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SUBDIRECTLY IRREDUCIBLE LEFT NORMAL BANDOIDS, I

Introduction

This paper is a continuation of the authors work {1] and
(2] devoted to investigation of algebras called 1left normal
bandoids. In [1] the lattice of varieties of such algebras was
described and in [2] some construction methods were discussed.
In this paper we begin our study of subdirectly irreducible
left normal bandoids. We use the notation and terminology of
[2]. Our numbering begins with Section 4. References in
Sections 1 through 3 are to the relevant parts of [2].

In Section 4 a congruence relation of the bandoid
constructed in Section 3 is discribed that plays an important
role in the sequel. In Section 5 some sufficient conditions
are given for this bandoid to be subdirectly irreducible.
Finally, in Section 6 it is shown that certain subalgebras of
subdirectly irreducible bandoids considered in Section 5 are

subdirectly irreducible as well.

In subsequent papers it will be shown that the subdirectly
irreducible left normal bandoids constructed in this paper are
in fact all finite subdirectly irreducible left normal
bandoids.

For more information concerning left normal bandoids and
general algebraic concepts we refer the reader to [1], (23,
and references there.
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4. An important congruence relation

Let L be a complete lattice satisfying the distributive
law (3.1) and let R be a subset of SL such that (1, 1) € R. We
introduce a congruence relation on B(L, R) that will play an
important role in the next section. Let us define the relation

p on B(L, R) as follows:
(4.1) X pYy iff lxy1 = 1y1 and 1yx1 =~1x1

for every x € B(L,R) with X =X, Y,=Y.

1Yy
To prove that p is a congruence relation on B(L, R) we

need some lemmas.

Lemma 4.2. For every x in B(L, R) the left multiplication
L(1) :(xT(B(L, R)),-) — (1T(B(L, R)),*); zm1l-z 1is a
monomorphism.

Proof. By Proposition 1.3 it is enough to show that the
mapping L(1) is one to one. Let =z,t € xXT(B(L, R)), 2=Y o

t=scd and 1z=1t. By Remark 1.1 zt=tz. Since zteSab and tzescd,

it follows that (a,b) = (c,d). So t=sa By definitions (2.2)

b*
and (3.3),

1z = 1'¢ab112 = ¢ab112 = Y(v € (b]l va = y)
and

1t = 1'¢ab11t = ¢ab11t = )(v € (b]|l va = s).

Since 1z=1t we have

(v € (b]]l va = y) Y(v € (b)]| va = s).

Consequently

a‘y(v e (b]l va = y) a-y(ve (b]l va =1s).
Thus by distributivity (3.1) of L we conclude that y = s, and
in consequence z = t. [
Lemma 4.3. For every XyiXgreor X € B(L, R) and 2=<i=n the
following identity holds:

es X

X.Xpeo X = X X o..X. . .
172 n x11x1+1 n

172
Proof. By Propositon 1.9,
1x1x2...xn = 1x1x2...xi1xi
Hence by Lemma 4.2,

+1...Xn.
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eeeX . [ ]

= ce e X 1X,
X% XX 1771+1 n

1¥2°--¥pn T %1%
Lemma 4.4. For every x,y in B(L, R), if xpy then
(1) ({x,Y},) is a left zero semigroup
and
(ii) 1x = 1y .

Proof. Let xpy. By (4.1) it follows that

(4.4.1) 1xy = 1y

and consequently ylxy = yly. Hence by Lemma 4.3 we get
yxy = yy and by Proposition 1.9, yx = y. Analogously we show
that

(4.4.2) Xy = X.

Therefore ({x, Y}, -) is a left zero semigroup.
The equality (ii) is an immediate consequence of (4.4.1)
and (4.4.2). [ ]

Proposition 4.5. The relation p is a congruence relation
on B(L, R).

Proof, It is evident that the relation p is reflexive and
symmetric. To prove the transitivity let us assume that x p vy,
ypz, x. =sx and z,s z . Then

1 1
lle = 1xlz, by Proposition 1.9
= 1x1yz1 by (4.1), since y p z and zls z
= lxyz, by Proposition 1.9
= 1yzl by (4.1), since x p y and Yz,= Yy
= 1z1 since y p z and z,= z.
Analogously we show that 1zx1= lxl. Therefore x p 2z, and

consequently p is transitive.
Now it remains to show that x p y implies 2zx p zy and xz p
yz, for every x, y, 2 € B(L, R). Let x, y, 2z € B(L, R) and x p

Y. To show that zx p zy, let us assume that yls zy and X, % 2X.
Then
Zx = z1x by Lemma 4.3
= z1ly since x p y and by Lemma 4.4(ii)
= zy by Lemma 4.3.

Consequently l(zx)y1 = 1(zy)yl. But since Y, ¥ 2y, (zy)y1= Yq-
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Therefore

(4.5.1) 1(zx)yl = 1y1.
Analogously we prove that

(4.5.2) l(zy)x1 = lxl.

By (4.5.1), (4.5.2) it follows that

(4.5.3) ZXpzZy.
It remains to show that xz p yz. Let Y = Yz and X, = XZ.
Then
1(xz)y2 = l(xz)(xyz) by Proposition 1.8
= (1xz)(1xy2) by Proposition 1.3
= (1xz)(1y2) since x p y and yzs Yz =y
= (1yxz)(1y2) since x p y and xz = X
= (1y1xyz)(1y2) by Proposition 1.9
= (1y1yz)(1y2) since x p y and yz s y
= (1yz) (1y,) by Proposition 1.9
= 1(yz)y2 by Proposition 1.3
= 1y, since Y = YZ .

Similarly we prove that 1(yz)x2= 1x Thus xz p yz, which

5
finishes the proof. ]

Remark 4.6. Let x, y € B(L, R). Then x p y if and only if

(i) 1x = 1y
and
(ii) the left multiplications :

L(x): (yT(B(L,R)),-) — (xT(B(L,R)), ) and
L(y): (xT(B(L,R)),') — (YT(B(L,R)),")

are semilattice isomorphisms.

Proof. () By Proposition 1.3 the mappings L(x) and L(y)
are semilattice homomorphisms. So it suffices to show that
they are one to one and onto.

Let Xy.%, € xT(B(L,R)) and YX; = ¥Xx,. Then 1yx1 = lyxz.

Since x p Yy, xls x and X,5X, we have that 1x1= 1x2.

Lemma 4.2, x1 = x2.

Let Y, € yT(B). Note that since x p y and Y, =Y, 1xyl =

Hence, by

Therefore L(y) is one-to-one .
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lyl. Hence ylxyl = ylyl. Using Lemma 4.3 we get yxy, = Yy, =
L(y)(xyl) and consequently L(y) 1is onto.

Yqe Therefore Y,
Analogously we prove that L(x) is one to one and onto. So the
condi%ion (ii) 1is satisfied. The condition (i) follows
immediately from Lemma 4.4(ii) and the assumption that x p y.

(¢) Let x, = x and Y, = Y- Note that

1

1y, = 1lyy, = (1y) (yy,) by (B3)
= (1x) (vy,) by (1)
= (1¥)y,

= (1ly,) (xy;) by (B5)

= (lyl)(lxyl) by Proposition 1.8

= (1xy1)(1y1) by Remark 1.1

= (lgyl)y1 by Proposition 1.8

= (lxyl)(yxyl) since by Proposition 1.9, XyXy =Xy,
and L(x) is one to one

= (1y) (xy,) by (B5)
= (1x) (xy,) by (1)
= 1xy1 by (B3).

Analogously we show that 1yx1 = 1x1. By (4.1), x p vy, which

completes the proof. (]

For an algebra A and a congruence 'relation p on A the
symbol Ap denotes the quotient algebra, and aP the congruence
class of a.

An 1immediate consequence of Proposition 4.5 is the

following

Corollary 4.7. B(L, R)p is a left normal bandoid. =

Remark 4.8, For each zﬁy in B(L, R)p, the following holds:

R

(2hyT(BL, RYP), ) = (2, T(B(L, RIP),) = ((z],°).

The mappings ¢ : ((z],-) — (zxyT(B(L, R)),") i u + Uyy
and v o: (zxyT(B(L, R) ),') — (zzyT(B(L, R)P), )
u_ - uf
xy Xy

are semilattice isomorphisms.
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Proof. Note that zxyT(B(L, R)) = {uxy: u € (2)]}. There-

fore, as an easy consequence of (3.2), we get that ¢ is an
isomorphism. We will show that ¥ is an isomorphism as well.
Obviously ¥ is a homomorphism. It remains to check that y is

one to one and onto.

P _ 4P
Let s t € zxyT(B(L, R)) and s tXy . Then by Lemma

xy’' “xy Xy

4.4({sxy, txy},-) is a left zero semigroup, i.e. sxy = Sxytxy
lie in the same orbit zxyT(B(L,R))

and t But sxy,t

xy” CxySxy’ xy

and hence, by Remark 1.1, sxy-txy = txy'sxy' Therefore sxy =

t and ¥y is one to one.
Xy

It remains to prove that ] maps onto the set
P P
zxyT(B(L,R) ).

p P P p _ P P
Let . € zxyT(B(L, R)"”). Then by Remark 1.6, aye zxy ayc
P _ . P ; P _ .
and consequently aApe (zxy abc) »ol.e.ap. np(zxy abc). By
Remark 1.6 zxy-abcezxyT(B(L,R), which completes the proof. [ ]

Let us note that, in a finite left normal bandoid, each
orbit with the bandoid partial order defined in Proposition
1.5 forms a lattice. As an immediate consequence of Remark 4.8
we obtain:

Corollary 4.9. If L is finite then the lattice (L,=
isomorphic to the lattice (1°T(B(L,R)P),=).

L) is

Example 4.10. Let L. and R be as in Example 3.14. The
bandoid g(L,R)p is presented in the picture below.

Figure 4.11. ]
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Example 4.12, Let L and R be as in Example 3.17 . The
bandoid B(L, R)p is pictured below.

Figure 4.13. =

5. Some subdirectly irreducible left normal bandoids

The aim of this section is to prove Theorem 5.6. This
Theorem shows that if L and R satisfy certain conditions, then
the bandoid g(L,R)p constructed in the previous section is
subdirectly irreducible.

In the whole section let B = (B,:) be a finite left normal
bandoid.

Lemma 5.1, For all distinct elements x, y in B the princi—'
pal congruence ©(x, y) on B contains a principal congruence
®(u, w) such that

(i) u<yv
or
(ii) ({u, v},-) is a left zero semigroup, uT(B)\VvT(B)={u}
and vT(B)\uT(B) = {Vv}.
Proof. Let x, y be distinct elements of B.
If x#xy then, by (B2), xy<x and for u=xy, v=x we have that
u<v and @(u,v) = @(xy,x) = @(xy,xx) = O(xx,xy) € 0(x,y).

There is a similar situation in the case y#yx.

Now let us assume that x=xy and y=yx. Note that the set
XT(B)\YT(B) is nonempty since xexT(B)\yT(B). Indeed, if xeyT(B)
then by Remark 1.1 xy=yx and hence x=y, a contradiction.

Let Min(xT(B)\YT(B)) be the set of all minimal elements in
(XT(B)\YT(B),=), and let ueMin(xT(B)\yT(B)).
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Note that (yu)T(B)\xT(B) is nonempty since yue(yu)T(B) and
yuexT(B). Indeed, by Remark 1.1 yuexT(B) . implies that
(yu)u=u(yu). Consequently, by Corollary 1.11, yu=uy. But by
Proposition 1.8 uy=uxy, and since xy=x and uexT(B), uy=ux=
xu=u. So we have yu=u. By Remark 1.6 it follows that ueyT(B),
contradicting the fact that ueMin(xT(B)\yT(B)).

Let v € Min((yu)T(B)\xT(B)). Then we have

vu = v((yu)u) by Proposition 1.8, since ve(yu)T(B)
= v(yu) by Corollary 1.11
= v since ve(yu)T(B), by Remarks 1.1, 1.6.
Therefore
(5.1.1) vu = V.

We will show that uv=u as well. By (B2), uv=u. Suppose that
uvzu. Since u is minimal in (xT(B)\YT(B),=<), we have uvsy.
Thus v and uv lie in the same orbit yT(B). By Remark 1.1 it
follows that v(uv)=(uv)v. Consequently, by Corollary 1.11,
vu=uv and by (5.1.1) v=uv. So we have v=uv=u=x. Hence vsx,

i.e. vexT(B), which gives a contradiction. Therefore

(5.1.2) ({u, v},:) is a left zero semigroup.

Now we will show that uT(B)\vT(B)={u}. Suppose that
uleuT(B)\vT(B) and u, #u. Then u, <u. Since u is minimal in
(xT(B)\yT(B),=), we have uleyT(B). Also veyT(B), whence by
Remark 1.1, vu,=u,v. Thus by Proposition 1.8 and (5.1.2),
vu1=u1v=u1(uv)=ulu=ul. Hence ulsv, i.e. ulevT(B), a contradic-
tion.

Analogously we show that vT(B)\uT(B)={v}. It remains to
prove that ®(u,v) <€ 0(x,y). Indeed

@(x, y) 2 ®(xu, yu) = @(u, yu) 2 @(uv, (yu)v) = @(u, v),

which completes the proof. =

Recall that in a finite left normal bandoid, each orbit
with the bandoid partial order defined in Proposition 1.5 is a
lattice. In what follows the symbol JI(L) denotes the set of

all join irreducible elements of a lattice L .

Lemma 5.2. If there are a, b in B such that
(i) b < a
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and for all x, y in B

(ii) X<y implies ax=ay,

(iii) if x,y satisfy the condition 5.1(ii), then ax=ay,

(iv) if xeJI(aT(B))\{0} and y<x, then there exist a

mapping a« € L(B) such that ay = b and ax = a,
then B is subdirectly irreducible and 8(a, b) is the monolith
of B .

Proof. Let a, b be elements of B satisfying the conditions
(i)\(iv). We will show that @®(a, b) is the least nontrivial
congruence on B. Let x,yeB and let x<y or x,y satisfy the
condition 5.1(ii). By Lemma 5.1 it suffices to show that ©(a,
b) € (%, Yv).

Note that by (ii) and (iii), ax=ay. There exists
teJI(aT(B)) such that t=ay and t=ax or such that t=ax and
t=ay. By symmetry we may assume that teJI(aT(B)), t=say and
t=ax. Then t=t(ay) and t(ax)<t. By (iv) there exists aeL(B)
such that a(t(ax))=b and at=a. So we have a«a(t(ax))=b<a=at.
Therefore

B(a, b) € 8(a(t(ax)), at) < ©(t(ax),
t) € B(ax, ay) € 0(x, y). [ ]

Let L be a finite distributive lattice and R be a subset

of =L containing the element (1,1). Let us consider the
bandoid g(L,R)p defined in the previous section. The following

lemmas hold.

Lemma 5.3. Let xp,ype B(L,R)p and xP< yp. Then 1PxP= 1pyp.
Proof. Suppose on the contrary that 1PxP= lpyp. To arrive
at a contradiction, we will prove that xP= yp.

First note that xp<yp implies

(5.3.1) (yx)P= xP.
Hence by Lemma 4.4 (1)
(5.3.2) 1yx = 1x.

Since 1PxP= 1pyp, i.e. (1x)p= (ly)p, by Lemma 4.4(ii) we have
that 11x = 11y. Consequently, by (B2),

(5.3.3) 1x = 1y.

From (5.3.2) and (5.3.3) it follows that 1y = 1yx. Hence, by
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Lemma 4.2 we obtain
(5.3.4) Yy = yx .

To prove xp=yp let us assume that x_.=x and Y, =Y.

1
Then we have

1xy1 = 1xy1x by Proposition 1.9
= 1xy1yx by Proposition 1.8
= 1y1yx since Y,¥x = yx and by (5.3.1) yx p %
= 1y1y by (5.3.4)
= 1y1 since y,= y.

It remains to show that 1yx1= 1x1.

Now

1yxl= lyxx1 since xls X
= 1(yx) (xx%,) by (B3)
= 1(yx)x1 since xls X
= 1x1 since X=X and yx p X.

This completes the proof that xP= yp and gives a contradiction

to xP< yp. Therefore 1PxP = lpyp. n

Lemma 5.4. Let xp,yp € B(L, R)p and xp,yp satisfy 5.1(ii).
Then

1PxP = 1PyP.

Y

Proof. Suppose on the contrary that 1PxP= 1pyp, i.e.
1x p 1ly. Then by Lemma 4.4(ii), 11x = 1l1y. Hence, by (B2), we
obtain
(5.4.1) 1x = 1y.

Since ({xp,yp},-) is a left zero semigroup, we have x p xy and
Yy p yx. Thus, by Lemma 4.4(ii) it follows that

(5.4.2) 1x = 1xy and ly = 1lyx.

We will prove that xP= yp, which will give a contradiction
to the fact that xp, yp satisfy 5.1(ii). Let x,= x and Y= Y-

1
If x.= x, then

1

1yx1= lyx = 1y by (5.4.2)
= 1x by (5.4.1)
= 1x

1°
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Analogously, if Y= Y then 1xy1= lyl. It remains to show that

for X< X and Y.< Y, 1yx1= 1x1 and 1xy1= 1y1.
P

Let X < X. Then also x€< xF. Indeed, if x€= x", then by

Lemma 4.4 (i) xx = x, contradicting x. < x.

1 1 1
since x? is minimal in (xpT(B(L,R)p)\ypT(B(L, R)p),s) we

= x, whence x

have that xgs yp, i.e. YX,p %, Hence, using Lemma 4.4, we get

Analogously, if y.< y, then 1xy.= 1ly.. Consequently
1 1 1
Fel

1yx1= 1x1.

Xpy, i.e. xP= yp, contrary to the assumption that xp, Y
satisfy 5.1(ii). "

Recall that by Ccorollary 4.9, (1Pt(B(L, R)?P),=) is a
lattice isomorphic to L. Also by Remark 4.8, 1P and o are the
greatest and the least elements respectively in
(1°T(B(L,R)P),=).

Lemma 5.5, Let L be a finite distributive lattice with
exactly one coatom ¢, and 1let R be a subset of = such that

L
*) for every teJI(L)\{0} there exist elements t=x1,x2,...,xn,
zl,zz,...,zn=1 satisfying the following for all i=1,2,...,n
and j=1,2,...,n-1:
(1) (x;,2;) € R
and (ii) X z

1 L%5+41 °L %4
Then for all y e JI(1PT(B(L,R)P))\{0”,1P} and z<y, there
exist o € L(B(L,R)p) such that ay=1p and az<cP.
Proof. Let y e JI(1PT(B(L, R)P))\{2”,0P} and let z<y. By

p

Remark 4.8, y=sp for some s € JI(L)\{1,0} and z=u for some

uel, with u<;s. Let S = Xy Xgyee e XpiZg,2Zo,00e, 2= 1 be
elements of L such that (xi,zi) € R and xlsL xj+1SL zj for
every i=1,2,...,n and j=1,2,...,n-1. Write
Xi= (xi)x.,z. for i=1,2,...,n.
i’77i
. P zP P zP
Let a := L(1 )oL(xn )oL(xn_l)o...oL(x1 ). We want to show that

ay = 1P and az<c?. To prove this, note first that the
following holds for i=1,2,...,n:
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(5.5.1) 1§i = ¢xizillxi by Definition 2.2
= Y(V € (zi]l vex,= xi) by (3.3)
=z since X;= 24 and thus Z X=X, .
Furthemore, for i=1,2,...,n-1 we have
(5.5.2) §i+1§i = §i+11§i by Lemma 4.3
= §i+1zi by (5.5.1)
= §i+1¢11xi+1zi+1zi by Definition 2.2
= §i+1§i+1 by (3.3), since x, ,-z,=x; .
- §i+1 by (B1).

By Definition 2.2, (3.3) and (Bl) it follows that

(5.5.3) X8 = X X = x1¢11xlzlxl= X %= X,
Moreover
(5.5.4) 1xn = 1¢x z 11%n = Z(ve(zn]lv-xn=xn)
n"n
=z, since, X <. 2 and hence 2 XnT X

Putting together (5.5.1), (5.5.2), (5.5.3) and (5.5.4) we

obtain

X X, _q---%;8 = 1.
Thus
p zZPp P P <P = 1P
1" x, X q.-.%X] S 1
and since sP= y we get
PP P 2 P v = 1P
17 % " ox e xt y 1.

By definition of left multiplication it follows that
Pyor(m Pyotts P vo  o1(3 P _ 1P
(L(2F) oL (x ) oL(x £ ) on oL (x,P))y = 2P,
Hence, by definition of «
(5.5.6) ay = 1P.

It remains to prove that az<cP. First we show that the
following condition (5.5.7) is satisfied for each k=1,2,...,
n-1:



Subdirectly irreducible left normal bandoids, I 939

1% Xy 4+ -X UZS,

The proof is by induction on k. Let k = 1. Then

(5.5.7)

sl§1u = silu by Lemma 4.3
= s.¢xlzlll(x1'¢11xlzlu) by Definition 2.2

= s-Y(v € (zl]I X, = xlu) by (3.3)
= su since X,= s and L is distributive
= u since u <;s.
Thus slilu # s and consequently
(5.5.8) 1§1uzs.
Now we prove that for k =1, 2,..., n-1:
IX Xy _q+-+%Xqu = 8 implies k+1 k...x uzs.

Suppose on the contrary that
(5.5.9) Xpe1 k...x u z s.
Then by Remark 1.7 and since s = Xy =p, Xy, We have
(5.5.10) k+1 k...x u = Xp4q1S = S.

Note that by Definition 2.2, (3.3) and distributivity of L,

(5.5.11) xk+11§k+1§k...§1u=xk+1-z(ve(zk+l]|v-xk+1=xk+1§k...§1u)
=Xp1q k ..X ¥ -

By Remark 1.7, since 1 = Xy pq

(5.5.12) 1X Xy g0 X0 2 X X Xp_p- - X U

From (5.5.10) - (5.5.12) it follows that

1xkxk_1...x1u z s

what contradicts the induction hypothesis.

Therefore (5.5.7) holds. In particular, for k =

1xnxn_1...xlu =z s,

To complete the proof that az< cp, note that by Remark 4.8

|

x|
S0 X
X |

(1 cooxu)f oz sPL

P LR PP s SP.

n"n-1

Thus lp

n-1
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Since z = up, y = sP and by definition of «, we have
= 1Pz P 3 P Z P, >
oz 1" x n *p-1"-'¥ 22Y.
P

By Remark 4.8 c is the only coatom in the lattice

(lpT(B(L,R)p,S). Hence yscp and consequently az = cp, i.e.
az<cp, which completes the proof. ' (]

Theorem 5.6. Let L be a finite distributive lattice with
exactly one coatom. Let R be a subset of = satisfying the
condition 5.5(*). Then the 1left normal bandoid E(L,R)p is
subdirectly irreducible. The monolith of B(L,R)? is a
principal congruence ©®(a, b) for some a, b in Q(L,R)p with

b<a.
Proof. Let c be the only coatom of L. Set

a := 1P and b := cP.
By Remark 4.8, b<a. So the condition 5.2(i) holds. By Lemmas
5.3 and 5.4 respectively the conditions 5.2(ii) and 5.2(iii)
are satisfied as well. It remains to show that 5.2(iv) holds.

Let y € JI(1PT(B(L,R)P))\{0P} and x<y. If y=1P=a, then for
a the identity mapping on B(L,R)p, we have ay=a and oax=b,
since by Remark 4.8, b is the only coatom in the lattice
(1PT(B(L,R)P,=). Hence by Lemma 5.25 the conditon 5.2(iv)
holds. By Lemma 5.2 the proof is complete. =

Remark 5.7. The bandoids described in Examples 4.10 and
4.12 are subdirectly irreducible. [

6. More subdirectly irreducible left normal bandoids

In this section we prove that under certain conditions
some subalgebras of the subdirectly irreducible bandoids
considered in the previous section are subdirectly irreducible
as well.

Let L be a finite distributive lattice and 1let R be a

subset of SL containing the element (1, 1).

Lemma 6.1. The element 1P is maximal in (B(L,R)p,S).
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Proof. Suppose that 1psxu€for some xu€ € B(L,R)p. Hence,

by Remark 1.6, 1PT(B(L,R)P) < xuﬁT(B(L,R)p). But by Remark 4.8

(1PT(B(L,R), ") = ((1],-) and (X, PT(B(L,R)), ) = ((x],").
Since L is finite it follows that ‘x=1. Consequently u=w=1 and
P _ ,P
Xuw 1. -

Lemma 6.2. The set B(L,R)p\{lp} is a subuniverse of
B(L,R)F.
Proof. Suppose on the contrary that for uxg,wzg €

B(L,R)p\{lp} we have uxi-wzg = 1P, Then, by Remark 1.6,
1psux;, a contradiction to Lemma 6.1 . [

The subalgebra B(L,R)P\{1°} of B(L,R)P will be denoted by

B (L, R)P.
Lemma 6.3. Let L and R satisfy the hypothesis of Theorem
5.6 and let x,y be elements of Bl(L,R)p such that x<y. Then

p

c'x = cpy, where c denotes the only coatom of L.

P
uw

Proof. Let y=yu3. By Remark 4.8 we may assume that x=x
for some x<y. First we prove that 1p§<cp, i.e. (1xuw)p<cp. By

Remark 4.8 the last inequality is equivalent to 1%,u<C and
consequently, by Definition 2.2 and (3.3), to }(ve(w]|vu=x)<c.
Suppose on the contrary that } (ve(w]lvu=x)=c or } (ve(w]|vu=x)=
=1. By distributivity of L this implies cu=x or u=lu=x. Since
c is the only coatom of L, cu=c or cu=u. Therefore we have
u=x or c=x. But by assumption x<y=u. So uzx and consequently
x=c and y=u=w=1. This means that ¥=1p, contradicting the fact
that y is an element of Bl(L, R). This contradiction shows
that 1Px<cP.

Consequently, by Proposition 1.8,
(6.3.1) cPx = cPiPx = 1Px.

We will show that cPx = 1p¥. If cpy z cp, then obviously

cpg * cpy. Recall that by Remark 4.8 cP is the only coatom in
the lattice (1PT(B(L,R)P, =). so if not cPy=cP then cPy<cf.

Let cpx < cP. since c? is the only coatom in the lattice
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(1pT(B(L,R)p,5), we have that (1p1)cp=1p1 or (1px)cp= c. But
by Proposition 1.8 and Remark 1.1, cpx = cp(lpy) = (lpx)cp.

As a consequence, since cp1<cp, we obtain

(6.3.2) cpx = (lpx)cp = 1py.
By Lemma 5.3, lpz # 1p¥. Hence, using (6.3.1) and (6.3.2), we
conclude that cpg * cpx. [ ]

Lemma 6.4. Let L and R satisfy the hypothesis of Theorem
5.6 and let c be the only coatom of L . Assume additionally
that
(x,1) e R if and only if xe{1,c}.

Moreover let x, y be elements of Bl(L, R) satisfying 5.1(ii)
and such that {x, y} # {cp,cgl}.
Then
cpg # cpy.

Proof., Let x=x P
uw

and y=yz€. First we show that x,y ¢ {1,c}.
If x=1, then since x=susw, it follows that u=w=1 and ¥=1p, a
contradiction. Therefore x#1. One can show analogously that
y#1l. Now assume that x=c. Note that, since x, y satisfy
5.1(ii), the orbits (xT(B(L,R)P),-) and (yT(B(L,R)P),-) are

isomorphic. Hence, by Remark 4.8 we obtain

((y1,)=(yT(B(L,R)P), )= (xT(B(L,R)P), )= ((x], )=((c],*).
Since L is finite and c is the only coatom of L it follows
P —P —=P =P
o1 °F xX=¢, and y=c,, or y=c' . But

by the assumption that x, y satisfy 5.1(ii) we have that x=zy.

that y=c. Consequently x=c

Therefore {g,y}={cp,cgl}, a contradiction. It follows that
x#*c. Similarly we show that y # c. So we have

(6.4.1) X,y ¢ {1.c}.

P P P

y, we first show that 1955c . Suppose
on the contrary that 1p§5cp. Since by Remark 4.8 cP is the
only coatom of the lattice (1pT(B(L,R)),5), it follows that
1p¥=1p. This is equivalent to (1xuw)p=1p. Thus, by Lemma 4.4

To prove that c"x#c

and (B2) we have that 1x __=1. Since x=u, 1lu = 1 as well.
uw uw

Using Lemma 4.2 we get x u i.e. x=u. Note that

uw - uw’

1u

¢ =Y (ve(w]lvu=u)=w. It follows that w=1.

= u
uw "uwll uw
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Consequently §=xﬁw=x§1. Since (x.l1l)eR iff xe{l1l,c}, we conclude
that xe{1,c}, contradicting (6.4.1). This contradiction shows
that 1p§ = cP. Hence by Proposition 1.8, we have cpg = cplpg =
lpg . Analogously we show that cp1=1py.

By Lemma 5.4, 1p5¢1p¥. Therefore cp5¢cp1. [ ]

Lemma 6.5, Let L and R satisfy the hypothesis of
Theorem 5.6 and let c be the only coatom of L.

Let t € JI(1PT(B(L,R)P))\{1P} and s<t. Then there exists
g e L(BY(L, R)P) such that gt = cP and gs<c”.

Proof. By Lemma 5.5 there exists aeL(B(L, R)p) such that

P. If a is the identity mapping on B(L,R)p, then
it suffices to put B:= L(cp). Let a=L(zl)oL(zz)o...o L(zn).

= 1P P
Then z]zz...znt 1¥ and zlzz...zns < c”. Let zil,ziz,...,zik
be a subsequence of the sequence 21425500042, obtained by

at=1°P and as<c

dropping all elements equal to 1P.

Using Propositions 1.8 and 1.9 we get the following:

P _ PP . P = ~P1P — ~PqP
c c 1 c zlzz...znt chl 2122"'Znt c1 zilziz...zikt
- &P
=c"2, 2. ...2;
L 1 x
and
P - ~P = ~P1P =
¢ > z,2,...2.8 c7zy2,...2,8 c1 2,2,..-2,8
= cplpzl zi ...zi s = cpzi zi ...zi s .
1 72 k 1 72 k
Let B := L(cp)oL(z. YeL(z, )o...oL(2, ). Then obviously
i i i
1 2 k
geL(B1(L,R)P), Bt=cP and gs<cF. .

Lemma 6.6. Let L be a finite distributive 1lattice with

exactly one coatom c. Then the elements cP ana cf

cl satisfy the

condition 5.1(ii).

Proof. Note that

P P p _ P - P _ P
(6.6.1) €c1© (Cclc) (cc1¢11clc) (cclccl) Cc1
and

PP _ P _ P _
(6.6.2) c co,y (Cccl) (c¢clllccl)
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(cl)p by Remark 3.6
= cP.
Therefore ({cp,cgl},-) is a left zero semigroup. It remains to
show that cpT(B(L,R)p)\cng(B(L,R)p) = {cP} and
P T(B(L,R)P)\PT(B(L,R)P) = ().

Suppose on the contrary that b e cpT(B(L,R)p)\cng(B(L,R)p)
and Q*cp. Then Q<cp. We want to show that cglg = b, i.e.
b e cng(B(L,R)p), which will give a contradiction. By Remark

4.8 we may assume that b = bP for some b<Lc We have the fol-
lowing:

P P P_ P_ ) P_ P
(6.6.3) Cc1R = CgaP7= (CqP)7= (Cq¢419P) = (Sgy(eb) )

P _ P _ P
(ccb)cl (cb)cl bcl’
To prove that cglg = b it remains to show that b p bcl'

Let u =0 b. Then since b <LC, we also have u <Lc. Observe that

1bu = bu = b¢ = b-Y(vl vc = u) = bu =u

c1 c1 c111¥c1

= Yy (vl vc = u) = 1u

= %c111Y%1 c1°
The fourth and sixth equalities hold since for every veL, vc=u
if and only if v=c.

Moreover

b u = 1b 164101 = by, (Cu) 4=

Y(vl ve = u) = u = 1u.

1(bcu) 4= 1u,1= bq91Y¢

By Definition of p and Remark 4.8 this completes the proof that

P _ P
(6.6.4) b b, -

Thus cglg = b, i.e. b € cng(B(L, R)p), a contradiction.

Consequently

cpT(B(L,R)p)\cng(B(L,R)p) {cP}. similarly we show that

cng(B(L,R)p)\cpT(B(L,R)p) {cpl}. .

(o]

Theorem 6.7. Let L and R satisfy the hypothesis of Theorem
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5.6. Let ¢ be the only coatom of L and let
(x,1)eR if and only if xe{l1,c}.
Then the bandoid gl(L, R)p is subdirectly irreducible. The

monolith of gl(L,R)p is a principal congruence ©(a,b) for some
a, b satisfying 5.1(ii).
Proof. We will show that e(cp,czl) is the monolith of

§1(L,R)p. By Lemma 6.6, cp, cgl

Lemma 5.1 it suffices to show that (cp,cgl) e ®(x, y) for

satisfy 5.1(ii). In view of

every X,y € Bl(L, R)p such that x<y or x,y satisfy 5.1(ii). If
{x,y} = {cp,cgl} then the proof is obvious. Let x,y € Bl(L,R)p
be such that x<y or x,y satisfy 5.1(ii) and {x,y} = {cp, cgl}.

By Lemma 6.3 and Lemma 6.4 we have that cPx = cpy. Without
loss of generality we may assume that there exists

teJI(1PT(B(L,R)P)) such that t=cPx and t=cPy. Then (cPx)t=t
and (cpy)t<t. By Lemma 6.5 there exists BeL(Bl(L,R)p) such

that Bt=cp and B((cpy)t)<cp. Set Q:=B((cpy)t). Note that

e(x, y) 2 8(cPx,cPy) 2 8((cPx)t, (cPy)t) = o(t, (cPy)t)

v

8(Bt,B((cPy)t)) = o(cP,b).
Therefore
(6.7.1) (c,b) € o(x,y).

Now it suffices to show that (czl,g) € B8(x,y). By Lemma 6.6 we
have

P P _ P
(6.7.2) .1 = €4
and
(6.7.3) cpT(B(L,R)p)\cng(B(L,R)p) = (cP3.

since b<cP, (6.7.3) implies that pecng(B(L,R)p), i.e.
(6.7.4) cglg = b.
From (6.7.1), (6.7.2) and (6.7.4) it follows that

(6.7.5) (cgl,b_) € 8(x,y).
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As a consequence of (6.7.1) and (6.7.4) we obtain that

(cp,cgl) € 8(x,y), which completes the proof. ]
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