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ON DISTRIBUTIONS IN DIFFERENTIAL SPACES

In this paper we present an introduction to the theory of
distributions in differential spaces in the sense of Sikorski.
In Section 1 we collect the basic definitions for the theory
of distributions in differential spaces, analogous to the case
of differentiable manifolds. Next, we prove some simple
properties of these distributions. We give also several
examples which show differences between distributions in
differentiable manifnlds and distributions in differential
spaces,

Sections 2 and 3 are devoted to constructing of some
special type of distributions in differential spaces. 1In
particular, the construction of the Hamiltonian distribution
is presented.

1. Let (M, C) be a differential space in the sense of
Sikorski [5].

Definition 1,1 A function D which assigns to each point
p € M a linear subspace Dp of TpM is called the distribution
on a differential space (M, C).

The dimension of Dp is called the dimension of the
distribution D at the point p. Denote by X¥(D) the set of all
smooth vector fields X on (M, C) such that, for any p € M,
X(p) € Dp' One can easily show that ¥(D) is a C-submodule of
the C-module X(M).

A vector field X € ¥(D) is said to be a D-vector field on
(M, C), and a smooth vector field X defined on a subset U of M

is said to be a D-vector field on U if X(p) € Dp' for any
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p € U. D-vector fields on U are also called local D-vector
fields.

Definition 1.2 A distribution D on a differential space
(M, C) is said to be regular if, for any point p € M, there
exists a neighborhood U of p and D-vector fields xl,...,xn on
U such that Dq = Lin (Xl(q),...,xn(q)), for any q € U and some
n € N.

A distribution D on (M, C) 1is said to be completely
regular if D is regular and there exists n e€e N such that

dim Dp = n, for any p € M.

The number n is called the dimension of the completely
regular distribution D on (M, C).

Example 1.1 Let (M, C) be a differential space. A
function D which assigns to each point p e M a 1linear space
D = T M is a distribution on (M, C). The distribution D on
(M, C), defined above, is called the maximal distribution. Of
course, in this case ¥(D) = ¥I(M)p

Example 1.2 Let (M, C) be a differential space such that

M = {(x,y) € RZ: Xy = 0} and C = Cm(RZ)M.

Now, observe that dim T = 1 when (x,y) e Mand x # 0 or

y # 0, and dim T(O,O)M =(xé).()Moreover, one can prove that any
smooth vector field X on (M, C) is such that X(0,0) = 0. Hence
the maximal distribution D on (M, C) is not regular.

Example 1,3 Let (M, C) be as in Example 1.2 and let D be

a distribution on (M, C) defined in the following way:

T M when x # 0 and =0

(%,y) {0} when x = 0 and y € R.
Now, 1let wus observe that X(D) = {nl-a g; : a € C}, where
nl(x,y) = x. Hence, D is a regular distribution on (M, C) but

it is not a completely regular distribution.

Example 1.4 Let (M, C) and (N, B) be differential spaces.
Consider the Cartesian product (MxN, CxB) of these
differential spaces, and let D be a distribution on (MxN, CxB)
defined by the formula
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Dip,q) = q+(TpM -

for any (p, q) € MxN, where iq: M —— MxN, iq(p) = (p, 9),
is the natural embedding of (M, C) into (MxN, CxB).
In this case, as it is easy to observe,

¥(D) = {X € ¥(MxN): X(Bepry) = 0, B € B},

where pry: MxN —— N is the natural projection.

Hence, we see that the distribution D on (MxN, CxB),
defined above, is regular iff the maximal distribution on
(M, C) is regular. Moreover, D is completely regular iff
(M, C) 1is a differential space of constant differential
dimension.

One can prove

Proposition 1.1 A distribution D on a differential space
(M, C) is completely regular iff X(D) is a differential
module.

Similarly as in the theory of differentiable manifolds, we
may equivalently define a distribution D on a differential
space (M, C) as a subset D of the tangent bundle TM of (M, C)
such that

D =D nTM
P " %p

is a linear subspace of TpM for any p € M.

In the category of differential spaces the following
proposition holds.

Proposition 1.2 Any distribution D on a differential
space (M, C) is a vector subbundle of TM.

Definition 1.3 A distribution D on a differential space
(M, C) is said to be involutive if [X, Y] € ¥(D) for any
X, Y € ¥(D).

Hence we have

Corollary 1.3 The maximal distribution on any
differential space is involutive.

One can show that all distributions considered in the
above examples are involutive distributions.

Lemma 1.4 If D is an involutive distribution on a
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differential space (M, C) then, for an arbitrary smooth 1-form
w on (M, C) such that w(X) = 0, for X € X¥(D), we have

dw(X, ¥) =0
for any X, Y € X¥(D).
Proof. By assumption, for any X, Y € ¥(D), we have

dw(X, Y) = %{X(U(Y)) - Y(u(X)) - o([X, ¥])} = 0.

One can prove

Lemma 1.5 Let D be a regular distribution on a
differential space (M, C) of D,- class and of constant
differential dimension (9]. Then D is an involutive
distribution on (M, C) if, for an arbitrary smooth 1-form w on
(M, C) such that D ¢ kerw,

dw(X, ¥) =0
for any X, Y € X¥(D).

From Lemmas 1.4 and 1.5 it follows

Corollary 1.6 Let D be a regular distribution on (M, C)
of D - class and of constant differential dimension. Then the
following conditions are equivalent:

(1) D is an involutive distribution on (M, C),
(2) For an arbitrary smooth 1-form w on (M, C), if D ¢ kerw
then dw(X, Y) = 0, for arbitrary local D-vector fields
X, Y.
Definition 1.4 A distribution D on a differential space
(M, C) is said to be integrable 1if, for each point p e M,
there exists a differential subspace (N, B) of (M, C) such
that p € N and Dq = (iN)*(TqN) for any q € N, where i, is the
natural embedding.

N

A differential subspace (N, B), satisfying the conditions
of Definition 1.4 is called the integral differential subspace
of D at a point p (or the integral of D, for short).

Let us observe that the distribution D on (MxN, CxB),
described in Example 1.4, is an integrable distribution.
Indeed, for any (p, q) € MxN, iq(M) with the differential
structure induced from (MxN, CxB) is an integral differential
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subspace of D, because (p, g9) € iq(M) and

, s . P,
) (i (M), for any (B, @) < i (M).

= T(p.q

Evidently, every maximal distribution on a differential
space (M, C) is integrable.

From the above considerations it follows

Corollary 1.7 Regularity and the property of being an
involutive distribution on a differential space are not
necessary conditions for a distribution to be integrable.

We shall prove

Proposition 1.8 Let D be an integrable distribution on a
differential space (M, C). Then D is involutive.

Proof. By Definition 1.4, for each point p € M, there
exists a differential subspace (N, B) of (M, C) such that
P € N and Dq = (iN)*q(TqN), for q e N. Let X, Y be D-vector
fields on (M, C). It is obvious that X, Y are tangent to N,
i.e. X(q), Y(q) € (iN)*q(TqN), for any g € N.

One can prove that a vector field 2 e ¥(M) is tangent to N
if and only if Z satisfies the following condition:

(*) Vfec (£ = 0 == 2£, = 0).

It is evident that the commutator (X, Y) satisfies the
condition (*), where X, Y are D-vector fields on (M, C). Thus
(X, Y] is tangent to N. Hence [X, Y](p) € (iN)*p(TpN) =D
for an arbitrary point p € M. Therefore D is involutive.

pl

2. Let (M, C) be differential space and let C be a
differential substructure of the differential structure ¢ on
M.

Definition 2,1 A vector v e TpM is said to be a C-vector
on (M, C) at a point p €e M if v(a) = 0, for any o € c.

Of course, if ¢ = R then each vector v e TpM is a ¢-vector
on (M, C). In turn, if ¢ = C then only the zero vector is a
C-vector on (M, C).

Let us denote by gp the set of all C-vectors on (M, C) at
the point p € M. One can easily prove

Lemma 2,2 For every point p e M, gp is a linear subspace

f T M.
°t 'p
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Hence we get

Corollary 2.3 A function which assigns to each point
o of TpM is a distribution on (M, C),
called a distribution of C-vectors on (M, C).

P € M a linear subspace ¢

Analogously as in the Section 1, by X(C) we denote the set
of all vector fields X € ¥(M) such that X(p) e
P € M.

gp for any

One can prove

Lemma 2.4 Let X be a smooth vector field on (M, C). Then
X € ¥(¢) if and only if X(a) = 0, for any a € C.

Lemma 2,5 The set i(g) is a C-submodule of the C-module
X¥(M) as well as a Lie subalgebra of the Lie algebra X¥(M).

Hence we get '

Corollary 2.6 For an arbitrary differential substructure
C of a differential structure C on M, the distribution of
C-vectors on (M, C) is involutive.

In particular we hLave

Corollary 2.7 If (M, C) is a differentiable manifold then
each distribytion of C-vectors is integrable in the category
of differential spaces.

Now, let (M, C) be a differential space and let {(M) be a
C-submodule of ¥(M). Let us put

o
TpM = {v e TpM: v = X(p) for X e ¥(M)}.
It is easy to prove

o
Lemma 2.8 The set TpM is a linear subspace of the tangent

space TpM to (M, C) at p € M, for any p € M.
Consequently, we get
Corollary 2.9 The function ? which assigns to each point

o
P € M a linear subspace TpM of TpM is a distribution on
(M, C).

Evidently, in this case we have
o
§p = TpM and (x) > ¥(M),
o
where i({) = {X € ¥(M): X(p) € TpM for p € M}. Of course, X(¥)
is a C-submodule of the C-module ¥(M).



On distributions in differential spaces 671

Lemma 2.10 A distribution I on a differential space

(M, C), determined by a C-submodule ¥(M) of ¥(M), is regular
o
iff dim TpM < o, for any p € M. Moreover, { is an involutive

distribution iff 1(§) is a Lie subalgebra of ¥(M).
Next, let us put '

C, = {a € C: X(a) = O for X € {(M)}.

H
Lemma 2.11 The set C,, defined above, is a differential

substructure of the differential structure C on M.

Proof. Let Qyyoes /@ € CI' (AN Cm(mn) and X € {(M). Then
o
we have n
o = 4 . = .
X(w (al,...,an)) iElwli(al,...,an)x(al) 0
Hence wo(al,...,an) € CI' Next, let « € C be such that, for
o

any p € M, there is an open neighborhood U of p and B8 € CI

such that BIU =« Then, for any X e {(M) we have

Rep
Xjul@p) = X&)y = X1y(B)y) = X(B) |y = 0.

Hence a € Cr.

Of course, the differential substructure c of C

X
°

determines also a distribution of Ci-vectors~ on (M, C).

o

Obviously, by Corollary 2.6, the distribution of C.-vectors on

H

(M, c) is involutive.

3. Let (M, C) be a differential space.

Definition 3.1 A skew-symmetric 2-linear mapping
{-,'} ¢+ CxC —— C satisfying the conditions

(1) {a:B, 7} = a*{B, ¥} + B-{a, 7},

(ii) {{e, B}, 7} + {{7, a}, B} + {{B, ¥}, a} =0,

for any a, B, ¥ € C is called the Poisson structure on a
differential space (M, C).

The system ((M, C), {-,-}) will be called the Poisson
differential space. From Definition 3.1 it follows immediately
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that (C, {:,+}) is a Lie algebra.

Next, from (i) it follows that, for every a« € C, the
mapping Xa:= {, ¢} +: C —— C is a smooth vector field on
(M, C), called the Hamiltonian vector field and « is called
the hamiltonian of the vector field xa on the Poisson
differential space ((M, C), {-,"}).

Let ((M, C), {','}) be a Poisson differential space. A
function a« € C is said to be a Casimir function if {a, B} = O,
for any B € C.

Denote by C, the set of all Casimir functions on the
Poisson differential space ((M, C), {:,-}). Analogously as in
Lemma 2.10 we prove

Lemma 3.1 The set Cc of all cCasimir functions on a
Poisson differential space ((M, C), {:-,:}) is a differential
substructure of the differential structure C on M.

It is easy to verify that C is an ideal of the Lie

algebra (C, {:,°}). The set of agl Hamiltonian vector fields
on ((M, C), {-,-}) is usually denoted by H(M).

One can prove

Lemma 3.2 The set #(M) of all Hamiltonian vector fields
on a Poisson differential space ((M, C), {:,'}) is a module
over CC. Moreover, (M) is a Lie subalgebra of the Lie algebra
X(M).

It is easy to verify that

(Xqr Xgd = *(a,p)

for any a, B € C.

From Definition 3.1 and the definition of Casimir function
it follows

Corollary 3.3 Every Casimir function a« is a first
integral of any Hamiltonian vector field XB on a Poisson
differential space ((M, C), {-,'}).

Observe that, by Lemma 3.1, the differential substructure
C.on ((M, €), {','}) determines on (M, C) a distribution H of

C

all Cc-vectors.

Similarly as in Section 2 by X(H) we denote the set of all

Cc-vector fields on ((M, C), {-,-}). Of course, X(H) is a
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C-submodule of ¥(M) and a Lie subalgebra of ¥(M).

Definition 3.2 The vector fields of X(H) are said to be a
generalized Hamiltonian vector fields on ((M, C), {:,*}).

The distribution on ((M, C), {:,-}) determined by ¥(H) is
called the Hamiltonian distribution.

From Corollary 2.5 we get

Corollary 3.4 Every Hamiltonian distribution on a Poisson
differential space is involutive.

Consequently, we get

Corollary 3.5 Every Hamiltonian distribution on a Poisson
differentiable manifold is an integrable distribution.

Once again we come back for a moment to the Lie algebra
I(M). As is known, the mapping

Ly := [X,-): ¥(M) — ¥(M)

for any X € ¥(M), is an endomorphism of the linear space (M),
and the set gl(¥(M)) of all such endomorphisms, with the Lie
bracket given by

= L,°L, = L,°L

(Ly, L x°Ly ~ Ly°ky = Lix, vy

v
for any X, Y € ¥(M), is a Lie algebra.

One can easily prove

Proposition 3.6 If C is a differential substructure of
the differential structure C on M, then ¥(C) is an
Lx-invariant linear subspace of the linear space I(M), for any
X e X(C).

Hence we get

Corollary 3.7 Let D be a distribution on a differential

space (M, C). Then the following assertions are equivalent:
(1) D is involutive,
(ii) I(D) is a Lie subalgebra of the Lie algebra ¥(M),
(iii) (D) is an Ly
linear space X¥(M) over R, for any X € X¥(D).

-invariant 1linear subspace of the,

Finally, let us consider a Poisson differential space
((M, €), {,*}). In this case we have at 1least two Lie
algebras: (C, {-,+}) and (¥X(M), [-,"]).
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The mappings
p: C> a — Xa e (M)
as well as
o ¥(M) 3 X — Ly e gl(¥(M)),

called the adjoin representations, are homomorphisms of the
Lie algebras (C, {-,-}) and (X¥(M), [-,-]), respectively. Of
course, the composition oc¢p 1is a homomorphism of the Lie
algebra (C, {-,-}) into the Lie algebra (¥(M), [‘',-]).

Evidently, ker(ocep) = Co is an ideal of c and
Im(oep) = N*(M) := gl(®¥(M)) is a Lie subalgebra of the Lie
algebra gl(I(M)).

Evidently, by definition,

(M) = {Ly : « € Cand X, € ®(M)}.

o
Moreover, it is easy to prove the relations L + L =L
X X X
o B a+8
and [L, , L, ] =1L , for any a, B € C.
X X X
a 8 {a,B}

It seems to be justified the following

Definition 3.3 A smooth 1-form L € R*(M) with values in

X
o
I(M) is said to be a Hamiltonian 1-form on the Poisson

differential space ((M, C), {-,'}).

It is easy to prove

Proposition 3.8 The linear space X(M) is Ly -invariant
o
linear subspace of the linear space X(M) over R, for any

xa € X(M).

And finally, .
Proposition 3.9 The Lie algebras: C/Cc, (M) and R*(M)
are isomorphic.
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