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DETERMINANT SYSTEMS IN A CERTAIN CLASS OF ALGEBRAS 

0. Introduction 
Let L(X) denote the algebra of all endomorphisms on a 

linear space X (over the real or complex field of scalars). An 
operator BeL(X) is called a reciprocal generalized inverse (or 
almost inverse, or quasi-inverse) to an operator AeL(X) if 
ABA=A and BAB-B. This notion plays an especially important 
part in the theory of linear equations. If B is a reciprocal 
generalized inverse to A, then the general form of solution of 
the equation 
(0.1) Ax = xQ 

where xQ belongs to the range of A, is 
x = BX Q + x^ 

where x^ is an element of Kernel of the operator A. 
In the fifties and early sixties R. Sikorski introduced 

the notion of determinant system (Dn> for an operator A. The 
determinant system for A gives full information of solving the 
equation (0.1). If we know the determinant system for A, then 
we can obtain a generalized inverse B of A and therefore we 
can completely solve the equation (0.1). The Sikorski's and 
Buraczewski's formulae for solution are generalized version of 
the well known Cramer formulae from Algebra. 

Thus, the main problems which arise in the determinant 
theory are the following: under what conditions A has a 
determinant system {D } and what is the relationship between A 
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and {DJJ}- The answer is given by the following theorems: A has 
a determinant system {Dn> if and only if A is Fredholm, and 
then {Dn} is determined by A uniquely up to a constant factor 
different from zero. 

The main aim of the theory of determinants in Banach 
spaces is to give some analytic formulae for determinant 
systems of operators. He know the analytic formula for a 
determinant system of an operator of the form S+T where A is 
Fredholm and T is a guasinuclear (integral) operator. 

So far the determinant theory has been applied only in 
(Banach) algebras of linear (bounded) operators on a linear 
(Banach) space. The purpose of this paper is to develope the 
determinant theory for a certain class of algebras over the 
field K of real or complex numbers in a similar way as in 
vector space by R. Sikorski and A. Buraczewski. 

Definition 0.1. Let A be an algebra with identity and J be 
any fixed two-sided ideal of A. The element aeA is calleed a 
Fredholm element relative to the ideal J iff the coset a+J is 
invertible in the quotient algebra A/J. 

The notions of g-algebra and g-determinant system are 
defined in § 1 and their fundamental properties are 
considered. In § 2 we deal with g-total algebras. We prove 
that every Fredholm element relative to the special ideal S^ 
has a g-determinant system. In § 3 it is shown that every 
^element in a g-small algebra having a g-determinant system 
must be Fredholm. Quasinuclei and quasinuclear elements are 
dfefined and their properties are considered in § 4. 

The author cordially thanks A. Buraczewski for suggestion 
of the problem and useful discussions. 

1. Definition of the g-determinant system 

Definition 1.1. An algebra A over the field K of real or 
complex scalars is called a g-algebra if there exists an 
element geA such that: 
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1 gg = g * 0; 

2° gxg = Sxg, where for each xeA. 

The linear functional F: A • K defined by 

F(x) = Sx, X€A 

is called a g-functional. 

Corollary 1.2. If A is a g-algebra and F is a 
g-functional, then 

F(x)F(y) = F(xgy) 
for all x,yeA. 

Example 1.3. Let us consider the algebra 

A = {[£], a,b,c « k} with the usual operations of addition 

and multiplication, and let ĝ ^ = ^ ®j . It is easy to see that 

A is a g^-algebra and a function F^: A • K defined by 

'i ([: =]) - [ - ] • * 

is the g^functional. 

Example 1.4. Let now A be the algebra of all bounded 
functions defined on the closed interval [0,1] with the usual 
operations. For any fixed t Q e [0,1], let us define the 
function g. e A by the formula: 

0 

9 t (t) = 
1 if t=t 
0 if t*t° e to,i]. 

The algebra A is a g. -algebra for every fixed t_e[0,l], and 0 

the functional F. : A * K 

F*. (x) = x(t_), xeA 
^0 ° 

is the g. -functional. 
r0 
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Example 1.5. Let E and X be a pair of conjugate linear 

spaces^ over the real or complex field K, i.e. there exists a 

bilinear functional on SxX whose the value at the point (C,x) 

is denoted by £x and which satisfies two additional 

conditions: 

(a) if £x=0 for every then x=0; 

(b) if £x=0 for every xeX, then £=0. 

Let us consider the algebra U=U(E,X) of all endomorphisms E on 

X such that: 

(c) for every fixed there exists an rjeE such that 

£ (Ex) = i)x for every xeX. 

For fixed £ 0 e S and x Q e X, let xo'^o denote the 

one-dimensional endomorphism on X defined by the formula: 

(x0-€0)(x) = (€0x)x0 xeX. 

If moreover C Q X Q = 1, then the algebra U is the x Q • £ Q-algebra 

and the x Q-^-functional F: U » K is defined by 

F(E) = C 0(EX q) E€U. 

1.6. In a g-algebra A the following notations will be 

used: 

L = Ag; P = gA; 

s g = 
n 
I x^gy.; X.,y.eA, neN 

i=l x i 

- the set of all Fredholm elements of the algebra A 

with identity relative to the ideal S . 
g 

Definition 1.7. Let A be a g-algebra. Every infinite 

sequence is called a g-determinant system (with 

nonnegative index d) for an element aeA if the following 

^ - see Sikorski [9] and Buraczewski [1]. 
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conditions are satisfied: 
<d0> 

(d,) 

Dq is a number if d=0, for otherwise DQ is a d-linear 
functional on P** such that for every fixed p^,... »P̂ .ĵ » 

...,Pd€P (i=l,...,d) there exists an element c«A 
satisfying the following identity 

D0(plf...,pd) = F(p^c); 

Dr is a (2n+d)-linear functional on Pn+dxLn for n*l, 
the value of Dn at the point (p1#... #Pn+(j» Ij^• • • # ln) we 
denote by 

•n+d 
Ll' .1. 

(d2) 

(d3) 

DQ is skew symmetric on P (if d>0), Dn (n*l) is skew 
symmetric on pn+(i and skew symmetric on Ln; 
if Dn (nsl) is interpreted as a function of p^ and 1 j 
only (lsisn+d,Isjsn), then there exists an element ceA 
such that 

(d4) 

Pi' 
1, 

'pn+d = Fip.clj); 
Ll' n 

there exists an integer rfcO such that 
vanish identically; 
the following identities hold for n=0,l,. 

does not 

n+1 
P 0 a , P l , •n+d 
10,11<...,ln 

= ¿("D^iPoliJD,, •n+d 
I0'*"'1i-i,1i+i'---'1n 
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p0'pl' <P n+d 
n+1 

n+d 
- V (-D^ÌPÌIQ) Dn 

1^0 
'Pi-l'Pi+l' ' pn+d 

Analogously we define the g-determinant system with a negative 
index. Then the number of is larger then that of p^. The 
least integer r, such that Dr does not vanish identically, 
will be called the order of the g-determinant system, noted by 
r(D_). The difference d between the numbers of p. and 1. in D_ n l x n 
(n&0) is called the index of the g-determinant system , 
denoted by d(Dn). 

Remark 1.8. If the sequence (D^) is a g-determinant system 
for an element aeA and oc*0, then the sequence (aD

n) is also a 
g-determinant system for a, and the sequence (a~nD

n) a 

g-determinant system for the element aaeA. 
Remark 1.9. If the sequence (Dn) is a g-determinant system 

for an element a of g-algebra A with identity and beA has the 
inverse b 1eA, then the sequence (D^) defined by 

D' n 
•n+d 

lj_,... ,ln 
= D_ 

plb -1 'pn+db 
-1 

n=0,1,2,... 

is a g-determinant system for ab. Similarly, the sequence (D^) 
defined by 

Dn 
•n+d 

lx,...,ln 
= D_ b"1! 1' 

' *n+d n=0,1,2,... 

is a g-determinant system for ba. 
Example 1.10. Let A be the g. -algebra defined in Example 

1.4. The sequence (Dn) 
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(1.10.1) 
P 1 p n 

... ,ln (Pi1!) ( V 

for n=0,2,3,... 

for n=l 

is a g. -determinant system of the element heA defined by 

h(t) = t-tr te[0,1] . 

The reader can easily see that the conditions (dQ)-(d^) are 

satisfied. 

Example 1.11. Let U be an x Q•^-algebra defined in Example 

1.5. Then the ideals P and L are of the form 

P = {x0-?; L = | x e 0 ; x e x j 

and for EeU 

F((x 0C)«Eo(x-e 0)) = F((£Ex)(Xg•Cq)) = CEx. 

If the sequence (WR) is a determinant system for an operator 

EeU in the sense of Buraczewski's definition (see [1]), then 

the sequence (Dn) defined by the formula 

x o ' 5 l ' ' ' - , x o ' ? n + d 

x l ? o ' ' ' ' , x n 
= W_ 

''' , ?n+d 

xl'•*• , xn 

n=0,1,2, 

is a xQ•^Q-determinant system for the element E of the 

x Q•£ Q-algebra U in the sense of Definition 1.7. 

Example 1.12. Now, let A be any g-algebra with identity e. 

The sequence (0n) defined by 

• • • ,ln det(F(pslt)) 

for n=0 

for n>0 
(lss,tsn), 

is a g-determinant system for the element e. Indeed, the 

axioms (dQ)-(d2), (d4) and (d5) of Definition 1.7 are 

satisfied. The condition (d3) follows from Lemma 1.13. below 
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(putting d«r«0 and b^-e for k«l,...,n). 

If an element aeA has the inverse a - 1eA, then the sequence 

<Sn> 

0 n 
Pi Pn 1 f 1 

1 l ' " " 1 n J V«*®t(F(p B«
- 1l t)) 

for n=0 

for n>0 
(lss,tsn), 

is a g-determinant system for a. 

Lemma 1.13. Let A be a g-algebra, let tt be any permutation 

of the integers 1,2,...,n+d+r (n,d,r*0 and n+d>0) and let 

Xn+1''•'' 1n+d+r e L ' pn+d+l'•••' pn+d+r 6 P ' bl''''' bn+d+r 6 A b e 

fixed. Then the formula 

n+d+r 

*<Pl Pn+d' 1! V - P ( PTr(k) bir(k)V 

defines: 

a) a d-linear functional f: P d-

(dQ) in Definition 1.7 if n=0; 

b) a (2n+d)-linear functional P n + d x L n 

condition (d3) in Defintion 1.7 if n>0. 

Proof. It is evident that i just defined is a (2n+d)-lin-

ear functional. Let n=0 and let p 1 # . . . . . . , p d 

(lsisd) be fixed. Then by putting 

K satisfying condition 

K satisfying 

c = 
d+r 
TT 
k=l 

k*n-1(i) 

F{p7r(k)
b7r(k)

1k) b.l 
1 TT-^i) 

the relation (dQ) holds true. 

Now, let us assume that n>0 and let Pj_» • • • »Pi-j/Pi+i» 

P (laisn+d) and 1 1 #
 # 1j-l 

fixed. If i=ir(j), then by putting 

r(k)LTi(k) 

P n + d e P (laisn+d) and l j , . . . , ! . ^ , ! . ^ , . . . , ! ^ L (l*j*n) be 

n+d+r 
T T K P . o o W Ï V 
k*j 
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we obtain 

t(P1,...,Pn4d,l1,...,ln) = FfPiClj) 

for every p^cp and If i*ir(j), then by putting 

n+d+r 
n ' » w c k i ^ c i o v 

, i W > p , I ( j > " ( j > 
*Mr(k) ir(k) 

k*7r_1(i) 
k* j 

and by Corollary 1.2 the relation (d3) holds true. 

2. g-determinant systems in g-total algebras 

It follows from Remark 1.8 that a g-determinant system for 
the element a of a g-algebra A, if it exists, is not uniquely 
determined by a. Also it follows from Example 1.10 that many 
different elements may have the same g-determinant system. 
(Let us observe that the formula (1.10.1) defines a 
g. -determinant system for each element xeA such that 

x(t0)=0). 

Therefore we have to restrict oureselves to a smaller 
class of algebras. 

Definition 2.1. A g-algebra A is called a g-total algebra 
if for each xQeA the following two conditions are satisfied: 

(a) if gxQxg = 0 for every xeA, then gxQ = 0 ; 

(b) if gxxQg = 0 for every X€A, then xQg = 0. 

We will show that every element aei^ of any g-total algebra A 
with identity has a g-determinant system but the inverse 
theorem does not hold. 

Remark 2.2. If a g-algebra A is commutative, then A is a 
g-total algebra. 

Consequently, the algebra from Example 1.4 is g. -total. 
c0 

Remark 2.3. A g-algebra A is a g-total algebra iff the 
linear spaces P and are conjugate relative to the bilinear 
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functional PxL»(p,l) > F(pl) c K, (see Example 1.5.) 

Remark 2.4. The conditions (a) and (b) in Definition 2.1 

are independent. The g^-algebra in Example 1.3 does not 

satisfy condition (a) . Indeed, let x Q
 = [o o] ' T h e n f o r ®very 

xeA we obtain g^XgXg^ = 0 with 9^ xq * Observe that the 

condition (b) in 2.1 is satisfied. 

It is easy to verify that the algebra U in Example 1.5 is 

W t o t a l -

Now, let A be a g-algebra. For any a«A, we will denote- by 

L the following operator L : L >L defined by L (1) = al. It a a a 

is evident that L «L. = L . and a d ab 

A.L + A_L, = L.. ... . for every a,b«A and l a 2 b A^a+Ajb 1 2 

n 
If f = Y. x^gy^eSg, then for xgeL we obtain 

n n 
Lf(xg) = fxg = E x.gy.xg = £ F(y.x)x.g. 

i=l 1 x i=l 

It means that L f is a finitely dimensional endomorphism in L 

for every feS^. If, mbreover, A is a g-total algebra with 

identity, then for any aeA the operator L is in the algebra a 
U = U(P,L) (see Remark 2.3 and Example 1.5). If then 

there exists elements € A an(* e S g s u c ^ that 

ab^ = e-f^ and b 2 a = e-f 2. Hence, the following identities 

hold 

L • L, = I - L. , L, ®L = I - L- . 
3 b l fl 2 3 2 

So, it follows from this immediately that L is a Fredholm a 
operator. By the theory of Fredholm operators (see [1]) we 

obtain the following 

Corollary 2.5. If A is a g-total algebra with identity and 

ae* , then 
9 

lr dim{l«L; al=0} < <d, dim{peP; pa=0} < a>; 

2° the codimension of the subspace aL in the space L 
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is finite , the codimension of the subspace Pa in the 
P is finite. 

For any aeA let us introduce the following notation 

ZL(a) = {leL; al=0}, Zp(a) = {peP; pa=0}. 

Definition 2.6. Let A be a g-total algebra with identity. 
The functions 

r: i >Nu{0}, r(a) = min(dimZT(a), dimZ^a)) ; g L r 
d: ig • Z, d(a) = dimZL(a)-dimZp(a)), 

are called the order and the index, respectively. The value of 
order and the index at the point ae$ will be called the order 
and the index of a, respectively. 

The index of the Fredholm element ae$ is equal to the 9 
index of the Fredholm operator L eU(P,L). Hence the following 

a 
Corollary 2.7. If A is a g-total algebra with identity and 

a,beig, f«Sg, then 
1° d(ab) = d(a)+a(b); 

2° d(a+f) =d(a). 

Definition 2.8. Let A be an algebra. An element beA is 
called a generalized inverse of aeA if aba=a. If in addition b 
satisfies the condition bab=b, then b is called a reciprocal 
generalized inverse of a. 

Remark 2.9. If b'e A is a generalized inverse of aeA, then 
b = b'ab' is a reciprocal generalized inverse of a. 

Theorem 2.10. Let A be a g-total algebra with identity e. 

If ae$g, then a has a reciprocal generalized inverse be$g. 

Proof. Let ae$ . There exist elements b,eA and f,eS such g 1 1 g 
n 

that ab =e-f , where f = £ ^ g Y V By Corollary 2.5, there 
i=l 

exists finitely dimensional subspace L' of L such that 

L=aL®L' . Let x'g,...,xig form a basis of L' . For every 
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i=l,...,n there exists an element xVeA and suitable scalars 

a ^ , . .. such that 

k 
x.g = ax'.'g + E a. .x'.g. 
1 1 j=l 1 ] 3 

n n 
Putting b' = b x + E x'i'gyi and y'̂  = E a ^ Y i for j=l,...,k 

we obtain 

n n n 
ab' = ab + E ax'/gy. = e - £ x.gy. + E ax'/gy. = 

x i=l 1 1 i=l 1 1 i=l 1 

n k n 
= e . — ' i • 

J 
- E (axVg + E «iiX'iSOyi + E ax'/gy. 

i=l * j=l ± J J L i=l 

k n k 
- E E « ü V i ) = e - E xigy'v 

j=l J i=l •LJ •*• j=l J J 

k 
Then ab' axg = axg - £ x'.gy'.axg for every xeA. Hence 

j=l 3 

k 
E F (y^axg) x'.g = a(x-b'ax)g € aL for every xeA. Since x^geL' 

j=l J 3 1 

for j=l,... ,k we conclude that Ffy^axg) = 0 for every xeA and 

j=l,...,k and so gy'ja = 0 (j=l,...,k). It follows from this 

that ab'a=a and by Remark 2.9 a has a reciprocal generalized 

inverse beA. Evidently, bet^. 

Lemma 2.11. Let A be a g-total algebra and a,x l f...,x , 
y n

e A ; 

1° if xjg,...,xng are linearly independent elements and 

n 
(.E x.gy.)a = 0, 

i=l L 

then gy^a = 0 for every i=l,...,n; 

2° if gy 1,...,gy n are linearly independent elements and 
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n 
xi9Yi) - 0» 

then ax^g=0 for every i=l,...,n. 

n 
Proof. Let ( £ x.gy.la = 0. Then for every x«A we obtain 

i=l 1 1 

n n 
0 = I x.gy.axg = £ F(y.ax)x.g. 

i=l 1 i=l 1 * 

Since xjg,...,xng are linearly independent it follows that 

F(y^ax) = 0 for every xeA and i=l,...,n. Hence gy^a=0 for 

i=l,...,n. The proof of 2° is analogous. 

Definition 2.12. Let A be a g-algebra. A representation 

n 
f = I x^gyj» x.,y.eA, of an element f in A is said to be 

i=l 

bilinearly independent if both x^g,...,x g and gy l f...,gy n are 

linearly independent. 

Remark 2.13. Every element feSg-{0> of the g-algebra A has 

a bilinearly independent representation. 
n 

In what follows, the notation f = £ xi9Yi means that the 
i=l 1 1 

elements xjg,...,x g are linearly independent and so are 

gy^•••,gy n. 

Theorem 2.14. Let A be a g-total algebra with identity e 

and let beA be a reciprocal generalized inverse of the element 

aci . Then 
g 

1° there exist elements f,, f_eS such that ab=e-f, and 1 2 g 1 
ba=e-f2; 

n m 
2° if f = £ x.gy. and f = £ z.gt., then 

i=l x 1 z i=l 1 1 

the elements g y 1 , . . . , g y n form a basis of Zp(a); 

the elements zng,...,z g form a basis of ZT(a); 
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the elements gt^.-.jgt^ form a basis of Z p(b); 

the elements x^g,...,xng form a basis of Z^fb); 

F ( y i x j ) * 5ij •••'n' 

F ( V j ) = S^j i,j=l,...,m, where means the 

Kronecker symbol; 

3° if gu.,...,gu is a basis of Z_.(a) and v,g,...,v_g i n P l m 
is a basis of ZL(a), then there exist elements 

Wjg,.../W ng,gs 1 #...,gs m e A such that 

n m 
ab = e - £ w.gu., ba = e - £ v.gs.. 

i=l i 1 i=l 

Proof. If a«4 , then there exist elements f' ,f'eS and g 1 2 g 

b ^ A such that ab1=e-f' and b1a=e-f'2. Multiplying the equality 

aba=a by b^ we obtain 

b^aba = b^a, abab^ = ab^, 

(e-f^)ba = e-f'2, abfe-q) = e-f^, 

ba = e-f^+f'2ba = e-f'2(e-ba) ab = e-f^+abf^ = e-ie-abjf^. 

Putting f 2=f 2(e-ba)€Sg and f^ = (e-abJf^eSg we prove 1°. 

n m 
Now, let f. = E x.gy. and f, = I z.gt.. Since 

x i=l 1 1 " i=l 1 1 

a = aba = ( e - f ^ a = a - ^ a so f a = 0 and hence 

(JL xigyi)a • 
By Lemma 2.11 the elements gy^,...,gyn are in z p(a). If an 

element peZ p(a), then 

n n 
o = pab = p - E gpx.gyH = P - Z F(px.)gy,, 

i=l i=l 

n 
and p = £ F(px.)gy.. Thus g y g y form a basis of the 

i=l 1 1 1 n 

space Zp(a) . To prove that F(y^Xj) = S^j for i,j=l,...,n let 
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us observe, by Remark 2.3, that for every i=l,...,n there 

exists p'^eP such that F(p'jXj) = fi^j for j=l,...,n. Moreover 

r n •> n 
gp'ifi = gp'i xj9YjJ = Ftp^XjJgyj = gyi for i=l,...,n. 

2 2 On the other hand (e-f^ = abab = ab = e-f^, hence f^ = f . 

Thus for every i=l,...,n 

w i = 9*1*1 = W'i'l = (gp' i fl ) fl = ( g yi ) fl = 

n n 
= (gyj) I x^gy^ = E F(y.x.)gy.. 

j=l J J j=l J J 

Since gy1#...,gy are linearly independent, it follows that 

F ( yi xj ) = 6ij f o r 

n 
Now, let ab = e - £ a n d l e t elements gu1,...,gu 

i=l 1 1 i n 
form a basis of the space Zp(a). Then for every i=l,...,n we 
have 

n 
g yi = £ aij g Uj 

for suitable scalars a^j. Both g y ^ — > W n
 a n d gu

1/-'-/Cfun are 

linearly independent, hence detfoc^Js'O (i, j=l,... ,n) . Moreover 

ab = e ¿ x
 xi i i ^ i j ^ j ) = e - I = 

n n 
2 j= 

n 

= e - E ( E «..x.) gu.. 
j=l i=l iJ i 

Let us put w. = £ a..x. for j=l,...,n. Since det(a..)*0, 
i=l J •LJ 

then elements w^g,...^ g are linearly independent. Thus, we 
obtain 
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ab = e - £ w.gu.. 
j=l 3 

The proof of the second part of 3° is analogous. 

Theorem 2.15. Let A be a g-total algebra with identity e. 

If aeig, then 

1° a has a g-determinant system; 

2° if (Dn) and (D^) are g-determinant systems of a, then 

a) there exists a scalar oc*0 such that (D^) = (<*Dn); 

b) d(Dn) = d(a) and r(Dn) = r ( a ) . 

Proof. Let us assume that d(a) = d&0. The proof in the 

other case is analogous. Let r(a) = r and let beA be a 

reciprocal generalized inverse of a. Then dimZ^fa) = r+d, 

dimZp(a) = r and there exist x ^ , . . . , x r g , z ^ , . . . , z r + d e L, 

gy l f • • • ,gy r,gt l f... ,gtr+(JeP such that 
r 

ab = e - E x.gy., 
i=l 

r+d 
ba = e I z.gt.. 

i=l 

Put 8 =1 if n=d=r=0 and n 

(2.15.1) 2) "°" , ln+d 

...,ln 

F(P 1bl 1)
 F(Pi b l

n> 

n+d n' 

^ i V 

F(y rl 1) F f Y r V 

FiP.z,) > F ( P 1
z

r + < j ) 

F<P n+d
zl>-

0 

•F(Pn+dzr+d> 

2) 
7 The formula (2.15.1) in the case of linear operators is 

given by Buraczewski [5] 
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otherwise. We will show that the sequence (Sn) is a 
g-determinant system for a. At first, to prove the condition 
(dQ) of Definition 1.7, let us consider the following cases: 

a) 
b) 
c) 

d) 

d=0 and r=0, then SQ=1; 
d=0 and r>0, then 6Q=0; 
d>0 and r>0, then ©0*0 and the condition (dQ) is satisfied 
for c=0; 
d>0 and r=0, then 

®o(Pi Pd> • 

FiPĵ Zĵ ) ... F(p1Z(J) 

F(pdZ1) ... F(pdZd) 

and the condition (dQ) follows from Lemma 1.13a). It is 
sufficient to put ls

=zg (s=l,...,d) and b1=b2=...=bd=e. 

It is evident that the conditions (d-) and (d_) of Defini~ 
tion 1.7 are satisfied. The condition (d3) follows from Lemma 
1.13b). To show this, it is sufficient to put Pn+(j+q = Yq 
(q=l,...,r), l n + s = zs (s—1,...,r+d) and 

uTr(k) 
b if 7r(k)sn+d and ksn 
0 if 7i(k)>n+d and k>n 
e otherwise 

for any permutation 7i of the set {1,. 
2.14 

.,n+d+r}. By Theorem 

gtlf...,gtr+d 
,xrg 
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F ( t 1 b x 1 ) Fft^bXj.) 

F < W , x l ) - " F < * r + d b x r ) 

F t y ^ ) F f y ^ j . ) 

F f y ^ ) •F(y r x r ) 

F < V i > F < V r + d > 

F ( t r + d z l > - " - F ( t r + d z r + d ) 

0 1 

0 0 
0 0 

1 0 

1 
0 

r+d 

* 0. 

Hence c o n d i t i o n (d4) i s s a t i s f i e d . Applying Theorem 2 . 1 4 and 

b a s i c p r o p e r t i e s of determinants, we o b t a i n f o r every 
n = 0 , 1 , . . . 

n+1 
p 0 a / p i , . . . , p n + d 

l 0 , l 1 , . . . , l n 

F ( P 0 a b l Q ) FfPjjabl^) F ( p Q a b l n ) F ^ a z ^ F ( P 0
a z

r + d ) 

F ( P l b l 0 ) F(p^bl^) . . . . F ( P l b l n ) F ( p l Z l ) • • . • F ( p 1 z r + d ) 

F ( p n + d b l o ) F ( p n + d b l l ) ' ' - F < P - ^ b l J • • - F ( P , n+d n' 

F ( y 1 l 0 ) F ( y 1 l 1 ) . . . . F ( y i l n ) 

•n+d 1 ' 
0 

•n+d r+d 

F ( y r i 0 ) F ( y r i 1 ) . F ( y r l n ) 
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vl»o1o)-il*<*oxi)*toi1o> 
F(PlblO> 

F<Pn+dblo> 
F(yiV 

F(p0l1)-iEiF(P0xi)F(yil1) 
F(P1bl1) 

F<Pn+dbll> 
Fiy^) 

F(yri0) F(yri1) 

FiPoV-.^FiPoX.JFty.l^ 0 
F( P lbl n) 

F<P n +d bV 

F<Pl2l> F < P l W 

F<Pn+dzl> F ( P n + d W 
F(yiln) 

F(yrin) 

F(P010) F( P q1 1) F(p0ln) 0 0 
F( P lbl 0) F ^ b l ^ ....F(Plbln) F(p l Z l) ....F(PlZr+(J) 

F(P n +d bV F<Pn+dbll>-"F(Pn+dbln> ^ W l ' - ^ ^ W 
F(y1l0) F(y1l1) ^ i 1 ! , ) 0 0 

F(yri0) •F(yrln) 
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Expanding the above determinant along the terms of its first 
row, we obtain 

en+l 
p0a,pi,...,pn+d 
10,11,...,ln 

= ^ ( - 1 ) ^ 1 . ) ^ 
pl 'pn+d 

Li+1 1Q/ • • •, ij-!» # •••/!-

The proof of the second condition in (dg) is analogous. 
If (Dn) and (D^) are g-determinant systems for aeA, then 

they are determinant systems for the Fredholm operator 
L eU(P,L) in the sense of Buraczewski's definition ([1]). a 
Hence, there exists a scalar a*0 such that (D' ) = (aD ). n n 

One can easily see that d(0 )=d and r(0_)=r. If (D ) is a n n n 
g-determinant system for a, then (D

n)=(ae
n) f o r suitable a*0 

and hence d(D )=d=d(a), r(D )=r=r(a). n n 
Remark 2.16. The inverse theorem is not true. The element 

h of the g. -total algebra A (see Example 1.10) has a 
g. -determinant system definined by (1.10.1) but h«$ 0 % 

The inverse theorem is true in a smaller class of algebras. 

3. g-determinant systems in g-small algebras 

Definition 3.1. A g-algebra A is called a g-small algebra 
if the following condition is satisfied: 

gxayg = 0 for every x,yeA if and only if a=0. 
The algebra U=U(E,X) (see Example 1.5) is an x0-£0-small 
algebra. 

The g. -total algebra A in Example 1.4 is not a g. -small 
^0 c0 

algebra. 
We now show that an element a of a g-small algebra A has a 
terminant system if and only if aefĉ . 
Theorem 3.2. If A is a g-small algebra, then: 
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1° A is a g-total algebra; 

2° A is commutative if and only if dimA=l. 

Proof. If gxQyg=0 for every yeA, then gxgxQyg=0 for every 

x,yeA. Hence gx Q=0. The proof of condition (b) of Definition 

2.1 is analogous. 

If a g-small algebra A is commutative, then L is a 

onedimensional space and the algebra End(L) of all linear 

endomorphisms in L is a onedimensional algebra. It is easy to 

show that the map Asa »i>(a) eEnd(L) defined by 

<p(a) (1) = al, leL 

is an algebra isomorphism. Hence dimA=dimEnd(L)=l. 

Theorem 3.3. If A is a g-small algebra with identity e, 

then an element aeA has a g-determinant system if and only if 

a 6 V 

Proof. If ae#g, then a has a g-determinant system by 

Theorem 2.15. Now, let (Dn) be a g-determinant system for aeA 

such that r(D n)=r and d(Dn)=dao. (If d<0, the proof is 

analogous). We will consider the following three cases. 

a) r>0. Then by condition (d4) of Definition 1.7, there 

exist elements x ^ . - ^ x ^ L and t 1 #..., t r + ( i
€P such that 

(3.3.1) a = Dv 

tl'''•'fcr+d 

^ ^ i • • • / ^ 

* 0. 

By condition (d3) of Definition 1.7, there exist elements 

y1,...,yr.eP and z ,..., z r + ( JeL such that 

(3.3.2) F(y.l) = ¿D r 

for every leL, and 

V f tr+d 

X^ , . . . , I 1 I + 1 I I "y 
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( 3 . 3 . 3 ) F ( p z . ) = ¿ D r 

t l ' ' • * ^ i - l ' P ^ i + l ' • ' ' ^ r + d 

x l ' 

f o r e v e r y p e P . I t f o l l o w s f r o m ( d 2 ) t h a t 

F ( y i x j ) = 5 i j f o r 

F ( t . z . ) = 6 . . f o r i , j = l , . . . , r + d . 

T h u s b o t h y 1 # . . . , y a n d z j / « « * » z r + ( j a r e l i n e a r l y i n d e p e n d e n t . 

Now, l e t beA b e s u c h t h a t 

( 3 . 3 . 4 ) 
p , t l ' ' ' ' f t r + d 

1 1 I t 

f o r e v e r y peP a n d l e L . ( s e e c o n d i t i o n ( d 3 ) o f D e f i n i t i o n 1 . 7 ) . 

By ( d g ) we o b t a i n 

p a , t 1 , . . . , t 

1 , x ^ , • • • x r 

F ( P a b l ) = ¿ D r + 1 

r i 
+ E ( - 1 ) F ( p x . ) D r 

r + d 

V -

l , x . 

r 
= F ( p i ) + E ( ~ 1 ) ^ F ( p x . ) ^ ( - 1 ) 

i = l 

1 
a 

F ( p l ) D r 

t l ' • • ' ' f c r + d 

' * * * ' x r 

, t r + d 

• ' x i - i ' x i + i ' • • • ' x
r 

t , , , t r + d 

X^ / • • « . . • , x r 

r r 
= F ( p i ) - E F ( p x . ) F ( y . l ) = F ( p i ) - I F ( p x . g y . l ) = 

i = l i = l 

r 
= F (p (e - I x . g y . ) 1) 

i = l 

f o r e v e r y p e p , l e L . I t f o l l o w s f r o m t h e d e f i n i t i o n o f g - s m a l l 

a l g e b r a t h a t 

( 3 . 3 . 5 ) a b = e - I rf.gy.. 
i = l 

I t c a n b e p r o v e d i n a s i m i l a r m a n n e r t h a t 

r + d 
( 3 . 3 . 6 ) ba = e - E z ^ g t ^ 

i = l 

H e n c e , we c o n c l u d e t h a t ae$ 
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,td c P are fixed elements 

such that 

a - Doftj/ • • • * 

It follows from (dQ) in Definition 1.7 that there exist 

elements z^,....,z^eL such that 

Ftpz^ - D g i t ^ . . . , ^ ^ , ^ . ^ , . . . , ^ ) 

for every peP. The reader can easily see that for the element 

b€A such that 

F(pbl) = a~ 1D 1 

P i ^ ^ i • • • i t j 
peP, leL 

1 

the following identities hold: 

ab = e; 

d 
ba = e - [ z.gt.. 

i=l 

It means that aei . 
g 

c) r=0 and d=0. Then D Q is u number different from zero. 

By (d^) there exists an element beA such that 

F(pbl) = D~Q\[ ? ) 

for every pep, leL. By (d5) we obtain 

F(pabl) = D" 1 D x ( P® ) = D Q M p U D Q = F(pel) 

for every pep, leL. Hence ab=e. It can be proved in a similar 

manner that ba=e. Thus, aef^. 

Remark 3.4. If A is a g-small algebra and (Dn) is a 

g-determinant system for aeA, then the element beA defined in 

the proof of Theorem 3.3 is a reciprocal generalized inverse 

of a. 

Indeed, it is evident for r=r(D )=0. Let r=r(D )>0 and 
n n 

let x 1,...,x r,
 zi'* * *'zr+d€ L ' tl''''' tr+d' Yl'*'" , yr € P b e 

fixed elements such that (3.3.1), (3.3.2) and (3.3.3) hold. By 
(d2) and (d3) we have 
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F( y ial) - ± D r 

t l f. ,t 

for every lcL and i-l,...,r. It means that 

(3.4.1) y^a - 0 

for i=l,...,r. By (3.3.4) and (d2) we obtain 

r+d = 0 

(3.4.2) bx A = 0 

for i=l,...,r. It follows from (3.3.5), (3.4.1) and (3.4.2) 

that b is a reciprocal generalized inverse of a. 

Remark 3.5. The thesis of Remark 3.4 is not true in a 

g-total algebra. To this end, let us consider the algebra A in 

Example 1.4 and the element a=e-g. eA. It is evident that a is 
0 

a reciprocal generalized inverse of a and . By Theorem 
t0 

2.15 and (2.15.1) we obtain 

l l f...,l n 

(Piali) < v <Piali> (to) ( V 

<Pnall> < V <Pnaln> < V < V 

< V 1 * ( t o ) ( 9 t o l n ) ( t° } ° 

W 

W 

W ••• W 

for n=0,2,3,... 

- ( l ^ X t , , ) for n=l 

so that the sequence (®n) is a g^ -determinant system for a. 

The element beA defined by 

b(t) = 
0 for t=t 

t€[0,l] 
t+3 for t*t 
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satisfies the following condition: 

F(pbl) = 0 = 

P,9t 

pep, leL 

but it is not a generalized inverse of a. 

Let A be a g-algebra. The set 

" { a S À ; yeA gxayg 

is an ideal of A. 

Definition 3.6. The ideal A Q of a g-algebra A is called 
the ideal of zeros of A. 

Theorem 3.7. If A is a g-algebra, then the quotient 
algebra A/AQ (where A Q is the ideal of zeros) is a [g]-small 
algebra and the function F:A/AQ >K defined by 

F([x]) = F(x) xeA 

is a [g]-functional. 

Proof. First, we will show the function F is well defined. 
Let XQ€[x], then there exists b^eA^ such that x0=x+bQ. Hence 

F(X Q]) = F(X Q) = F(x+b Q) = F(x) = F([x]). 

Let us observe that [g]•[g] = [g]*AQ and 

[g][x][g] =[gxg] = [F(x)g] = F(x)[g] = F([x])[g] 
:ry coset [ 

a [g]-functional. 
Fina 

equality 

for every coset [x]eA/AQ. Hence A/AQ is a [g]-algebra and F is 

Finally, suppose that an element [a]eA/AQ satisfies the 

[g][x][a][y][g] = A Q 

for every [x],[y]eA/AQ. Then F(xay)[g] = A Q for every x,yeA. 
Thus gxayg = F(xay)g = 0 for x,yeA. Hence aeAQ and [a] is the 
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zero of algebra A/AQ. 

Theorem 3.8. If a g-algebra (g-total, g-small algebra) A 

has no identity, then the algebra A = Ae{Xe} is a g-algebra 

(g-total, g-small algebra respectively) and the function 

F: A >K 

F(x+Xe) = F(x)+X xeA, XeK 

is a g-functional on the algebra A. 

Proof. Let x+XeeA, then 

g(x+Xe)g = gxg + Xg = F(x)g + Xg = (F(x)+X)g. 

If A is a g-total algebra and 

g(x0+X0e)(x+Xe)g = 0 

for every x+XeeA, then 
g(x0+XQe)xg = 0 

for xeA. Hence, g(xQ+XQe) = 0. The proof of (b) in Definition 

2.1 is analogous. 

Finally, let us suppose that A is a g-small algebra. If 

g(x+Xxe)(a+Xe)(y+X2e)g = 0 

for every x+X^ejy+Aje e A, then gx(a+Xe)yg = 0 for every 

x,yeA. Hence 

(3.8.1) gxayg = -Xgxyg. 

If X=0, then a=0 and a+Xe=0. Let X*0. We will show that the 

element -^a is the identity of the algebra A. Indeed, let beA. 

By (3.8.1) we obtain 

gx(-Jab)yg = -igxa(by)g = -|(-X)gx(by)g = gxbyg 

for every x,yeA. Hence (-^a)b=b. The proof that b(^a)=b is 

analogous. 

4. The algebra of quasinuclei 

Definition 4.1. Let A be a g-algebra. A linear functional 

£eA is a called a guasinucleus relative to the ideals S^ if 

there exists an element qeA such that 
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(4.1.1) ?(xgy) = F(yqx) 
for every x,yeA. The element q«A defined in this way is called 
a quasinuclear element relative to the ideal S^. 

We will denote by Q_,(Q„) the set of all quasinuclei 
* 9 

(quasinuclear elements respectively) relative to the ideal Sg. 
It follows from Corollary 1.2 that 

F(xgy) = F(x)(Fy) = F(y)F(x) = F(ygx) 

for every x,yeA. Hence FeQ_ and geQ . 
t g 

Example 4.2. The set M of all infinite square matrices 
a=(a^j) satisfying the condition 

CO 
sup £ |a. . | < co 
i j=l 1 3 

with the usual operations is an algebra over the field K. For 
a fixed natural m, let us denote by g the matrix (g^j)eM such 
that 

= i 1 for i=j=m 
yij \ 0 otherwise. 

Then M is a g-small algebra and the g-functional F is defined 
by F((aij)) = a ^ . Every q=(qij)eM such that 

CO 

( 4 . 2 . 1 ) I s u p | q • • | < co 

j=l i ^ 
is quasinuclear. Every functional £eM' 

CiCij)) = ^ q i j a j i (aij)eM, 
i.D-1 

where the matrix (q^j) satisfies ( 4 . 2 . 1 ) , is a quasinucleus. 
The matrix a=(a^j)eM such that 

•• = i 1 

l] ^ 0 otherwise 

is a Fredholm element relative to the ideal S with d(a)=d and g r(a)=r. 
Theorem 4.3. If A is a g-small algebra, then 

if i>r£0 and j-i=dtO 
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1 S 9 C V 
2° Q_ and Q„ are subspaces of the linear spaces A' and r g 

A respectively; 

3° the function k:Q_ »Q defined at £€Q„ by r 9 ' 

(4.3.1) C(xgy) = F(yk(£)x) x,y«A 

is well-defined and it is a linear homomorphism. 

n 
Proof. Suppose E e Sg* T h e n t h e function £:A >K 

defined by 

n 
C(x) = F ^ y . x x . ) 

for xeA is a linear functional such that 

, n n n n 
C(xgy) = F £ g.xgyx. = E F(y.xgyx.) = E F(yx.gy.x) = 

li=l ' i=l x 1 i=l 

= F f y f j ^ . g y . j x ) . 

n 
for every x,yeA. Hence E e Qf," 

i=l 1 1 9 

Suppose now that for £€Q_ there exist q,,q_eA such that r i Z 

Fiyq^) = € (xgy) = F(yq2x) 

for every x,yeA. Since A is a g-small algebra so <I1
=<l2 a n d 

therefore k is well-defined. 

If Si'CjeQp and A ^ A ^ K , then 

(A ie i+A 2C 2)(xgy) = A 1C 1(xgy) + A 2£ 2(xgy) = A 1F(yk(C 1)x) + 

+ A 2F(yk(C 2)x) = F(y(AjkiC^) + A 2k(C 2))x) 

for every x,yeA. This means that Q p is a subspace of A' and k 

is a linear homomorphism. Hence Qg=k(QF) is a subspace of A. 

Definition 4.4. Let A be a g-small algebra. The linear 

homomorphism k:Q„ >Q defined by (4.3.1) is called a natural t g 
homomorphism. 

Let si€A and • W© dsnots by and thG lin^cir 
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functionals defined on A by 
(?a)(x) - C(ax), 
(a?)(x) - £(xa), xcA. 

Theorem 4.5. If A is a g-small algebra, then 
1° Qg is an ideal of the algebra A; 
2° each of the following formulae 

€x • €2 = 

< c2 = € Qp, 
defines multiplication • and < on the set Qp 
respectively; 

3° the linear space Qp is an F-algebra with multiplica-
tion • and < ; 

4° the natural homomorphism k:QF is an algebra 
homomorphism and the ideal of zeros of the F-algebra 
Qp is the kernel of k. 

Proof. If aeA and q=k(£)eQg, then 
(Ca)(xgy) = €(axgy) = F(yqax), 
(a£)(xgy) = ?(xgya) = F(yaqx) 

for every x,yeA. Hence Qg is an ideal of the algebra A. 
Let i^/Cj6 qF' t h e n 

• C2)(xgy) = C1(k(^2)xgy) = F(yk(?1)k(?2)x) 
for every x,yeA. Thus, the multiplication • is well-defined 
and k ^ • £2) = k(^1)k(?2). Similarly we show that < is also 
multilication on Qp and kf^ £2) = kfCjJKf^g) . 

Now we shall show that the linear space Q_ is an F-algebra r 
with multipliaction • . Let €lf£2,£3 e Qp. Then 
((?! • e2) • ?3)(x) = (?1 • €2)(k(C3)x) = ?!(k(€2)(k(?3)x)) = 
= ?1((k(?2)k(?3))x) = C1(k(?2 • ?3)x) = • • C3))(x) 
for every xeA. It proves the associativity of • . Moreover 
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• (C2+?3))(x) - «iikiCj+Ca)*) - C1(k(€2)x+k(C3)x) = 
= ^(ki^Jx) + ̂ ( k ^ J x ) - • C2) (x) + (Cx • C3)(x) -
= • C2 + • C3)(x) 

for every x«A. In a similar way we can show that 
• c3 - • e3 + c2 • e3. 

If AeK, then 
• C2)(x) = (X^) (k(C2)x) - Xqtki^jx) - A(CX • ?2)(x)-

( X ( • c2))(X) for every xeA. Further, it evident that 
Cx • (XC2) = • C2). Also (F • F)(x) - F(gx) -F(x) for 
xeA, which shows that F • F • F. Moreover, if €cQp» then by 
Corollary 1.2 

(F • e • F)(x) = F(k(? • F)x) = F(k(£)gx) - F(k(?))F(x) -
- F(gk(5)g)F(x) = C(ggg)F(x) - C(g)F(x) -
= (e(g)F)(x) 

for every xeA. Hence F • £ • F = €(g)F i.e. the algebra Qp is 
an F-algebra and the map £ (g) is an F-functional. 

The proof in the case of < is analogous. 
Finally, we shall proof that the ideal of zeros of the 

algebra Qp is the kernel of k. Indeed, if k(£0)»0, then 
(F • ? • • T , > F) (x) = F(k(? • E Q • TI • F)x) -

= F(k(?)k(^k(r,)gx) - F(0) - 0 
for every xeA and e Qp. Hence belongs to the ideal of 
zeros of the F-algebra Q„. Suppose now that F • £ • tj >F"0 r Q 
for every £,tj e Qp. Then gk(£)k(eo)k(r))g ~ 0 and gxk(£0)yg - 0 
for every x,y e since LcQg, PcQg *nd A is a g-raall 
algebra, so k(£0) = 0. 

The proof of the case with the multiplication • is analo-
gous. 
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The following corollary is a direct consequence of 
Theorems 4.5 and 3.7. 

Corollary 4.6. If A is a g-small algebra, then the 
quotient algebra Qp^gj.^ is a n [F]-small algebra. 

Theorem 4.7. Let A be a g-algebra without identity. If 
£eQF, then the functional £:A=Ae{Ae} >K defined by 

f(x+Xe) = £(x)+A 

is a quasinucleus relative to the ideal S^ of the g-algebra A. 
If qeQgCA then q is a quasinuclear element relative to the 
ideal SgCA. The proof is similar to the proof of Theorem 3.7. 
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