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SPECIAL PROBLEMS OF SURFACE THEORY

IN THE EUCLIDEAN 3-DIMENSIONAL SPACE

1. Introduction

In the proof of the theorem of Hilbert which asserts that
there does not exist an isometric immersion of the Lobachevski
plane L2 in the 3-dimensional Euclidean space E3, as explained
in [1] 1is used the property of asymptotic 1lines on a
hypothetic, complete (with respect to a distance function
defined by a Riemannian metric of constant Gauss curvature
K=-1) surface in E3, that every two asymptotic 1lines which
belong to different families have a point in common. This
property, established by the argument that if there exists a
diffeomorphism f of the Euclidean plane E2 referred to
coordinates (ul,uz) on open set UcE2 referred to coordinates
(vl,vz), then there exists a diffeomorphism F of E2 on U,
which transforms coordinate straightlines u_=const, u.=const

2 1

on intersections of coordinate straightlines v2=const,

v,=const with U, together with the fact that asymptotic 1lines
on the hypothetical surface define a Chebyshev net enable us
to construct an increasing sequence of Chebyshev rectangles
which exhaust the surface. The existence of the diffeomorphism
f implies that the Jacobi determinant of the transformation

v1=f1(u1,u2), v2=f2(u1,u2), f=(f1,f2), is different from zero

for every (ul,uz)eEz. The set UcE2 provided with a complete
metric is the underlying manifold of the hypothetical surface
referred to the asymptotic lines. The argument that asymptotic
lines can be prolonged in both directions to curves of infi-
nite length is not sufficient to prove the existence of the
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diffeomorphism F which preserves coordinate straightlines or
in other words to establish the behavior of the asymptotic
lines like that of straightlines of E2 parallel to the

coordinate axes Oul, Ouz. If we take e.g. the part of every
such straightline (u,=const, u

1
disk D2?cE? with center at the origin and provide p? with a

=const) contained in the unit

complete metric, then we get in D2 two families of curves

(u2=const, u,=const) which have not the property that every

two curves w;ich belong to different families have a point in
common, although every curve of every of these two families
has infinite length in both directions with respect to the
complete metric. Hence a diffeomorphism of E2 on 02 cannot
preserve coordinate straightlines.

In this paper we do not use geometric properties of asym-
ptotic lines and we omit any constructions by means of these
curves on surfaces of negative Gauss curvature at every point
of a considered surface.

We prove that among surfaces of Gauss curvature KS-cz,
c#0, these of constant Gauss curvature are distinguished by

the following property: the surface area of a connected
2

surface with constant Gauss curvature K=-c“, c¢#0, 1is 1less
than or equal gg (Theorem 1). This theorem is proved by the
c

assumption that the considered surface is referred to the
lines of curvature. In Theorem 2 as an addition to Theorem 1 we
prove that this restriction can be removed. As a consequence
of Theorems 1 and 2 we get the theorem of Hilbert (Theorem 3).
The theorem of Efimov [2] (Theorem 4) which asserts that there
does not exist a complete surface in E3 with Gauss curvature
bounded from above by a negative constant: Ks-cz, c#0, cannot
be proved by a similar estimation of the surface area. We
prove the theorem of Efimov by the contrary argument and the
underlying idea of the proof can be stated as follows. On a
complete, connected surface in E3 with Gauss curvature K<O
there exists an open, connected subset with infinite surface
area which by means of the Gauss map is diffeomorphic with a

2

subset of the unit sphere S cE3 of surface area less than or
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equal 2n. This implies that on this open subset the Gauss
curvature cannot be bounded from above by a negative constant.
This proof is possible, since we get a direct relation between
the first and third quadratic forms of the surface, and this
enable us to define the Gauss map as a mapping from the under-
lying manifold MzcE2 of the surface to the sphere s2 without
any reference to the surface itself.

To get this results we refer the system of equations of
surface theory to the 1lines of curvature and describe a
solution of the theorem egregium, the Gauss equation and the
Codazzi-Mainardi equations in these coordinates (Propositions
1, 2 and 3).

The derivatives with respect to variables u and v are
marked by numbers 1 and 2 after the coma. All functions are
supposed to be differentiable, this means of class c®.

2. Preliminaries

Let
(2.1) x:M°E3, M2cE?,

denote an isometric immersion of a Riemannian, connected

manifold (Mz,g), where g denotes the Riemannian metric of Mz,
into the Euclidean 3-dimensional space E3. We suppose that the
Gauss curvature of the metric g is different from zero:

(2.2) K(u,v)#0 for every (u,v)eM2
and that x(u,v), v=const, and x(u,v), u=const, are lines of

3. The 2-dimensional plane E?

curvature of the surface x(Mz)cE
is referred to Cartesian coordinates (u,v) with the origin 0.

We denote by

2 _ 2
(2.3) ds® = glldu + gzzdv
the Riemannian metric of Mz, and by
(2.4) do? = g au® + ¢ av?

the spherical metric of the third quadratic form. The manifold
M2 provided with the metric (2.4) is denoted by (M2,G). By
(2.5) n.a%x = Llldu2 + Lzzdv2 '

we denote the second quadratic form of the surface x(MZ). The
theorema egregium in arbitrary orthogonal coordinates has the



4 M. Rochowski

form
2.6 ( ) - -117,2 ( ) S 227,1 KVg,.g.._
(2.6) 1 911922 -
The Gauss equation and the Codazzi-Mainardi equations have the
form
(2.7 L11b2z = K9y,9;; -
g9 g9
1 11,2 1 °11,2
(2-8) L == ==1Z 73, + = ——1< 71, .
11,2 2 g, 11 2 g, 22
1 922,12 1 9221
(2.9) L - U S A R LV N,
22,1 279, 1172 g, 22
From (2.7), (2.8) and (2.9) we get
K g g
1 11,1 1 °22,1 1 922,1 3
(2.10) L11 = |- + === = L L -5 Ll 17,
,1 K g 2 g 11 2 2 11
11 22 K97,9,,
g9
1 “?11,2 1
(2.11) L == L= L + Kg g.,, — &
11,2 2 g, 11 27 11,2711 L
Let {Pi}ien ¢ where N denotes the positive integers,
denotes an at most countable covering of M by open rectangles
2

PicM with sides parallel to the coordinate axes Ou and Ov of

Ez. As a consequence of the equations (2.10) and (2.11) we get

2.2
K°g.9
2 11922
(2.12) L, = 5 ,

J Ky 106 + vy )

v

L3,= 911[SV.K911,2dn + pi(“)]'

1 .

where (ui,vi)epi denotes a fixed point, (u,v)ePi and
pi(u), wi(v) are positive functions. For every (u,v)ePinPk
we have

u
2.2 [ REvIg, (€ vIaE =

' Yy u
- ju.x(e.v)qzzll(z,v)de * SukK(€'V)922,1(€'V)dE-
i

Setting
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u.
k
(2.24) w0 = [ K(EWg,, ((EvIaE

u.
1

we get for every (u,v)ePinPk
u
(2.15) | K(g,vig,, j(£,vIAE + ¥ (v) =

vy

u
= | x€vg,, @ va +um,
u, ’
where
(2.16) ¥y (V) = ¥y (V) + ¥, (V).

Similarly, for every (u,v)ePinPk we have
v

(2.27) | K(umgy; ,(u,mantp; () =
Vi v
= S K(u,mg,, ,(u,mdn + ¢ (),
e /
where
(2.18) P () = ¢ () + 94y (u)
and
V.
k
(2.29) ey () = | K,magy, ,(u,man.
V. ’

i

From (2.15) and (2.17) it follows that by means of the
transition functions (2.14) and (2.19) the definition of Lil
by (2.12) is valid on the whole of M?. From (2.12) we get

N =

u SraV
2
(2.20)  [K|Vg ;9,5 = [f K922,1d5+wi<v)] [S Kgll,zdn+wi<u)]
ug vy
for every (u,v)ePi, ieN.

3. The spherical metric

We set

v u
(3.1) 6= Sv Koy, ,dmte; (W), Gjp= Su Kgy, 146+ (V),
i i
where (u,v)ePi, ieN. The formula (2.6) can be written in the
form
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3.9 K9y,,2 Kgy5,1 - 2k
(3.2) -|—r i e— = 2[ l 911922 .
|K1vg,,9;,,) 2 |X1Vg;,9,5) /2

From (2.20), (3.1) and (3.2) we get

vG, VG,

vz e L - e

(v642) )2 (v65y) )2
for every (u,v)eP,, ieN. From (2.6) and (3.3) it follows that
(Gy1:Cy5) s
written in orthogonal coordinates (u,v)ePicM . From (2.15),
(2.17) and (3.1) it follows that

(3.3) -[

is a Riemannian metric of Gauss curvature 1,

(3.4) Gi1=Gk1' Giz=Gk2 for (u,v)ePinPk.
Hence
(3.5) G=(G1,G2), where Gl(u,v)=Gi1(u,v), Gz(u,v)=Gi2(u,v)

for every (u,v)ePy, ieN, is by means of the identifications
(3.4) a Riemannian metric of Gauss curvature 1 on M? which is
called the spherical metric of g=(gll,922). The formulas
(3.1) are equivalent to

v G, u G,
- Zi1,2 - Zi2,1
vy u,
where (u,v)ePicM2 and Piq1e wil are positive functions for

every ieN. From (3.6) it follows that every Riemannian metric
(911'922) of a surface x(MZ)cE3 referred to the 1lines of
curvature is determined by its spherical metric (Gl'Gz)‘
However, not every solution of (3.3) determines a Riemannian
metric (gll,gzz), but only such solutions that (2.20) is
satisfied. The theorema egregium (2.6) not only in the
coordinates (u,v) determined by lines of curvature but also in
any other orthogonal coordinates. Thus, (2.20) can be viewed
as a condition imposed on the orthogonal coordinates (u,V)
such that they are coordinates defined by lines of curvature
of a surface x(Mz)cE3. More precisely this can be formulated
as follows. From (3.1) and (3.6) it follows that (2.20) is
equivalent with
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u

(3.7) xz[wil(u) + S -__L_ dn][ Vi (V) + 12 1 ds]—cllclz,
i

where (u,v)ePi, ieN. Let

(3.8) §=(§1,§2)

denote the Riemannian metric of the unit sphere s2¢e® in any

orthogonal coordinates (u,V).

We have the following

Proposition 1. Let (M2,G) denote the Riemannian manifold
with the spherical metric G defined by (3.5). There exists an
isometric immersion (Gauss map)

(3.9) F:M?—s?, F=(F ,F,),
of (M2,G6) into (s2,8) such that

2 2
(3.10) G, Glp1 .t GZFZ 1+ G, G1F1 2+62F2 5

The mapping (3.9) is up to an orthogonal transformation of E3,
which transforms S2 onto itself, uniquely defined.

Proof. By we denote a covering of M2 by disks

Dj}ien -
i 0<rls2 , Where ry is defined by means of the
dlstance function of the Riemannian metric G. We suppose that

D with radii r,

every disk Dy is provided with a polar geodesic coordinate
system with the pole at the center of Di.'There exists such a
numeration of the disks Di' ieN, that for every keN, k>1,

there exists such an ieN, 1sisk-1, .thdt DynD;*a. Let ﬁlcs2

denotes a disk of radius r, with the center at (o,o,l)eszcE3
and provided with a polar, geodesic coordinate system. We
define F:D1—+51 setting that corresponding points of D, and
51 have the same polar geodesic coordinates. The disk Ezcs2

with radius r, we choose such that the transformation of polar

geodesic coordinates in Blnﬁztz coincide with that in DlnD2

We define F: DluDz——)DluD2 setting that corresponding points

in D2 and D2 have the same polar geodesic coordinates. Step by

step we define (3.9) in this way.

Proposition 2. Let X(u,v) denote a function different
from zero on an open subset of 52 and (u,v) denote orthogonal
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coordinates on this subset. It there exists an immersion (3.9)
such that for every ieN the functions (3.10) restricted to
PicM2 and

(3.11) K(u,v) = R(Fl(ulv)lpz(“lv))l (u,v)ePi,

satisfy (3.7), then (Gl,Gz) defined by (3.10) is a spherical
metric, i.e., there exists a Riemannian metric (911,922) on

M2 such that (2.6) with Gauss curvature (3.11) is satisfied.

Proof. We define (gll,gzz) by (3.6). From (3.8) and
(3.10) it follows that (Gl,Gz) restricted to Picm2 satisfies
(3.3). Hence, from (3.1) equivalent to (3.6) it follows that
(3.2) equivalent to (2.6) is satisfied.

The immersion F from Proposition 2 is called a solution of
(3.7), where (Gl'Gz) is defined by (3.10) and K(u,v) by
(3.11). Such a solution has the properties explained in
Proposition 1. A solution F of (3.7) defines a surface
x(Pi)cE3 for every ieN.

Namely, we have

Proposition 3. Let F denotes a solution of (3.7). For
every ieN there exists a surface x(Pi)cE3 such that x(u,v),
v=const, x(u,v), u=const, are lines of curvature on x(Pi).

Proof. From Proposition 2 we get that there exists a

metric (911'922) in orthogonal coordinates (u,v)ePi with
Gauss curvature (3.11). From (2.12) we get Lll’ wvhere
(gll,gzz) is defined by (3.6), and from (2.7) we get L on

22
Picnz. From the fundamental theorem of surface theory it fol-

lows that there exists a surface x(Pi)cE3 referred to 1lines
of curvature such that (g11’922)' (L11'L22) are respectively
the first and the second quadratic forms of this surface.

4. Surfaces of constant Gauss curvature

a) K=-c2, c#0. In this case from (2.20) we get up to a
scale transformation of the form

u v

4.1  T={ V@ ag, T={ VI(m dan, (uv)ep, ien,
u. V.
1 1

the formula
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1
(4.2) g11 + g22 == .
c

We substitute (4.2) into (2.6) setting

(4.3) 9, = ii sin2 % r 9y, = ii cos? % , O<k«m.
We get

(4.4) k,22 - k,ll = sink.

After the change of coordinates

(4.5) U-vVv=uy u+vs=y

(4.4) takes the form

(4.6) E,lz = sink, k(u,v) = k(u-v,u+v), oOo<k<n.

Setting K=—c2, -czgll(u,vi)+¢i(u)=1 into (2.12) we get

= - =1 gj

(4.7) L11 = L22 5 sink.

From (3.1) we get that the spherical metric of (4.3) is
_ _ 2 _ _ 2

(4.8) G1 =1 € dyqs G2 =1 S PP

b) K=c2, c#0. From (2.20) we get
4 2 — 2 — :
(4'9) c 911922 = (C g11+¢i(u)) (C gZZ—Wi(V))I (u,v)ePi, 1ENI
where Ei(u), Wi(v) are positive functions. After the sqale

transformation (4.1) we get from (4.9)
(4.10)

922 7911 % 2
Setting in (4.10)

_ 1 2 k _ 1 2k
(4.11) gll = c—z- sh 3 ¢ 922 = cz ch 3
we get from (2.6)
(4.12) k,zz - k,11 = shk, k>0 (or k<0).
After the change of coordinates (4.5) we get from (4.12)
(4.13) k 12 = shk, k(u,v) = k(u-v,u+v), k>0 (or k<0).
’

Similarly as in (4.7) the second quadratic form is defined by

= -1
(4.14) L,, = L,, = 55 shk.

The spherical metric of (4.11) is

_ 2
(4.15) G1 = c gll+1, G2

The spherical metric (4.8) has the following property,

2
= c%g,,~1.

which is not satisfied by the metric (4.15). There does not
exist a surface x(Mz)cE3 of Gauss curvature 1 such that
x(u,v), v=const, and x(u,v), u=const, are uniquely defined



10 M. Rochowski

lines of curvature and
(4.16)  as® = G,au’ + Gav?,
where (Gl'Gz) in (4.16) is the metric (4.8). Indeed, from
(4.3) and (4.8) we get
(4.17) G, +6, =1,
while every metric with the above mentioned properties
satisfies (4.10).
Complex curves ﬁ, 3 defined by
(4.18) (U+v)i = u, u-v=v, i=v~-T, ,
of

Gauss curvature K=c2, referred to the lines of curvature. 1In

are called complex asymptotic lines of a surface x(Mz)cE

the coordinates (G,Q) the first and second quadratic forms
are defined by

2 -1

(4.19) as? = %(dﬁ2 - 2chkdudv + av?), n.da%x = zshﬁdeG,
(o] C

where k(u,v) = k((u+v)i,u-v). From (4.19) it follows that the
complex asymptotic lines form on a surface of Gauss curvature
K=c2, referred to the lines of curvature a Chebyshev net.

5. Surfaces of negative Gauss curvature in E>

Before considering the general case we prove the following

Theorem 1., The surface area of every surface x(Mz)cE3,

where x denotes an immersion (2.1), of a connected manifold
MzcEz, of Gauss curvature K=-c2, c#0, is less than or equal
2n
c2 ’

Proof, The surface area Ag(Mz) of x(Mz) is

2y _
(5.1) A (M%) = S ZVGIIGZE dudv .
M
From (4.3) and (5.1) we get
(5.2) A () = L g sinkdudv, O<k<m.
g 2¢® Y2
Since MzcE2 is open, it is a measurable set. Hence, there
exists an increasing sequence {Mi}neN of manifolds MicMz

with boundary ami such that
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2 2 ® 2 2
(5.3) sup A_(M%) = A_(M M° =M
sup Rg(tn) = Ag(M), L) My =

and anﬁ is a polygon for every n=1,2,.... From (5.2) we get

2 sink_dudv, o<k _<m,
2 n n
2Cc 2
M
n

2y -
(5.4) Ag(Mn) =

2

where kn(u,v) is the function k(u,v) restricted to Mn. For

(u,v)eE2 N Mi wve set

n, if vz-uzzo,
(5.5) k,(u,v) =

0o, if uz-v2>0.

By means of the extension (5.5) the formula (5.4) can be

written in the form

[es] [+ ]
2y _ 1 .
(5.6) Ag(Mn) = ;;5 S X sink dudv, 0<k <m.
-® -

After the change of coordinates (4.5) in (5.6) we get

24 o
2y, _ 1 o = -
(5.7) A (M) = > 5 g sink dudv, o<k <m.
- =N

Since 0 and n are solutions of (4.6), we get from (4.6), (5.5)
and (5.7)

] o
2y _ 1 = =
(s.8) A () = % [ ] %, 1,000 .
-0 =

From (5.5) and (5.8) it follows

[++] o
2y =1 X =3
(5.9) Ay (M) = > 5 S K, 1,484V =
- -
= lim li [En(a,a) - En(a,-a) - En(-a,a) - En(-a,-a)]s 3% .
a—o C c

From (5.3) and (5.9) it follows

2, _ 2y
(5.10) A (M%) = ::g Ag(Mn) = = .

A similar estimation to that of (5.10) for surfaces of
positive, constant Gauss curvature K=c2, c#*0, 1is not valid.
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Indeed, from (4.11]) and (5.1) we get

(5.11) Ag(Mz) -1 S shkdudv, k>0.
2

2¢® Y
Since there exist unbounded solutions of (4.12), it follows
that (5.11) can be unbounded.
The Theorem 1 was proved by the assumption that the
surface x(Mz)cE3 is referred to the lines of curvature. We
prove that this assumption can be neglected. We have

Theorem 2, If
(5.12) y:N2—E?, N2cE?,
is an isometric immersion of a connected, Riemannian manifold
(Nz,g), where g is a Riemannian metric of negative Gauss
curvature: K(s,t)<0 for every (s,t)eNz, then there exists a

manifold M°cE? and a diffeomorphism

(5.13)  s=a(u,v), t=B(u,v), (s,t)eN?, (u,v)eM?,
of M2 on N2 such that
(5.14)  x(u,v)=y(«(u,v),B(u,v))

has the properties of the immersion (2.1).

Proof. The system of partial differential equations of the
lines of curvature of the surface y(Nz) has the form

%8 _ ¢ B ot _¢.B 6s _ ¢ .., 2t £,8,

(5.15) u - T1B11r 3u = £1B12r v T f2Boyr By

¢
Since the Gauss curvature is negative, it follows that the

orthogonal vectors (B are different from

11°B12)r (Byy/By5)

the zero vector at every point of N2

defined on N2 are integrating factors. The proof that

. The functions fi' i=1,2,

integrating factors fi¢0 exist (on the whole of Nz) belongs to
the theory of partial differential equations and we omit it
here. The system (5.15) is completely integrable. Hence, by

the theorem of Frobenius, for every (so,to)eNz, (uo,vo)eE2
there exists a rectangle PocE2 with center (uo,vo) and
uniquely defined functions ao(u,v), Bo(u,v), (u,v)ePo, such

that ao(uo,v0)=so, Bo(uo,v0)=to, which satisfy the system
(5.13). We denote
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(5.16) @y = {(s,t) | s=ay(u,v), t=ay(u,v), (u,v)eP,}.

The curves Xq (u,v), v=const, X, (u,v), u=const, where
F (u, v)=y(a (u, v) Bo(u v)), are llnes of curvature of the sur-
face y(Qo)cy(N ). There exists an at most countable covering
{Ql} of N such that

ieN
(5.17) Qi = {(s,t) | s=ai(.u'v)' t=Bi(urV): (ulv)epi}l
where ai(u,v), Bi(u,v), (u,v)ePi, .are uniquely defined

solutions of the system (5.15) in the rectangle Pi with center
(ul,v ). The curves Xy (u,v), v=const, x. (u v), u=const, where
X, (u v)—y(a (u,v), B (u, v)), are lines of. curvature of y(Q ).

If anthz, then we can choose the center (uk, k)eE such
that ai(u,v)=ak(u,v), Bi(u,v)=Bk(u,v), if and only if (u,v)e
ePinPk. X' keN,
choosing if necessary a new center (uk,vk), such that the

Step by step we can improve the definition of P

intersections of the Q. ieN, coincide with that of the P,
ieN. After that we define

(5.18) (a(u v),B(u,v)) = (a;(u,v),a;(u,v)), (u,v)eP,,
M2=_Jp,.
ieN

Obviously MzcE2 is diffeomorphic with N and x(M ), where x
is defined by (5.14), is the surface y(N ) referred to the
lines of curvature and of Gauss curvature K(a(u,v),B(u,v)).

As a consequence of Theorems 1 and 2 we get the theorem of
Hilbert.

Theorem 3. There does not exist an isometric immersion of

a complete, connected, Riemannian manifold (Lz,g) with Gauss

curvature K=-c2, c#0, into E3.

Proof. There exists an atlas on 1? with a single chart
(Ez,h), h:Lz—eEz. Let us suppose contrary to the assertion of
Theorem 3 that there exists an isometric immersion

(5.19) y:E2E3

of (Lz,g) written in the chart (Ez,h) into E3. From Theorems 1

and 2 it follows that the surface area of the surface y(Ez)cE3
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is less than or equal Zg . This is possible only if ? is a
c

covering space of y(Ez), but the only surfaces with this

property are closed, orientable surfaces of genus 2. Such a

surface provided with a Riemannian metric of constant Gauss

curvature K=-c2, c*0, cannot be imbedded isometrically in E3.

Example 1. The surface of revolution in E> of the conic
type of Gauss curvature K=-c2, c*0, has the equation

u

g v 1—b2czch2cn dn,
0

E3

, b and c are

(5.20) y(u,v)=bshcu(e1coscv+e sincv) + e

2 3

where oe1e2e3 is an orthonormal frame in

positive numbers such that 0<bc<l and M? is defined by
1 27
(5.21) 1<chcu<B€ ’ o<v<—E .

The Riemannian metric of (5.20) is

(5.22) d52 = du2 + bzczshzcudvz.
We define
(5.23) x(u,v) = y(u,v) + bcve

4’
where u satisfies the first inequalities of (5.21) and -w<v<w.

18,838, Ve denote an orthonormal frame in E4. The

Riemannian metric of (5.23) is

By oe

(5.24) d52 = du2 + bzczchzcudvz.

Hence, (5.23) defines in E4 a surface of Gauss curvature
=-c2, c#0, and unbounded surface area. We have

u u
1l 1.0
(5.25) S S Vgllg22 dudv = be g S chcu dudv = o,
u u
0 -» 0 -
where 0<bc<l and the numbers uy, vy, 0<u0<u1, satisfy the
first inequalities of (5.21).
Moreover, let
= i n
f3 = e,cosy + e,sin7y, 051<2 R
f4 = -eysiny + e, cosy.

We take a projection of the surface define by (5.23) in E
spanned by the orthonormal frame oe1e2f3. We get
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(5.26) xw(u,v) = bshcu(elcoscv + e,sincv) +

2

/=232 32
f3 S 1-b“c“ch“cn dncosy + becvsiny|,
0

where u satisfies the first inequalities of (5.21) and ~-wo<v<wo.

The Riemannian metric of (5.26) has the form

2 _ 2 2
(5.27) ds® = gwll(u)du + 29112(u)dudv + g122(u)dv '
where
(5.28) 9,11 c0521 + bzczchzcusinzw,
/ 2.2 .2 .
(5.29) g112 = bev 1-b“c“ch“cu sinycosy,
_ n2 2 2 i .2
(5.30) 9722 = b“¢c”(sh“cu + sin®7y).
The Gauss curvature of (5.27) has the form
2
(5.31) Kw(u,v) = -C f7(u),
where fw(u) is an analytic function of u and 7 and fo(u)=1.
Hence, for every €>0 there exists such a 7, 0<7<g , that

(5.32) |f1(u)-1|<e

for every u which satisfies the first inequalities of (5.21).
From (5.26) it follows easily that there exist such numbers

uro, u11, 0<u70<u11, which satisfy the first inequalities of
(5.21) and (5.26) is an imbedding of the set

2 2
(5.33) M® = { (u,v)eE® | u, g<u<u, ), -0<V<o }

in E3.From (5.28), (5.29) and (5.30) we get

71 ® / 3
(5.34) Su S 95119227912 dudv = o

70 -
and as follows from (5.31) and (5.32) the Gauss curvature
K7(u,v) of (5.27) can be chosen arbitrarily close to -c2.

Now we proceed to the theorem of Efimov. As we see from

Example 1 the argument of Theorem 1 cannot be applied to the
proof of this theorem. Let

(5.35) zZ:N°5E3

denote an immersion of a 2-dimensional, connected manifold N2
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in E® with the following properties: a) the Gauss curvature of
the Riemannian metric g induced from E° on E(Nz) is negative
at every point of Nz, b) the metric space (Nz,dista), where
dista denotes the distance function defined by g, is
comglete. From Theorem 8.1 in (6] it follows that for every
peN

(5.36) exp 2

. 2
i Tp (N) N

is a covering mapping of the tangent space Tp(Nz) to N2 at p

on N2. By means of (5.36) we define in Tp(Nz) the Riemannian
metric (expp)* g = g. Then (Tp(Nz),g) is a complete,
Riemannian manifold with negative Gauss curvature at every
point and (5.36) is an isometric immersion of (Tp(Nz),g) on
(Nz,E). The immersion
(5.37) z = Eoexpp

of (Tp(Nz),g) in E® is called a covering immersion of
(5.35). Thus, for every immersion (5.35) which satisfies the
properties a) and b) there exists a covering immersion (5.37)
with the same properties and the surfaces E(Nz) and z(Tp(Nz))
are identical. Hence, it suffices to consider covering

2

immersions. Let h:Tp(Nz)—»E denote an isomorphism. The

immersion (5.37) written in the chart (Ez,h) we denote by

(5.38) y:E2—+E3,
where E2 in (5.38) is referred to the coordinates (s,t). From
Theorem 2 it follows that there exists a manifold M%cE® and a
diffeomorphism (5.13) of Mz on E2 such that

2
(5.39) x(u,v) = y(a(u,v),8(u,v)), (u,v)eM”,

is the immersion (5.38) referred to the 1lines of curvature.
The Riemannian metric of Mz induced by (5.13) we denote again
by g.

The metric space (Mz,distG), where G denote the spherical
metric of g defined by (3.1) and (3.5), cannot be complete.
Indeed, the Gauss curvature of G is 1 and 2-dimensional,
complete manifold with Gauss curvature 1 is compact (see § 7.3
in [3]), while M?> is an open set. Now, as an immediate

consequence of the theorem of Hopf and Rinow [4]) we get the
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following

Lemma 1. There exists a unit vector eeE2 and a point
(uo,v )eM , where Hz is the manifold in (5.39), such that the
geodesic ray of (M ,G) with origin (uo,v ) and tangent to e at
(uo,vo) has finite length.

Example 2. The universal covering space cs? of s2 N {p,q},
where p and q are antipodal points of the unit sphere Sz, is
different from S2 N\ {p,q}. We have diameter (C82)=m, while

2 we have dist(t,p)<mn,

diameter(sz)=n and for every teCs
dist(t,q)<n, where p,q, are points "at infinity" of cs?.

If (M dist ) is a complete, connected, metric space,
then (M +9) is called a complete, connected, Riemannian
manifold and x(Mz)cE3 a complete, connected surface.

Now, the theorem of Efimov follows from

Theorem 4, If x(Mz)cE3, where x is an immersion (2.1), is
a complete, connected surface with negative Gauss curvature K,
then
(5.40) sup K(u,v) = 0 for (u,v)eMz.

Proof. Let E2 denote the plane E2 completed by points "at

infinity" which correspond to unit vectors on E2. Hence, E? is

diffeomorphic with the closed, unit disk p2cE?. By M we

2

denote the closure of M® in E2. Let p(s)euz, 0<sss°, denote

the geodesic ray of finite length from Lemma 1 parameterized

by the arc length parameter s such that p(s°)=(u°,v°) and
(5,41) lim d1st (p(s), H N M ) =
s5—0
We have
(5.42) lim F(p(s)) = qeS?,
s—0

where F denote the mapping (3.9). Since F is an isometric
immersion of (MZ,G) in 52, the curve F(p(s)), O<sss, , de-
scribes an arc of a great circle Slcsz, and therefore the

limit (5.42) exists. We prove that also

(5.43) lim p(s) = p. = F l(q)eM® \ M

s—0 0
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exists. Let us suppose contrary that p(s8) has two distinct

2

limit points PorP €M™ N\ M2, ve prove that in this case the

geodesic ray p(s), 0<sss_, has infinite length. There exists a

ol
k)15k<m such that lim 8,=0 if k—o and

(5.44) lim p(s.,,) = p lim p(s ) = PpP,-
k 2k o’ k 2k+1 1

decreasing sequence (s

Since Py*P, it follows from (5.44) that there exists a number
k such that

(5.45) klim inf distG(p(szk),p(szk+1))>x>0.

From (5.45) it follows that there exists such a subsequence

(kn) 1sn<wm that

(5.46) distG(p(szkn),p(szkn+1))>x for n=1,1,...

From (5.46) we get

-]
(5.47) ) aistg(R(s,, ),Plsyy 4y)) = o
n=1 n n

contrary to the assertion of Lemma 1. This proves (5.43).

We choose 8, such that o<s°sg. Let B(q,so)cs2 denote a

closed disk with radius So
cF-l('ﬁ(q,so))cM2 we denote this component of F—l(ﬁ(q,so))
which contains the geodesic ray p(s), O<sss g 0) the

mapping F is bijective and therefore a diffeomorphism. Hence,
s X

and center . By D(po,so)c

. On D(po,s
the boundary 8D(p0,so) of D(po,so) in M® is a differentiable
curve without selfintersections. Now we investigate D(po,so)c
cM? with respect to the Riemannian metric g=(g11,g22). Every

two distance functions distgl, distgz defined by positive
definite Riemannian metrics g9, 9, on M% are topologically
equivalent (see Proposition 3.5_in {5]). In particular distG
and dist_ are topologically equivalent. Hence, the mapping

defined by (3.9) and restricted to D(PqysSg) «
homeomorphism of the metric space (D(po,so),distG)

homeomorphism of the metric space (D(po,so),distg).'Therefore,

F
being a
is also a

from dist(po,aD(po,so))=s0 it follows that there exists a
number A, 0<Aso, such that
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(5.48) lim inf d1st (p(s), aD(po,so)
s—0
since otherwise q=F(po) would be a cluster point of
F(8D(py,84)) -
We have

) = A

Lemma 2. By the assumptions of Theorem 4 there exists a

geodesic ray ra(t)eD(po,so), 0st<w, of (Mz,g) such that aeE2
denotes the unit vector tangent to ra(t) at raﬁo)eaD(po,so)
and
(5.49) lim ra(t) = Pgyr

t—

where t, 0st<w, denote the arc length of ra(t).

Proof of Lemma 2, By c(s S8) we denote the shortest
geodesic segment which joins p(so) and p(s) in (M ,9). By the

denote

theorem of Hopf and Rinow c(so,s) exists. Let (sk)15k<w

a zero sequence. From (5.43) it follows
(5.50) lim p(sk) = Pg-

k—w»

By a, we denote the unit tangent vector to c(so,sk) at p(so).

There exists a convergent subsequence (ak ) of (ak) such that

(5.51) lim a, =a
i— i
1s a unit vector. By r (t) we denote the deodesic ray of

(H ,9), tangent to a at p(s and parameterized by the

)
0
arc length t. By the theorem of Hopf and Rinow we have O0Ost<m.
Since a geodesic ray ra(t) defines exactly one point "at

infinity" which corresponds to a, we have

(5.52) lim r_(t) = p,eM® \ M.
t—o
Let us suppose contrary to (5.49) that P,*Py- There exist
. . o2 _
neighborhoods Uo of Py and U1 of P, in E®” such that UonUl—a.

There exists a neighborhood V1 of ra(t), 0st<w, such that
U eV, and V,nU,=2. Hence, there exists such an integer io that
for 1>1o the geodesic ray r, (t), Ost<w, tangent to ay at
. i
i
p(so), which contains the geodesic segment c(so,sk ), is
i

contained in V.. Therefore p(sk )eV1 for i>i_.. On the other
i

1 0
hand from (5.50) it follows that there exists an integer jo
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such that for i>jo we have p(sk )er. For i>max(i°,jo) we
i
get p(sk )ernV1 contrary to the fact that these sets are
i

disjoint. This contradiction proves (5.49).

From (5.48) and (5.49) it follows that there exists such a
number tozo that ra(t) belongs to the interior of D(po,so)
for every t>to and ra(to)eab(po,so). We set t°=0. This ends
the proof of Lemma 2.

We have
(5.53) s Vgllg22 dudv = o.
D(POISO)

Proof of (5.53). Let t1>0. There exists such a number u>0
that

(5.54) distg(ra(t),ab(po,so))zu for every tztl.
Indeed, otherwise we get
(5.55) tlim inf distg(ra(t),aD(po,so)) = 0.

From (5.48) and (5.49) it follows that (5.55) is different
from zero. This contradiction proves (5.54). Since (Mz,g) is
a complete manifold with negative Gauss curvature at every
point, it follows that on Mz there exists a polar, geodesic
coordinate system (U,V), 0su<w, 0sV<2m, with the only sin-
gularity at the pole u=0, such that

(5.56) as? = g au? + g, av? = au’ + B(T,V)dv?,
where v=0 is the equation of the geodesic ray ra(t) such
that ra(t1)=(0,0). From (5.54) it follows that for every u,
0su<w, there exist two numbers Vl(ﬁ), Vz(ﬁ) such that

v, (®)
(5.57) S B(W,V)dv = 2u.

v, @
From (5.57) we get
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v, (1)
(]
(5.58) S Vgllgz2 dudv 2 S du S B(W,V)dv = o.
D(Pg/S,) ° v, @

From (5.58) follows (5.53).
On the other hand from the definition of D(po,so) it
follows

(5.59) S |K|vg ;9,5 dudv = S VGG, dudv = 2m.
D(polso) D(polso)

From (5.53) and (5.59) follows (5.40).

6. Special surfaces

Let (2.1) denote an immersion such that
L L

(6.1) e _22 , a#0,1, a=const.
911 922
From (2.2) and (2.7) it follows that L11' L22 in (6.1) are

different from zero.
We have the following

Theorem 5. Let us suppose that (gll,gzz), (L11’L22)
besides (2.7), (2.8) and (2.9) satisfy (6.1) for every
(u,v)eMZ. Then the Gauss curvature satisfies the following
condition: c) for every (uo,vo)eM2 and every neighborhood
UcM2 of (uo,vo) there exists such a point (ul,vl)eU that

(6.2) K(uo,vo)ax(ul,vl).
If the Gauss curvature satisfies c¢), then K satisfies the
equation
a=1
K K _—
, 2 , 1 - - a+l
(6.3) o 5 + 5o (x+l)k
a+l |,2 T )1
a-1 a-1
where xa+1 =vK , a>0, a#l, if K>0 and xa+1 = v-K , «a<0,
a#*-1, if K<O0. For a=-1 we get for all minimal surfaces
(6.4) Ak=2e"®, k = log 1 ,

VR

where A denote the Laplace operator.
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Proof. Let us suppose contrary to (6.2) that there exists
an open set Ucu2 such that

(6.5) K(u,v) = Ko # 0 for every (u,v)eU, K°=const.
From (2.7) and (6.1) we get

L2

11

(6.6) -3 = oK.

911
From (2.12), (3.1) and (6.6) we get

_ _ 1

(6.7) K922 = an ’ Kg11 = 361 .

where a>0 if K>0 and a<0 if K<O. From (3.1), (6.5) and (6.7)
we get

After a scale transformation of the form (4.1) we get
gll=922=1 and therefore K_=0 contrary to (2.2). This proves

0
c).
The set
_ 2 2 2
(6.9) A= {(u,v)eM® | K. + K°_ = 0}
/1 ’2
is closed and non dense in Mz, i.e. every point of A is a
limit point of the open set B=M? N\ A, since, otherwise there
would exist an open set UcM2 such that K 1(u,v)=l( 2(u,v)=0
’ ’
for every (u,v)eU and therefore K(u,v)=const for (u,v)eU

contrary to (6.2). Differentiating (6.7) we get

= (o= = (1 -
(6.10) K 1955 = (a=1)Kgy, , , K ,9,, = (5 = 1)Kg;, , -
The solution of (6.10) is up to a scale transformation of the

form (4.1)
a 1

l1-a a=-1
|| ' = |K|

(6.11) g11 = gz2

For (uo,vo)eA we define 9117 9p, 23S limit values of (6.11)
if (u,v)eB tends to (uo,vo). From (2.6) and (6.11) we get
(6.3) and (6.4).

Conversely, we have

Theorem 6. If a function K(u,v) satisfies in Mz the

equation (6.3) for «a#0,1,-1 or (6.4) for a=-1, then K(u,Vv)
satisfies the condition c) and there exists a unique solution
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of (2.7), (2.8), (2.9) and (6.1) in M2 such that K(u,v) is the
Gauss curvature of (2.1).

Proof. From (6.3) and (6.4) it follows K(u,v)=0 for
every (u,v)enz. We define (911’922) by (6.11). From (2.7) and
(2.11) we get (Lll’Lzz) such that (6.1) is satisfied. Now, as
in the proof of Theorem 5 it follows that K satisfies c).
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