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FACTORIZATION OF A COLLINEATION OF THE THREE-DIMENSIONAL
PROJECTIVE SPACE ONTO TWO NORMAL CYCLIC COLLINEATIONS

This paper is a complement of works [1] and [2]. So, we
shall use conventions and notations used in these papers. In
particular:

Pn(F) is a symbol of the n-dimensional projective space
over the field F. If F is arbitrary we write simply P .

Characteristic of a projective transformation f: P —P
is the smallest integer m such, that any point of the space Pn
lies in a m-dimensional subspace of the space P, invariant
under the transformation f. We denote this integer as char f.

Subspace of the space P each point of which is invariant
under f, we shall call fundamental.

Transformation f: X—X is called k-cyclic, when fk is the
identity.

Collineation f: Pn———>Pn is called normal cyclic, when f is
a (n+l)-cyclic transformation and char £ = n.

The notation LIk(al,...,am) means, that any k of points
aj,...,a, are linearly independent.

The concept of a normal cyclic collineation is a natural
generalization of the concept of an involution in P,. The
well-known theorem says., that any projective transformation of
line is a composition of two involutions. Here arises a ques-
tion, if this theorem can be generalized to an arbitrary di-
mension of the projective space. It is, if the following theo-

rem is true: an arbitrary projective transformation
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f: Pn(F)——aPn(F) is a composition of two (eventually k) normal
cyclic collineations.

The partial sollution of this problem was given in [1] and
[2]. Namely, the above mentioned theorem is true for : k=2,
n=2, F - an infinite field; k=2, n=3, F - an infinite algebra-
ically closed field; k=3, n - arbitrary, F -~ a field consis-
ting of at least 4n+4 elements.

In this paper we shall prove the theorem for k=2, n=3, F -
an arbitrary field consisting of at least 16 elements. That
is, we shall prove the following theorem:

Theorem 1., If a field F consists of at least 16 elements,
then any nonsingular colineation of the projective space P3(F)
is a composition of two normal cyclic collineations.

For collineations with the caracteristic 3 the above
statement is a special case of the theorem 1{1]). This theorem
assumes, that F is an infinite field, but on the strength of
the initial considerations from [2] it is suffitient to
assume, that |F|=z=16.

The unique collineation with the characteristic 0 is the

1, where f is an arbitrary nor-

identity which is equal to ff~
mal cyclic collineation.

So we are to prove Theorem 1 for collineations with the
characteristic 1 or 2.

Let us start with the collineations with the
characteristic 1. We shall classify the projective
transformations with the respect of the quantity of invariant
points under them and give the factorization for each class of

collineations.

Lemma 1. If a collineation f: P3———>P3 with the

characteristic 1, has a plane I invariant under f and there
are three fixed noncollinear invariant points on the plane I,
then 1T is fundamental or it contains a fundamental line.

P P of the

27 3
Take another

Proof. Three fixed invariant points Py
10 L2r L3-
point P on the plane T such, that it doesn’t belong to any of

plane T give three invariant lines L



Factorization of a collineation... 693

lines Ll’ L2, L3. Since charf=1, hence there must be an invar-
iant line passing through the point P. If that 1line doesn’t

lie on the plane II, then P is invariant and LI3(P1,P2,P3,P),

what means that I is fundamental. If the line lies on the
plane I, then it intersects at least one of the lines Ll’ L2,
L3 in a point different from the points Pl, PZ’ P3 and then

one of these lines contains three distinct invariant points,
consequently it is fundamental. D.

Lemma 2, If f: P3———>P3 is a collineation such that,
char £ = 1 and there exists at least one invariant point, then

there exists a fundamental plane or line.

Proof. Since the collineation f has an invariant point,
therefore there must be an invariant plane II. Take a point R
not on the plane M. An invariant 1line passing through the
point R intersects the plane 1T in an invariant point. So there
is at least one invariant point on the plane II. Let us
consider three possible cases:

Case one : There is exactly one invariant point P on the
plane M. Then each invariant line passes through the point P
and so we have a bundle of invariant planes and by the duality
principle there exists a fundamental plane there.

Case two : There are exactly two distinct invariant points
Pl,P2 on the plane II. Then all invariant lines passing through
the points of I different from P,,P, must be included in 1.
Since the plane T has exactly two invariant points, then those
lines must perform a pencil. So with the respect to the
principle of duality, there must exist a fundamental 1line on
the plane II against to the assumption, that there are exactly
two invariant points there. Therefore the case two never
holds.

Case three : There are at least three invariant points on
the plane II. If the points are collinear, then they form the
fundamental line. In the other case according to Lemma 1 the
plane T is fundamental or it contains a fundamental line. o.

If a collineation has a fundamental plane T, then by the

duality principle there exists a bundle of invariant planes
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there. The center P of it is an invariant point. If the point
P belongs to plane N, then the transformation f is an elation.
In the other case f is a homology. So, there are only two
types of collineations, witch have a fundamental plane. Both
of them have the characteristic 1 and satisfy assumptions of
the following lemma:

Lemma 3, Suppose, that f: Pn(F)——ﬁPn(F) is a collineation
such that: char £f = m, H

1,...,Hp are all fundamental subspaces
under f, the dimensions of which are k1”"’kp
(k1>0,k220,...,kp20). Let the numbers kl”"'kp satisfy:

K,+...+k_ = n~-m.
1 P

If-the field F has at least 4n+4 elements, then the transfor-

mation f is a composition of two normal cyclic collineations.

Proof. Lemma is an immediate corollary from Theorem 2[1}
and initial considerations of paper [2]. o.

Therefore any collineation with the characteristic 1,
witch has a fundamental plane is a composition of two normal
cyclic collineations.

A collineation having a_fundamental line and, at the same
time having no fundamental plane, is called axis collineation.
Notice that by the duality principle such collineation
possesses a pencil of invariant planes and its axis 1is an

invariant line.

Lemma 4. If a collineation f: P3—-——>P3 is an axis colline-~

ation and char £ = 1, then an axis of a pencil of invariant
planes is a fundamental line.

Proof. Let L denote an axis of a pencil of a invariant
planes. Assume first, that each plane of this pencil contains
no three noncollinear invariant points. Let II be one of these

planes. Then there exists a point P, on the plane N, witch is

1

not united. Let L, denote an invariant 1line passing through

the point Pl' The point P1 is not invariant, hence the line L1
is included in the plane T and intersects the axis L in a
1° Assume, that another invariant line Lz included in
the plane 1T cuts the axis L in a point R, different from the

point R
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point R, - The common point P of the lines L, and L, is of

course invariant and doesn’t belong to the axis L. The points
Rl,R2 and P are three non collinear invariant points on the
plane II, what contradicts our assumptions. Therefore all
invariant lines on the plane Il form a pencil with the center
on the axis L. As there are no three non collinear united
points on the plane T, so the restriction of the collineation
f to this plane is an elation. For the plane N was arbitrarily
chosen, we have the same situation on each plane from the
pencil L. Moreover the fundamental line in each plane must be
the axis L, because in the other case the fundamental 1lines
would generate a fundamental plane or space against to the
assumption, that f was an axis collineation.

Assume now, that on each plane from the pencil L there are
three non collinear united points. Let T denote one of these
planes. Then according to Lemma 1 I is a fundamental plane or
it contains a fundamental line. The first case is
contradictory to the assumption, that £ is an axis
collineation. So the second case must be hold and we have a
homology on the plane II (and consequently on each plane from
the pencil L). As previously it can be proofed, that the
fundamental line on each plane from this pencil must coincide
with the axis L.

Note that it is impossible, that a restriction of the
transformation f to one plane is an elation and a restriction
of £ to another plane is a homology at thg‘same time. To prove
this fact assume conversely, that on a plane 1 we have an

1
elation with a center P1 and on a plane H2 - a homology with a
center Pz. The fundamental lines of considered elation and

homology must both, as previously, coincide with the axis 1L,
because in the other case they would set a fundamental plane

(if they would have a common point) or the plane Ul would be
fundamental (if they wouldn’t have any commony point). Moreover
the point P, doesn’t lie on the axis L, and so each plane

containing a line from the pencil P, of the invariant lines on

the plane T, and the point P, must be invariant. Hence we have

2
of invariant planes different from the pencil L.

1

a pencil P1P2
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These two pencils give in the point P, a bundle of " invariant

1
lines and consequently - a bundle of invariant planes. But

this is impossible, for f is an axis collineation. o.

An axis collineation, the restrictions of which to all
invariant planes are homologies, satisfies the assumptions of
lemma 3, hence it is a composition of two normal cyclic
collineations.

An axis collineation, the restrictions of which to all
invariant planes are elations, is a composition of two normal
cyclic collineations (Theorem 4([1]).

Lemma 5. If a collineation f: P3——-)P3 with the charac-
teristic 1, has no united points, then f is a composition of

two normal cyclic collineations.

Proof. Take into account three different invariant 1lines
Ly, Ly, L,. As the collineation f has no united points, hence

these lines are mutually skew. Let points P Pz, P3 belong to
the line Ll; points P4, P5, P6 - to the line L2; points P7L P8
- to the line L.. Moreover let f(P1)=P2, f(P2)=P3, f(P4)=P5,

3
f(P5)=P6, f(P7)=P8. We shall denote this using only indexes of
points by symbol :

1’

.12
£: 53

4 57
56 8 °

If the collineation £ is an involution, then P,=P,, P,=P,
and f is a composition of transformations g and h defined in
the following way :

124
9 4521 x '

1 x

. 452
h: 3568

where x is such that LI4(4,5,2,1,x). Collineations g and h are
well defined and they are normal cyclic on the strength of the
lemma 1[1].

If the collineation f is not an involution, then we can

choose such coordinate system and such points P P that

1!"'! 8!

they have the following coordinates:
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1: (1,0,0,0)
2 : (0,1,0,0)
3 : (1,a,0,0)
4 : (0,0,1,0)
5 : (0,0,0,1)
6 : (0,0,b,1)
7 : (1,1,1,1)
8 : (c,d,e,f)
and b#0. There are some conditions which the numbers

a,b,c,d,e,f must satisfy. These conditions come from linear

independence of some quadruples of points. For instance, from
LI4(2,3,5,6,8) we obtain :

ac-d#0, =-c#0, bf-ex0, e=0.

Then the collineation f is a composition of transforma-

tions g and h defined in the following way :

[N}
(SIS

(oL o
= 0
W
~

g:

- h:

N,
w =
0N
[
®

bf-e

where the point P, has coordinates (—c,——s—,e,ac—d). The

9
sufficient conditions for LI4(5,1,2,4,9) are :

-c#0, bfée:o, e*#0, ac-d=0.

As we already noticed these are satisfied. Hence the colline-
ations g and h are well defined. Moreover the collineation g
is normal cyclic according to Lemma 1[1]. )

The matrix of the collineation h is following :

comyuY

b

Dooo

HOOO
|

oo UD O

By simple calculation one can check, that H4=b4I, where I is

the identity matrix. These means, that h is also a normal cy-

clic collineation.

a.

Finally, in view of the lemmas 2,3,4,5 we find that if
IFlz16, then any collineation of P3(F) with the characteristic
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1 is a composition of two normal cyclic collinations.

Now we shall deal with collineations with the characteris-
tic 2. If char £ = 2, then each point of the space ljes on an
invariant plane.'

Lemma 6. If a collineation f: P3———)P3 has the characteris-

tic 2, then there exists a pencil of invariant planes.

Proof. Assume oppositely, that three invariant planes
1+ Lz Iy
Then these lines have one common point P. Let R be an arbi-

intersect each other along three distinct lines L

trary point beyond from these three planes. Consider an in-
variant plane 1T containing the point R. If the plane T con~
1+ Lye Dys
three invariant planes, hence it is an axis of a pencil of in-

tains one of the lines L then this line belongs to
variant planes.

If the plane II contains the point P, but includes none of
the lines Ll’Lz’L3’ then four considered planes intersect
along six distinct lines, four of witch are such, that any
three of them are linearly independent. So they generate a
bundle of invariant 1lines in the point P, what is
contradictory to the assumption, that char f = 2.

If the plane N doesn’t contain the point P, then four con-
sidered planes form a simplex. Take another invariant plane &.
This plane cannot intersect the above-mentioned simplex along
four distinct lines, because in this case it would be funda-
mental against to the assumption, that char £ = 2. Therefore
the plane ¢ intersects this simplex along three 1lines. Hence
one of these lines belongs to three invariant planes and con-
sequently is an axis of a pencil of invariant planes.

o.

From the above lemma and the duality principle it follows
that a transformation with the characteristic 2 has a
fundamental line. But an axis of a pencil of invariant planes
cannot be fundamental, because then there would be a homology
or elation on each plane from the pencil, so the
characteristic of f would be 1.
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Lemma 7. A collineation f: P3———>P3 with the characteristic

2 is a composition of two normal cyclic collineations.

Proof. Since char f = 2, then there exist an invariant
plane T and points Pl,Pz,P3,P4 on it such that f(P1)=P2,

_ _ 3

f(Pz)—Pa' f(PB)-P4 and LI (Pl,Pz,P3,P4). Let P5 and P6 be two
points from a fundamental line and beyond from the plane 1.
Then LI4(1,2,3,5,6) and LI4(2,3,4,5,6). So the collineation f
is well defined by the assigning :

g 12356
23456 "°

According to Lemma 1{1) transformations g and h defined in
the following way :

.1235%6
98 52163 "
.52163
h: 23 456

are normal cyclic collineations and their composition gives f.

The above lemma ends the proof of Theorem 1.
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