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SPECIAL PROBLEMS OF SURFACE THEORY 

IN THE EUCLIDEAN 3-DIMENSIONAL SPACE 

1. Introduction 
In the proof of the theorem of Hilbert which asserts that 

there does not exist an isometric immersion of the Lobachevski 
2 3 plane L in the 3-dimensional Euclidean space E , as explained 

in [1] is used the property of asymptotic lines on a 
hypothetic, complete (with respect to a distance function 
defined by a Riemannian metric of constant Gauss curvature 

3 . . . K=-l) surface in E , that every two asymptotic lines which 
belong to different families have a point in common. This 
property, established by the argument that if there exists a 

2 diffeomorphism f of the Euclidean plane E referred to 
2 coordinates (u ,u ) on open set UcE referred to coordinates 

. . . 2 (v1,v2), then there exists a diffeomorphism F of E on U, 
which transforms coordinate straightlines u2=const, u1=const 
on intersections of coordinate straightlines v2=const, 
v1=const with U, together with the fact that asymptotic lines 
on the hypothetical surface define a Chebyshev net enable us 
to construct an increasing sequence of Chebyshev rectangles 
which exhaust the surface. The existence of the diffeomorphism 
f implies that the Jacobi determinant of the transformation 
v1=f1(u1,u2), v2=f2(u1,u2), f=(f1,f2), is different from zero 

2 2 for every (u^u^eE . The set UcE provided with a complete 
metric is the underlying manifold of the hypothetical surface 
referred to the asymptotic lines. The argument that asymptotic 
lines can be prolonged in both directions to curves of infi-
nite length is not sufficient to prove the existence of the 
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diffeomorphism F which preserves coordinate straightlines or 
in other words to establish the behavior of the asymptotic 
lines like that of straightlines of E parallel to the 
coordinate axes Ou^, 0u2. If we take e.g. the part of every 
such straightline (u,=const, u=const) contained in the unit 

2 2 . . . 2 disk D cE with center at the origin and provide D with a 
2 . . 

complete metric, then we get in D two families of curves 
(u2=const, u1=const) which have not the property that every 
two curves which belong to different families have a point in 
common, although every curve of every of these two families 
has infinite length in both directions with respect to the 2 2 
complete metric. Hence a diffeomorphism of E on D cannot 
preserve coordinate straightlines. 

In this paper we do not use geometric properties of asym-
ptotic lines and we omit any constructions by means of these 
curves on surfaces of negative Gauss curvature at every point 
of a considered surface. 2 

We prove that among surfaces of Gauss curvature Ks-c , 
c*0, these of constant Gauss curvature are distinguished by 
the following property: the surface area of a connected 2 surface with constant Gauss curvature K=-c , c*0, is less 
than or equal ^ (Theorem 1). This theorem is proved by the 

c 
assumption that the considered surface is referred to the 
lines of curvature. In Theorem 2 as an addition to Theorem 1 we 
prove that this restriction can be removed. As a consequence 
of Theorems 1 and 2 we get the theorem of Hilbert (Theorem 3). 
The theorem of Efimov [2] (Theorem 4) which asserts that there 3 does not exist a complete surface in E with Gauss curvature 

2 
bounded from above by a negative constant: Ks-c , c*0, cannot 
be proved by a similar estimation of the surface area. We 
prove the theorem of Efimov by the contrary argument and the 
underlying idea of the proof can be stated as follows. On a 3 
complete, connected surface in E with Gauss curvature K<0 
there exists an open, connected subset with infinite surface 
area which by means of the Gauss map is diffeomorphic with a 2 3 subset of the unit sphere S cE of surface area less than or 
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equal 2n. This implies that on this open subset the Gauss 
curvature cannot be bounded from above by a negative constant. 
This proof is possible, since we get a direct relation between 
the first and third quadratic forms of the surface, and this 
enable us to define the Gauss map as a mapping from the under-

2 2 2 lying manifold H cE of the surface to the sphere S without 
any reference to the surface itself. 

To get this results we refer the system of equations of 
surface theory to the lines of curvature and describe a 
solution of the theorem egregium, the Gauss equation and the 
Codazzi-Mainardi equations in these coordinates (Propositions 
1, 2 and 3). 

The derivatives with respect to variables u and v are 
marked by numbers 1 and 2 after the coma. All functions are 
supposed to be differentiable, this means of class C°°. 

2. Preliminaries 
Let 

(2.1) x:M 2—»E 3, M 2CE 2, 
denote an isometric immersion of a Riemannian, connected 

2 . . . 2 manifold (M ,g), where g denotes the Riemannian metric of M , 
3 into the Euclidean 3-dimensional space E . We suppose that the 

Gauss curvature of the metric g is different from zero: 
2 (2.2) K(u,v)*0 for every (u,v)eM 

and that x(u,v), v=const, and x(u,v), u=const, are lines of 
2 3 . . 2 curvature of the surface x(M )cE . The 2-dimensional plane E 

is referred to Cartesian coordinates (u,v) with the origin 0. 
We denote by 
(2.3) ds2 = gxldu2 + g22dv2 

2 
the Riemannian metric of M , and by 
(2.4) dcr2 = Gjdu2 + G2dv2 

the spherical metric of the third quadratic form. The manifold 2 2 M provided with the metric (2.4) is denoted by (M ,G). By 
(2.5) n.d2x = Llxdu2 + L22dv2 

we denote the second quadratic form of the surface x(M2). The 
theorema egregium in arbitrary orthogonal coordinates has the 



4 M. Rochowski 

form 

(2.6) IV ,2 

J ' 2 J ' 1 

The Gauss equation and the Codazzi-Mainardi equations have the 
form 
<2'7> L11L22 = Kgiig22 ' 

(2.8) 

(2.9) 

11,2 

J22,l 

1 gll,2 
2 »11 
1 g22,l 
2 gil 

11 2 g22 22 

1 g22,l 
L11 + 2 " g T T 22 ' '22 

From (2.7), (2.8) and (2.9) we get 

(2.10) 

(2.11) 

Jll,l 

11,2 

K 
11 

+ 2 g 22 11 
1 g22,l 
2 2 

K gli g22 
Jll' 

1 q H > 2 T . 1 „ 1 
2 L11 + 2 11, 2gil L ^ 

Let {pi}ieN ' w h e r e N denotes the positive integers, 
denotes an at most countable covering of M2 by open rectangles 

2 
P^cM with sides parallel to the coordinate axes Ou and Ov of 
2 

E . As a consequence of the equations (2.10) and (2.11) we get 

(2.12) 

.2 R 2 gll g22 
11 

[ Kg22,ld« + *i<V> 

L?1= gll[iv
 Kgll,2dT, + »!<»>]' 

where denotes a fixed point, (u,v)eP^ and 
<Pi (u)» ( v) are positive functions. For every (u,v) eP.nP. X X 1 Jv 
we have 

¡ U K(C,v)g221(C,v)d5 = (2.13) 

u,. 
= J K(S,v)g22fl(£,v)de + j K(?,v)g221(?,v)d? 

Setting 
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uk 
(2.14) 0 i k(v) = J K(C,v)g22fl(e,v)de 

we get for every (UjVjcP^nP^ 
r
u 

(2.15) J^ K(e,v)g221(C,v)dC + 0.(v) = 

ru 
= j K(? fv)g 2 2 1(e,v)dC + 0k(v), 

ui 

uk 
where 
(2.16) 0k(v) = ^ ( v ) + 0ik(v). 

Similarly, for every (u,v)eP.nP. we have 
fV (2.17) j K(u,T))g112(u,T))d7)+»>i(u) = 
Vi 

rv 
= ] K(u,7))gllf2(u,7))dTi + <Pk(u), 

vk 
where 
(2.18) (pk(u) = *>i(u) + (Pik(u) 
and 

vk 
(2.19) (Pik(u) = J K(u,n)g11>2(u,n)dT). 

' V . 1 
From (2.15) and (2.17) it follows that by means of the 

2 transition functions (2.14) and (2.19) the definition of L.. 
2 by (2.12) is valid on the whole of M . From (2.12) we get 

(2.20) [ £ K g 2 2 f l d ^ i ( v ) ] 2 [ ^ K g ^ ^ . i u ) ] 2 

for every (u,v)eP^, ieN. 

3. The spherical metric 
We set 

(3.1) G i l = J^Kgllf2dT,+fi(u), G i 2= J^ K g 2 2 > 1 d ^ . ( v ) , 

where (u,v)eP^, ieN. The formula (2.6) can be written in the 
form 
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(3.2) 
Kg 11,2 

\K\Sg lig22 ,2 

Kg 22,1 
|K|Vg lig22 ,1 

From (2.20), (3.1) arid (3.2) we get 

(3.3) 1 ^ . 2 ] 

,2 ,1 
= 

for every (u,v)eP^, ieN. From (2.6) and (3.3) it follows that 
(G i l fG i 2) is a Riemannian metric of Gauss curvature 1, 
written in orthogonal coordinates (u,v)eP^cM2. From (2.15), 
(2.17) and (3.1) it follows that 

(3.4) 
Hence 
(3.5) 

Gil = Gkl' Gi2 = Gk2 f o r (u,v)eP.nPk. 

G=(GlfG2), where G1(u,v)=Gil(u,v), G2(u,v)=Gi2(u,v) 

for every (u,v)eP., ieN, is by means of the identifications 
. 2 (3.4) a Riemannian metric of Gauss curvature 1 on M which is 

called the spherical metric of 
(3.1) are equivalent to 

g = ( gil' g22 ) ' The formulas 

(3.6) q x l = <pix(u) 
rv Gii,2 dij, 22 'il (V) + 

(u,v) e P ^ M 
S K 

and y a a r e positive functions for 

(G1'G2>-
Riemannian 

where 
every ieN. From (3.6) it follows that every Riemannian metric 

2 3 
(g l l fg 2 2) of a surface x(M )cE referred to the lines of 
curvature is determined by its spherical metric 
However, not every solution of (3.3) determines a 
metric ' such solutions that (2.20) is 
satisfied. The theorema egregium (2.6) not only in the 
coordinates (u,v) determined by lines of curvature but also in 
any other orthogonal coordinates. Thus, (2.20) can be viewed 
as a condition imposed on the orthogonal coordinates (u,v) 
such that they are coordinates defined by lines of curvature 2 3 . of a surface x(M )cE . More precisely this can be formulated 
as follows. From (3.1) and (3.6) it 
equivalent with 

follows that (2.20) is 



Problems of surface theory 7 

(3.7) K2 
* i i<u> + ¡ l ^ r 1 1 d T , ] [ * i i ( v ) + C " ^ = G i l G i 2 ' 

where (u,v ) «P^, ieN. Let 

(3.8) G=(G ,G ) 
. . 2 3 . denote the Riemanman metric of the unit sphere S cE in any 

orthogonal coordinates (u , v ) . 
We have the fo l lowing 

' 2 . . . Proposition 1. Let (M , G) denote the Riemanman manifold 
with the spherical metric G defined by (3 .5 ) . There ex is ts an 

isometric immersion (Gauss map) 

(3.9) F:M2—»S2, F = ( F l f F 2 ) , 

of (M2,G) into (S2,G) such that 

(3.10) G ^ r ^ + G2F2,1' 6 2 = 5 ^ , 2 ^ 2 , 2 -
3 

The mapping (3.9) i s up to an orthogonal transformation of E , 
2 which transforms S onto i t s e l f , uniquely def ined. 

2 Proof. By , we denote a covering of M by disks 

D^ with rad i i r^, » where r^ i s defined by means of the 
distance function of the Riemannian metric G. He suppose that 
every disk D^ is provided with a polar geodesic coordinate 
system with the pole at the center of D^. There ex i s ts such a 
numeration of the disks D., ieN, that f o r every keN, k>l, 
there ex is ts such an ieN, ls isk-1, that D^nD^a. Let D^S 

. 2 3 denotes a disk of radius r 1 with the center at ( 0 ,0 , l ) eS cE 
and provided with a polar, geodesic coordinate system. He 
def ine F:D.—>D. sett ing that corresponding points of D- and 
— . . — 2 D^ have the same polar geodesic coordinates. The disk D2 c S 

with radius r 2 we choose such that the transformation of polar 
geodesic coordinates in D^D^b coincide with that in D^nD^ 
We def ine F:D^uD2—»D^ul^ sett ing that corresponding points 
in D2 and 02 have the same polar geodesic coordinates. Step by 
step we def ine (3.9) in th i s way. 

Proposition 2. Let K(u,v) denote a function d i f f e r e n t 
2 — — from zero on an open subset of S and (u,v) denote orthogonal 
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coordinates on this subset. It there exists an immersion (3.9) 
such that for every ieN the functions (3.10) restricted to 
PicM2 and 
(3.11) K(u,v) = K(F1(u,v),F2(u,v)), (U,V)eP., 
satisfy (3.7), then (G

lfG2) d e fi n e d by (3.10) is a spherical 
metric, i.e., there exists a Riemannian metric o n 

M2 such that (2.6) with Gauss curvature (3.11) is satisfied. 
Proof. We define ^ (3-6)' From (3.8) and 

(3.10) it follows that (G1/G2) restricted to P^cM2 satisfies 
(3.3). Hence, from (3.1) equivalent to (3.6) it follows that 
(3.2) equivalent to (2.6) is satisfied. 

The immersion F from Proposition 2 is called a solution of 
(3.7), where (G1#G2) defined by (3.10) and K(u,v) by 
(3.11). Such a solution has the properties explained in 
Proposition 1. A solution F of (3.7) defines a surface 3 
x(P^)cE for every ieN. 

Namely, we have 
Proposition 3. Let F denotes a solution of (3.7). For 

3 
every i€N there exists a surface x(P^)cE such that x(u,v), 
v=const, x(u,v), u=const, are lines of curvature on x(P^). 

Proof. From Proposition 2 we get that there exists a 
metric ^xi'^22^ ortho9onal coordinates (u,v)eP^ with 
Gauss curvature (3.11). From (2.12) we get Lĵ » where 
(g11,g22) is defined by (3.6), and from (2.7) we get L22 on 
P.cM2. From the fundamental theorem of surface theory it fol-1 3 
lows that there exists a surface x(P^)cE referred to lines 
of curvature such that ' ^L11'L22^ a r e resPectivelY 
the first and the second quadratic forms of this surface. 

4. Surfaces of constant Gauss curvature 
2 a) K=-c , c*0. In this case from (2.20) we get up to a 

scale transformation of the form 
(4.1) ü = [ / vTJZ) ¿Z, v = [ / ̂ T(-ri) dn, (u,v)eP., ieN, 

ui vi 
the formula 
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We substitute (4.2) into (2.6) setting 

<4-3> * l l = 1 2 s i n 2 i ' *22 " h C°s2 I ' 0<k<71-c c 
We get 
(4.4) k 2 2 - k f l l = sink. 
After the change of coordinates 
(4.5) u - v = u, u + v = v 
(4.4) takes the form 
(4.6) k = sink, k(u,v) = k(u-v,u+v), 0<k<7r. » " 

2 2 
Setting K=-c , -c g ^ (u, v^) (u)=l into (2.12) we get 

(4.7) L X 1 = -L 2 2 = ^ Sink. 

From (3.1) we get that the spherical metric of (4.3) is (4.8) G x = 1 - c 2g l l f G 2 = 1 - c 2g 2 2. 
2 b) K=c , c*0. From (2.20) we get 

(4.9) c 4 g u g 2 2 = ( c V ^ . f u ) ) (c2g22-Wi(v)), (u,v)eP., ieN, 

where i>^(u)» a r e positive functions. After the seale 
transformation (4.1) we get from (4.9) 

(4'10> * 2 2 - 9 l l = V c 
Setting in (4.10) 
(4.11) g i l = ^ S h 2 | , g 2 2 = A I c h 2 | 

c c 
we get from (2.6) 
(4.12) k 22 " k 11 = ShlC' k > 0 k <°) • 

After the change of coordinates (4.5) we get from (4.12) 
(4.13) k = shk, k(u,v) = k(u-v,u+v), k>0 (or k<0). 

/ 

Similarly as in (4.7) the second quadratic form is defined by 
(4.14) L 1 X = ^ 2 = ^ Shk. 

The spherical metric of (4.11) is 
(4.15) G x = c 2g 1 1 +l, G 2 = c 2g 2 2-l. 

The spherical metric (4.8) has the following property, 
which is not satisfied by the metric (4.15). There does not 

2 3 
exist a surface x(M )cE of Gauss curvature 1 such that 
x(u,v), v=const, and x(u,v), u=const, are uniquely defined 
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lines of curvature and 
(4.16) ds2 = Gjdu2 + G 2dv 2, 
where t h e metric (4.8). Indeed, from 
(4.3) and (4.8) we get 
(4.17) G ! + G ! = 1» 
while every metric with the above mentioned properties 
satisfies (4.10). A A 

Complex curves u, v defined by 
A A A A — 

(4.18) (u+v)i = u, u-v=v, i=v/rT, 
2 3 are called complex asymptotic lines of a surface x(M )cE of 

2 Gauss curvature K=c , referred to the lines of curvature. In A A 
the coordinates (u,v) the first and second quadratic forms 
are defined by 
(4.19) ds2 = ^j(du2 - 2chkdudv + dv2), n.d2x = -i^shkdudv, 

c c A A A A A A A 
where k(u,v) = k((u+v)i,u-v). From (4.19) it follows that the 
complex asymptotic lines form on a surface of Gauss curvature 

2 K=c , referred to the lines of curvature a Chebyshev net. 

3 
5. Surfaces of negative Gauss curvature in E 
Before considering the general case we prove the following 

2 3 Theorem 1. The surface area of every surface x(M )cE , 
where x denotes an immersion (2.1), of a connected manifold 
2 2 2 M cE , of Gauss curvature K=-c , c*0, is less than or equal 
2n 
c 2 * 

2 2 Proof. The surface area Ag(M ) of x(M ) is 

(5.1) A g(M 2) = j • g ^ ? , ~ 22 d u d v 

M 
From (4.3) and (5.1) we get 

(5.2) A (M2) = f sinkdudv, 0<k<rc. 
9 2 c J

M 2 
2 2 . . Since M cE is open, it is a measurable set. Hence, there 

2 2 2 exists an increasing sequence manifolds *incM 

with boundary dM2 such that 
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00 

(5.3) sup A (M2) = A (M2), U M2 = M2, 
nsl 9 9 n=l 

2 and 3Mn is a polygon for every n=l,2,.... From (5.2) we get 
(5.4) A

g(Mn) = ~~2 i sinkndudv, 0<kn<ir, 
M2 
n 

2 where k (u,v) is the function k(u.v) restricted to M . For n n 
2 2 (u,v)eE \ Mn we set 

2 2 in , if v -u to, 
(5.5) k (u, v) = \ 

[0 , if u —v >0. 
By means of the extension (5.5) the formula (5.4) can be 
written in the form 

00 00 

(5.6) Ag(Mn) = ~~2 f i sinkndudv, 0<kn<rr. 
2 ̂  -co —00 

After the change of coordinates (4.5) in (5.6) we get 
00 00 

(5.7) Ag(M2) = ^ j J sinkndildv, 0<kn<IT. 
C -00 -00 

Since 0 and n are solutions of (4.6), we get from (4.6), (5.5) 
and (5.7) 

<5-8> V M £ ) = h J ! kn,12dudv • c 
- 0 0 - 0 0 

From (5.5) and (5.8) it follows 
00 CO 

<5-9> V M n ) = M K , 1 2 d ^ = c —oo —oo 

=a l i m [ k
n
( a' a ) " V a ' ~ a ) ~ kn(~a'a) " kn(-a,-a)]s iE . 

From (5.3) and (5.9) it follows 

(5.10) A (M2) = sup A (M2) s ̂  . 
y n^l y c 

A similar estimation to that of (5.10) for surfaces of 
2 positive, constant Gauss curvature K=c , c*0, is not valid. 
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Indeed, from (4.11) and (5.1) we get 
(5.11) A_(M2) - [ shkdudv, k>0. 

9 2c V 
Since there exist unbounded solutions of (4.12), it follows 
that (5.11) can be unbounded. 

The Theorem 1 was proved by the assumption that the 
2 3 . 

surface x(M )cE is referred to the lines of curvature. We 
prove that this assumption can be neglected. We have 

Theorem 2. If 
(5.12) y:N2—>E3, N2CE2, 
is an isometric immersion of a connected, Riemannian manifold 2 . . . . (N ,g), where g is a Riemannian metric of negative Gauss 

2 curvature: K(s,t)<0 for every (s,t)eN , then there exists a 
2 2 manifold M cE and a diffeomorphism 

(5.13) s=a(u,v), t=P(u,v), (s,t)eN2, (u,v)eM2, 
of M2 on N2 such that 
(5.14) x(u,v)=y(a(u,v),0(u,v)) 
has the properties of the immersion (2.1). 

Proof. The system of partial differential equations of the 
2 lines of curvature of the surface y(N ) has the form 

(5-15) If = flBll' U = flB12' If = f2B21' Ü = f2B22* 
Since the Gauss curvature is negative, it follows that the 
orthogonal vectors ^B21'B22^ a r e different from 

2 the zero vector at every point of N . The functions f., i=l,2, 
2 defined on N are integrating factors. The proof that 

2 
integrating factors f^*0 exist (on the whole of N ) belongs to 
the theory of partial differential equations and we omit it 
here. The system (5.15) is completely integrable. Hence, by 2 2 
the theorem of Frobenius, for every (sQ,t0)eN , (uQ,v0)eE 
there exists a rectangle p

0
c e 2 with center (uQlv0) and 

uniquely defined functions aQ(u,v), /3Q(u,v), (u,v)ePQ, such 
that a0(u0,v0)=S0, 0o(uo,vo)=to, which satisfy the system 
(5.13). We denote 
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(5.16) Qq = {(S,t) I s=«0(ufv), t=o0(u,v), (u,v)€P0>. 

The curves xQ(u,v), v=const, xQ(u,v), u=const, where 
F0(u,v)=y(a0(u,v),0Q(u,v)), are lines of curvature of the sur-
face y(Q0)cy(N2). There exists an at most countable covering 
{Q i} i e N of N2 such that 
(5.17) Ql = {(s,t) | s=ai(u,v), t=pi(u,v)> (u,v)«Pi}, 

where a^(u,v), 0^(u,v), (u,v)eP^f are uniquely defined 
solutions of the system (5.15) in the rectangle P^ with center 
(u.,v.). The curves x^(u,v), v=const, x^(u,v), u=const, where 
x^(u,v)=y(ot^(u,v) ,|3^(u,v)) , are lines of.curvature of y(Q^). 
If , then we can choose the center (u^,v^)eE2 such 
that ai(u,v)=aJc(u,v), /3i(u,v)=/3k(u,v) , if and only if (u,v)e 
eP^nPj^. Step by step we can improve the definition of P^, keN, 
choosing if necessary a new center i ^ » ^ ) > such that the 
intersections of the Q^, ieN, coincide with that of the P^, 
ieN. After that we define 

(5.18) (ot(u,v) ,/3(u,v)) = (oi(u,v),«i(u,v)), (u,v)ePi> 
M 2 = U P i . ieN 

2 2 2 2 Obviously M cE is diffeomorphic with N and x(M ), where x 
2 

is defined by (5.14), is the surface y(N ) referred to the 
lines of curvature and of Gauss curvature K(a(u,v) ,(3(u,v)) . 

As a consequence of Theorems 1 and 2 we get the theorem of 
Hilbert. 

Theorem 3. There does not exist an isometric immersion of 
2 a complete, connected, Riemannian manifold (L ,g) with Gauss 

2 3 curvature K=-c , c*0, into E . 
2 Proof. There exists an atlas on L with a single chart 

2 2 2 
(E ,h), h:L —»E . Let us suppose contrary to the assertion of 
Theorem 3 that there exists an isometric immersion 
(5.19) y:E2—»E3 

2 2 3 of (L ,g) written in the chart (E ,h) into E . From Theorems 1 
and 2 it follows that the surface area of the surface y(E2)cE3 



14 M. Rochowski 

is less than or equal . This is possible only if L 2 is a 
2 C 

covering space of y(E ), but the only surfaces with this 
property are closed, orientable surfaces of genus ¿2. Such a 
surface provided with a Riemannian metric of constant Gauss 2 3 curvature K=-c , c*0, cannot be imbedded isometrically in E . 

Example 1. The surface of revolution in E3 of the conic 
2 type of Gauss curvature K=-c , c*0, has the equation 

iu / 2 2 2 ' v 1-b c ch crj dT), 

3 where oe e_e_ is an orthonormal frame in E , b and c are 
2 . positive numbers such that 0<bc<l and M is defined by 

(5.21) l<chcu<4— , 0<v<— . be c 
The Riemannian metric of (5.20) is 

(5.22) ds2 = du2 + b2c2sh2cudv2. 
We define 
(5.23) x(u,v) = y(u,v) + bcve4, 

where u satisfies the first inequalities of (5.21) and - c o < v < o o . 
4 By oe,e„e,e. we denote an orthonormal frame in E . The 1 2 3 4 

Riemannian metric of (5.23) is 

(5.24) ds2 = du2 + b2c2ch2cudv2. 
4 

Hence, (5.23) defines in E a surface of Gauss curvature 
2 K=-c , c*0, and unbounded surface area. We have 

u, u, 
r lr® , f lr® 

(5.25) 1 I v'g11g22 dudv = be I I chcu dudv = oo, 
U 0 - o o u 0 - o o 

where 0<bc<l and the numbers uQ, u^, 0<uQ<u1, satisfy the 
first inequalities of (5.21). 

Moreover, let 
f3 = e3cosy + e4sinr, > 
f. = -e.sinr + e.cosr. 4 3 4 

3 We take a projection of the surface define by (5.23) in E 
spanned by the orthonormal frame oe1e2f3. We get 
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(5.26) x (u,v) = bshcu(e.coscv + e_sincv) + I 1 A 
f3 J / 2~~2 2~~' v 1-b c ch eri dijcosr + bcvsiny 

n '0 
where u satisfies the first inequalities of (5.21) and -a><v<co. 
The Riemannian metric of (5.26) has the form 
(5.27) ds2 = gyll(u)du2 + 2grl2(u)dudv + gr22(u)dv2, 
where 

2 2 2 2 . 2 (5.28) = c o s i + b c ch cusin r, 

2 2 2 ' c c u sinrcosy, 
(5.30) gy22 = b2c2(sh2cu + sin2r). 
The Gauss curvature of (5.27) has the form 
(5.31) Ky(u,v) = -c2fy(u), 
where fy(u) is an analytic function of u and r and fQ(u)=l. 
Hence, for every e>0 there exists such a y, 0<y<^ , that 
(5.32) |fy(u)-l|<e 
for every u which satisfies the first inequalities of (5.21). 
From (5.26) it follows easily that there exist such numbers 
uy0' uyl' 0<uy0<url' siatisfy the first inequalities of 
(5.21) and (5.26) is an imbedding of the set 
(5.33) M2 = { (u,v)eE2 | uy0<u<uyl, -oo<v«d } 
in E3.From (5.28), (5.29) and (5.30) we get 

Url ,oo (5.34) f J /gyllgy22-gj12 dudv = » 
y0 -oo 

and as follows from (5.31) and (5.32) the Gauss curvature 
2 

Ky(u,v) of (5.27) can be chosen arbitrarily close to -c . 
Now we proceed to the theorem of Efimov. As we see from 

Example 1 the argument of Theorem 1 cannot be applied to the 
proof of this theorem. Let 
(5.35) z:N2—*E3 

2 denote an immersion of a 2-dimensional, connected manifold N 
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3 in E with the following properties: a) the Gauss curvature of 

— . 3 — 2 the Riemannian metric g induced from E on z(N ) is negative 
2 2 at every point of N , b) the metric space (N ,dist-), where 

dist- denotes the distance function defined by g, is 
complete. From Theorem 8.1 in [6] it follows that for every 
peN2 
(5.36) expp:Tp(N2)-»N2 

2 2 is a covering mapping of the tangent space Tp(N ) to N at p 
2 2 on N . By means of (5.36) we define in T (N ) the Riemannian 

* — 2 metric (expp) g = g. Then (Tp(N ) i s a complete, 
Riemannian manifold with negative Gauss curvature at every 

2 point and (5.36) is an isometric immersion of (TLiN ),g) on 
2 — (N ,g). The immersion 

(5.37) z = ioexpp 
2 . 3 

of (Tp(N ),g) in E is called a covering immersion of 
(5.35). Thus, for every immersion (5.35) which satisfies the properties a) and b) there exists a covering immersion (5.37) 

— 2 2 with the same properties and the surfaces z(N ) and z(Tp(N )) 
are identical. Hence, it suffices to consider covering 

2 2 
immersions. Let h:Tp(N )—>E denote an isomorphism. The 
immersion (5.37) written in the chart (E2,h) we denote by 
(5.38) y:E2—>E3, 

2 . where E in (5.38) is referred to the coordinates (s,t). From 
2 2 Theorem 2 at follows that there exists a manifold M cE and a 

2 2 diffeomorphism (5.13) of M on E such that 
(5.39) x(u,v) = y(a(u,v),p(u,v)), (u,v)eM2, 
is the immersion (5.38) referred to the lines of curvature. 
The R: 
by g. 

2 . The Riemannian metric of M induced by (5.13) we denote again 

2 
The metric space (M ,distG), where G denote the spherical 

metric of g defined by (3.1) and (3.5), cannot be complete. 
Indeed, the Gauss curvature of G is 1 and 2-dimensional, 
complete manifold with Gauss curvature 1 is compact (see § 7.3 

2 
in [3]), while M is an open set. Now, as an immediate 
consequence of the theorem of Hopf and Rinow [4] we get the 
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following 
2 

Lemma 1. There exists a unit vector eeE and a point 
(uQ,v0)eM2, where M2 is the manifold in (5.39), such that the 
geodesic ray of (M2,G) with origin (uQ,vQ) and tangent to eat 
(uQ,v0) has finite length. 

2 2 Example 2. The universal covering space CS of S x {p,q>, 2 where p and g are antipodal points of the unit sphere S , is 
2 2 different from S \ {p,q>- We have diameter (CS )=a>, while 

2 2 diameter(S )=n and for every t«CS we have dist(t,p)<n, 2 dist(t,q)<n, where p,q, are points "at infinity" of CS . 
2 

If (M ,dist ) is a complete, connected, metric space, 
2 

then (M ,g) is called a complete, connected, Riemannian 
2 3 manifold and x(M )cE a complete, connected surface. Now, the theorem of Efimov follows from 

2 3 . . . Theorem 4. If x(M )cE , where x is an immersion (2.1), is 
a complete, connected surface with negative Gauss curvature K, 
then 
(5.40) sup K(u,v) = 0 for (u,v)€M2. 

2 2 Proof. Let E denote the plane E completed by points "at 
. . . . 2 2 . infinity" which correspond to unit vectors on E . Hence, E is 

2 2 2 diffeomorphic with the closed, unit disk D cE . By M we 
2 2 2 denote the closure of M in E . Let p(s)eM , 0<sssQ> denote 

the geodesic ray of finite length from Lemma 1 parameterized 
by the arc length parameter s such that p(sQ)=(uQ,vQ) and 
(5.41) lim dist (p(s),M2 \ M2) = 0. 

s—»0 
He have 
(5.42) lim F(p(s)) = qcS2, 

s—>0 
where F denote the mapping (3.9). Since F is an isometric 

2 2 immersion of (M ,G) in S , the curve F(p(s)), 0<s*sn , de-
1 2 

scribes an arc of a great circle S cS , and therefore the 
limit (5.42) exists. We prove that also 
(5.43) lim p(s) = pQ = F_1(q)eM2 \ M2 
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exists. Let us suppose contrary that p(&) has two distinct 
2 2 limit points p0,PJ€M n M . We prove that in this case the 

geodesic ray p(s), 0<sss0> has infinite length. There exists a 
decreasing sequence (s^) lajc<00 such that lim s^=0 if k—xd and 
(5.44) lim p(s2k) = pQ, lim P(s 2 k + 1) = P l-

k—too k—too 

Since Pq*P^ it follows from (5.44) that there exists a number 
k such that 
(5.45) lim inf distG(p(s2k) ,p(s2Jc+1))»c>0. 

k—too 

From (5.45) it follows that there exists such a subsequence 
(k ) that 1 n'lsn<® 
(5.46) distQ(p(s2k ),p(s2k +1))>K for n=l,l,... 

n n 
From (5.46) we get 

00 

(5.47) V^dist G(p(s 2 k ),p(s2k +1)) = » 
fel n n 

contrary to the assertion of Lemma 1. This proves (5.43). 
We choose BQ such that (XSgS^. Let D(q,sQ)cS2 denote a 

closed disk with radius sQ and center q. By D(p0,sQ)c 
—1 — 2 —1 — cF (D(q,Sg))cM we denote this component of F (D(q,sQ)) 

which contains the geodesic ray p(s), 0<s*sQ. On D(p0,sQ) the 
mapping F is bijective and therefore a diffeomorphism. Hence, 

2 . " . 
the boundary dD(p0,sQ) of D(pQ,s0) in M is a differentiable 
curve without selfintersections. Now we investigate D(p0,sQ)c 
cM2 with respect to the Riemannian metric ' E v e r Y 
two distance functions dist , dist defined by positive 1 2 2 definite Riemannian metrics g^, g2 on H are topologically 
equivalent (see Proposition 3.5 in [5]). In particular distg 
and distg are topologically equivalent. Hence, the mapping F 
defined by (3.9) and restricted to D(p0,sQ), being a 
homeomorphism of the metric space (D(p0,sQ),distG) is also a 
homeomorphism of the metric space (D(pQ,sQ),distg). Therefore, 
from dist(pQ,aD(p0,sQ))=sQ it follows that there exists a 
number A, o<&sc o f such that 
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(5.48) lim inf dist (p(s),3D(p0>s0)) = A 
s—>0 

since otherwise q=F(pQ) would be a cluster point of 
F(3D(p0,s0)). 

We have 
Lenuna 2. By the assumptions of Theorem 4 there exists a 

2 2 geodesic ray r (t)eD(pn,sn), 0at<oo, of (M ,g) such that aeE cl U U 
denotes the unit vector tangent to r_(t) at r (0)e3D(p_,sn) a a, U U 
and 
(5.49) lim ra(t) = pQ, 

t—>00 
where t, 0*t<®, denote the arc length of r_(t). 

cl 
Proof of Lemma 2. By c(sQ,s) we denote the shortest 

geodesic segment which joins P(sQ) and p(s) in (H2,g). By the 
theorem of Hopf and Rinow c(sQ,s) exists. Let (s^)lsk<00 denote 
a zero sequence. From (5.43) it follows 
(5.50) lim p(s. ) = p . k—Ko K ° 
By a^ we denote the unit tangent vector to c(sQ> s^) at p(sQ). 
There exists a convergent subsequence (a. ) of (a, ) such that 

Ki K 

(5.51) lim a. = a 
i—>oo Ki 

is a unit vector. By r (t) we denote the deodesic ray of 
2 a 

(M ,g), tangent to a at p(sQ) and parameterized by the 
arc length t. By the theorem of Hopf and Rinow we have 0£t<oo. 
Since a geodesic ray r (t) defines exactly one point "at a 
infinity" which corresponds to a, we have 
(5.52) lim r (t) = p.eM2 n M2. 

t—ho a x 

Let us suppose contrary to (5.49) that Pj^Pq- There exist 
neighborhoods UQ of pQ and Ux of px in E2 such that UonU1=0. 
There exists a neighborhood V, of r (t) , Oat<oo, such that X cl 
U1cV1 and V1nUQ=0. Hence, there exists such an integer iQ that 
for i>in the geodesic ray r (t), Ost<oo, tangent to at 

0 ak t
 Ki 

p(sQ), which contains the geodesic segment ctsg^s^ ), is 
contained in V ^ Therefore p(sk )eVĵ  for i>iQ. On the other 
hand from (5.50) it follows that there exists an integer jn 
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such that for i>jQ we have p(s k ) F o r i>max(iQ,jQ) we 

get Pfs^.) € Uo f t Vi contrary to the fact that these sets are 

disjoint. This contradiction proves (5.49). 

From (5.48) and (5.49) it follows that there exists such a 

number tQfcO that rfi(t) belongs to the interior of D(p 0,s Q) 

for every t>t Q and r a(t Q)e8D(p 0,s Q). We set t Q=0. This ends 

the proof of Lemma 2. 

We have 

(5.53) J • g 1 1 g 2 2 dudv = op. 

D(P 0,s 0) 

Proof of (5.53). Let t 1>0. There exists such a number n>0 

that 

(5.54) dist g(r a(t) ,aD(p0,s0))*u for every t * ^ . 

Indeed, otherwise we get 

(5.55) lim inf dist (r (t),3D(p ,s )) = 0. 
t—ho g a 0 0 

From (5.48) and (5.49) it follows that (5.55) is different 
2 from zero. This contradiction proves (5.54). Since (M ,g) is 

a complete manifold with negative Gauss curvature at every 
2 

point, it follows that on M there exists a polar, geodesic 

coordinate system (u,v), Osu<co, osv<2tt, with the only sin-

gularity at the pole u=0, such that 
(5.56) ds 2 = glxclu

2 + g 2 2 d v
2 = du 2 + B(u,v)dv2, 

where v=0 is the equation of the geodesic ray r_(t) such 
Si 

that r (t. ) = (0,0). From (5.54) it follows that for every u, a X 
0su<oo, there exist two numbers v ^ u ) , v2(u) such that 

v2(u) 

(5.57) J B(u,v)dv t 2tl. 

vx(u) 

From (5.57) we get 
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v2(u) 

f v'gllg22 d u d v j d u I B(u,v)dv = OD. (5.58) 
D(P 0,S 0) 

From (5.58) follows (5.53). 

0 yxU) 

On the other hand from the definition of D(p0,sQ) it 
follows 

(5.59) | l Kl /9 1 1g 2 2
 d u d v = J y/5l52 d u d v s 2 n ' 

D(P0,s0) D(] 

From (5.53) and (5.59) follows (5.40). 

D(P0,s0) 

6. Special surfaces 
Let (2.1) denote an immersion such that 

(6.1) 11 
»11 

= a 22 
J22 

a*0,1, a=const. 

From (2.2) and (2.7) it follows that L 
different from zero. 

We have the following 

11' 22 in (6.1) are 

Theorem 5. 
besides 

Let us suppose that ' 
(2.7), (2.8) and (2.9) satisfy (6.1) 

<L11'L22> 
for every 

(u,v)eM . Then the Gauss curvature satisfies the following 
2 

condition: c) for every (uQ,vQ)eM and every neighborhood 
UcM2 of (uQ,v0) there exists such a point (u1,v1)eU that 
(6.2) K(u0,vQ)*K(u1,v1). 
If the Gauss curvature satisfies c), then K 
equation 

satisfies the 

(6.3) 
• 

(C « K . 
,2 + ,1 
2 2a 

KU+1 ,2 

= -(a+1)K 
a-1 
a+1 

,1 
a-1 
a+1 

a-1 
a+1 where k"'"1 = Vk" , a>0, a*l, if K>0 and " = V-K 

a*-l, if K<0. For a=-l we get for all minimal surfaces 

(6.4) 

a<0, 

&K=2e~K, k = log — 
V=iT 

where A denote the Laplace operator. 
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Proof. Let us suppose contrary to (6.2) that there exists 
2 

an open set UcM such that 

(6.5) K(u,v) = Kq * 0 for every (u,v)eU, KQ=const. 

From (2.7) and (6.1) we get l 2h 
(6.6) • aK. 

*11 From (2.12), (3.1) and (6.6) we get 
(6.7) Kg 2 2 = ac2 , K 9 l l = iGx , 

where a>0 if K>0 and a<0 if K<0. From (3.1), (6.5) and (6.7) 
we get 
(6.8) g l x = *>(u), g 2 2 = 0(v). 

After a scale transformation of the form (4.1) we get 
g 1 1=g 2 2=l and therefore KQ=0 contrary to (2.2). This proves 
c) . 

The set 
(6.9) A = {(u,v)eM2 | K ^ + K*2 = 0} 

2 is closed and non dense in M , i.e. every point of A is a 
2 limit point of the open set B=M \ A, since, otherwise there 

2 would exist an open set UcM such that K 1(u,v)=K _(u,v)=0 ,1 / z 
for every (u,v)eU and therefore K(u,v)=const for (u,v)eU 
contrary to (6.2). Differentiating (6.7) we get 

<6'10> K,l*22 = i « " 1 ^ , ! ' K , 2 * H = (I " ^ l l . a ' 
The solution of (6.10) is up to a scale transformation of the 
form (4.1) 

a 1 
(6.11) g ^ - l K l 1 " « , g 2 2 = IKI«"1 . 
For (UQ,VQ)eA we define g 1 1 # g 2 2 as limit values of (6.11) 
if (u,v)eB tends to (u0,vQ). From (2.6) and (6.11) we get 
(6.3) and (6.4). 

Conversely, we have 
2 

Theorem 6. If a function K(u,v) satisfies in M the 
equation (6.3) for a*0,l,-l or (6.4) for a=-l, then K(u,v) 
satisfies the condition c) and there exists a unique solution 



Problems of surface theory 23 

of (2.7), (2.8), (2.9) and (6.1) in M 2 such that K(u,v) is the 
Gauss curvature of (2.1). 

Proof. From (6.3) and (6.4) it follows K(u,v)*0 for 
2 

every (u,v)eM . We define b y (6.11). From (2.7) and 
(2.11) we get (L 1 1 #L 2 2) such that (6.1) is satisfied. Now, as 
in the proof of Theorem 5 it follows that K satisfies c). 

REFERENCES 

[1] W. Blaschke, K. Leichtweiß: Elementare Differentiageome-
trie, Springer Verlag Berlin, Heidelberg, New York (1973), 
§ 107. 

[2] N.V. Efimov: Impossibility -of a complete regular surface 
in Euclidean three-space whose Gaussian curvature has 
negative upper bound, Soviet. Math., Dokl. 4 (1963), 843-
846. 

[3] D. Gromoll, W. Klingenberg, W. Meyer: Riemannsche Geome-
trie in Großen, Springer Verlag Berlin, Heidelberg, New 
York (1968). 

[4] H. Hopf, W. Rinow: Über den Begriff der vollständigen 
differentialgeometrischen Fläche, Comment Math. Helv., 3 
(1931), 209-225. 

[5] S. Kobayshi, K. Nomizu: Foundations of Differential 
Geometry, vol. I, Chap. 4, Interscience Publishers New 
York, London, Sydney (1969). 

[6] S. Kobayshi, K. Nomizup: Foundations of Differential 
Geometry, vol. II, chap. 8, Interscience Publishers New 
York, London, Sydney, (1969). 

Address of Author: Fleiner Strasse 76c, 7000 STUTTGART 40, 
GERMANY 

Received September 9, 1988. 




