

DEMONSTRATIO MATHEMATICA

Vol. XXV No 1-2 1992

Romuald Malecki

APPLICATION OF THE METHOD OF CONTOUR INTEGRATION
TO THE INITIAL-BOUNDARY VALUE PROBLEM
FOR A PARABOLIC SYSTEM OF EVEN ORDER

1. Statement of the problem

Using the method of contour integration, we will investigate existence and uniqueness of the solution of the mixed problem for a parabolic (in the Petrovsky sense) system of order $2s$. For $s=1$ this problem was investigated in [2]. This paper is a continuation of [1].

Let D be a bounded domain in the Euclidean space E^n , $n \geq 3$; the boundary S of D is a closed Lapunov's surface with exponent $\kappa \in (0, 1)$.

Let us consider the following initial-boundary value problem. Find a vector-function $v \in C_x^{2s}(D) \cap C_t^\infty(0, +\infty)$ such that

$$(1) \quad \frac{\partial v(x, t)}{\partial t} = A(x, \frac{\partial}{\partial x}) v(x, t) \quad \text{for } (x, t) \in D \times (0, +\infty) ,$$

$$(2) \quad \lim_{t \rightarrow 0^+} v(x, t) = \phi(x) \quad \text{for } x \in D ,$$

$$(3) \quad \lim_{D \ni x \rightarrow z \in S} B(z, \frac{\partial}{\partial t}, \frac{\partial}{\partial x}) v(x, t) = \Psi(z, t) \quad \text{for } (z, t) \in S \times (0, +\infty) ,$$

where

$$(4) \quad A(x, \frac{\partial}{\partial x}) = A^0(x, \frac{\partial}{\partial x}) + A^1(x, \frac{\partial}{\partial x}) ,$$

$$(5) \quad A^0(x, \frac{\partial}{\partial x}) =$$

$$= (-1)^s a^0(x) \sum_{i_1 \dots i_{2s}=1}^n a_{i_1 i_2}(x) \dots a_{i_{2s-1} i_{2s}}(x) \frac{\partial^{2s}}{\partial x_{i_1} \dots \partial x_{i_{2s}}} ,$$

$$(6) \quad A^1(x, \frac{\partial}{\partial x}) = \sum_{0 \leq k_1 + \dots + k_n \leq 2s-1} a_{k_1 \dots k_n}^1(x) \frac{\partial^{k_1 + \dots + k_n}}{\partial x_1 \dots \partial x_n} ,$$

$$(7) \quad B(z, \frac{\partial}{\partial t}, \frac{\partial}{\partial x}) = (b^0(z) + b^1(z) \frac{\partial}{\partial t}) D_{T_z}^{2s-1} + B_1(z, \frac{\partial}{\partial t}, \frac{\partial}{\partial x}) ,$$

$$(8) \quad B_1(z, \frac{\partial}{\partial t}, \frac{\partial}{\partial x}) = \sum_{0 \leq k_1 + \dots + k_n \leq 2s-2} \sum_{l=0}^1 b_{k_1 \dots k_n}^l(z) \frac{\partial^{k_1 + \dots + k_n + l}}{\partial x_1 \dots \partial x_n \partial t} ,$$

$$(9) \quad D_{T_z}^{2s-1} = \sum_{i_1 \dots i_{2s}=1}^n a_{i_1 i_2}(x) \dots a_{i_{2s-1} i_{2s}}(x) \cos(n_z, x_{i_{2s}}) \frac{\partial^{2s-1}}{\partial x_{i_1} \dots \partial x_{i_{2s-1}}} ,$$

with data : $a^0(x)$, $a_{k_1 \dots k_n}^1(x)$, $b^0(z)$, $b^1(z)$, $b_{k_1 \dots k_n}^l(z)$ - the square $N \times N$ matrices of functions ($N \geq 1$) ; $\phi(x)$, $\Psi(z, t)$ - vector-functions of order N and $a_{ij}(x)$, $i, j = 1, \dots, n$, - real functions. In limit (3), the point $x \in D$ tends to $z \in S$ along a curve satisfying the following condition (see[4], p.115)

$$(10) \quad \lim_{z \rightarrow z_x} \|z - z_x\|^k \log \|x - z_x\| = 0 ,$$

where $\|x - z_x\| = \inf_{\xi \in S} \|x - \xi\|$.

We make the following assumptions (see[1]):

(I) The matrix $a(x) = [a_{ij}(x)]_{N \times N}$ of functions $a_{ij}(x)$, $i, j = 1, \dots, n$, is symmetric and positively defined at any point $x \in \bar{D} = D \cup S$.

(II) The coefficients of the operator given by (4)-(6) are determined in the domain $D_0 \supset D$ and $a^0, a \in C^{2s}(D_0), a_{k_1 \dots k_n}^1 \in C^{k_1 + \dots + k_n}(D_0), 0 \leq k_1 + \dots + k_n \leq 2s-1$.

(III) The matrices $b^0, b^1, b_{k_1 \dots k_n}^1, l=1,2$, are determined and continuous on the boundary S .

(IV) The vector-function $\phi(x)$ is determined on D and satisfies the conditions : $\phi \in C^1(D)$ and there exists a domain D_1 such that $\bar{D}_1 \subset D$ and $\phi(x)=0$ for $x \in D-D_1$.

(V) The components of the vector-function $\Psi(z,t)$ are the originals of the second kind in the Zeynalov sense (see [3], p.1692).

(VI) The matrices :

$[b^0(z) + \lambda^{2s} b^1(z)]^{-1}, [b^0(z) + \lambda^{2s} b^1(z)]^{-1} \sum_{l=0}^1 b_{k_1 \dots k_n}^l(z) \lambda^{2sl}$
 $k_1 + \dots + k_n = 0, 1, \dots, 2s-2$, are bounded for $z \in S$ and $\lambda \in R_\delta$, where
(11) $R_\delta := \{\lambda : |\arg \lambda| \leq \frac{\pi+2\delta}{4s}, |\lambda| \geq R > 0, \delta \in (0, \frac{\pi}{4})\}$.

(VII) The system (1) is parabolic in the Petrovsky sense.

2. Existence and uniqueness of the solution of the mixed problem

Applying formally the Laplace transformation composed with $2s$ -th powers of complex parameter λ to (1)-(3), we obtain the spectral problem given by (2)-(3) in [1] for $\lambda \in R_\delta$, where $\psi(z, \lambda)$ is an analytic continuation of the integral $\int_0^{+\infty} \exp(-\lambda^{2s} t) \Psi(z, t) dt$ on the region R_δ .

Now we shall give Lemmas on the existence of a solution of the mixed problem (1)-(3).

Lemma 1. Let D be a bounded domain in E^n with boundary S

which is a closed Lapunov's surface with exponent $\kappa \in (0, 1)$, and Γ be an infinite curve lying in R_δ (see (11)), coinciding with half-lines $|\arg \lambda| = \frac{\pi+\delta}{4s}$ for sufficiently large $|\lambda|$. If the assumptions (I)-(III), (V)-(VIII) are satisfied, then the problem (1)-(3) with $\phi(x)=0$ has in the space $C_x^{2s}(D) \cap C_t^\infty(0, +\infty)$ the solution which may be represented in the following form

$$(12) \quad v_1(x, t) = \frac{s}{\pi i} \int_{\Gamma} \lambda^{2s-1} \exp(\lambda^{2s} t) u(x, \lambda) d\lambda ,$$

where $u(x, \lambda)$ is the solution of the spectral problem given by (47) in [1] for $\lambda \in R_\delta$.

Proof. We shall first prove that the function defined by (12) is of the class $C_x^{2s}(D) \cap C_t^\infty(0, +\infty)$. In order to do that we must check locally uniform convergence at any point $(x_0, t_0) \in D \times (0, +\infty)$ of the following integrals

$$(13) \quad \int_{\Gamma} \lambda^{2(s+l)-1} \exp(\lambda^{2s} t) \frac{\partial^k u(x, \lambda)}{\partial x_1^{k_1} \dots \partial x_n^{k_n}} d\lambda$$

for $k=0, \dots, 2s$, $k=k_1+\dots+k_n$, $l=0, 1, \dots$. Let us observe that for $t>0$ and for sufficiently large $|\lambda|$, if $\lambda \in \Gamma$, then

$$|\exp(\lambda^{2s} t)| = \exp(\operatorname{Re} \lambda^{2s} t) = \exp(|\lambda|^{2s} t \cos \frac{\pi+\delta}{2}) = \exp(-\delta_1 |\lambda|^{2s} t) ,$$

where $\delta_1 = -\cos \frac{\pi+\delta}{2} = \sin \frac{\delta}{2} > 0$. Let Q_m , Q_p denote points of the curve Γ such that $|OQ_m|=r_m$ and $|OQ_p|=r_p$, respectively. We assume that $p>m$ and $\lim_{m \rightarrow +\infty} r_m = +\infty$. We shall prove that

$$(14) \quad \int_{\overline{Q_m Q_p}} \lambda^{2(s+l)-1} \exp(\lambda^{2s} t) \frac{\partial^k u(x, \lambda)}{\partial x_1^{k_1} \dots \partial x_n^{k_n}} d\lambda \xrightarrow[m \rightarrow +\infty]{} 0$$

for all $t \in (\frac{1}{2}t_0, \frac{3}{2}t_0) \subset (0, +\infty)$, $x \in K(x_0, \frac{1}{2}d(x_0)) \subset D$,

where $\overline{Q_m Q_p}$ is an arc of the curve Γ , $K(x_0, \frac{1}{2}d(x_0))$ is the ball

with center x_0 and radius $\frac{1}{2}d(x_0)$ and $d(x_0)$ is the distance of the point x_0 from the boundary S .

From the inequality (62) in [1] we obtain

$$\left| \int_{Q_m Q_p} \lambda^{2(s+1)-1} \exp(\lambda^{2s} t) \frac{\partial^k u(x, \lambda)}{\partial x_1^{k_1} \dots \partial x_n^{k_n}} d\lambda \right| \leq \\ \leq C \int_{r_m}^{r_p} r^{2(s+1)-1} \exp(-\delta_1 r^{2s} t) \mu(r) \frac{\exp(-\epsilon r d(x))}{d(x)^{n-2s+k}} dr ,$$

where, on the basis of the assumption (V), we have

$$\mu(r) := \sup_{|\lambda|=r} \sup_{\xi \in S} |\Psi(\xi, \lambda)| \rightarrow 0 \text{ as } r \rightarrow +\infty .$$

Thus

$$\left| \int_{Q_m Q_p} \lambda^{2(s+1)-1} \exp(\lambda^{2s} t) \frac{\partial^k u(x, \lambda)}{\partial x_1^{k_1} \dots \partial x_n^{k_n}} d\lambda \right| \leq \\ \leq \frac{(r_p^{2(s+1)} - r_m^{2(s+1)})}{2(s+1)} \frac{C \mu(r_m) \exp(-\delta_1 r_m^{2s} t) \exp(-\epsilon r_m d(x))}{d(x_0)^{n-2s+k}} \leq \\ \leq 2^{n-2s+k} \frac{r_p^{2(s+1)}}{2(s+1)} \frac{C \mu(r_m) \exp(-\delta_1 r_m^{2s} t_0/2) \exp(-\epsilon r_m d(x_0)/2)}{d(x_0)^{n-2s+k}}$$

for all $t \in (\frac{1}{2}t_0, \frac{3}{2}t_0)$, $x \in K(x_0, \frac{1}{2}d(x_0))$.

It means that the condition (14), i.e. locally uniform convergence of the integrals (13), is satisfied in points $(x_0, t_0) \in D \times (0, +\infty)$.

Applying the results (63), (65) in [1], by means of similar considerations as above, one can show the locally uniform convergence of integrals

$$\int_{\Gamma} \lambda^{2(s+1)-1} \exp(\lambda^{2s} t) \frac{\partial^k u(z, \lambda)}{\partial z_1^{k_1} \dots \partial z_n^{k_n}} d\lambda$$

for $k=0, \dots, 2s-2$, $k=k_1+\dots+k_n$, $l=0, 1, \dots$ and

$$\int_{\Gamma} \lambda^{2(s+1)-1} \exp(\lambda^2 t) D_{T_z}^{2s-1} u(z, \lambda) d\lambda \quad \text{for } l=0, 1, \dots$$

in each point $(z, t) \in S \times (0, +\infty)$.

Thus, the function $v_1(x, t)$ can be substituted in the equation (1) and in the boundary condition (3). Since $u(x, \lambda)$ is the solution of the spectral problem (2)-(3) from [1], therefore we obtain the following equation

$$(15) \quad A(x, \frac{\partial}{\partial x}) v_1(x, t) - \frac{\partial v_1(x, t)}{\partial t} = \\ = \frac{s}{\pi i} \int_{\Gamma} \lambda^{2s-1} [A(x, \frac{\partial}{\partial x}) - \lambda^{2s} I] d\lambda = 0.$$

It means that $v_1(x, t)$ is the solution of the system (1). Similarly, using the Zeynalov theorem (cf. [3], p. 1692), we obtain

$$(16) \quad \lim_{D \ni x \rightarrow z \in S} B(z, \frac{\partial}{\partial t}, \frac{\partial}{\partial x}) v_1(x, t) = \\ = \frac{s}{\pi i} \int_{\Gamma} \lambda^{2s-1} \exp(\lambda^2 t) \lim_{D \ni x \rightarrow z \in S} B(z, \lambda^{2s}, \frac{\partial}{\partial x}) u(x, \lambda) d\lambda = \\ = \frac{s}{\pi i} \int_{\Gamma} \lambda^{2s-1} \exp(\lambda^2 t) \psi(z, \lambda) d\lambda = \Psi(z, t).$$

Thus, v_1 satisfies the boundary condition (3). To check the initial condition we can show that

$$(17) \quad \int_{\Gamma} \lambda^{2s-1} u(x, \lambda) d\lambda = 0 \quad \text{for } x \in D.$$

From the inequality (62) in [1] it results that

$$(18) \quad |\lambda^{2s-1} u(x, \lambda)| \leq \\ \leq C_1 |\lambda|^{2s-1} \sup_{\xi \in S} |\psi(z, \lambda)| \frac{\exp(-\varepsilon |\lambda| d(x))}{d(x)^{n-2s}} \leq \frac{C(x)}{|\lambda|^{1+b}},$$

where $b > 0$.

Let us denote by Γ_m the portion of the curve Γ lying

inside the circle with radius r_m (we assume that $\lim_{m \rightarrow \infty} r_m = +\infty$), and by θ_m the arc of this circle lying in R_δ . Since $\lambda^{2s-1}u(x, \lambda)$ is the analytic function in R_δ , therefore, on the basis of the Cauchy theorem, we obtain

$$\int_{\Gamma} \lambda^{2s-1} u(x, \lambda) d\lambda = \lim_{m \rightarrow \infty} \int_{\Gamma_m} \lambda^{2s-1} u(x, \lambda) d\lambda = \lim_{m \rightarrow \infty} \int_{\theta_m} \lambda^{2s-1} u(x, \lambda) d\lambda.$$

From the inequality (18), for sufficiently large m , we have

$$\left| \int_{\theta_m} \lambda^{2s-1} u(x, \lambda) d\lambda \right| \leq C(x) \int_{\frac{\pi+\delta}{4s}}^{\frac{\pi+\delta}{4s}} \frac{r_m}{r_m^{b+1}} d\theta = \frac{C(x)(\pi+\delta)}{2s r_m^b}.$$

Thus, we obtain the equality (17) which ends the proof of Lemma 1.

Lemma 2. Let the assumptions of Lemma 1 on D, S, Γ and (I)-(VII) be satisfied. If $G(x, \xi, \lambda)$ is the Green matrix for the problem (2)-(3) from [1] (cf. (66)), then the problem (1)-(3) with $\Psi(z, t) = 0$ has, in the class $C_x^{2s}(D) \cap C_t^\infty(0, +\infty)$ the solution which may be represented in the form

$$(19) \quad v_2(x, t) = \frac{s}{\pi i} \int_{\Gamma} \lambda^{2s-1} \exp(\lambda^{2s} t) \int_D G(x, \xi, \lambda) \phi(\xi) d\xi d\lambda.$$

Proof. Let us rewrite the function $v_2(x, t)$ in the form

$$(20) \quad v_2(x, t) = v_{21}(x, t) + v_{22}(x, t),$$

where

$$(21) \quad v_{21}(x, t) = \frac{s}{\pi i} \int_{\Gamma} \lambda^{2s-1} \exp(\lambda^{2s} t) \int_D P(x, \xi, \lambda) \phi(\xi) d\xi d\lambda,$$

$$(22) \quad v_{22}(x, t) = - \frac{s}{\pi i} \int_{\Gamma} \lambda^{2s-1} \exp(\lambda^{2s} t) \int_D Q(x, \xi, \lambda) \phi(\xi) d\xi d\lambda,$$

and $P(x, \xi, \lambda)$ is the fundamental solution of the equation (2) in [1] (cf. (16), (16')).

Let us check the differentiability of the function (21), i.e. the locally uniform convergence of integrals

$$(23) \quad \int_{\Gamma} \lambda^{2(s+1)-1} \exp(\lambda^{2s}t) \int_D \frac{\partial^k P(x, \xi, \lambda)}{\partial x_1 \dots \partial x_n} \phi(\xi) d\xi d\lambda$$

for $(x, t) \in D \times (0, +\infty)$.

Applying the inequality (19) from [1] and using polar coordinates, we have

$$(24) \quad \left| \int_D \frac{\partial^k P(x, \xi, \lambda)}{\partial x_1 \dots \partial x_n} \phi(\xi) d\xi \right| \leq C_1 \int_D \frac{\exp(-\varepsilon |\lambda| \|x - \xi\|)}{\|x - \xi\|^{n-2s+k}} d\xi \leq C_2 \int_0^{+\infty} r^{2s-k-1} \exp(-\varepsilon |\lambda| r) dr \leq \frac{C}{|\lambda|^{2s-k}} \leq \frac{C}{|\lambda|}$$

for $k = k_1 + \dots + k_n$, $k = 0, \dots, 2s-1$, $x \in D$. Similarly as in the proof of Lemma 1, we can conclude that from (24) it follows the locally convergence of integrals (23) for $k = 0, \dots, 2s-1$ in each point $(x, t) \in D \times (0, +\infty)$. Let us estimate the integral

$$\frac{\partial^{2s}}{\partial x_1 \dots \partial x_n} \int_D P(x, \xi, \lambda) \phi(\xi) d\xi, \quad k_1 + \dots + k_n = 2s, \quad x \in D,$$

where

$$(25) \quad P(x, \xi, \lambda) = P_0(x, \xi, \lambda) + P_1(x, \xi, \lambda).$$

Since $P_1(x, \xi, \lambda)$ satisfies the condition (18) from [1], we obtain the following inequalities

$$(26) \quad \left| \frac{\partial^{2s}}{\partial x_1 \dots \partial x_n} \int_D P_1(x, \xi, \lambda) \phi(\xi) d\xi \right| \leq C_1 \int_D \frac{\exp(-\varepsilon |\lambda| \|x - \xi\|)}{\|x - \xi\|^{n-1}} d\xi \leq C_2 \int_0^{+\infty} \exp(-\varepsilon |\lambda| r) dr \leq \frac{C}{|\lambda|} \quad \text{for } x \in D.$$

By the formula (13) from [1] determining P_0 , we have

$$(27) \quad \frac{\partial P_0(x, \xi, \lambda)}{\partial x_j} + \frac{\partial P_0(x, \xi, \lambda)}{\partial \xi_j} =$$

$$= \frac{i}{(2\pi)^n} \int_{E^n} e^{i(x-\xi, \alpha)} \frac{\partial}{\partial \xi_j} [(a(\xi)\alpha, \alpha)^s a^0(\xi) - \lambda^{2s} I]^{-1} d\alpha .$$

Let us observe that, by assumption (II), the matrix

$\frac{\partial}{\partial \xi_j} [(a(\xi)\alpha, \alpha)^s a^0(\xi) - \lambda^{2s} I]^{-1}$ exists and has singularity at

$\|\alpha\| \rightarrow +\infty$ of the same order as the matrix

$[(a(\xi)\alpha, \alpha)^s a^0(\xi) - \lambda^{2s} I]^{-1}$. Thus, by the inequality (15) in [1], we get the estimate

$$(28) \quad \left| \frac{\partial^{2s-1}}{\partial x_1^{k_1} \dots \partial x_j^{k_j-1} \dots \partial x_n^{k_n}} \left\{ \frac{\partial P_0(x, \xi, \lambda)}{\partial x_j} + \frac{\partial P_0(x, \xi, \lambda)}{\partial \xi_j} \right\} \right| \leq \\ \leq C \frac{\exp(-\epsilon |\lambda| \|x-\xi\|)}{\|x-\xi\|^{n-1}} .$$

Thus

$$(29) \quad \begin{aligned} & \frac{\partial^{2s}}{\partial x_1^{k_1} \dots \partial x_n^{k_n}} \int_D P_0(x, \xi, \lambda) \phi(\xi) d\xi = \\ &= \int_D \frac{\partial^{2s-1}}{\partial x_1^{k_1} \dots \partial x_j^{k_j-1} \dots \partial x_n^{k_n}} \left\{ \frac{\partial P_0(x, \xi, \lambda)}{\partial x_j} + \frac{\partial P_0(x, \xi, \lambda)}{\partial \xi_j} \right\} \phi(\xi) d\xi - \\ & - \int_D \frac{\partial^{2s} P_0(x, \xi, \lambda)}{\partial x_1^{k_1} \dots \partial x_j^{k_j-1} \dots \partial x_n^{k_n} \partial \xi_j} \phi(\xi) d\xi = U_1(x, \xi, \lambda) + U_2(x, \xi, \lambda), \end{aligned}$$

where, by assumption (IV), we have

$$\begin{aligned} U_2(x, \xi, \lambda) &= - \int_D \frac{\partial^{2s} P_0(x, \xi, \lambda)}{\partial x_1^{k_1} \dots \partial x_j^{k_j-1} \dots \partial x_n^{k_n} \partial \xi_j} \phi(\xi) d\xi = \\ &= \int_D \frac{\partial^{2s-1} P_0(x, \xi, \lambda)}{\partial x_1^{k_1} \dots \partial x_j^{k_j-1} \dots \partial x_n^{k_n}} \frac{\partial \phi(\xi)}{\partial \xi_j} d\xi . \end{aligned}$$

From (28), (29) and the inequality (15) from [1] we obtain

$$(30) \quad \left| \frac{\partial^{2s}}{\partial x_1 \dots \partial x_n} \int_D P_0(x, \xi, \lambda) \phi(\xi) d\xi \right| \leq C_1 \int_D \frac{\exp(-\varepsilon |\lambda| \|x-\xi\|)}{\|x-\xi\|^{n-1}} d\xi \leq C_2 \int_0^{+\infty} \exp(-\varepsilon |\lambda| r) dr \leq \frac{C}{|\lambda|} \quad \text{for } x \in D.$$

The inequalities (26), (30) imply the locally uniform convergence of integrals (23) for $k=2s$ in any point $(x, t) \in D \times (0, +\infty)$, so $v_{21} \in C_x^{2s}(D) \cap C_t^\infty(0, +\infty)$.

In a similar way, applying the inequality (77) from [1], we prove the locally uniform convergence of integrals

$$\int_{\Gamma} \lambda^{2(s+1)-1} \exp(\lambda^{2st}) \int_D \frac{\partial^k Q(x, \xi, \lambda)}{\partial x_1 \dots \partial x_n} \phi(\xi) d\xi d\lambda$$

for $k=0, 1, \dots, 2s$, $l=0, 1, \dots$ in the point $(x, t) \in D \times (0, +\infty)$, which finally means, by (19), (20), that $v_2 \in C_x^{2s}(D) \cap C_t^\infty(0, +\infty)$. Using the inequalities (19), (78), (80) from [1] we can, in a way as above, show the locally uniform convergence of integrals

$$\int_{\Gamma} \lambda^{2(s+1)-1} \exp(\lambda^{2st}) \int_D \frac{\partial^k G(z, \xi, \lambda)}{\partial z_1 \dots \partial z_n} \phi(\xi) d\xi d\lambda$$

for $k=0, \dots, 2s-2$, $k=k_1+\dots+k_n$, $l=0, 1, \dots$ and

$$\int_{\Gamma} \lambda^{2(s+1)-1} \exp(\lambda^{2st}) \int_{D_{T_z}}^{2s-1} G(z, \xi, \lambda) \phi(\xi) d\xi d\lambda$$

for $l=0, 1, \dots$ in each point $(z, t) \in S \times (0, +\infty)$. Hence, we can introduce the boundary operator $B(z, \frac{\partial}{\partial t}, \frac{\partial}{\partial x})$ for $t>0$ under the integral sign in (19).

Since $Q(x, \xi, \lambda)$ is the regular part of the Green function satisfying the homogeneous equation (2) from [1], we obtain

$$(31) \quad A(x, \frac{\partial}{\partial x}) v_{22}(x, t) - \frac{\partial}{\partial t} v_{22}(x, t) =$$

$$= \frac{s}{\pi I} \int_{\Gamma} \lambda^{2s-1} \exp(\lambda^2 s t) \int_D (A(x, \frac{\partial}{\partial x}) - \lambda^2 s I) Q(x, \xi, \lambda) \phi(\xi) d\xi d\lambda = 0.$$

Similarly, applying the formula (20) from [1], we have

$$(32) \quad A(x, \frac{\partial}{\partial x}) v_{21}(x, t) - \frac{\partial}{\partial t} v_{21}(x, t) =$$

$$= \frac{s}{\pi I} \int_{\Gamma} \lambda^{2s-1} \exp(\lambda^2 s t) \int_D (A(x, \frac{\partial}{\partial x}) - \lambda^2 s I) P(x, \xi, \lambda) \phi(\xi) d\xi d\lambda =$$

$$= - \frac{s}{\pi I} \phi(x) \int_{\Gamma} \lambda^{2s-1} \exp(\lambda^2 s t) d\lambda.$$

We shall prove that

$$(33) \quad \int_{\Gamma} \lambda^{2s-1} \exp(\lambda^2 s t) d\lambda = 0.$$

Let us denote by Γ_m the arc of Γ lying inside the circle with a radius r_m (we assume that $\lim_{m \rightarrow \infty} r_m = +\infty$). So we have

$$\int_{\Gamma} \lambda^{2s-1} \exp(\lambda^2 s t) d\lambda = \lim_{m \rightarrow \infty} \int_{\Gamma_m} \lambda^{2s-1} \exp(\lambda^2 s t) d\lambda,$$

$$\left| \int_{\Gamma_m} \lambda^{2s-1} \exp(\lambda^2 s t) d\lambda \right| = \frac{1}{2st} \left| \exp(r_m^{2s} t (\cos \frac{\pi+\delta}{2} + i \sin \frac{\pi+\delta}{2})) - \exp(r_m^{2s} t (\cos \frac{\pi+\delta}{2} - i \sin \frac{\pi+\delta}{2})) \right| \leq \frac{1}{st} \exp(-r_m^{2s} t \delta_1),$$

where $\delta_1 = \sin \frac{\delta}{2} > 0$; Thus, for $t > 0$ we obtain

$$\lim_{m \rightarrow \infty} \int_{\Gamma_m} \lambda^{2s-1} \exp(\lambda^2 s t) d\lambda = 0 \text{ which implies (33). So (32)}$$

becomes $A(x, \frac{\partial}{\partial x}) v_{21}(x, t) - \frac{\partial}{\partial t} v_{21}(x, t) = 0$ which shows, together with (31), that the function $v_2(x, t)$ satisfies the equation (1).

Since the Green matrix $G(x, \xi, \lambda)$ satisfies the homogeneous boundary condition of the spectral problem (cf. (3) in [1]), we have the equality

$$\lim_{\substack{D \ni x \rightarrow z \in S}} B(z, \frac{\partial}{\partial t}, \frac{\partial}{\partial x}) v_2(x, t) =$$

$$= \frac{s}{\pi i} \int_{\Gamma} \lambda^{2s-1} \exp(\lambda^{2s} t) \int_D \lim_{\substack{D \ni x \rightarrow z \in S}} B(z, \lambda^{2s}, \frac{\partial}{\partial x}) G(x, \xi, \lambda) \phi(\xi) d\xi d\lambda = 0.$$

Now, we will show that

$$(34) \quad \lim_{t \rightarrow 0^+} v_2(x, t) = \phi(x) \quad \text{for } x \in D.$$

From (22) we have

$$\lim_{t \rightarrow 0^+} v_{22}(x, t) = - \frac{s}{\pi i} \int_{\Gamma} \lambda^{2s-1} \int_D Q(x, \xi, \lambda) \phi(\xi) d\xi d\lambda .$$

The inequality (79) for $k=0$ from [1] implies

$$\left| \int_D Q(x, \xi, \lambda) \phi(\xi) d\xi \right| \leq \frac{C}{|\lambda|^{2s+n-1}} .$$

Thus, applying analyticity of $\int_D Q(x, \xi, \lambda) \phi(\xi) d\xi$ in the region R_δ , we have

$$(35) \quad \lim_{t \rightarrow 0^+} v_{22}(x, t) = 0.$$

Now, for $t > 0$, we can transform $v_{21}(x, t)$ as follows (see (21))

$$(36) \quad v_{21}(x, t) = \frac{s}{\pi i} \int_{\Gamma} \lambda^{-1} \exp(\lambda^{2s} t) [\lambda^{2s} I - A(x, \frac{\partial}{\partial x})] \int_D P(x, \xi, \lambda) \phi(\xi) d\xi d\lambda +$$

$$+ \frac{s}{\pi i} \int_{\Gamma} \lambda^{-1} \exp(\lambda^{2s} t) A(x, \frac{\partial}{\partial x}) \int_D P(x, \xi, \lambda) \phi(\xi) d\xi d\lambda .$$

By (20) from [1], we can further write

$$(37) \quad v_{21}(x, t) = \frac{s}{\pi i} \phi(x) \int_{\Gamma} \lambda^{-1} \exp(\lambda^{2s} t) d\lambda +$$

$$+ \frac{s}{\pi i} \int_{\Gamma} \lambda^{-1} \exp(\lambda^{2s} t) A(x, \frac{\partial}{\partial x}) \int_D P(x, \xi, \lambda) \phi(\xi) d\xi d\lambda .$$

Let us notice that applying the Zeynalov theorem (cf. [3], p.1692) we have

$$\frac{s}{\pi^2} \int_{\Gamma} \lambda^{-1} \exp(\lambda^2 s t) d\lambda = 1.$$

From (24), (25), (26), (30) we obtain the estimate

$$|A(x, \frac{\partial}{\partial x}) \int_D P(x, \xi, \lambda) \phi(\xi) d\xi| \leq \frac{C}{|\lambda|}.$$

So, taking the limit at $t \rightarrow 0$, we conclude that the integrand function in the second integral of the formula (37) decreases when $O(|\lambda|^{-2})$ at $|\lambda| \rightarrow \infty$. By means of this, we can easily prove that the limit at $t \rightarrow 0^+$ of the second component of the sum (37) equals zero, so finally gives the following condition

$$(38) \quad \lim_{t \rightarrow 0^+} v_{21}(x, t) = \phi(x) \quad \text{for } x \in D.$$

By (20), (35), (38), we conclude that the function $v_2(x, t)$ satisfies the initial condition (2).

Lemmas 1 and 2 imply the following theorem .

Theorem 1. If the assumptions of Lemma 1 and Lemma 2 are satisfied, then the initial-boundary value problem (1)-(3) has the solution in the following form

$$v(x, t) = \frac{s}{\pi^2} \int_{\Gamma} \lambda^{2s-1} \exp(\lambda^2 s t) [u(x, \lambda) + \int_D G(x, \xi, \lambda) \phi(\xi) d\xi] d\lambda,$$

where $u(x, \lambda)$ is the solution of the appropriate spectral problem, and $G(x, \xi, \lambda)$ is the Green function for this problem.

Besides, we have the result as follows.

Theorem 2. If the assumptions of Lemma 1 and Lemma 2 are satisfied, then the problem (1)-(3) has exactly one solution $u \in C_x^{2s}(D) \cap C_t^{\infty}(0, +\infty)$ satisfying conditions of the second-kind original in Zeynalov's sense (cf. [3], p. 1692).

Proof. Let $v_1(x, t)$ and $v_2(x, t)$ be two different solutions of the problem (1)-(3). Then the function $v(x, t) = v_1(x, t) - v_2(x, t)$ is the solution of the homogeneous problem

$$\frac{\partial v(x, t)}{\partial t} = A(x, \frac{\partial}{\partial x}) v(x, t) \quad \text{for } (x, t) \in D \times (0, +\infty),$$

$$\lim_{\substack{t \rightarrow 0^+ \\ t \rightarrow 0}} v(x, t) = 0 \quad \text{for } x \in D,$$

$$\lim_{\substack{D \ni x \rightarrow z \in S \\ D \ni x \rightarrow z \in S}} B(z, \frac{\partial}{\partial t}, \frac{\partial}{\partial x}) v(x, t) = 0 \quad \text{for } (z, t) \in S \times (0, +\infty) .$$

Using the Laplace transformation composed with $2s$ -th powers of the complex parameter λ^{2s} , we obtain the proper spectral problem

$$A(x, \frac{\partial}{\partial x}) u(x, \lambda) - \lambda^{2s} u(x, \lambda) = 0 \quad \text{for } x \in D, \lambda \in R_\delta ,$$

$$\lim_{\substack{D \ni x \rightarrow z \in S \\ D \ni x \rightarrow z \in S}} B(z, \lambda^{2s}, \frac{\partial}{\partial x}) u(x, \lambda) = 0 \quad \text{for } z \in S, \lambda \in R_\delta .$$

If $u(x, \lambda)$ is its solution, then on the basis of the inequalities (62) and (63) from [1] we have $u(x, \lambda) = 0$ for $x \in \bar{D}$ and $\lambda \in R_\delta$. From the Zeynalov theorem (cf. [3], p.1692) it results that $v(x, t) = 0$ for $(x, t) \in \bar{D} \times [0, +\infty)$, which is contradictory to the assumption that $v_1(x, t), v_2(x, t)$ are different.

REFERENCES

- [1] R. Malecki: Estimates of the solution of the boundary-value problem with a complex parameter for a certain elliptic system, *Demonstratio Math.*, 23 (1990), 1005-1020.
- [2] М.Л. Расулов: Применения метода контурного интеграла, Москва 1975.
- [3] И.С. Зейналов: Новые интегральные преобразования, Дифф. Ур. 9 (1970) 1691-1696.
- [4] W. Pogorzelski: *Integral equations and their applications* Warszawa 1958.

DEPARTMENT OF MATHEMATICS, WARSAW UNIVERSITY OF TECHNOLOGY
PLOCK BRANCH, 09-400 PLOCK, POLAND

Received May 8, 1989.