

Wojciech Domitrz , Wiesław Sasin

ON THE DIMENSION OF THE TANGENT DIFFERENTIAL SPACE

In this paper we investigate the dimension of the tangent space to the tangent differential space ([i]). In section 2 we show some relations between singularities of a differential space of class D_0 ([9],[10]) and singularities of its tangent differential space.

1. Main results

Let (M, C) be a differential space ([6],[7],[8]), $p \in M$, $v \in T_p M$ and let $\pi: TM \rightarrow M$ be the natural projection of the tangent bundle TM on M ([1]).

Proposition 1.1. The kernel of the tangent mapping $(d\pi)_v$ is isomorphic to $T_v(T_p M)$.

Proof. Let $\iota: T_p M \rightarrow TM$ be a imbedding, for any $w \in T_p M$, $\iota(w) = w$. The tangent mapping $(d\iota)_v: T_v(T_p M) \rightarrow T_v(TM)$ is a monomorphism, because ι is one to one. Then $T_v(T_p M)$ is isomorphic to the image of the tangent mapping $(d\iota)_v$. It will be proved that the image of the tangent mapping $(d\iota)_v$ is equal to the kernel of the tangent mapping $(d\pi)_v$ ($\text{im}(d\iota)_v = \ker(d\pi)_v$).

Let $\alpha \in C$ and $w \in T_v(T_p M)$. Then

$$(d\pi)_v((d\iota)_v w) \alpha = ((d\iota)_v w)(\alpha \circ \pi) = w(\alpha \circ \pi \circ \iota) = w(\alpha(p)) = 0.$$

Now it is obvious that $\text{im}(d\iota)_v \subseteq \ker(d\pi)_v$.

Now, we prove the inclusion $\ker(d\pi)_v \subseteq \text{im}(d\iota)_v$. Let $u \in \ker(d\pi)_v$. Then, for any $\alpha \in C$, $u(\alpha \circ \pi) = 0$.

The set $\{d_p\alpha: \alpha \in C\}$ generates differential structure on $T_p M$, where $d_p\alpha$ is a function given by

$$(d_p\alpha)v = v(\alpha), \text{ for any } v \in T_p M.$$

Let us define a mapping $w_0: \{d_p\alpha: \alpha \in C\} \rightarrow \mathbb{R}$ as follows

$$w_0(d_p\alpha) = u(d\alpha), \text{ for any } \alpha \in C.$$

We will check the correctness of the above definition. Let us assume $d_p\alpha = 0$. Then there exist functions $\phi_1, \dots, \phi_n \in C$, $\omega \in C^\infty(\mathbb{R}^n)$ and a neighbourhood U of the point p in M such that

$$\alpha|_U = \omega \circ (\phi_1, \dots, \phi_n)|_U, \quad \partial_i \omega(\phi_1(p), \dots, \phi_n(p)) = 0,$$

for any $i = 1, \dots, n$ ([3]).

One can see that

$$\begin{aligned} w_0(d_p\alpha) &= u(d\alpha) = u(d(\alpha|_U)) = u(d(\omega \circ (\phi_1, \dots, \phi_n)|_U)) = \\ &= u\left(\sum_{i=1}^n \partial_i \omega((\phi_1, \dots, \phi_n) \circ \pi|_{\pi^{-1}(U)}) d(\phi_i|_U)\right) = \\ &= \sum_{i=1}^n \partial_i \omega(\phi_1(p), \dots, \phi_n(p)) u(d(\phi_i|_U)) + \\ &+ \sum_{i=1}^n \left(\sum_{j=1}^n \partial_{ji}^2 \omega(\phi_1(p), \dots, \phi_n(p)) w(\phi_j \circ \pi)\right) d\phi_i(v) = 0. \end{aligned}$$

Let $\alpha, \beta \in C$ and $d_p\alpha = d_p\beta$. Now, one can easily see that $w_0(d_p\alpha) = w_0(d_p\beta)$, which proves the correctness of the definition of w_0 . Moreover, the mapping w_0 is linear, because the mapping u is linear.

Now, we will prove that w_0 can be extended to a vector $w \in T_v(T_p M)$. Let $\omega \in C^\infty(\mathbb{R}^n)$ and $\phi_1, \dots, \phi_n \in C$ such that $\omega \circ (d_p\phi_1, \dots, d_p\phi_n) = 0$.

Let us assume that $d_p\phi_1, \dots, d_p\phi_n$ are linear independent. Then there exist vectors $v_1, \dots, v_n \in T_p M$ such that

$$v_i \phi_j = \delta_{ij}, \text{ for any } i, j = 1, \dots, n.$$

For any $a_1, \dots, a_n \in \mathbb{R}$,

$$(\omega \circ (d_p \phi_1, \dots, d_p \phi_n))(v + \sum_{i=1}^n a_i v_i) = \omega(v\phi_1 + a_1, \dots, v\phi_n + a_n).$$

Now it is obvious that $\omega(v\phi_1 + a_1, \dots, v\phi_n + a_n) = 0$ for any $a_1, \dots, a_n \in \mathbb{R}$. Then $\partial_i \omega(v\phi_1, \dots, v\phi_n) = 0$, for any $i = 1, \dots, n$.

Let us assume that, for $k \leq n$, $d_p \phi_1, \dots, d_p \phi_k$ are linear independent and $d_p \phi_{k+1}, \dots, d_p \phi_n$ are their linear combinations

$$d_p \phi_i = \sum_{j=1}^k b_{ij} d_p \phi_j,$$

where $b_{ij} \in \mathbb{R}$, for any $i = k+1, \dots, n$, $j = 1, \dots, k$.

Now, let us define a function $\theta \in C^\infty(\mathbb{R}^k)$ as follows

$$\theta(x_1, \dots, x_k) = \omega(x_1, \dots, x_k, \sum_{j=1}^k b_{k+1,j} x_j, \dots, \sum_{j=1}^k b_{nj} x_j),$$

for any $(x_1, \dots, x_k) \in \mathbb{R}^k$.

It is obvious that $\theta(d_p \phi_1, \dots, d_p \phi_k) = 0$. Since $d_p \phi_1, \dots, d_p \phi_k$ are linear independent, $\partial_i \theta(v\phi_1, \dots, v\phi_k) = 0$, for any $i = 1, \dots, k$. On the other hand, for any $i = 1, \dots, k$,

$$\begin{aligned} \partial_i \theta(x_1, \dots, x_k) &= \partial_i \omega(x_1, \dots, x_k, \sum_{j=1}^k b_{k+1,j} x_j, \dots, \sum_{j=1}^k b_{nj} x_j) + \\ &+ \sum_{l=k+1}^n b_{li} \partial_l \omega(x_1, \dots, x_k, \sum_{j=1}^k b_{k+1,j} x_j, \dots, \sum_{j=1}^k b_{nj} x_j), \\ &\quad \partial_i \omega(v\phi_1, \dots, v\phi_n) = \\ &= - \sum_{l=k+1}^n b_{li} \partial_l \omega(v\phi_1, \dots, v\phi_n). \end{aligned}$$

Then

$$\begin{aligned} &\sum_{i=1}^n \partial_i \omega(v\phi_1, \dots, v\phi_n) w_0(d_p \phi_i) = \\ &= \sum_{i=1}^k \left(- \sum_{l=k+1}^n b_{li} \partial_l \omega(v\phi_1, \dots, v\phi_n) \right) w_0(d_p \phi_i) + \\ &\quad + \sum_{i=k+1}^n \partial_i \omega(v\phi_1, \dots, v\phi_n) w_0 \left(\sum_{j=1}^k b_{ij} d_p \phi_j \right) = \\ &= - \sum_{i=1}^k \left(\sum_{l=k+1}^n b_{li} \partial_l \omega(v\phi_1, \dots, v\phi_n) \right) w_0(d_p \phi_i) + \end{aligned}$$

$$+ \sum_{j=1}^k \left(\sum_{i=k+1}^n b_{ij} \partial_i \omega(v\phi_1, \dots, v\phi_n) \right) w_0(d_p \phi_j) = 0.$$

Thus, there exists a vector $w \in T_v(T_p M)$, such that, for any $\alpha \in C$,

$$w(d_p \alpha) = w_0(d_p \alpha) = u(d\alpha) .$$

Then, for any $\alpha \in C$,

$$(d\iota)_v w(d\alpha) = w(d\alpha \circ \iota) = w(d_p \alpha) = u(d\alpha)$$

and

$$(d\iota)_v w(\alpha \circ \pi) = w(\alpha \circ \pi \circ \iota) = w(\alpha(p)) = 0, u(\alpha \circ \pi) = 0.$$

The set $\{d\alpha: \alpha \in C\} \cup \{\alpha \circ \pi: \alpha \in C\}$ generates a differential structure on TM . The tangent vectors $u, (d\iota)_v w \in T_v(TM)$ are equal on these sets, then $u = (d\iota)_v w$. Since the vector $u \in \ker(d\pi)_v$, $\ker(d\pi)_v \subseteq \text{im}(d\iota)_v$. Now, in view of this inclusion and the first part of this proof, one can easily see that $\ker(d\pi)_v = \text{im}(d\iota)_v$. On the other hand, the vector spaces $\text{im}(d\iota)_v$ and $T_v(T_p M)$ are isomorphic. Then the vector spaces $\ker(d\pi)_v$ and $T_v(T_p M)$ are isomorphic too.

Now, we will prove

Corollary 1.2. Let (M, C) be a differential space such that $\dim T_q M$ is finite for any $q \in M$. Then

$$\dim T_v(TM) = \dim T_v(T_p M) + \dim(\text{im}(d\pi)_v),$$

for any $p \in M, v \in T_p M$.

Proof. The tangent mapping $(d\pi)_v: T_v(TM) \rightarrow T_p M$ is linear, then

$$\dim T_v(TM) = \dim(\ker(d\pi)_v) + \dim(\text{im}(d\pi)_v).$$

Now, in view of Proposition 1.1, one can easily prove this corollary.

Let N be a differential subspace of M .

Proposition 1.3. If a tangent vector $v \in T_p M$ can be extended to a smooth vector field on N then

$$\dim(\text{im}(d\pi)_v) \geq \dim T_p N.$$

Proof. Let a smooth vector field $X \in \mathcal{X}(N)$ be an extension of the vector $v \in T_p M$ ($X(p) = v$). For any $q \in N$, the tangent space $T_q N$ is a vector subspace of the tangent space $T_q M$, because N is a differential subspace of M . Let us consider the mapping $\pi|_{T_N} : T_N \rightarrow N$.

The vector field X is a section of the tangent bundle T_N , then

$$\pi|_{T_N} \circ X = \text{id}_N.$$

Let us notice that

$$(d(\pi|_{T_N} \circ X))_p = (d(\pi|_{T_N}))_v \circ (dX)_p = (d\pi)_v|_{T_v(T_N)} \circ (dX)_p.$$

On the other hand, one can see that

$$(\text{id}_N)_p = \text{id}_{T_p N}.$$

Then it is easy to see that

$$(d\pi)_v|_{T_v(T_N)} \circ (dX)_p = \text{id}_{T_p N}.$$

Now, one can see that the mapping $(d\pi)_v|_{T_v(T_N)}$ is "onto" the tangent space $T_p N$. It means that $T_p N \subseteq \text{im}(d\pi)_v$.

Corollary 1.4. Let (M, C) be a differential space such that $\dim T_q M$ is finite for any $q \in M$. If a tangent vector $v \in T_p M$ can be extended to a smooth vector field on M then

$$\dim T_v(TM) = \dim T_v(T_p M) + \dim(T_p M).$$

Proof. This is an obvious consequence of Proposition 1.3 and Corollary 1.2.

2. Singular points of the tangent bundle of differential spaces of class D_0

Let (M, C) be a differential space of class D_0 . Then one can prove that the tangent differential space (TM, TC) is a

differential space of class D_0 [10].

Definition 2.1. A point $p \in M$ is a regular point of (M, C) of class D_0 if there exists a neighbourhood U of this point in M such that, for any $q \in U$, $\dim T_q M = \dim T_p M$.

Remark 2.1. It is easy to prove that if the above condition is satisfied, then (U, C_U) is a differential space of class D_0 of constant differential dimension ([7], [8]).

Definition 2.2. A point $p \in M$ is a singular point of (M, C) of class D_0 if this point is not regular point of (M, C) .

Now, we will prove.

Proposition 2.4. Let (M, C) be a differential space of class D_0 . The following conditions are equivalent:

- (i) the point $p \in M$ is a regular point of (M, C) ,
- (ii) there exists a vector $v \in T_p M$, which can be extended to a smooth vector field on M , such that the vector v is a regular point of (TM, TC) ,
- (iii) every vector $v \in T_p M$ is a regular point of (TM, TC) .

Proof. (ii) \Rightarrow (i) Let a vector $v \in T_p M$ satisfies the condition (ii). Then there exists an open neighborhood V of the vector v in TM such that, for any vector $w \in V$,

$$\dim T_v(TM) = \dim T_w(TM).$$

Let X be a smooth vector field on M such that $X(p) = v$. The set $X^{-1}(V)$ is open in TM , because the vector field $X: M \rightarrow TM$ is a smooth mapping. The point $p \in X^{-1}(V)$, because the vector $v \in V$. Thus the set $X^{-1}(V)$ is a neighbourhood of point p in M . Now, let $q \in X^{-1}(V)$, then

$$\dim T_v(TM) = \dim T_{X(q)}(TM).$$

On the other hand, for any $s \in M$ and $u \in T_s M$, a vector space $T_s M$ is isomorphic to $T_u(T_s M)$. In view of Corollary 1.2, we have

$$\dim T_v(TM) = 2 \cdot \dim T_p M,$$

and analogously,

$$\dim T_{X(q)}(TM) = 2 \cdot \dim T_q M.$$

Then, for any $q \in X^{-1}(V)$,

$$\dim T_p M = \dim T_q M.$$

Therefore the point p is a regular point of M .

(i) \Rightarrow (iii) The point p is a regular point of M , then, in view of Remark 2.1, there exists a neighbourhood U of the point p in M such that the differential space (U, C_U) is a differential space of class D_0 of constant differential dimension. Then every vector field $v \in \pi^{-1}(U)$ can be extended to a smooth vector field on M ([7], [8]). The set $\pi^{-1}(U)$ is open and $T_p M \subseteq \pi^{-1}(U)$. In view of Corollary 1.2 we have

$$\dim T_w(TM) = 2 \cdot \dim T_p M,$$

for every $w \in \pi^{-1}(U)$. Therefore every vector $w \in T_p M$ is a regular point of TM .

(iii) \Rightarrow (ii) We should prove that there exists a vector $v \in T_p M$, which can be extended to a smooth vector field. This vector is the zero vector $0 \in T_p M$.

Now one can easily prove.

Corollary 2.5. Let (M, C) be a differential space of class D_0 . The following conditions are equivalent:

- (i) the point $p \in M$ is a singular point of (M, C) ,
- (ii) every vector $v \in T_p M$, which can be extended to a smooth vector field on M , is a singular point of (TM, TC) ,
- (iii) there exists a vector $v \in T_p M$, which is a singular point of (TM, TC) .

If a point $p \in M$ is a singular point of M , then it is possible that there exists a vector $v \in T_p M$, which is a regular point of TM . Let us consider the following

Example 2.1. Let $M = \left\{ \frac{1}{n} : n \in \mathbb{N} \setminus \{0\} \right\} \cup \{0\}$ and $C = (C^\infty(\mathbb{R}))_M$. Then

$$\dim T_p M = \begin{cases} 0 & \text{for any } p \neq 0, \\ 1 & \text{for any } p = 0, \end{cases}$$

thus $0 \in M$ is a singular point of M . Let $v \in T_p M$, then

$$\dim T_v(TM) = \begin{cases} 1 & \text{for any } v \neq 0, \\ 2 & \text{for any } v = 0. \end{cases}$$

It is easy to see that every $v \in T_p M$, which is not equal to the zero vector $0 \in T_p M$, is a regular point of TM .

REFERENCES

- [1] A. Kowalczyk: Tangent differential spaces and smooth forms, *Demonstratio Math.*, 13 (1980), 893-905.
- [2] A. Kowalczyk, J. Kubarski: A local property of the subspaces of Euclidean differential spaces, *Demonstratio Math.*, 11 (1978), 875-885.
- [3] P. Mularczyński, W. Sasin: Algebraic characterization of the dimension of differential spaces, *Proceedings of the Winter School on Geometry and Physics, Supplemento ai Rendiconti del Circolo Matematico di Palermo*, 22 (1989), 193-199.
- [4] B. O'Neill: *Semi-riemannian geometry*, Academic Press, New York - London 1983
- [5] W. Sasin, Z. Zekanowski: On locally finitely generated differential spaces, *Demonstratio Math.*, 20 (1987), 477-487.
- [6] R. Sikorski: Abstract covariant derivate, *Colloq. Math.*, 18 (1967), 251-272.
- [7] R. Sikorski: Differential modules, *Colloq. Math.*, 24 (1971), 45-70.
- [8] R. Sikorski: *Wstęp do geometrii różniczkowej*, PWN, Warszawa 1972.
- [9] P. Walczak: A theorem on diffeomorphism in the category of differential spaces, *Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys.*, 21 (1973), 325-329.
- [10] P. Walczak: On a class of differential spaces satisfying the theorem on diffeomorphism, *Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys.*, 22 (1974), 805-814.
- [11] W. Waliszewski: On a coregular division of a differential space by an equivalence relation, *Colloq. Math.* 26 (1972), 281-291.

[12] W. Waliszewski: Regular and coregular mappings of differential spaces, Ann. Polon. Math. 30 (1975), 263-281.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW,
00-661 WARSZAWA, POLAND.

Received May 9, 1991.

