is the Green function for this problem. 

Besides, we have the result as follows. 
Theorem 2. If the assumptions of Lemma 1 and Lemma 2 are 

satisfied, then the problem (l)-(3) has exactly one solution 
u e C2s(D)nc"(0,+«o) satisfying conditions of the second-kind 
orginal in Zeynalov's sense (cf.[3], p.1692). 

Proof. Let v1(x,t) and v2(x,t) be two different solutions 
of the problem (l)-(3). Then the function viXjt^v^Xjt)-
-v2(x,t) is the solution of the homogeneous problem 

8Vi?ft? = Mx,|~) v(x,t) for (x,t) eDx(0, +oo) , 
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lim v(x,t) = 0 for xeD, 

d d 
lim B(z»aF»au) v(xft) = 0 for (z,t)eSx(0,+co) . 

Dax->zeS 
Using the Laplace transformation composed with 2s-th powers of 

2s 
the complex parameter A , we obtain the proper spectral 
problem 

A ( x'lx ) ~ A2Su(x,A) = 0 for xeD, AeR^ , 

lim B(Z,A 2 S,4-) u(x.A) = 0 for zeS, AeR-. 
Dsx->zeS dx S 

If u(x,A) is its solution, then on the basis of the inequal-
ities (62) and (63) from [1] we have u(x,A) = 0 for xeD and 

AeR^. From the Zeynalov theorem (cf.[3], p.1692) it results 

that v(x,t)=0 for (x,t) eDx[0,+a>) , which is contradictory to 

the assumption that v1(x,t),v_(x,t) are different. 

REFERENCES 

[1] R. Malecki: Estimates of the solution of the boundary-
-value problem with a complex parameter for a certain el-
liptic system, Demonstratio Math., 23 (1990), 1005-1020. 

[2] M./l. Pacy/ioB: flpHM6H6HHH MeTOfla KOHTypHoro HHTerpa/ia, 
MocKsa 1975. 

[3] H.C. 3eHHa/ioB: Hob we HHTerpa/ib Hbie npeo6pa3 0BaHHfl, fln4>4>-
Yp.9 (1970) 1691-1696. 

[4] W. Pogorzelski: Integral equations and their applications 
Warszawa 1958. 

D E P A R T M E N T OF M A T H E M A T I C S , W A R S A W U N I V E R S I T Y OF T E C H N O L O G Y 
P L O C K B R A N C H , 0 9 - 4 0 0 -PLOCK, P O L A N D 

Received May 8, 1989. 


