

Krzysztof Witczyński

ON SOME PROPERTY OF PASCALIAN HEXAGONS

Let P_2 denote a projective pappian plane (finite or infinite). We say that the sextuple (a_1, \dots, a_6) of distinct points of P_2 forms a hexagon if the lines $a_1a_2, \dots, a_5a_6, a_6a_1$ are all distinct. A hexagon $a_1a_2\dots a_6$ is said to be pascalian if the points $a_1a_2 \cap a_4a_5, a_2a_3 \cap a_5a_6, a_3a_4 \cap a_6a_1$ colline.

Assume that we are given in P_2 six points a_1, \dots, a_6 such that no three of them are collinear. Define

$$(1) \quad b_i = a_i a_{i+2} \cap a_{i+1} a_{i+3}, \quad i=1, \dots, 6 \quad (\text{we reduce the indices mod 6}).$$

One can check easily that the points b_i are all distinct and the sextuple (b_1, \dots, b_6) is a hexagon. Moreover, only the points b_1, b_3, b_5 or b_2, b_4, b_6 may be collinear among all the point triples from the set $\{b_1, \dots, b_6\}$.

Proposition 1. Suppose there is a point s such that the points s, a_i, a_{i+3} colline for $i=1, 2, 3$. Then the hexagon $a_1a_2\dots a_6$ is pascalian if and only if the hexagon $b_1b_2\dots b_6$ is pascalian and the points s, b_i, b_{i+3} colline for $i=1, 2, 3$.

Proof. It is known [1] that the theorem of Pascal holds in a projective plane P if and only if the coordinatizing field of P is commutative, i.e. P is pappian. Suppose the hexagon $a_1a_2\dots a_6$ is pascalian. By the converse of the theorem of Pascal we infer that the points a_1, \dots, a_6 are on a proper conic. It implies that for every permutation (i_1, \dots, i_6) of the numbers $1, \dots, 6$ the hexagon $a_{i_1}\dots a_{i_6}$ is pascalian.

Hence the points

$$(2) \quad b_i = a_i a_{i+2} \cap a_{i+1} a_{i+3}, \quad b_{i+3} = a_{i+3} a_{i+5} \cap a_{i+4} a_i, \\ s = a_{i+1} a_{i+4} \cap a_{i+2} a_{i+5}, \quad i = 1, 2, 3$$

are collinear.

On the other hand, the points

$$(3) \quad a_i = b_{i+3} b_{i+4} \cap b_i b_{i+5}, \quad a_{i+3} = b_i b_{i+1} \cap b_{i+2} b_{i+3}, \\ s = b_{i+1} b_{i+4} \cap b_{i+2} b_{i+5}$$

are also collinear for $i = 1, 2, 3$.

Since the lines $b_1 b_2, \dots, b_5 b_6, b_6 b_1, b_1 b_4, b_2 b_5, b_3 b_6$ are all distinct, the point sextuples $(b_2, b_1, b_6, b_3, b_4, b_5)$, $(b_3, b_2, b_1, b_4, b_5, b_6)$, $(b_4, b_3, b_2, b_5, b_6, b_1)$ are hexagons. It follows from (3) that these hexagons are pascalian.

Notice that if the points b_1, b_3, b_5 are collinear, then the points b_2, b_4, b_6 are collinear too, and conversely. In fact, if e.g. the points b_1, b_3, b_5 colline, then the triangles $a_1 a_3 a_5$ and $a_2 a_4 a_6$ are doubly perspective. Hence they are triply perspective and, consequently, the points b_2, b_4, b_6 are on an axis of perspectivity.

We have then to consider the following cases:

- 1) The points b_1, \dots, b_6 are such that no three of them are collinear. Then they are on a proper conic and hence the hexagon $b_1 b_2 \dots b_6$ is pascalian.
- 2) The points b_1, b_3, b_5 are on a line and, at the same time, the points b_2, b_4, b_6 are on an another line. From the theorem of Pappus it follows that the points $b_1 b_2 \cap b_4 b_5, b_2 b_3 \cap b_5 b_6, b_3 b_4 \cap b_6 b_1$ colline, i.e. the hexagon $b_1 b_2 \dots b_6$ is pascalian.

If now the hexagon $b_1 b_2 \dots b_6$ is pascalian and the points s, b_i, b_{i+3} colline for $i = 1, 2, 3$, then, in view of (2) and (3), we see that the hexagon $a_1 a_2 \dots a_6$ is pascalian and the points s, a_i, a_{i+3} colline for $i = 1, 2, 3$.

Proposition 2. Let (a_1, \dots, a_6) and (b_1, \dots, b_6) be two sextuples of points of P_2 related themselves as in (1) and such that no three of the points a_1, \dots, a_6 are on a line. Then the hexagons $a_1 a_2 \dots a_6$ and $b_1 b_2 \dots b_6$ are both pascalian if and

only if there exists such a point s that the points s, a_i, a_{i+3} and s, b_i, b_{i+3} are collinear for $i = 1, 2, 3$.

Proof. Let both the hexagons $a_1 \dots a_6$ and $b_1 \dots b_6$ be pascalian. Let us denote by s the point $a_1 a_4 \cap a_2 a_5$ and by s^* the point $b_1 b_4 \cap b_2 b_5$. Since the hexagons $a_1 \dots a_6$, $b_1 \dots b_6$ are pascalian, the hexagons $a_1 a_4 a_6 a_2 a_5 a_3$ and $b_1 b_4 b_3 b_2 b_5 b_6$ are pascalian. Hence the points s, b_3, b_6 as well as s^*, a_3, a_6 are collinear. Analogously, we show that $s \in b_1 b_4$, $s \in b_2 b_5$, $s^* \in a_1 a_4$, $s^* \in a_2 a_5$. Thence $s = s^*$.

If now there exists a point s such that $s \in a_i a_{i+3}$ and $s \in b_i b_{i+3}$ for $i = 1, 2, 3$, then, in particular, the points $b_2 = a_2 a_4 \cap a_3 a_5$, $b_5 = a_1 a_5 \cap a_2 a_6$, $s = a_1 a_4 \cap a_3 a_6$ are collinear. It means that the hexagon $a_1 a_4 a_2 a_6 a_3 a_5$ is pascalian. It implies that the points a_i , $i = 1, \dots, 6$ are on a proper conic and hence the hexagon $a_1 \dots a_6$ is pascalian. By Proposition 1, we infer that the hexagon $b_1 b_2 \dots b_6$ is pascalian.

REFERENCES

[1] Hughes, D.R. and Piper, F.C.: Projective planes. Springer (1973).

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW
00-661 Warszawa

Received April 24, 1991.

