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SUBDIRECTLY IRREDUCIBLE LEFT NORMAL BANDOIDS, I 

Introduction 

This paper is a continuation of the authors work [1] and 
[2] devoted to investigation of algebras called left normal 
bandoids. In [1] the lattice of varieties of such algebras was 
described and in [2] some construction methods were discussed. 
In this paper we begin our study of subdirectly irreducible 
left normal bandoids. We use the notation and terminology of 
[2]. Our numbering begins with Section 4. References in 
Sections 1 through 3 are to the relevant parts of [2]. 

In Section 4 a congruence relation of the bandoid 
constructed in Section 3 is discribed that plays an important 
role in the sequel. In Section 5 some sufficient conditions 
are given for this bandoid to be subdirectly irreducible. 
Finally, in Section 6 it is shown that certain subalgebras of 
subdirectly irreducible bandoids considered in Section 5 are 
subdirectly irreducible as well. 

In subsequent papers it will be shown that the subdirectly 
irreducible left normal bandoids constructed in this paper are 
in fact all finite subdirectly irreducible left normal 
bandoids. 

For more information concerning left normal bandoids and 
general algebraic concepts we refer the reader to [1], [2], 
and references there. 
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4. An important congruence relation 
Let L be a complete lattice satisfying the distributive 

law (3.1) and let R be a subset of — _ such that (1, 1) e R. We i-i 
introduce a congruence relation on B(L, R) that will play an 
important role in the next section. Let us define the relation 
p on B(L, R) as follows: 
(4.1) x p y iff lxy1 = lŷ ^ and lyx1 =„ lx̂ ^ 

for every x^y^^ € B(L,R) with x^x, y^-y. 
To prove that p is a congruence relation on B(L, R) we 

need some lemmas. 
Lemma 4.2. For every x in B(L, R) the left multiplication 

L (1) :(xT(B(L, R)),) > (IT (B (L, R)) , •) ; znl'z is a 
monomorphism. 

Proof. By Proposition 1.3 it is enough to show that the 
mapping L(l) is one to one. Let z,t e xT(B(L, R)), z=yab' 
t=s , and lz=lt. By Remark 1.1 zt=tz. Since zteS , and tzeS ., ca J ab cd 
it follows that (a,b) = (c,d) . So t=sat). By definitions (2.2) 
and (3.3), 

1 2 = 1'^abllz = *abllz = e v a = 
and 

- 1 ^abll^ = W * = e W va = s). 
Since lz=lt we have 

£(v € (b]| va = y) = ^(v € (b]I va = s). 
Consequently 

a-E(v e (b]I va = y) = a-£(v e (b]I va = s). 
Thus by distributivity (3.1) of L we conclude that y = s, and 
in consequence z = t. • 

Lemma 4.3. For every xlfx2,...,x e B(L, R) and 2sisn the 
following identity holds: 

X, X„ ... X X_ X_ ... X • lX • - . . . X • 1 2 n 1 2 i l+l n 
Proof. By Propositon 1.9, 

lx 
Hence by Lemma 4.2, 

lx, X- « • • x lx. X- • • • x • lx • . . • « • X • 1 2 n 1 2 i l+l n 
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X 4 X A • • « X ™ X a X A • • « X • 1X • X • • 1 2 n 1 2 l l+l n 

Lemma 4.4. For every x,y in B(L, R), if xpy then 
(i) ({x,y},•) is a left zero semigroup 

and 
(ii) lx = ly . 
Proof. Let xpy. By (4.1) it follows that 

(4.4.1) lxy = ly 
and consequently ylxy = yly. Hence by Lemma 4.3 we get 
yxy = yy and by Proposition 1.9, yx = y. Analogously we show 
that 
(4.4.2) xy = x. 
Therefore ({x, y}, •) is a left zero semigroup. 

The equality (ii) is an immediate consequence of (4.4.1) 
and (4.4.2). • 

Proposition 4.5. The relation p is a congruence relation 
on B (L, R) . 

Proof. It is evident that the relation p is reflexive and 
symmetric. To prove the transitivity let us assume that x p y , 
y p z, x^ s x and z s z . Then 

lxz^ = lxlz1 by Proposition 1.9 
= lxlyz^ by (4.1), since y p z and z s z 
= lxyz.̂  by Proposition 1.9 
= lyz^ by (4.1), since x p y and yz^s y 
= lz1 since y p z and z s z. 

Analogously we show that lzx1= lx1> Therefore x p z, and 
consequently p is transitive. 

Now it remains to show that x p y implies zx p zy and xz p 
yz, for every x, y, z € B(L, R). Let x, y, z e B(L, R) and x p 
y. To show that zx p zy, let us assume that y s zy and x^s zx. 
Then 

zx = zlx by Lemma 4.3 
= zly since x p y and by Lemma 4.4(ii) 
= zy by Lemma 4.3. 

Consequently l(zx)y1 = lizyjy^ But since y ^ zy, (zyjy^ y . 
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Therefore 

(4.5.1) 

Analogously we prove that 

l f z x ^ = l y r 

lizy)*! = I*!-(4.5.2) 

By (4.5.1), (4.5.2) it follows that 

(4.5.3) zxpzy. 

It remains to show that xz p yz. 

Then 

Let y 2
s y z and x 2s xz. 

l(xz)y2 = l(xz)(xy2) 

= (lxz)(lxy2) 

= (lxz)(ly2) 

by Proposition 1.8 

by Proposition 1.3 

since x p y and y y z s y 

= (lyxz)(ly2) since x p y and xz s x 

by Proposition 1.9 

since x p y and yz s y 

by Proposition 1.9 

by Proposition 1.3 

since y 2* yz . 

Thus xz 

finishes the proof. • 

Remark 4.6. Let x, y e B(L, R). Then x p y if and only if 

= (lylxyz)(ly2) 

= (lylyz)(ly2) 

= (lyz)(ly2) 

= i(yz)y2 

= ^ 2 
Similarly we prove that l(yz)x2= lx2 yz, which 

and 

(i) lx = ly 

(ii) the left multiplications 

L(x): (yT(B(L,R)),•) —• (xT(B(L,R)),•) and 

L(y): (xT (B (L,R) ) , • ) —> (yT (B(L,R) ) , • ) 

are semilattice isomorphisms. 

Proof. (=*) By Proposition 1.3 the mappings L(x) and L(y) 

are semilattice homomorphisms. So it suffices to show that 

they are one to one and onto. 

Let x 1 ( x 2 e xT(B(L,R)) and yx 1 = yx 2. Then lyx1 = lyx2. 

Since x p y, x ^ x and x ^ x , we have that l x
2 •

 H e n c e f b Y 

Lemma 4.2, x.̂  = x 2. Therefore L(y) is one-to-one . 

Let ŷ ^ e yT(B) . Note that since x p y and y 1 ^ y, lxy^ = 
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ly^. Hence ylxy1 = yly^. Using Lemma 4.3 we get yxy^ = yy1 = 
y^. Therefore y^ = L(y)(xy^) and consequently L(y) is onto. 
Analogously we prove that L(x) is one to one and onto. So the 
condition (ii) is satisfied. The condition (i) follows 
immediately from Lemma 4.4(ii) and the assumption that x p y. 

(<=) Let x.̂  s x and y y. Note that 
iyx = iyy1 = (iy) (yyx) by (B3) 

= (lx)(yy1) by (i) 
= (lx)y1 
= (ly1)(*y1) by (B5) 
= (ly^)(Ixy ) by Proposition 1.8 
= (lxy^ (ly1) by Remark 1.1 
= (lxy1)y1 by Proposition 1.8 
= (lxy^)(yxy1) since by Proposition 1.9, xyxy1=xy^ 

and L(x) is one to one 
= (ly)(xy1) by (B5) 
= (lx)(xy1) by (i) 
= lxy1 by (B3). 

Analogously we show that lyx.̂  = lx1< By (4.1), x p y, which 
completes the proof. • 

For an algebra A and a congruence 'relation p on A the 
symbol AP denotes the quotient algebra, and a*3 the congruence 
class of a. 

An immediate consequence of Proposition 4.5 is the 
following 

Corollary 4.7. B(L, R)p is a left normal bandoid. • 

Remark 4.8. For each zp in B(L, R)p, the following holds: xy 
(z£yT(B(L, R)P),-) s (zxyT(B(L, R)P),-) s ((z],). 

The mappings <p : ((z], -) —» (z T(B(L, R)) , •) ; u i—> u Ay xy 
and ID : (zxyT(B(L, R) ),•) -> (z£yT(B(L, R)P),-); 

p 
xy xy 

are semilattice isomorphisms. 
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Proof. Note that z T(B(L, R)) = {u : u e (z]>. There-xy xy 
fore, as an easy consequence of (3.2), we get that <p is an 
isomorphism. We will show that \ji is an isomorphism as well. 
Obviously ^ is a homomorphism. It remains to check that I/J is 
one to one and onto. 

Let s x y, t € zxyT(B(L, R)) and s£y = t£ . Then by Lemma 

4.4({s , t } , ) is a left zero semigroup, i.e. s = s t xy xy xy ^y ^y 
and t =t s But s ,t lie in the same orbit z T(B(L,R)) xy xy xy xy xy xy v v ' '' 
and hence, by Remark 1.1, s -t = t -s . Therefore s = ' 1 xy xy xy xy xy 
t and ill is one to one. xy v 

It remains to prove that <p maps onto the set 
z£yT(B(L,R)P). 

Let a£ c € z£yT(B(L, R)p). Then by Remark 1.6, a£c= z p
y - a p

c 

and consequently a b C
= ( z x y ' a b c } P ' i , e- abc = ^ ( zxy' abc 5' B y 

Remark 1.6 z x y•a b cez x yT(B(L,R), which completes the proof. • 

Let us note that, in a finite left normal bandoid, each 
orbit with the bandoid partial order defined in Proposition 
1.5 forms a lattice. As an immediate consequence of Remark 4.8 
we obtain: 

Corollary 4.9. If L is finite then the lattice (L,s ) is 
1J 

isomorphic to the lattice (l pT(B(L,R) p),. 

Example 4.10. Let L and R be as in Example 3.14. The 
bandoid B(L,R)P is presented in the picture below. 
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Example 4.12. Let L and R be as in Example 3.17 . The 

5. Some subdirectly irreducible left normal bandoids 

The aim of this section is to prove Theorem 5.6. This 
Theorem shows that if L and R satisfy certain conditions, then 
the bandoid B constructed in the previous section is 
subdirectly irreducible. 

In the whole section let B = (B,•) be a finite left normal 
bandoid. 

Lemma 5.1. For all distinct elements x, y in B the princi-
pal congruence ©(x, y) on B contains a principal congruence 
0(u, w) such that 

(i) u < v 
or 

(ii) ({u, v},-) is a left zero semigroup, uT(B)\vT(B)={u} 
and vT(B)\uT(B) = {v>. 

Proof. Let x, y be distinct elements of B. 

If x*xy then, by (B2), xy<x and for u=xy, v=x we have that 
u<v and 0(u,v) = 0(xy,x) = 0(xy,xx) = 0(xx,xy) £ 0(x,y). 

There is a similar situation in the case y y x . 

Now let us assume that x=xy and y=yx. Note that the set 
xT(B)\yT(B) is nonempty since xexT(B)\yT(B). Indeed, if xeyT(B) 
then by Remark 1.1 xy=yx and hence x=y, a contradiction. 

Let Min(xT(B)\yT(B)) be the set of all minimal elements in 
( x T ( B ) \ y T ( B ) , and let ueMin(xT(B)\yT(B)). 
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Note that (yu)T(B)\xT(B) is nonempty since yue(yu)T(B) and 
yuixT(B). Indeed, by Remark 1.1 yuexT(B) implies that 
(yu)u=u(yu). Consequently, by Corollary 1.11, yu=uy. But by 
Proposition 1.8 uy=uxy, and since xy=x and uexT(B), uy=ux= 
xu=u. So we have yu=u. By Remark 1.6 it follows that ueyT(B), 
contradicting the fact that ueMin(xT(B)\yT(B)). 

Let v e Min((yu)T(B)\xT(B)). Then we have 
vu = v((yu)u) by Proposition 1.8, since ve(yu)T(B) 

= v(yu) by Corollary 1.11 
= v since V€(yu)T(B), by Remarks 1.1, 1.6. 

Therefore 

(5.1.1) vu = v. 
We will show that uv=u as well. By (B2), uvîu. Suppose that 
uv*u. Since u is minimal in (xT(B)\yT(B),s), we have uvsy. 
Thus v and uv lie in the same orbit yT(B). By Remark 1.1 it 
follows that v(uv)=(uv)v. Consequently, by Corollary 1.11, 
vu=uv and by (5.1.1) v=uv. So we have v=uvîuîx. Hence vix, 
i.e. vexT(B), which gives a contradiction. Therefore 

(5.1.2) ({u, v},-) is a left zero semigroup. 
Now we will show that uT(B)\vT(B)={u}. Suppose that 

u^euT(B) \vT(B) and u ^ u . Then u1<u. Since u is minimal in 
(xT(B) \yT(B) , s) , we have u^yTfB). Also veyT(B), whence by 
Remark 1.1, v u ^ ^ v . Thus by Proposition 1.8 and (5.1.2), 
v u l = u l v = u l ( u v) =u^u=u^. Hence u ^ v , i.e. u^evT(B) , a contradic-
tion. 

Analogously we show that vT(B)\uT(B)={v}. It remains to 
prove that ®(u,v) s ®(x,y). Indeed 

0(x, y) 3 0(xu, yu) = 0(u, yu) 2 0(uv, (yu)v) = 0(u, v), 
which completes the proof. • 

Recall that in a finite left normal bandoid, each orbit 
with the bandoid partial order defined in Proposition 1.5 is a 
lattice. In what follows the symbol JI(L) denotes the set of 
all join irreducible elements of a lattice L . 

Lemma 5.2. If there are a, b in B such that 
(i) b < a 
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and for all x, y in B 
(ii) x<y implies ax*ay, 
(iii) if x,y satisfy the condition 5.1(ii), then ax*ay, 
(iv) if xeJI(aT(B))\{0> and y<x, then there exist a 

mapping a e L(B) such that ay s b and ax = a, 
then B is subdirectly irreducible and 9(a, b) is the monolith 
of B . 

Proof. Let a, b be elements of B satisfying the conditions 
(i)\(iv). We will show that 0(a, b) is the least nontrivial 
congruence on B. Let x,yeB and let x<y or x,y satisfy the 
condition 5.1(ii). By Lemma 5.1 it suffices to show that 0(a, 
b) £ @(x, y). 

Note that by (ii) and (iii) , ax*ay. There exists 
teJl(aT(B)) such that tsay and tsax or such that tsax and 
tsay. By symmetry we may assume that teJI(aT(B)), t^ay and 
tsax. Then t=t(ay) and t(ax)<t. By (iv) there exists aeL(B) 
such that a(t(ax))sb and at=a. So we have a(t(ax))sb<a=at. 
Therefore 

0(a, b) £ 0(a(t(ax)), at) £ 0(t(ax), 

t) £ 0(ax, ay) £ 0(x, y). • 

Let L be a finite distributive lattice and R be a subset 
of containing the element (1,1). Let us consider the 
bandoid B(L,R)P defined in the previous section. The following 
lemmas hold. 

Lemma 5.3. Let xp,ype B(L,R)P and xp< yp. Then l px p* l py p. 
Proof. Suppose on the contrary that l px p= l py p. To arrive 

at a contradiction, we will prove that xp= yp. 

First note that x p<y p implies 

(5.3.1) (yx)p= xp. 
Hence by Lemma 4.4(i) 
(5.3.2) lyx = lx. 

Since l px p= lpyp, i.e. (lx)p= (ly)p, by Lemma 4.4(ii) we have 
that llx = lly. Consequently, by (B2), 
(5.3.3) lx = ly. 
From (5.3.2) and (5.3.3) it follows that ly = lyx. Hence, by 
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Lemma 4.2 we obtain 

(5.3.4) y = yx . 

To prove xp=yp let us assume that x ^ x and y ^ y . 
Then we have 

lxŷ ^ = lxy1x by Proposition 1.9 
= lxy1yx by Proposition 1.8 
= ly^yx since y1yx s yx and by (5.3.1) yx p x 
= lYjY by (5.3.4) 
= ly1 since y^s y. 

It remains to show that lyx1= lx^. 
Now 
lyx^= lyxx^ since x^s x 

= l(yx)(xxi) by (B3) 
= l(yx)x1 since x^s x 
= lx^ since x^s x and yx p x. 

This completes the proof that xp= yp and gives a contradiction 

to xp< yp. Therefore lpxp * lpyp. m 

Lemma 5.4. Let xp ,yp e B(L, R)p and xP ,yp satisfy 5.1(H). 
Then 

lpxp * lpyp. 

Proof. Suppose on the contrary that lpyp, i.e. 
lx p ly. Then by Lemma 4.4(ii), llx = lly. Hence, by (B2), we 
obtain 
(5.4.1) lx = ly. 

Since {{xp,yp},-) is a left zero semigroup, we have x p xy and 
y p yx. Thus, by Lemma 4.4(ii) it follows that 

(5.4.2) lx = lxy and ly = lyx. 

We will prove that xp= yp, which will give a contradiction 
to the fact that xp, yp satisfy 5.1(ii). Let x^s x and y^s y. 
If x^= x, then 

lyx1= lyx = ly by (5.4.2) 
= lx by (5.4.1) 
= lx, . 
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Analogously, if y1= y, then lxy^= l y ^ It remains to show that 
for x1< x and y ^ y, lyx1= lx1 and lxy1= ly^ 

Let x^< x. Then also xp< xp. Indeed, if xp= xp, then by 
Lemma 4.4(i) xx^= x, whence x^= x, contradicting x^< x. 

Since x p is minimal in (xPT(B(L,R)p)\yPT(B(L, R)P),*) we 

have that xps yp, i.e. yx^p x ^ Hence, using Lemma 4.4, we get 

lyx1= lx^. Analogously, if y < y, then lxy1= ly^- Consequently 

x p y, i.e. xp= yp, contrary to the assumption that x"~, yr j f v w n u i . u i . j r w w u - i i t . u o o u u i ^ / ^ x w i i u n u 

satisfy 5.1(ii). • 
Recall that by Corollary 4.9, (1PT(B(L, R)P),^) is a 

lattice isomorphic to L. Also by Remark 4.8, lp and 0 P are the 
greatest and the least elements respectively in 
( 1 P T ( B ( L , R ) P ) . 

Lemma 5.5. Let L be a finite distributive lattice with 
exactly one coatom c, and let R be a subset of such that Lt 
*) for every teJI(L)\{0} there exist elements t=x ,x2,...,x , 
z1#z2,...,z =1 satisfying the following for all i=l,2,...,n 
and j=l,2,...,n-1: 

(i) (xi,zi) e R 

and (ii) x ^ L x j + 1 ^ z. . 

Then for all y e JI(1PT(B(L,R)P))\{0P,lp} and z<y, there 
exist a e L(B(L,R)P) such that ay=lp and az<cp. 

Proof. Let y e JI(1PT(B(L, R)P))\{lp,0P> and let z<y. By 
Remark 4.8, y=sp for some s e JI(L)\{1,0} and z=up for some 
ueL with u< s. Let s = x ,x ,...,x . z_,z„,...,z = 1 be ij i ¿. n i z n 
elements of L such that (x, ,z.) e R and x ^ z. for 1 1 1 L }+1 L J 
every i=l,2,...,n and j=l,2,...,n-1. Write 

*i: = ( xi }x z f o r i=l/2,...,n. 
i' i 

Let a := L(lp)°L(xp )°L(xp_1)«...oL(xp ). We want to show that 

ay = lp and az<cp. To prove this, note first that the 
following holds for i=l,2,...,n: 
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(5.5.1) lx^ = <f>x n x i b y Definition 2.2 
i i 

= E(v e (zi] I v X i = by (3.3) 

= z. since x.£_z. and thus z.x.=x.. l l L l i l l 

Furthemore, for i=l,2,...,n-l we have 

(5.5.2) xi+l xi = x i + l l x i Lemma 4.3 

= x
i + 1

z i by (5.5.1) 

= x i + i * n v * zi b y Definition 2.2 

= xi+l xi+l ^ ( 3 ' 3 ) ' s i n c e x i + l ' 2 i = x i + l 

= x . + 1 by (Bl). 

By Definition 2.2, (3.3) and (Bl) it follows that 

(5.5.3) x x s = 5 l X l = V ^ ^ ^ x ^ x x x 1 = x r 

Moreover 

(5.5.4) lx n = 1 <PX z X 1 x n = I(V€ (zn] I v-x n=x n) 
n n 

= z since, x s z and hence z x = x . n ' n L n n n n 

Putting together (5.5.1), (5.5.2), (5.5.3) and (5.5.4) we 

obtain 

Thus 

lx x ...x.s = 1. n n-i l 

l p x p x p s p = l p 

n n—1 1 

and since s p = y we get 

l p x p x p x p v = l p 
1 n n-1*" 1 y 1 • 

By definition of left multiplication it follows that 

(L(l P)»L(x n
P)oL(x n

P
1)o...oL(x 1

P))y = 1 P. 

Hence, by definition of a 

(5.5.6) ay = l p. 

It remains to prove that az<c p. First we show that the 

following condition (5.5.7) is satisfied for each k=l,2,..., 

n-1: 
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(5.5.7) l x k X k - l * . .X^U^S. 

T h e proof is by induction on k. Let k = 1. Then 
slx^^u = sx^^u by Lemma 4.3 

= s ^ x 1 z 1 l l ( i l ^ l l x 1 z 1
u ) D e f i n i t i o n 2.2 

= S - E ( v e (z ±]\ v x 1 = x l U ) by (3.3) 

= su since Xj = s and L is d i s t r i b u t i v e 
= u since u < L s . 

T h u s slx^u * s and consequently 
(5.5.8) l x ^ i s . 

N o w w e p r o v e that for k = 1, 2,..., n-1: 

l x k x k - l ' ' " x l u £ s i m P l i e s l x k + i x k ' * , x l u ~ s " 

Suppose on t h e contrary that 
(5.5.9) l x k + l x k - " x l u ~ s -

T h e n by R e m a r k 1.7 and since s = x, s T x, ,, w e h a v e 1 1 L k + 1 

(5.5.10) X k + 1 l £ k + 1 X k . . . X l U * x k + 1 s = S. 

N o t e that by D e f i n i t i o n 2.2, (3.3) and d i s t r i b u t i v i t y of L, 

(5.5.11) x k + 1 l x k + 1 i k . . . x l U = x k + 1 -I(ve( z k + 1 ] | v • x k + 1 = x k + 1 x k . . . x ^ ) 

= x k + l x k ' ' " x l u ' 
By Remark 1.7, since 1 £ xfc+i» 

(5.5.12) i x ^ ^ . . . ^ * x
k + 1 X k X k _ 1 . . . X 1 U . 

From (5.5.10) - (5.5.12) it follows that 

1 X k X k - l " - X l U * S 

w h a t c o n t r a d i c t s t h e induction hypothesis. 

T h e r e f o r e (5.5.7) holds. In particular, for k = n, 

l x x _ ,...x,u £ s. n n-l l 

To complete t h e proof that az< cp, note that by R e m a r k 4.8 

( l x n x n - l ' ' * x i u > P " s P -
T h u s l" x P * sP. n n - l 1 
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Since z = up, y = s p and by definition of a, we have 

az = lp x p x/ 1...x. pz a y. n n-i l 

By Remark 4.8 c p is the only coatom in the lattice 

(lpT(B(L,R)p,:i) . Hence yscp and consequently az a cp, i.e. 

az<cp, which completes the proof. • 

Theorem 5.6. Let L be a finite distributive lattice with 
exactly one coatom. Let R be a subset of satisfying the 
condition 5.5(*). Then the left normal bandoid B(L,R)P is 
subdirectly irreducible. The monolith of B(L,R)P is a 
principal congruence ©(a, b) for some a, b in B(L,R)P with 
b<a. 

Proof. Let c be the only coatom of L. Set 

a : = lp and b := c P. 
By Remark 4.8, b<a. So the condition 5.2(i) holds. By Lemmas 
5.3 and 5.4 respectively the conditions 5.2(ii) and 5.2(iii) 
are satisfied as well. It remains to show that 5.2(iv) holds. 

Let y € JI(1PT(B(L,R)P))\{0P} and x<y. If y=lp=a, then for 
a the identity mapping on B(L,R)P, we have ay=a and ax^b, 
since by Remark 4.8, b is the only coatom in the lattice 
(lPT(B(L,R)p,i). Hence by Lemma 5.25 the conditon 5.2(iv) 
holds. By Lemma 5.2 the proof is complete. • 

Remark 5.7. The bandoids described in Examples 4.10 and 
4.12 are subdirectly irreducible. • 

6. More subdirectly irreducible left normal bandoids 

In this section we prove that under certain conditions 
some subalgebras of the subdirectly irreducible bandoids 
considered in the previous section are subdirectly irreducible 
as well. 

Let L be a finite distributive lattice and let R be a 
subset of containing the element (1, 1). L 

Lemma 6.1. The element lp is maximal in (B(L,R)p,i). 
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Proof. Suppose that lpsxu
Pfor some x y

p e B(L,R)P. Hence, 

by Remark 1.6, 1PT(B(L,R)P) £ XU
PT(B(L,R)P). But by Remark 4.8 

(1PT(B(L,R),-) a ((1],-) and (xu
PT(B(L,R)),-) « ((X],•). 

/ Since L is finite it follows that x=l. Consequently u=w=l and 

X p = lp. 
uw 

Lemma 6.2. The set B(L,R)P\{1P} is a subuniverse of 
B(L,R)P. 

Proof. Suppose on the contrary that for u
Xy' w

zt € 

B(L,R)p\{1P} we have u x
P w z

P = lp. Then, by Remark 1.6, lpsu p, a contradiction to Lemma 6.1 . • xy 

The subalgebra B(L,R)P\{1P} of B(L,R)P will be denoted by 

B1(L,R)P. 
Lemma 6.3. Let L and R satisfy the hypothesis of Theorem 

5.6 and let x,y be elements of B1(L,R)P such that x<y. Then 
c px * cpy, where c denotes the only coatom of L. 

Proof. Let v=y p. By Remark 4.8 we may assume that x=x p A Juw J 1 — uw 
for some x<y. First we prove that lpx<cp, i.e. (lxuw)p<cp. By 

Remark 4.8 the last inequality is equivalent to lxuw<c and 
consequently, by Definition 2.2 and (3.3), to £(ve(w]Ivu=x)<c. 
Suppose on the contrary that £(ve(w]|vu=x)=c or J] (ve(w]Ivu=x) = 
=1. By distributivity of L this implies cu=x or u=lu=x. Since 
c is the only coatom of L, cu=c or cu=u. Therefore we have 
u=x or c=x. But by assumption x<y^u. So u*x and consequently 
x=c and y=u=w=l. This means that y=lP, contradicting the fact 
that y is an element of B (L, R). This contradiction shows 
that lpx<cp. 

Consequently, by Proposition 1.8, 

(6.3.1) cpx = C P1 PX = lpx. 

We will show that cpx = lPy. If c py 2: cp, then obviously 
cpx * cpy. Recall that by Remark 4.8 c p is the only coatom in 
the lattice (1PT(B(L,R)p, s). so if not cpyacp then cpy<cp. 

Let c py < cp. Since c p is the only coatom in the lattice 



942 E. Zajqc 

(lpT(B(L,R)p,s), we have that (lpy)cp=lpy or (lpy)cp= c p. But 
by Proposition 1.8 and Remark 1.1, c py = cp(lpy) = (lpy)cp. 
As a consequence, since cpy<cp, we obtain 

(6.3.2) c py = (lpy)cp = lpy. 
By Lemma 5.3, lpx * lPy. Hence, using (6.3.1) and (6.3.2), we 
conclude that c px * cpy. • 

Lemma 6.4. Let L and R satisfy the hypothesis of Theorem 
5.6 and let c be the only coatom of L . Assume additionally 
that 

(x,1) e R if and only if xe{l,c>. 

Moreover let x, y be elements of B1(L, R) satisfying 5.1(ii) 
and such that {x, y} * {cp,cp

1>. 
Then 

c px * cpy. 

Proof. Let x=xu
P and y=yz

P. First we show that x,y t {l,c}. 
If x=l, then since xsusw, it follows that u=w=l and x=lp, a 
contradiction. Therefore x*l. One can show analogously that 
y*l. Now assume that x=c. Note that, since x, y satisfy 
5.1(ii), the orbits (xT(B(L,R)p) , • ) and (yT(B(L,R)p),•) are 
isomorphic. Hence, by Remark 4.8 we obtain 

((Y],•)=(YT(B(L,R)P),-)=(XT(B(L,R)P),-)=((X],-)=((c],•)• 
Since L is finite and c is the only coatom of L it follows 
that y=c. Consequently x = c ^ or x=cp, and o r y=cp. But 
by the assumption that x, y satisfy 5.1(ii) we have that x*y. 

Therefore {x,y} = {cp, c ^ } , a contradiction. It follows that 
x*c. Similarly we show that y * c. So we have 

(6.4.1) x,y <t {l.c}. 
To prove that cpx*cpy, we first show that lpx^cp. Suppose 

on the contrary that lpx^cp. Since by Remark 4.8 c p is the 
only coatom of the lattice (1PT(B(L,R)),s), it follows that 
lpx=lp. This is equivalent to (lxuw)p=lp. Thus, by Lemma 4.4 

and (B2) we have that lxuw=l. Since xsu, l u
u w = 1 as well. 

Using Lemma 4.2 we get x
u w

= u
u w ' x=u. Note that 

l uuw = <^uwll uuw = i ( V 6 ( w ] | v u = u ) = w - I t f o l l o w s t h a t w = 1-
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Consequently X = xuw = xxl' s * n c e ( x>l) e R iff xe{l/C}, we conclude 
that xe{l,c>, contradicting (6.4.1). This contradiction shows 
that l px s c p. Hence by Proposition 1.8, we have c px = c pl px = 
l px . Analogously we show that cpy=lpy. 

By Lemma 5.4, lpx*lpy. Therefore cpx*cpy. • 
Lemma 6.5. Let L and R satisfy the hypothesis of 

Theorem 5.6 and let c be the only coatom of L. 

Let t e JI(1PT(B(L,R)P))\{lp} and set. Then there exists 
|3 e L(BX(L, R)p) such that /3t = c p and (3s<cp. 

Proof. By Lemma 5.5 there exists aeL(B(L, R)P) such that 
at=lp and as<cp. If a is the identity mapping on B(L,R)P, then 
it suffices to put /3: = L(cp) . Let a=L(z1) °L(z2) °. .. ° L ( z

n ) * 
Then z z_...z t = l p and z.z ...z s < c p. Let z. ,z. ,...,z. 

1 i n 1 12 1k 
be a subsequence of the sequence obtained by 
dropping all elements equal to l p. 

Using Propositions 1.8 and 1.9 we get the following: 

c p = c pl p = cpz,z_...z t = cplpz,z....z t = c pl pz. z. ...z. t 1 2 n 1 2 n i 1 i 2 i k 

o z • z . • • • Z • 
X1 x2 xk 

and 
P P P.P cr > z,z_...z s = c^z,z_...z s = cr l'z, z_.. . z s = 1 2 n 1 2 n 1 2 n 

Pi P P = cKl^z. z. ...z. s = crz. z. ...z. s . 

Let /3 := L(cp) °L(z . ) oL(z . ) o. .. oL(z . ). Then obviously 
•̂l 2 """k 

/SeLiB1 (L,R)P) , /3t=cP and |3s<cP. • 

Lemma 6.6. Let L be a finite distributive lattice with 
exactly one coatom c. Then the elements c p and c p^ satisfy the 
condition 5.1(ii). 

Proof. Note that 

(6.6.1) c p
i c

p = (cclc)p = (c c l^ l l c lc) p = (c c lc c l) p = cp
cl 

and 

(6.6.2) = (cccl)p = (c^ c l l lc c l) p = 
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= (cl)p by Remark 3.6 

= c p. 

Therefore ( { c ^ c ^ } , •) is a left zero semigroup. It remains to 

show that cPT(B(L,R)P)\c^1T(B(L,R)P) = {cP} and 

C P
1T(B(L,R ) P ) \ C PT(B(L,R) P) = { C ^ } . 

Suppose on the contrary that b e c pT(B(L,R) p)\C P
1 T(B(L , R ) P ) 

and b*cp. Then b<cp. We want to show that c p,b = b, i.e. 

b € C P
1 T ( B ( L , R) p), which will give a contradiction. By Remark 

4.8 we may assume that b = b p for some b<Tc We have the fol-Li 
lowing: 

(6.6.3) c p
x b = c p

l b
p = (c c lb) p= (c c l« l l c lb) p= (c c l(cb) c l) p 

= (ccb)^ = (cb)^ = b p
x. 

To prove that c ^ b = b it remains to show that b p b c l* 

Let u s b. Then since b <Tc, we also have u <Tc. Observe that LI LI L T 

lbu c l = bu c l = b * c l l l u c l = b-I(v| vc = u) = bu = u 

= E(v| vc = u) = 0 c l l l u c l = lu c l. 

The fourth and sixth equalities hold since for every veL, vc=u 
if and only if v=c. 

Moreover 

l bcl u = l bcl*llcl u = l bcl< c u>cl= ^ ^ » c f l ucl= *clllucl 
= £(v| vc = u) = u = lu. 

By Definition of p and Remark 4.8 this completes the proof that 
P = kP (6.6.4) b K = b , . cl 

Thus c ^ b = b, i.e. b e cp^T(B(L, R) p) , a contradiction. 

Consequently 

c pT(B(L,R) p) \C P
1T(B(L,R) P) = {cp}. Similarly we show that 

C P
XT(B(L,R ) P ) \ C PT(B(L,R) P) = { C ^ } . . 

Theorem 6.7. Let L and R satisfy the hypothesis of Theorem 
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5.6. Let c be the only coatom of L and let 
(x,l)eR if and only if xe{l,c}. 

Then the bandoid B1(L, R)p is subdirectly irreducible. The 
monolith of B1(L,R)P is a principal congruence 0(a,b) for some 
a, b satisfying 5.1(ii). 

Proof. We will show that ©(c^c^) is the monolith of 
B1(L,R)P. By Lemma 6.6, cp, c ^ satisfy 5.1(ii). In view of 
Lemma 5.1 it suffices to show that (cp,cp^) e 0(x, y) for 
every x,y € B1(L, R)p such that x<y or x,y satisfy 5.1(ii). If 
{x,y} = {cp,0^} then the proof is obvious. Let x,y € B1(L,R)^> 

be such that x<y or x,y satisfy 5.1(ii) and {x,y} * {cp, c^}. 
By Lemma 6.3 and Lemma 6.4 we have that cpx * cpy. Without 
loss of generality we may assume that there exists 
teJl(lpT(B(L,R)p)) such that ticpx and t^cpy. Then (cpx)t=t 
and (cpy)t<t. By Lemma 6.5 there exists (3eL(B1(L,R)p) such 
that /3t=cp and |3 ((cpy) t) <cp. Set b: =/3 ((cpy) t) . Note that 

0(x, y) 2 0(cpx,cpy) 2 0((cpx)t,(cpy)t) = 0(t,(cpy)t) 
2 0(/3t,/3((cpy)t)) = 0(cp,b) . 

Therefore 
(6.7.1) (cp,b) € ©(x,y). 
Now it suffices to show that (c^jb) e 0(x,y). By Lemma 6.6 we 
have 
(6.7.2) c P

l G
P = CP

X 
and 
(6.7.3) cPT(B(L,R)P)\cP1T(B(L,R)P) = {cP>. 
Since b<cp, (6.7.3) implies that becp^T(B(L,R)p), i.e. 
(6.7.4) c P b = b. 
From (6.7.1), (6.7.2) and (6.7.4) it follows that 
(6.7.5) (ccl'te) € ®(x'y)-
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As a consequence of (6.7.1) and (6.7.4) we obtain that 

(c:'',^ ) e 8(x,y) , which completes the proof. • 
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