DEMONSTRATIO MATHEMATICA
Vol. XXV No 1-2 1992

Kazimierz Sienkiewicz

DETERMINANT SYSTEMS IN A CERTAIN CLASS OF ALGEBRAS

0. Introduction

Let L{X) denote the algebra of all endomorphisms on a
linear space X (over the real or complex field of scalars). An
operator BeL(X) is called a reciprocal generalized inverse (or
almost inverse, or quasi-inverse) to an operator AeL(X) if
ABA=A and BAB=B. This notion plays an especially important
part in the theory of linear equations. If B is a reciprocal
generalized inverse to A, then the general form of solution of
the equation

(0.1) Ax = x

0
where X, belongs to the range of A, is
X = on + %,
where x., is an element of Kernel of the operator A.

1

In the fifties and early sixties R. Sikorski introduced
the notion of determinant system {Dn} for an operator A. The
determinant system for A gives full information of solving the
equation (0.1). If we know the determinant system for A, then
we can obtain a generalized inverse B of A and therefore we
can completely solve the equation (0.1). The Sikorski’s and
Buraczewski’s formulae for solution are generalized version of
the well known Cramer formulae from Algebra.

Thus, the main problems which arise in the determinant
theory are the following: under what conditions A has a
determinant system {D,} and what is the relationship between A
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and {D,}- The answer is given by the following theorems: A has
a determinant system {Dn} if and only if A is Fredholm, and
then {D,} is determined by A uniquely up to a constant factor
different from zero.

The main aim of the theory of determinants in Banach
spaces is to give some analytic formulae for determinant
systems of operators. We know the analytic formula for a
determinant system of an operator of the form S+T where A is
Fredholm and T is a quasinuclear (integral) operator.

So far the determinant theory has been applied only in
(Banach) algebras of linear (bounded) operators on a linear
(Banach) space. The purpose of this paper is to develope the
determinant theory for a certain class of algebras over the
field K of real or complex numbers in a similar way as in

vector space by R. Sikorski and A. Buraczewski.

Definition 0.1, Let A be an algebra with identity and J be
any fixed two-sided ideal of A. The element aeA is calleed a
Fredholm element relative to the ideal J iff the coset a+J is
invertible in the quotient algebra A/J.

The notions of g-algebra and g-determinant system are
defined in § 1 and their fundamental properties are
considered. In § 2 we deal with g-total algebras. We prove
that every Fredholm element relative to the special ideal Sg
has a g-determinant system. In § 3 it is shown that every
element in a g-small algebra having a g-determinant system
must be Fredholm. Quasinuclei and gquasinuclear elements are

defined and their properties are considered in § 4.

The author cordially thanks A. Buraczewski for suggestion
of the problem and useful discussions.

1. Definition of the g-determinant system

Definition 1.1, An algebra A over the field K of real or
complex scalars is called a g-algebra if there exists an
element geA such that:
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1" gg=g=0;

2° gxg 8,9, where 8 K for each xeA.

The linear functional F: A — K defined by

F(x) = & XeA

xl
is called a g-functional.

Corollary 1.2, If A is a g-algebra and F is a
g-functional, then

F(x)F(y) = F(xgy)
for all x,yeA.

Example 1.3. Let us consider the algebra
A= {[32]; a,b,c e K} with the usual operations of addition
and multiplication, and let g9, = [g g]. It is easy to see that

A is a g,-algebra and a function F.: A — K defined by
1 1

N (cF: | T - PP

is the gl-functional.

Example 1.4, Let now A be the algebra of all bounded
functions defined on the closed interval [0,1] with the usual
opérations. For any fixed to € [0,1], let us define the
function gtoe A by the formula:

1 if t=t0

The algebra A is a 9. -algebra for every fixed toe[o,l], and
0

the functional Ft : A— K
0

Fto(x) = x(to), xXeA

is the 9, -functional.
0
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Example 1.5, Let £ and X be a pair ‘of conjugate 1linear

spacesl) over the real or complex field K, i.e. there exists a
bilinear functional on ExX whose the value at the point (§,x)
is denoted by £x and which satisfies two additional
conditions:

(a) if £€x=0 for every £eZ, then x=0;
(b) if £€x=0 for every xeX, then £=0.

Let us consider the algebra U=U(Z,X) of all endomorphisms E on
X such that:

(c) for every fixed £eZ there exists an mneZ such that
£(Ex) = nx for every xeX.

For fixed EO € E and x, € X, 1let X denote the

0 o o
one-dimensional endomorphism on X defined by the formula:

(xo'go) (x) = (on)xo xeX.

If moreover £ .x. = 1, then the algebra U is the x -algebra
0”0

o %o
and the x,-§,-functional F: U — K is defined by
F(E) = £,(Ex,) EeU.
1.6. In a g-algebra A the following notations will be

used:

L = Ag; P = gA;

0
]

n
Y x.9y.; X.,Y.€A neN };
g {i=1 i?fi irdit

the set of all Fredholm elements of the algebra A
with identity relative to the ideal Sg.

Definition 1.7. Let A be a g-algebra. Every infinite

sequence D is called a g-determinant system (with

D,,...
o'-1’
nonnegative index d) for an element aeA if the following

n see ‘Sikorski [9] and Buraczewski [1].
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conditions are satisfied:

(a D, is a number if d=0, for otherwise D, is a d-linear

0) 0
functional on Pd such that for every fixed PyresesPj_qr
pi+1,...,pdeP (i=1,...,d) there exists an element ceA
satisfying the following identity

Do(pll oo Ipd) = F(pic);

n+den

(dl) Dn is a (2n+d)-linear functional on P for nz1,
the value of Dn at the point (pl""’pn+d'11”"'ln) we
denote by

Pyress P
D [ 1’ 'n+d ] ;
Nl 1
preceely
(d2) Dy is skew symmetric on Pd (if a»o), D, (nz1l) is skew

d

symmetric on Pn+ and skew symmetric on Ln;

(d3) if D, (nzl1) is interpreted as a function of Py and lj
only (1sisn+d,1sj=n), then there exists an element ceA
such that

PyreeesP
D 1 n+d = F(p.cl.);
n|, 1 i3
preeeely

(d4) there exists an integer rz0 such that Dr does not
vanish identically;

(dg) the following identities hold for n=0,1,... @

5 [ Poa/Pyr+++1Ppiq ]
+1 =
n loilyseeesdy
n : Pqroceces B )
1 1 +
= 1 (-1)'F(pyl;)D, [ |
i=0 0""’li-l,li+1""'ln
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PgrPyre++sPpriq |

D =
n+l
[alo,ll,...,ln J

n+d ]
-1y F(p.1) D Pore++rPj_1/Pj4ys---rPnyg
ivo n ¢

U TS 1

1=0

Analogously we define the g-determinant system with a negative
index. Then the number of 1i is larger then that of P;- The
least integer r, such that D. does not vanish identically,
will be called the order of the g-determinant system, noted by
r(Dn). The difference 4 between the numbers of Py and 1i in Dn
(nz0) is called the index of the g-determinant system ,
denoted by d(Dn)'

Remark 1.8, If the sequence (Dn) is a g-determinant system
for an element aeA and a#0, then the sequence (aDn) is also a

g-determinant system for a, and the sequence (a-nDn) is a
g-determinant system for the element aaeA.

Remark 1.9. If the sequence (Dn) is a g-determinant system
for an element a of g-algebra A with identity and beA has the

inverse b_leA, then the sequence (Dh) defined by

1 -1
PqreesP p.b coesP b
D;, [ 1 n+d ] =, [ 1= n+d J n=0,1,2,...

11,...,1 11,......,1

n n

is a g-determinant system for ab. Similarly, the sequence (D;)
defined by

Pyse--sD Paveeveeasp
D’ [ 1 n+d] - Dn [ 1 n+d ] n=0,1’2’...

n -1 -1
11,...,1n b 11,...,b ln

is a g-determinant system for ba.
Example 1,10, Let A be the 9y -algebra defined in Example
(o]

1.4. The sequence (Dn)
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Pyre--1Py ] { 0 for n=0,2,3,...

(1.10.1) Dn[
1

1

preeeely (plll)(to) for n=1

is a 9 -determinant system of the element heA defined by
0
h(t) = t-t, te[o0,1).

The reader can easily see that the conditions (do)-(ds) are

satisfied.
Example 1.11. Let U be an xo-so-algebra defined in Example
1.5. Then the ideals P and L are of the form
P = {xo-g; ges}, L = {x-&o; xex}

and for EeU

F((xy" &) °Ee(x-§,)) = F((§EX) (x,-€y)) = EEx.
If the sequence (wn) is a determinant system for an operator
EeU in the sense of Buraczewski’s definition (see [1]), then
the sequence (Dn) defined by the formula

5 Xo &rreeiXg €pig ] . [ €1reeei€pia
n n

] n=0,1,2,...

xl'go,...,xn-go XyveoosXy

is a xo-go-determinant system for the element E of the

X -algebra U in the sense of Definition 1.7.

0 %o
Example 1,12, Now, let A be any g-algebra with identity e.
The sequence (en) defined by

Pyre-esPpy 1 for n=0
en = (1=s,t=n),

1.,...,1 det(F(pslt)) for n>0

1 n

is a g-determinant system for the element e. Indeed, the
axioms (do)-(dz), (d4) and (ds) of Definition 1.7 are

satisfied. The condition (d3) follows from Lemma 1.13. below
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(putting d=r=0 and bk-e for k=1,...,n).
If an element aeA has the inverse a-leA, then the sequence

(e;)

Pyrese/Pp .1 for n=0
9;‘ = (1ss,ts=n),

D T ‘det(F(pga t1,)) for n>0

is a g-determinant system for a.

Lemma 1.13. Let A be a g-algebra, let m be any permutation
of the integers 1,2,...,n+d+r (n,d,rz0 and n+d>0) and 1let

1 e P, b b € A be

1 €L p 1°°° " *Pn+d+r

n+l’ """ Tn+d+r n+d+1’ " ‘Pnider
fixed. Then the formula

n+d+r
¥(Pyree e iPrygelyee o) = T T F(Pr () By iy 1)

defines:

a) a d-linear functional ¥: Pd——+ K satisfying condition

(do) in Definition 1.7 if n=0;

d

b) a (2n+d)-linear functional ¥: P P,k satisfying

condition (d3) in Defintion 1.7 if n>o0.

Proof. It is evident that ¥ just defined is a (2n+d)-1lin-
ear functional. Let n=0 and 1let pl""’pi-l’Pi+1""'pd
(1sisd) be fixed. Then by putting

d+r
(1)

k=#n~
the relation (do) holds true.

(i)

Now, let us assume that n>0 and let PyrecesPi_q1/Pipqreccs

Ppegc P (1zizn+d) and 11""’1j-1'1j+1""’1ne L (1zjzn) Dbe
fixed. If i=n(j), then by putting
n+d+r
c = k|=1| F(pn(k) bﬂ(k) lk) bi

k#+3
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we obtain
i'(pll e rpn+d: 111 ve lln) = F(PiC]-j)

for every p;€P and ljeL. If i=*nm(j), then by putting

n+d+r

e | LT FPraoPrgo ! | Pilla  PreiPr(d)
ken~' (i)
k=j

and by Corollary 1.2 the relation (d3) holdé true.

2. g-determinant systems in g-total algebras

It follows from Remark 1.8 that a g-determinant system for
the element a of a g~algebra A, if it exists, is not uniquely
determined by a. Also it follows from Example 1.10 that many
different elements may have the same g-determinant system.
(Let us observe that the formula (1.10.1) defines a

9e -determinant system for each element xeA such that
0
x(to)=0).
Therefore we have to restrict oureselves to a smaller
class of algebras.

Definition 2.1, A g-algebra A is called a g-total algebra

if for each xoeA the following two conditions are satisfied:

(a) if gX xg = 0 for every xeA, then gx, = 0;

(b) if gxx,9 0 for every xeA, then X,9 = 0.

We will show that every element ae@g of any g-total algebra A
with identity has a g-determinant system but the inverse
theorem does not hold.

Remark 2.2, If a g-algebra A is commutative, then A is  a
g-total algebra.

Consequently, the algebra from Example 1.4 is 9 -total.
0

Remark 2.3. A g-algebra A is a g-total algebra iff the
linear spaces P and . are conjugate relative to the bilinear
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functional PxLa (p,1l) — F(pl) € K, (see Example 1.5.)

Remark 2.4. The conditions (a) and (b) in Definition 2.1
are independent. The g,-algebra in Example 1.3 does not

satisfy condition (a). Indeed, let X, = [g g]. Then for every

xeA we obtain g,%Xy%xg, = 0 with g,%, * 0. Observe that the
condition (b) in 2.1 is satisfied.

It is easy to verify that the algebra U in Example 1.5 is

b4 -Eo-total.

0
Now, let A be a g-algebra. For any aeA, we will denote by
La the following operator La: L—L defined by La(l) = al. It

is evident that La°Lb = Lab and

L for every a,beA and AI,AZEK.

AL+ AL, =
1 a 27b A1a+A2b
n
Iff= Y xigyiesg, then for xgel we obtain
i=1
n n

L.(xg) = fxg = } x.9y.xg = } F(y.x)x.9g.
f j=q 1771 j=1 i i

It means that Lf
for every fesg. If, moreover, A is a g-total algebra with

is a finitely dimensional endomorphism in L

identity, then for ahy'aeA the operator L, is in the algebra
U =U(P,L) (see Remark 2.3 and Example 1.5). If ae@g, then
there exists elements bl,b2 €e A and fl,f2 € Sg such that

ab1 = e-f1 and bza = e-fz. Hence, the following identities

hold

LaoL =I-1L1

So, it follows from this immediately that L, is a Fredholm
operator. By the theory of Fredholm operators (see [1]) we
obtain the following

Corol;hry 2.5, If A is a g-total algebra with identity and

aebg, thén

1° dim{leL; al=0} < », dim{peP; pa=0} < o;

o

2° the codimension of the subspace aL in the space L
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is finite , the codimension of the subspace Pa in the
P is finite.

For any aeA let us introduce the following notation
ZL(a) = {leL; al=0}, zp(a) = {peP; pa=0}.
Definition 2.6. Let A be a g-total algebra with identity.
The functions
r: Qg——» Nu{0}, r(a) = min(dimZL(a),dimZP(a));
d: ¢g——+ zZ, d(a) = dlmZL(a)-dlmZP(a)),
are called the order and the index, respectively. The value of

order and the index at the point aewg will be called the order
and the index of a, respectively.

The index of the Fredholm element ée@é i; equal to the
index of the Fredholm operator.Lan(P,L). Hence the following
Corollary 2.7. If A is a g-total algebra with identity and
a,beﬁg, fesg, then
1° d(ab) = d(a)+a(b);
2° d(a+f) =d(a).

Definition 2.8. Let A be an algebra. An element beA is
called a generalized inverse of aeA if aba=a. If in addition b
satisfies the condition bab=b, then b is called a .reciprocal

generalized inverse of a.

Remark 2.9. If b’e A is a generalized inverse of aeA, then
b = b’ab’ is a reciprocal generalized inverse of a.

Theorem 2.10. Let A be a g-total algebra with identity e.
If ang, then a has a reciprocal generalized inverse bng.

Proof. Let ae@g. There exist elements bleA and fleSg such

n
that ab1=e-f1, where f1 = ¥ x.gy.. By Corollary 2.5, there
i=1 4

exists finitely dimensional subspace L’ of L such that

L=aleL’ . Let xig,...,xkg form a basis of L‘. For every
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i=1,...,n there exists an element xgeA and suitable scalars

Qgqgreesr®yy such that
k
x;g = ax{g + jZ lequ
n
Putting b’ b + Z xigy and yj 2 aijyi for 3j=1,...,k
1_

we obtain

3

n n
ab’ = ab., + } axiYgy. = e - Y x.gy. + ¥ axigy, =
i=1 1771 i=1 7% i=1 170

=

3
=e- T (axig + E a;4¥59)y; + Z axigy;

k
..yi) =e - .g

xLgyl.
1 ) i=1 1] J J

1 J

Then ab’ axg axg - ¥ x. gyjaxg for every xeA. Hence

j=1
k
) F(y axg)x g = a(x-b’ax)g € aL for every xeA. Since xageL’

J_.
for j=1,...,k we conclude that F(yaaxg) = 0 for every xeA and
j=1,...,k and so gyaa =0 (j)=1,...,k). It follows from this

that ab’a=a and by Remark 2.9 a has a reciprocal generalized

inverse beA. Evidently, be®

g
Lemma 2.11. Let A be a g-total algebra and Xy Xy
yl,...,yneA;
1° if X,9,...,X,g are linearly independent elements and
n
(i£1 xigyi)a = 0,
then gy;a = 0 for every i=1,...,n;

2° if gYys---,9y, are linearly independent elements and
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n
a( r x.9y.) =0,
Yi=1 i34
then ax;g=0 for every i=1,...,n.
n
Proof. Let ( I xigyi)a = 0. Then for every xeA we obtain
i=1

n n
0= Y x.gy.axg = } F(y.ax)x.qg.
i=1 771 i=1 1 1
Since X49,..+,X,g are linearly independent it follows that
F(yiax) = 0 for every xeA and i=1,...,n. Hence gyia=0 for

i=1,...,n. The proof of 2° is analogous.

Definition 2,12, Let A be a g-algebra. A representation

n
f= Y} x.9y., x.,,y.€A, of an element f in A is said to be
joq AT irdi

bilinearly independent if both X1, 000X g and 9Yys---,9Y, are
linearly independent.
Remark 2,13, Every element feSg—{O} of the g-algebra A has

a bilinearly independent representation.

n
In what follows, the notation f = ¥ x;gy; means that the
i=1

elements X,9,..,X,g are linearly independent and so are
9Yjress ¥y

Theorem 2,14, Let A be a g-total algebra with identity e
and let beA be a reciprocal generalized inverse of the element

ae@g. Then
1° there exist elements fl, fzeSg such that ab=e—f1 and
ba=e-f2;
2° if £, = E x;9y; and f, = ; z;gt,, then
i=1 i=1

the elements ) STRERNL-) 2 form a basis of Zp(a);

the elements 2.9,.0042,9 form a basis of ZL(a);
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the elements gtl,...,gtm form a basis of zp(b);

the elements Xy9,e00 X9 form a basis of zL(b);
F(Yixj) = aij i,¥=1,...,n;

F(tizj) = sij i,3=1,...,m, where aij means the
Kronecker symbol;

if gu;, ..., 9uy is a basis of Zp(a) and Vi9reeesVyg

is a basis of ZL(a), then there exist elements
Wigseeo /W 9,980,985 € A such that
n m
ab = e - iElwigui, ba = e -iglvigsi.
Proof., If ang, then there exist elements f&,féesg and
b €A such that ab,=e-f) and b,a=e-f.. Multiplying the equality
aba=a by bl we obtain

blaba = bla, abab1 = ab

ll
(e-fa)ba = e-fé, ab(e-fi) = e-fi,
ba = e-f§+f5ba = e-fa(e-ba) ab = e-fi+abfi = e-(e-ab)f&.
3 =fF’ - - - ’ °
Putting f2 fz(e ba)esg and f1 (e ab)flesg we prove 1.
n m
Now, let f1 = i§1 x;9Y; and f2 = i§1 zigti. Since

a = aba = (e-fl)a = a-fla so f.a=0 and hence

n
[igl xigyi]a = 0.

By Lemma 2.11 the elements 9Yjre--,9y, are in Zp(a). If an

element pezp(a), then

n n
0 =pab=p- ¥ gpx.gy. =p- ¥ F(px,)gy.
i=n 1 i=1 1T
n
and p = 'El F(pxi)gyi. Thus gYqyre--s9Y, form a basis of the
1=

space ZP(a). To prove that F(yixj) = sij for i,j=1,...,n 1let
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us observe, by Remark 2.3, that for every i=1,...,n there

exists pieP such that F(pixj) = aij for j=1,...,n. Moreover

gpif; = 9P} E X gyj] Z F(pjxy)ayy = gy; for i=1,...,n.

on the other hand (e-fl) = abab = ab = e-fl, hence fi = fl'

Thus for every i=1,...,n

- 7 — ’ 2 — 7 —

n
(gy;) L x39Y5 = Z F(y;X4)9yy-
j=1 j=1

Since 9Yqyse-+,9Y, are linearly independent, it follows that

F(yixj) = sij for i,j=1,...,n.
n
Now, let ab=e - ¥ x, 19Y3 and 1let elements gu,, ..., 9u

i=1
form a basis of the space ZP(a). Then for every i=1,...,n we

have

n

gy; = I ;594
i 52 ii?"j

for suitable scalars aij‘ Both gYqreeer9¥, and gu,,...,9u, are
linearly independent, hence det(aij)¢o (i,j=1,...,n). Moreover
n n n
@ - L% (Toagouy) me ) aggxauy s
= =1 i,3=1
’

ab

n n
e - j§1 (iglaijxi) gu.
n

1§ aiJ i for 3j=1,...,n. Since det(aij)¢o,

Let us put wj =

then elements w,9,...,w g are linearly independent. Thus, we
obtain
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n

ab = e - .E wjguj.

j=1

The proof of the second part of 3° is analogous.

Theorem 2.15. Let A be a g-total algebra with identity e.
If ang, then

1° a has a g-determinant system;

o

2" if (Dn) and (Dh) are g-determinant systems of a, then

a) there exists a scalar a#0 such that (Dh) = (aDn);
b) d(Dn) = d(a) and r(Dn) =r(a).

Proof. Let us assume that d(a) = dz0. The proof in the
other case is analogous. Let r(a) =r and let beA be a
reciprocal generalized inverse of a. Then dimZL(a) = r+d,
dimzp(a) =r and there exist X 9,000 rX 92,900,244 € L,

gyl,...,gyr,gtl,...,gtr+deP such that

r
ab=e - Y x.9y.,
=1+

r+d
ba=e- Y z.9t..
i=1 *7 4

Put 6n=1 if n=d=r=0 and

P p
(2.15.1)2) o, [ 17777 nd ]
11, .,ln
F(plbll) ..... F(plbln) F(plzl) ..... ‘F(plzr+d)
- F(pn+db11)"’F(pn+dbln) F(pn+dzl)""F(pn+dzr+d)
F(y;1)-cnnee F(y,1.) 0 veeen. 0
F(yrll) ...... F(yrln) 0 ...... 0

2) The formula (2.15.1) in the case of 1linear operators is
given by Buraczewski [5])
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otherwise. We will show that the sequence (en) is a
g-determinant system for a. At first, to prove the condition
(do) of Definition 1.7, let us consider the following cases:

a) d=0 and r=0, then 90=1;
b) d=0 and r>0, then 6,=0;
c) d>0 and r>0, then 8,%0 and the condition (dy) is satisfied

for c=0;

d) d>0 and r=0, then

F(plzl) .o F(plzd)
6o (Pys---1Pg) = : .

F(pdzl) e F(pdzd)

and the condition (d follows from Lemma 1.13a). It is

)
0
sufficient to put ls=zS {s=1,...,d4) and b1=b2=...=bd=e.

It is evident that the conditions (dl) and (dz) of Defini-

tion 1.7 are satisfied. The condition (d3) follows from Lemma

1.13b). To show this, it 1is sufficient to put pn+d+q = yq
(g=1,...,r), 1n+s =2zg (s=1,...,r+d) and
b if nm(k)sn+d and ksn
bn(k) = 0 if m(k)>n+d and k>n
e otherwise
for any permutation m of the set {1,...,n+d+r}. By Theorem

2.14

0 [ gty, ..ty ]
r

X 9,00, %.9



64

K.

Sienkiewicz

Hence condition (d4) is satisfied. Applying Theorem 2.14

basic properties

n=0,1,...

F(poablo) F(poabll)....F(poabln)
F(plblo) F(plbll) ""F(plbln)

F(PhyaPlo) F(PpigPly) -« - F(Pp qPly)

F(y,1,)

F(y 1)

of determinants,

we obtain

F(tlbxl).....F(tlbxr) F(tlzl)......r(tlzr+d)
F(tr+dbx1)...F(tr+dbxr) F(tr+dz1)....F(tr+dzr+d)
F(ylxl)......F(ylxr) 0 ..ceee 0
F(yrxl)......F(yrxr) 0 cieeee 0
0 ..... 0 1 .....0
_ | o ..... 0 0 ..... 1
=|{1..... 0 0 ..... o| * 0
0 .00 1 0 ..... 0
r r+d

for

and

every

Pga/Pyse+iPpig

en+1

F(y,1;)

F(y,l,)

10,11,...,1n

F(poazl)....F(poazr+d)
F(plzl) “"F(plzr+d)

F(Pnig?1) - -F(Pryg®ria)

ceeF(y 1)) 0 cee. O

....F(yrln)

o
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r r
F(plblo) F(plbll) cssessecsscnsos
F(pn+dblo) F(pn+db11). ............ .
F(yllo) F(Ylll) ...............
F(yrlo) F(yrll) ...............
r
e F(poln)—iEIF(poxi)F(yiln) 0 c.eevenn seeees 0
.......... F(plbln) F(plzl) .o F(plzr+d)
..... seens F(pn+dbln) F(pn+dzl) e F(pn+dzr+d)
.......... F(ylln) o P ¢
......... . F(yrln) L 1
F(polo) F(poll) ..... F(poln) 0 ..... 0

F(p,bly)  F(pybly) ....F(p,bl)  F(p,2,) -..-F(Py2 .4)

F(pn+dblo) F(pn+db]‘1)"‘F(pnﬂibln) F(pn+dzl)"‘F(pn+dzr+cl)
F(Yllo) F(ylll) ....F(yllh) o cees o

DR Y
I XEX]
vese

O e

F(y ly)  F(y.l;) ....F(y.l) 0 ceen
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Expanding the above determinant along the terms of its first
row, we obtain

o [ Pg2:Pyse++sPpig ] -
+1
n lgilyseessly
n PqrececcccsscccseascsesP
= 1 (-uirpie |t ntd |
i=o 071" n | , 1. .,1 1
o’...' i-l' i+1,...’ n

The proof of the second condition in (d5) is analogous.

If (Dn) and (Dh) are g-determinant systems for aeA, then
they are determinant systems for the Fredholm operator
Lan(P,L) in the sense of Buraczewski’s definition ([1]).
Hence, there exists a scalar a#0 such that (D;)=(aDn).

One can easily see that d(en)=d and r(en)=r. If (Dn) is a
g-determinant system for a, then (Dn)=(a9n) for suitable a#0
and hence d(Dn)=d=d(a), r(Dn)=r=r(a).

Remark 2.16. The inverse theorem is not true. The element
h of the 9 ~total algebra A (see Example 1.10) has a
0

9 -determinant system definined by (1.10.1) but hng .
) t
0

The inverse theorem is true in a smaller class of algebras.

3. g-determinant systems in g-small algebras

Definition 3.1, A g-algebra A is called a g-small algebra
if the following condition is satisfied:

gxayg = 0 for every x,yeA if and only if a=0.

The algebra U=U(Z,X) (see Example 1.5) 1is an xo-zo-small
algebra.

The 9. -total algebra A in Example 1.4 is not a 9, -small
0 (v
algebra.

We now show that an element a of a g-small algebra A has a
g-determinant system if and only if aeﬁg.

Theorem 3.2. If A is a g-small algebra, then:
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1° A is a g-total algebra;
2° A is commutative if and only if dimaA=1.

Proof., If gxoyg=o for every yeA, then gxgxoyg=0 for every
X,yeA. Hence gx,=0. The proof of condition (b) of Definition
2.1 is analogous.

If a g-small algebra A is commutative, then L is a
onedimensional space and the algebra End(L) of all 1linear
endomorphisms in L is a onedimensional algebra. It is easy to
show that the map Asa—¢p(a)eEnd(L) defined by

p(a) (1) = al, leL
is an algebra isomorphism. Hence dimA=dimEnd(L)=1.

Theorem 3.3, If A is a g-small algebra with identity e,
then an element aeA has a g-determinant system if and only if

® .
aeg

Proof., If ae@g, then a has a g-determinant system by
Theorem 2.15. Now, let (Dn) be a g-determinant system for aeA
such that r(D,)=r and d(Dn)=dao. (If d<0, the proof is
analogous). We will consider the following three cases.

a) r>0. Then by condition (d4) of Definition 1.7, there

exist elements xl,...,xreL and t t €eP such that

I ARREATT

t

oot
(3.3.1) a = or[ 1 r+d |, .
X

peee,X

1 r

By condition (d3) of Definition 1.7, there exist elements

yl,...,yreP and Zys00e42 €L such that

r+d

T =
(3.3.2) F(y;1) = 2p_ [ 1 r+d ]

xl’""xi-l'l'xi+1""'xr

for every leL, and
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L S SR - 7 SR
(3.3.3) F(pz,) = 1’ i-1'Pr¥i4 r+d

RIH

D,
Xypoooooonaononsennncs,X

r
for every peP. It follows from (dz) that
F(y. xj) = 8§, i3 for i,j=1,...,r,
F(tizj) = sij for i,j=1,...,r+d.
Thus both Yyreees¥p and Ziseees2
Now, let beA be such that

r+q are linearly independent.

p’tl”"’tr+d ]

(3.3.4) F(pbl) = énr+1
l,xl,...,x

r

for every peP and leL. (see condition (d3) of Definition 1.7).
By (d5) we obtain

pa,t.,...,t t.,...,t
F(pabl) = p R I Y05 50 M e r+d|
a r+l 1.% % a
PXpyeeXy

XyreoosXy

| =
v T (-1 1F(px;)D, [ 1 r+d ]]
i=1 1, RITAREYR SPRTE SURFRRTS

r i - oo reneesonnannsaa,t
= F(pl) + L (-1)*F(pxy)i(-1)* lDr[ ! r+d ]=

i=1 xl""'xi-l’l’xi+1""’xr
r
= F(pl) - Z F(px;)F(y;1) = F(pl) - ¥ F(px;9y;1) =
i=1 i=1
r
= F(p(e - ¥ x;9y;)1)
i=1

for every peP, leL. It follows from the definition of g-small
algebra that

r
(3.3.5) ab=e - ¥ X, 19Y4
i=1
It can be proved in a similar manner that
r+d
(3.3.6) ba = e - .2 zigti.
1=1

Hence, we conclude that ae@g.
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b) r=0 and d>0. Let tl,...,td € P are fixed elements
such that

@ = Dy(ty,..-sty) * O.

It follows from (do) in Definition 1.7 that there exist
elements zl,....,zdeL such that

F(pzi) = Do(tl,...,ti_l,p,ti+1,...,td)
for every peP. The reader can easily see that for the element
beA such that

- plt 1ot
F(pbl) = a D, [ 1 d ] peP, leL
1
the following identities hold:
ab = e;
d
ba=e - Y z.gt..
i=n *7
It means that ae@g.
c) r=0 and d=0. Then D, is u number different from zero.

0
By (d3) there exists an element beA such that

= p-! P
F(pbl) D0 Dl[ 1]
for every peP, leL. By (d5) we obtain

-1 -1
F(pabl) = D;~ D, [ ga ] = D, F(pl)D, = F(pel)

for every peP, leL. Hence ab=e. It can be proved in a similar
manner that ba=e. Thus, ae@g.

Remark 3.4. If A is a g-small algebra and (Dn) is a
g-determinant system for aeA, then the element beA defined in
the proof of Theorem 3.3 is a reciprocal generalized inverse
of a.

Indeed, it is evident for r=r(Dn)=0. Let r=r(Dn)>0 and
let XyreoorXpr Zygeees2 4€ L, tl""’tr+d’y1""’yre P be
fixed elements such that (3.3.1), (3.3.2) and (3.3.3) hold. By
(dz) and (d3) we have
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-
1 1’ Tt ! Tr+d

F(yial) = i Dr =0
xl,...,xi_l,al,xi+1,...,xr

for every leL and i=1,...,r. It means that
(3.4.1) yja = 0

for i=1,...,r. By (3.3.4) and (dz) we obtain
(3.4.2) bx; =0

for i=1,...,r. It follows from (3.3.5), (3.4.1) and (3.4.2)
that b is a reciprocal generalized inverse of a.

Remark 3.5. The thesis of Remark 3.4 is not true in a
g-total algebra. To this end, let us consider the algebra A in
Example 1.4 and the element a=e-g, €A. It is evident that a is

0

a reciprocal generalized inverse of a and ae¢g . By Theorem

%o

2.15 and (2.15.1) we obtain

o [pl,---,pn] : : : ~
i CPPRRS (Ppaly) (£g) -« -+« (Ppaly) (¥g) (Prde ) (to)
(9g 11) (Eg) -+ -+ (3¢ 1) (Eg) 0
0 .o 0 P, (t,)
. . 1: 0 0 for n=0,2,3,...
6 e 6 pn(éo) {-(llpl)(to) for n=1

ll(to) oo ln(to) 1]
so that the sequence (en) is a 9 -determinant system for a.
0

The element beA defined by

0 for t=t0
b(t) = te(0,1]
t+3 for t:to
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satisfies the following condition:

1 plgt
e 0
2 llgt
L 0
F(pbl) = 0 = e —— peP, lelL
g
e iC
1l g
\ to

but it is not a generalized inverse of a.

Let A be a g—-algebra. The set

//\\
Ao = { aeA; X,yeA gxayg=0 }
is an ideal of A.

Definition 3.6, The ideal Ao of a g-algebra A 1is called
the ideal of zeros of A.

Theorem 3.7. If A is a g-algebra, then the quotient

algebra A/Ao (where A_ is the ideal of zeros) is a [g)}-small

(o]
algebra and the function F:A/Ao——»K defined by

F([x)) = F(x) xeA
is a [g]-functional.

Proof. First, we will show the function F is well defined.

Let xoe[x], then there exists boer such that x°=x+b°. Hence

?(xo]) = F(xy) = F(x+by) = F(x) = F([x]).

)
0
Let us observe that [g]-([g] = [g]¢A0 and

[9)[x][g] =[gxg) = [F(x)g) = F(x)([g] = F([x])(9)

for every coset [x]eA/Ao. Hence A/Ao is a [g]-algebra and F is
a [g]-functional.

Finally, suppose that an element [a]eA/A0 satisfies the
equality

(9}{x][allyl(g] = A,

for every [x],[y]eA/Ao. Then F(xay)[g] = Ao
Thus gxayg = F(xay)g = 0 for x,yeA. Hence acA

for every x,ye€A.

0 and [a] is the
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zero of algebra A/Ao.

Theorem 3.8. If a g-algebra (g-total, g-small algebra) A
has no identity, then the algebra A = Ae{Ae} is a g-algebra
(g-total, g-small algebra respectively) and the function
F:A—K

F(x+re) = F(x)+r xeh, AeK
is a g-functional on the algebra A.
Proof. Let x+AeeA, then
g(x+ie)g = gxg + Ag = F(x)g + Ag = (F(x)+Ar)q.

If A is a g-total algebra and
g(xo+hoe)(x+Ae)g =0
for every x+ieel, then

g(x0+xoe)xg =0

for xeA. Hence, g(x°+loe) = 0. The proof of (b) in Definition
2.1 is analogous.

Finally, let us suppose that A is a g-small algebra. If
g(x+h1e)(a+he)(y+hze)g =0

for every x+A1e,y+A e e i, then gx(at+re)yg = 0 for every

2
X,YeA. Hence

(3.8.1) gxayg = -Agxyd.
If A=0, then a=0 and a+Ae=0. Let A#0. We will show that the

element —%a is the identity of the algebra A. Indeed, let beA.

By (3.8.1) we obtain

1
gx(-3ab)yg = -3gxa(by)g = -x(-A)gx(by)g = gxbyg

for every x,yeA. Hence (—%a)b=b. The proof that b(:%a)=b is
analogous.

4. The algebra of guasinuclei

Definition 4.1. Let A be a g-algebra. A linear functional
£eA is a called a quasinucleus relative to the ideals Sg if
there exists an element geA such that
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(4.1.1) £(xgy) = F(ygx)

for every x,yeA. The element geA defined in this way is called
a quasinuclear element relative to the ideal sg.

We will denote by QF(Qg) the set of all quasinuclei
(quasinuclear elements respectively) relative to the ideal Sg.
It follows from Corollary 1.2 that

F(xgy) = F(x)(Fy) = F(y)F(x) = F(ygx)
for every x,yeA. Hence FeQF and gng.

Example 4.2, The set M of all infinite square matrices

a=(aij) satisfying the condition

@
sup ¥ Ja <o

<o
i j=1 1
with the usual operations is an algebra over the field K. For
a fixed natural m, let us denote by g the matrix (gij)eM such
that

_ 1 for i=j=m
gij 0 otherwise.

Then M is a g-small algebra and the g-functional F is defined
by F((aij)) = amm” Every q=(qij)eM such that

[+ ]

(4.2.1) L sup Iqijl < ®
j=1 i
is quasinuclear. Every functional £eM’
©
g((alj)) = E qijaji (aij)EM’
i, J=1

where the matrix (qij) satisfies (4.2.1), is a quasinucleus.
The matrix a=(aij)eM such that

_ 1 if i>r=z0 and j-i=dz0
ij 0 otherwise

is a Fredholm element relative to the ideal Sg with d(a)=d and
r(a)=r.

Theorem 4.3. If A is a g-small algebra, then
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Sg < Qg;
2° QF and Qg are subspaces of the linear spaces A’ and
A respectively;
3° the function k:QF——aqg defined at geQ, by
(4.3.1) §(xgy) = F(yk(£)x) X,YeA

is well-defined and it is a linear homomorphism.

n

Proof. Suppose Y X;9Y; € Sg. Then the function ¢:A—K
i=1

defined by
n
€(x) = P I y;xx;)
=1+t

for xeA is a linear functional such that

n n n
€(xgy) = F[iglqiquxi] = i§1 F(y;xgyx;) = 151 F(yx;gy;x) =
n
= F[y[ Y x.9Y. x].

i=1 *7 %

n
for every x,yeA. Hence ¥ x.gy. € Q .

i=1 9

Suppose now that for EeQF there exist ql,qzeA such that

F(yq,x) = £(xgy) = F(yq,X)

for every x,yeA. Since A is a g-small algebra so q,=9, and
therefore k is well-defined.

If EI,EZGQF and Al,AZeK, then
(A1 €,42,6,) (xgyY) = A €, (Xgy) + A,€,(xgy) = A,F(yk(§;)x) +
+ A, F(YK(£,)%) = F(Y(A,k(§;) + A,k(£,))%)

for every x,yeA. This means that QF is a subspace of A’ and k

is a linear homomorphism. Hence Qg=k(QF) is a subspace of A.

Definition 4.4. Let A be a g-small algebra. The 1linear
homomorphism k:QF——-—>Qg defined by (4.3.1) is called a natural
homomorphism.

Let aeA and £eA’. We denote by €£a and af the linear
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functionals defined on A by
(§a) (x) = £(ax),
(ag) (x) = §(xa), XeA.

Theorem 4.5. If A is a g-small algebra, then

-]

1 Qg is an ideal of the algebra A;
2° each of the following formulae
£, » &, = £;k(E,),
£, < &, = k(£,))€,, £€,/6, € Qp,
defines multiplication » and « on the set QF
respectively;
3° the linear space Qp is an F-algebra with multiplica-
tion » and « ;
4° the natural homomorphism k:QF———)Qg is an algebra

homomorphism and the ideal of zeros of the F-algebra
Qe is the kernel of k.

Proof. If aeA and q=k(£)ng, then

(€a) (xgy) = £(axgy) = F(yqax),

(ag) (xgy) = £(xgya) = F(yagx)
for every x,yeA. Hence Qg is an ideal of the algebra A.
Let El,gze QF’ then
(€, » &) (xgy) = &, (k(§,)xgy) = F(yk(§;)k(£,)x)

for every x,yeA. Thus, the multiplication » is well-defined
and k(&1 4 52) = k(El)k(gz). Similarly we show that « is also
multilication on QF and k(&1 < 62) = k(&l)k(Ez).

Now we shall show that the linear space QF is an F-algebra
with multipliaction » . Let §1,£2,§3 € QF’ Then
((€) » &) » £3)(x) = (§; » &) (k(§;)x%) = €, (k(&,) (k(§4)x)) =
= £, ((K(Ex)k(€3))%) = £, (k(E, » £5)x) = (&, » (&, » £€3)) (%)

for every xeA. It proves the associativity of » . Moreover
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(€, ¥ (E,4€5)) (%) = & (K(E,+€5)%) = &, (K(€,)x+k(€;)x) =
= £,(k(£,)%X) + &, (K(E5)X) = (E; » £,)(X) + (£, » £3)(x) =
(€, 0 &, + £, £5)(x)

for every xeA. In a similar way we can show that

If AeK, then
((A&1) » &) (x) = (2§,) (k(€;)x) = AL, (k(§,)x) = A(, » &) (x)=
(A(E1 » 62))(x) for every xeA. Further, it evident that
El > (AEZ) = A(El > Ez). Also (F » F)(x) = F(gx) =F(x) for
xe€A, which shows that F » F = F. Moreover, if QGQF, then by
Corollary 1.2

(F» £ » F)(x) = F(k(§ » F)x) = F(k(§)gx) = F(k(§))F(x) =
F(gk(£)g)F(x) = £(999)F(x) = £(g)F(x) =
(§(9)F) (x)
for every xeA. Hence F » € » F = £(g)F i.e. the algebra Qe is

an F-algebra and the map £—€(g) is an F-functional.
The proof in the case of <« is analogous.

Finally, we shall proof that the ideal of zeros of the
algebra Qp is the kernel of k. Indeed, if R(EO)’O: then

(FPE» &, 2> F)(x) =F(k(§» &y »nP F)x) =
= F(k(E)k(Eq:)k(n)qx) = F(0) =0
for every xeA and €,m € Qp. Hence £, belongs to the ideal of
zeros of the F-algebra QF' Suppose now that F » £ » eob n PF=0
for every §,m € Qp. Then gk({)k(§ )k(n)g= 0 and gxk({,)yg = 0
for every X,y € Qg. Since Lch, PcQg and A is a g-small
algebra, so k(£0) = 0.

The proof of the case with the multiplication » is analo-
gous.
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The following corollary is a direct consequence of
Theorems 4.5 and 3.7.

Corollary 4.6. If A is a g-small algebra, then the
quotient algebra QF/kerk is an [(F]-small algebra.

Theorem 4.7. Let A be a g-algebra without identity. If
€eQp, then the functional £:A=Ae{Ae}—K defined by

E(x+re) = £(x)+A

is a quasinucleus relative to the ideal Sg of the g-algebra A.
If qugcA then q is a quasinuclear element relative to the

ideal Sgci. The proof is similar to the proof of Theorem 3.7.
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