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ON THE DIMENSION OF THE TANGENT DIFFERENTIAL SPACE 

In this paper we investigate the dimension of the tangent 
space to the tangent differential space ([1]). In section 2 we 
show some relations between singularities of a differential 
space of class D q ([9],[10]) and singularities of its tangent 
differential space. 

1. Main results 
Let (M,C) be a differential space ([6],[7],[8]), p e M, 

v e TpM and let TC: TM —> M be the natural projection of the 
tangent bundle TM on M ([1]). 

Proposition 1.1. The kernel of the tangent mapping (<3tt)v 
is isomorphic to Tv(TpM). 

Proof. Let l: TpM —» TM be a imbedding, for any w e TpM, 
L(w) = w. The tangent mapping (di)v: Tv(TpM) —> Tv(TM) is a 
monomorphism, because i is one to one. Then Tv(TpM) is 
isomorphic to the image of the tangent mapping (dt) . It will 
be proved that the image of the tangent mapping (dt)v is equal 
to the kernel of the tangent mapping (dn) 
( im(<iOv = ker(dn) v ) . 

Let a e C and w e T (T M). Then v p 
(dn) v( (dt) vw)ot = ((dL)vw) (a«rr) = w(a«JT»t) = w(a(p)) = 0. 

Now it is obvious that im(dt)v s ker(dn)v> 
Now, we prove the inclusion ker(dn)v £ im(dt)v> Let 

u e ker(drc)v. Then, for any a e C, u(a°7i) = 0. 
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The set {dp«*: o e C} generates differential structure on 
T M, where d a is a function given by P P 

(dpOt)v = v(a), for any v e TpM. 
Let us define a mapping wQ: {dpCt: a e C} —> IR as follows 

w0(dpCt) = u(da), for any a e C . 
We will check the correctness of the above definition. Let us 
assume dpa = 0. Then there exist functions • • ' e C' 
w e C°°(IRn) and a neighbourhood U of the point p in M such that 

o£| = (jo ... a^i^fp) , .. . ,0n(p)) =0, 

for any i = 1,...n ([3]). 
One can see that 

w0(dpot) = u(da) =u(cf(a| )) = u (d (u. , . . . , *n) j ) ) = 
n 

= u( I ).7i, _ )d(«.. )) = 
i=l 1 " 'ti •l(U) ^'u 
n 

= E n(P))u(d(0., ) + i=l 1 n Iu 
n n _ 

+ 1 ( 1 ,...,<(> (p))w(0.o7r))d0. (v) = 0 . 
i=l j=l " J 

Let e C and dpa = d̂ /S. Now, one can easily see that 
w0(dpO<) = w0(dp/3), which proves the correctness of the 
definition of w^. Moreover, the mapping wQ is linear, because 
the mapping u is linear. 

Now, we will prove that wQ can be extended to a vector 

w e Tv(TpM) . Let w e C°°(IRn) and e C such that 
u°(dp*l'''''dp*n} = 

Let us assume that d̂ ip̂ , .. . »<Jp0n are linear independent. Then 
there exist vectors v, ..... v e T M such that l n p 

v.*. = 5i;., for any i,j = l,...,n. 
For any a1,...,an e IR, 
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( W o ( d ^ , . . . , d p 0 n ) ) ( v + E ^ a ^ v ^ ) = u f v ^ + + a n ) . 

Now i t i s o b v i o u s t h a t w ( v ^ 1 + a 1 , . . . f v ^ n + a n ) = 0 f ° r a n Y 

a l f . . . , a e R . T h e n . . . , = 0 , f o r a n y i = l , . . . , n . 

L e t u s a s s u m e t h a t , f o r k s n , d , . . . ,d a r e l i n e a r 
p i p K 

i n d e p e n d e n t a n d ^ p ^ + x » • • • » < i p 0 n a r e t h e i r l i n e a r c o m b i n a t i o n s 

k 
d <l>. = Y b. .d <t>., 

i ] P * V 

w h e r e Jb^j e IR , f o r a n y i = k + l , . . . , n , j = l , . . . , k . 

GO k 

N o w , l e t u s d e f i n e a f u n c t i o n 9 e C (IR ) a s f o l l o w s 

k k 

0 ( x l " - " x k ) - w ( x l V ^ 2 5 k + l , j X j ' " " j i 1 b n j x j > ' 
lr 

f o r a n y ( x l f . . . , x k ) e IR . 

I t i s . o b v i o u s t h a t Q(d <b. , . . . , d <p, ) = 0 . S i n c e d 4 , , . . . , d 
p i p k p i p k 

a r e l i n e a r i n d e p e n d e n t , 3 . 0 ( v 0 , . . . ) = 0 , f o r a n y 
1 1 K 

i = l , . . . , k . On t h e o t h e r h a n d , f o r a n y i = l , . . . , k , 

k k 

3 i 0 ( x l x k > " + 

+ J k + l I > l i 3 l ( J ( X l J ^ n j X j } ' 

aiw(v4>1,... ,v<pn) = 

n 
= - E a,u(v<p ,v<p ) . 

l = k + l 1 1 n 

T h e n 

1 = 1 
k n 

I aiu)(v<P1, . . . , v « n ) w o ( d p 0 i ) = 

= E ( " E b 1 ± a ^ W , . . . , v i n ) ) w ( d j . ) + 
i—1 l = k + l 1 1 1 -1 n u p l 

n k 
+ I a . ( j ( v ^ , . . . , v 0 ) w ( l b..d é.) = 

i = k + l 1 1 n o j = 1 i d p ] 

k n 
= " E ( E i>1;L 8 l U ( v « , . . . , v < * ) ) w 0 ( d + 

i = l l = k + l •L 1 1 1 n o p i 
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+ E ( I b. .a.u(v0, , . . . ,v<p ))w„(d 6. 
j=l i=k+l 1 ] 1 1 n 0 p 3 

th< 
a e C, 

) = 0. 

Thus, there exists a vector w e Tv(TpM), such that, for any 

w(dpa) = wQ(cipa) = u(doc) 

Then, for any a e C, 

(dt)vw(da) = w(da<>L) = w(dpa) = u(da) 

and 

(dL)vw(ao7r) = W(<X°TT°L) = w(a(p)) = 0, u(a°7r) = 0. 
The set {da: a e C}u{a»Tr: a e C} generates a differential 

structure on TM. The tangent vectors u,(dL)vw e Tv(TM) are 
equal on these sets, then u = (dt)vw. Since the vector 
u e ker(d7i)v, ker(d7r)v £ im(dL)v. Now, in view of this 
inclusion and the first part of this proof, one can easily see 
that ker(d7r)v = im(dc)v. On the other hand, the vector spaces 
im(di.)v and T v(T pM) are isomorphic. Then the vector spaces 

ker(d7i)v and T v(T pM) are isomorphic too. 

Now, we will prove 

Corollary 1.2. Let (M,C) be a differential space such that 

dim T M is finite for any q e M. Then q 
dim Tv(TM) = dim Tv(TpM) + dim(im(dn)v), 

for any p e M, v e TpM. 

Proof. The tangent mapping (dn)v: Tv(TM) —» T pM is linear, 

then 

dim Tv(TM) = dim(ker(djr)v) + dim(im(dir)v) . 

Now, in view of Proposition 1.1, one can easily prove this 
corollary. 

Let N be a differential subspace of M. 
Proposition 1.3. If a tangent vector v e T pM can be 

extended to a smooth vector field on N then 
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dim(im(d7T) v) a dim TpN. 
Proof. Let a smooth vector field X e 3f(N) be an extension 

of the vector v e TpM ( X(p) = v ). For any q e N, the tangent 
space TgN is a vector subspace of the tangent space T^M, 
because N is a differential subspace of M. Let us consider the 
mapping n. : TN —* N. 

'tn 
The vector field X is a section of the tangent bundle TN, then 

7TI oX = idVI. 
ITN N 

Let us notice that 
(d(7T. °X) ) = (d(7T| )) v°(dX) = (dTT) , o(dX) . 

>TN P 'TN V P >Tv(TN) p 

On the other hand, one can see that 
(idN)p = idT N . 

P 
Then it is easy to see that 

(dTT) . o(dX) = id . 
•Tv(TN) P V 

Now, one can see that the mapping (dir) . is "onto" the 
'Tv(TN) 

tangent spade TpN. It means that TpN £ im(d7i)v. 
Corollary 1.4. Let (M,C) be a differential space such that 

dim TgM is finite for any q e M. If a tangent vector v e TpM 
can be extended to a smooth vector field on M then 

dim Tv(TM) = dim Tv(TpM) + dim(TpM). 
Proof. This is an obvious consequence of Proposition 1.3 

and Corollary 1.2. 

2. Singular points of the tangent bundle of differential 
spaces of class Dq 

Let (M,C) be a differential space of class D q. Then one 
can prove that the tangent differential space (TM,TC) is a 
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differential space of class VQ [10]. 
Definition 2.1. A point p e M is a regular point of (M,C) 

of class D if there exists a neighbourhood U of this point in 
M such that, for any q e U, dim TgM = dim TpM. 

Remark 2.1. It is easy to prove that if the above 
condition is satisfied, then (U,Cy) is a differential space of 
class Dq of constant differential dimension ([7], [8]). 

Definition 2.2. A point p e M is a singular point of (M,C) 
of class T>q if this point is not regular point of (M,C). 

Now, we will prove. 
Proposition 2.4. Let (M,C) be a differential space of 

class The following conditions are equivalent: 
(i) the point p e M is a regular point of (M,C), 
(ii) there exists a vector v e T M, which can be extended to a * ' * p 
smooth vector field on M, such that the vector v is a regular 
point of (TM,TC), 
(iii) every vector v e TpM is a regular point of (TM,TC). 

Proof, (ii) •> (i) Let a vector v e T M satisfies the P 
condition (ii) . Then there exists an open neighborhood V of 
the vector v in TM such that, for any vector w e V, 

dim Tv(TM) = dim Tw(TM). 
Let X be a smooth vector field on M such that X(p) = v. The 

set X-1(V) is open in TM, because the vector field X: M —> TM 
is a smooth mapping. The point p e X "'"(V), because the vector 
v e V. Thus the set X ^(V) is a neighbourhood of point p in M. 
Now, let q e X-1(V), then 

dim Tv(TM) = dim Tx(g)(TM). 

On the other hand, for any s e M and u e TgM, a vector space 

TbM is isomorphic to Tu(TgM). In view of Corollary 1.2, we 
have 

dim T (TM) = 2 • dim T M, v p 
and analogously, 
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dim T „ . . ( T M ) = 2 • dim T M. X(q) q 

Then, for any q e X - 1(V), 

dim T M = dim T M. 
P q 

Therefore the point p is a regular point of M. 

(i) + (iii) The point p is a regular point of M, then, in 

view of Remark 2.1, there exists a neighbourhood U of the 

point p in M such that the differential space ( U , ^ ) is a 

differential space of class D q of constant differential 

dimension. Then every vector field v e n 1(U) can be extended 

to a smooth vector field on M ([7],[8]). The set jr_1(U) is 

open and TpM £ 7r-1(U) . In view of Corollary 1.2 we have 

dim T (TM) = 2 • dim T M, w p 

for every w e n 1(U).Therefore every vector w e T^M is a 

regular point of TM. 

(iii) =» (ii) We should prove that there exists a vector 

v € T M. which can be extended to a smooth vector field. This 
P 

vector is the zero vector 0 e T M. 
P 

Now one can easily prove. 

Corollary 2.5. Let (M,C) be a differential space of class 

© o . The following conditions are equivalent: 

(i) the point p e M is a singular point of (M,C), 

(ii) every vector v € TpM, which .can be extended to a smooth 

vector field on M, is a singular point of (TM,TC), 

(iii) there exists a vector v € T^M, which is a singular point 

of (TM,TC). 

If a point p e M is a singular point of M, then it is 

possible that there exists a vector v e T M, which is a 
P 

regular point of TM. Let us cosider the following 

Example 2.1. Let M = j 1 : n e IN\{0}j u {0} and 

C = (C°° (R)) m. T h e n 
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dim T M = 
P 

0 for any p * 0, 

1 for any p = 0, 

thus 0 € M is a singular point of M. Let v € M, then 

dim T v(TM) = 
1 for any v * 0, 

2 for any v = 0. 

It is easy to see that every v e T pM, which is not equal to 

the zero vector 0 e T pM, is a regular point of TM. 

REFERENCES 

[1] A. Kowalczyk: Tangent differential spaces and smooth 
forms, Demonstratio Math., 13 (1980), 893-905. 

[2] A. Kowalczyk, J. Kubarski: A local property of the 
subspaces of Euclidean differential spaces, Demonstratio 
Math., 11 (1978), 875-885. 

[3J P. Multarzyriski, W. Sasin: Algebraic characterization of 
the dimension of differential spaces, Proceedings of the 
Winter School on Geometry and Physics, Supplemento ai 
Rendiconti del Circolo Matematico di Palermo, 22 (1989), 
193-199. 

[4] B. O'Neill: Semi-riemannian geometry, Academic Press, 
New York - London 1983 

[5] W. Sasin, Z. Zekanowski: On locally finitely generated 
differential spaces, Demonstratio Math., 20 (1987), 
477-487. 

[6] R. Sikorski: Abstract covariant derivate, Colloq. Math., 
18 (1967), 251-272. 

[7] R. Sikorski: Differential modules, Colloq. Math., 24 
(1971), 45-70. 

[8] R. Sikorski: Wst^p do geometrii rozniczkowej, PWN, 
Warszawa 1972. 

[9] P. Walczak: A theorem on diffeomorphism in the category 
of differential spaces, Bull. Acad. Polon. Sci., Ser. 
Sci. Math. Astronom. Phys., 21 (1973), 325-329. 

[10] P. Walczak: On a class of differential spaces satisfying 
the theorem on diffeomorphism, Bull. Acad. Polon. Sci., 
Ser. Sci. Math. Astronom. Phys., 22 (1974), 805-814. 

[11] W. Waliszewski: On a coregular division of a differential 
space by an equivalence relation, Colloq. Math. 26 
(1972), 281-291. 



Dimension of tangent differential spaces 685 

[12] W. Waliszewski: Regular and coregular mappings of 
differential spaces, Ann. Polon. Math. 30 (1975), 
263-281. 

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW, 

00-661 WARSZAWA, POLAND. 

Received May 9, 1991. 




