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FACTORIZATION OF A COLLINEATION OF THE THREE-DIMENSIONAL 
PROJECTIVE SPACE ONTO TWO NORMAL CYCLIC COLLINEATIONS 

This paper is a complement of works [1] and [2]. So, we 
shall use conventions and notations used in these papers. In 
particular: 

Pn(F) is a symbol of the n-dimensional projective space 
over the field F. If F is arbitrary we write simply Pn> 

Characteristic of a projective transformation f: P >P n n 
is the smallest integer m such, that any point of the space 
lies in a m-dimensional subspace of the space Pn invariant 
under the transformation f. We denote this integer as char f. 

Subspace of the space P , each point of which is invariant 
under f, we shall call fundamental. 

v 
Transformation f: X >X is called k-cyclic, when f is the 

identity. 
Collineation f: P >P is called normal cyclic, when f is n n a (n+1)-cyclic transformation and char f = n. 

k 
The notation LI (alf...,a ) means, that any k of points 

a1#...,am are linearly independent. 
The concept of a normal cyclic collineation is a natural 

generalization of the concept of an involution in P^. The 
well-known theorem says-, that any projective transformation of 
line is' a composition of two involutions. Here arises a ques-
tion, if this theorem can be generalized to an arbitrary di-
mension of the projective space. It is, if the following theo-
rem is true: an arbitrary projective transformation 
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f: Pn(F) >Pn(F) is a composition of two (eventually k) normal 
cyclic collineations. 

The partial sollution of this problem was given in [1] and 
[2]. Namely, the above mentioned theorem is true for : k=2, 
n=2, F - an infinite field; k=2, n=3, F - an infinite algebra-
ically closed field; k=3, n - arbitrary, F - a field consis-
ting of at least 4n+4 elements. 

In this paper we shall prove the theorem for k=2, n=3, F -
an arbitrary field consisting of at least 16 elements. That 
is, we shall prove the following theorem: 

Theorem 1. If a field F consists of at least 16 elements, 
then any nonsingular colineation of the projective space P3(F) 
is a composition of two normal cyclic collineations. 

For collineations with the caracteristic 3 the above 
statement is a special case of the theorem 1[1]. This theorem 
assumes, that F is an infinite field, but on the strength of 
the initial considerations from [2] it is suffitient to 
assume, that |F|al6. 

The unique collineation with the characteristic 0 is the 
identity which is equal to ff-1, where f is an arbitrary nor-
mal cyclic collineation. 

So we are to prove Theorem 1 for collineations with the 
characteristic 1 or 2. 

Let us start with the collineations with the 
characteristic 1. We shall classify the projective 
transformations with the respect of the quantity of invariant 
points under them and give the factorization for each class of 
collineations. 

Lemma 1. If a collineation f: P3 >P3 with the 
characteristic 1, has a plane n invariant under f and there 
are three fixed noncollinear invariant points on the plane n, 
then II is fundamental or it contains a fundamental line. 

Proof. Three fixed invariant points P , P2, P3 of the 
plane II give three invariant lines L^, L2, L3- Take another 
point P on the plane n such, that it doesn't belong to any of 
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lines L^, L2, L3. Since charf=l, hence there must be an invar-
iant line passing through the point P. If that line doesn't 

3 
lie on the plane IT, then P is invariant and LI (P1,P2,P3,P), 
what means that II is fundamental. If the line lies on the 
plane IT, then it intersects at least one of the lines L^, L2, 
L3 in a point different from the points P ^ P2, P3 and then 
one of these lines contains three distinct invariant points, 
consequently it is fundamental. 

Lemma 2. If f: P3 >P3 is a collineation such that, 
char f = 1 and there exists at least one invariant point, then 
there exists a fundamental plane or line. 

Proof. Since the collineation f has an invariant point, 
therefore there must be an invariant plane II. Take a point R 
not on the plane II. An invariant line passing through the 
point R intersects the plane II in an invariant point. So there 
is at least one invariant point on the plane n. Let us 
consider three possible cases: 

Case one : There is exactly one invariant point P on the 
plane II. Then each invariant line passes through the point P 
and so we have a bundle of invariant planes and by the duality 
principle there exists a fundamental plane there. 

Case two : There are exactly two distinct invariant points 
P1,P2 on the plane II. Then all invariant lines passing through 
the points of n different from m u s t b e included in II. 
Since the plane n has exactly two invariant points, then those 
lines must perform a pencil. So with the respect to the 
principle of duality, there must exist a fundamental line on 
the plane n against to the assumption, that there are exactly 
two invariant points there. Therefore the case two never 
holds. 

Case three : There are at least three invariant points on 
the plane II. If the points are collinear, then they form the 
fundamental line. In the other case according to Lemma 1 the 
plane II is fundamental or it contains a fundamental line. 

If a collineation has a fundamental plane n, then by the 
duality principle there exists a bundle of invariant planes 
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there. The center P of it is an invariant point. If the point 
P belongs to plane II, then the transformation f is an elation. 
In the other case f is a homology. So, there are only two 
types of collineations, witch have a fundamental plane. Both 
of them have the characteristic 1 and satisfy assumptions of 
the following lemma: 

Lemma 3. Suppose, that f: Pn(F) >Pn(F) is a collineation 
such that: char f = m, H^,...,!! are all fundamental subspaces 
under f, the dimensions of which are k,,...,k 1 p 
(k1>0,k2£0,...,kp£0). Let the numbers klf...,k satisfy: 

k,+...+k = n-m. 1 P 
If^the field F has at least 4n+4 elements, then the transfor-
mation f is a composition of two normal cyclic collineations. 

Proof. Lemma is an immediate corollary from Theorem 2[1] 
and initial considerations of paper [2]. •. 

Therefore any collineation with the characteristic 1, 
witch has a fundamental plane is a composition of two normal 
cyclic collineations. 

A collineation having a.fundamental line and, at the same 
time having no fundamental plane, is called axis collineation. 
Notice that by the duality principle such collineation 
possesses a pencil of invariant planes and its axis is an 
invariant line. 

Lemma 4. If a collineation f: P3 >P3 is an axis colline-
ation and char f = 1, then an axis of a pencil of invariant 
planes is a fundamental line. 

Proof. Let L denote an axis of a pencil of a invariant 
planes. Assume first, that each plane of this pencil contains 
no three noncollinear invariant points. Let n be one of these 
planes. Then there exists a point P̂ ^ on the plane II, witch is 
not united. Let L^ denote an invariant line passing through 
the point P^. The point P^ is not invariant, hence the line L^ 
is included in the plane n and intersects the axis L in a 
point R^. Assume, that another invariant line L2 included in 
the plane II cuts the axis L in a point R, different from the 
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point Rĵ . The common point P of the lines L^ and L2 is of 
course invariant and doesn't belong to the axis L. The points 
R ^ J R J and P are three non collinear invariant points on the 
plane H, what contradicts our assumptions. Therefore all 
invariant lines on the plane n form a pencil with the center 
on the axis L. As there are no three non collinear united 
points on the plane n, so the restriction of the collineation 
f to this plane is an elation. For the plane II was arbitrarily 
chosen, we have the same situation on each plane from the 
pencil L. Moreover the fundamental line in each plane must be 
the axis L, because in the other case the fundamental lines 
would generate a fundamental plane or space against to the 
assumption, that f was an axis collineation. 

Assume now, that on each plane from the pencil L there are 
three non collinear united points. Let II denote one of these 
planes. Then according to Lemma 1 n is a fundamental plane or 
it contains a fundamental line. The first case is 
contradictory to the assumption, that f is an axis 
collineation. So the second case must be hold and we have a 
homology on the plane n (and consequently on each plane from 
the pencil L). As previously it can be proofed, that the 
fundamental line on each plane from this pencil must coincide 
with the axis L. 

Note that it is impossible, that a restriction of the 
transformation f to one plane is an elation and a restriction 
of f to another plane is a homology at th& same time. To prove 
this fact assume conversely, that on a plane 11̂  we have an 
elation with a center P̂^ and on a plane n - a homology with a 
center P2< The fundamental lines of considered elation and 
homology must both, as previously, coincide with the axis L, 
because in the other case they would set a fundamental plane 
(if they would have a common point) or the plane n^ would be 
fundamental (if they wouldn't have any common»» point) . Moreover 
the point P2 doesn't lie on the axis L, and so each plane 
containing a line from the pencil P^ of the invariant lines on 
the plane n^ and the point P2 must be invariant. Hence we have 
a pencil P.P, of invariant planes different from the pencil L. 
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These two pencils give in the point P̂ ^ a bundle of invariant 
lines and consequently - a bundle of invariant planes. But 
this is impossible, for f is an axis collineation. •. 

An axis collineation, the restrictions of which to all 
invariant planes are homologies, satisfies the assumptions of 
lemma 3, hence it is a composition of two normal cyclic 
collineations. 

An axis collineation, the restrictions of which to all 
invariant planes are elations, is a composition of two normal 
cyclic collineations (Theorem 4[1]). 

Lemma 5. If a collineation f: P 3 >P3 with the charac-
teristic 1, has no united points, then f is a composition of 
two normal cyclic collineations. 

Proof. Take into account three different invariant lines 
L^, L2, LJ. AS the collineation f has no united points, hence 
these lines are mutually skew. Let points p , P2, P 3 belong to 
the line L^* points P4, Pg, P g - to the line L 2; points P 7, P g 

- to the line L 3. Moreover let f(P )=P , f(P2)=P3, f(P4)=P5> 

f(P5)=Pg, f(P7)=Pg. We shall denote this using only indexes of 
points by symbol : 

1 2 4 5 7 
2 3 5 6 8 * 

If the collineation f is an involution, then P=P_, P.=P^ 1 3 4 6 
and f is a composition of transformations g and h defined in 
the following way : 

1 2 4 5 7 
g' 4 5 2 1 X ' 

. 4 5 2 1 X 
n' 2 3 5 6 8 ' 

4 
where x is such that LI (4,5,2,l,x)• Collineations g and h are 
well defined and they are normal cyclic on the strength of the 
lemma 1[1]. 

If the collineation f is not an involution, then we can 
choose such coordinate system and such points P.,...,P_, that 1 o they have the following coordinates: 
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1 : (1,0,0,0) 
2 : (0,1,0,0) 
3 : (1,a, 0,0) 
4 : (0,0,1,0) 
5 : (0,0,0,1) 
6 : (0,0,b,l) 
7 : (1,1,1,1) 
8 : (c,d,e,f) 

some conditions which the numbers 
a,b,c,d,e,f must satisfy. These conditions come from linear 
independence of some quadruples of points. For instance, from 

4 LI (2,3,5,6,8) we obtain : 
ac-d*0, -c*0, bf-e*0, e*0. 

Then the collineation f is a composition 
tions g and h defined in the following way : 

and b*0. There are 

of transforma-

g: 1 2 4 5 7 5 1 2 4 9 

h: 5 1 2 4 9 
2 3 5 6 8 

bf-e where the point P g has coordinates ( - c , — , e , a c - d ) . The 
4 sufficient conditions for LI (5,1,2,4,9) are : 

-c*0, bf-e*0, e*0, ac-d*0. 

As we already noticed these are satisfied. Hence the colline-
ations g and h are well defined. Moreover the collineation g 
is normal cyclic according to Lemma 1[1]. 

The matrix of the collineation h is following : 

H = 
-b 0 
-ab 0 
0 0 
0 b 

0 0 
0 -b 
b 0 
1 0 

By simple calculation one can check, that H =b I, where I is 
the identity matrix. These means, that h is also a normal cy-
clic collineation. 

Finally, in view of the lemmas 2,3,4,5 we find that if 
IFI£16, then any collineation of P3(F) with the characteristic 



698 J. Sawicka, K. Witczyrtski 

1 is a composition of two normal cyclic collinations. 

Now we shall deal with collineations with the characteris-
tic 2. If char f = 2, then each point of the space lj,es on an 
invariant plane. 

Lemma 6. If a collineation f: P3 >P3 has the characteris-
tic 2, then there exists a pencil of invariant planes. 

Proof. Assume oppositely, that three invariant planes 
intersect each other along three distinct lines L2, L3. 
Then these lines have one common point P. Let R be an arbi-
trary point beyond from these three planes. Consider an in-
variant plane II containing the point R. If the plane n con-
tains one of the lines L^, L2, L3, then this line belongs to 
three invariant planes, hence it is an axis of a pencil of in-
variant planes. 

If the plane II contains the point P, but includes none of 
the lines L^,L2,L3, then four considered planes intersect 
along six distinct lines, four of witch are such, that any 
three of them are linearly independent. So they generate a 
bundle of invariant lines in the point P, what is 
contradictory to the assumption, that char f = 2. 

If the plane II doesn't contain the point P, then four con-
sidered planes form a simplex. Take another invariant plane $. 
This plane cannot intersect the above-mentioned simplex along 
four distinct lines, because in this case it would be funda-
mental against to the assumption, that char f = 2. Therefore 
the plane 4 intersects this simplex along three lines. Hence 
one of these lines belongs to three invariant planes and con-
sequently is an axis of a pencil of invariant planes. 

• . 

From the above lemma and the duality principle it follows 
that a transformation with the characteristic 2 has a 
fundamental line. But an axis of a pencil of invariant planes 
cannot be fundamental, because then there would be a homology 
or elation on each plane from the pencil, so the 
characteristic of f would be 1. 
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Lemma 7. A collineation f: P 3 >P3 with the characteristic 

2 is a composition of two normal cyclic collineations. 

Proof. Since char f = 2, then there exist an invariant 

plane n and points P 1,P 2,P 3,P 4 on it such that f(P 1)=P 2, 

f(P 2)=P 3, f(P3)=P4 and LI 3(P x,P 2,P 3 fP 4). Let P g and P g be two 

points from a fundamental line and beyond from the plane n. 

Then LI4(1,2,3,5,6) and LI4(2,3,4,5,6) . So the collineation f 

is well defined by the assigning : 

_ 1 2 3 5 6 
r' 2 3 4 5 6 ' 

According to Lemma 1[1] transformations g and h defined in 

the following way s 

1 2 3 5 6 
9 ' 5 2 1 6 3 ' 

. . 5 2 1 6 3 
2 3 4 5 6 

are normal cyclic collineations and their composition gives f. 

• . 

The above lemma ends the proof of Theorem 1. 
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