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ON DISTRIBUTIONS IN DIFFERENTIAL SPACES 

In this paper we present an introduction to the theory of 
distributions in differential spaces in the sense of Sikorski. 
In Section 1 we collect the basic definitions for the theory 
of distributions in differential spaces, analogous to the case 
of differentiable manifolds. Next, we prove some simple 
properties of these distributions. We give also several 
examples which show differences between distributions in 
differentiable manifolds and distributions in differential 
spaces. 

Sections 2 and 3 are devoted to constructing of some 
special type of distributions in differential spaces. In 
particular, the construction of the Hamiltonian distribution 
is presented. 

1. Let (M, C) be a differential space in the sense of 
Sikorski [5]. 

Definition 1.1 A function D which assigns to each point 
p e M a linear subspace D of T M is called the distribution P P 
on a differential space (M, C). 

The dimension of D is called the dimension of the P 
distribution D at the point p. Denote by i(D) the set of all 
smooth vector fields X on (M, C) such that, for any p e M, 
X(p) e Dp. One can easily show that 1(D) is a C-submodule of 
the C-module I(M). 

A vector field X e 1(D) is said to be a D-vector field on 
(M, C), and a smooth vector field X defined on a subset U of M 
is said to be a D-vector field on U if X(p) e D , for any 
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p e U. D-vector fields on U are also called local D-vector 
fields. 

Definition 1.2 A distribution D on a differential space 
(M, C) is said to be regular if, for any point p e M, there 
exists a neighborhood U of p and D-vector fields X1#...,X on 
U such that Dg = Lin (X^q) ,. .. ,Xn(q)), for any q e U and some 
n e IN. 

A distribution D on (M, C) is said to be completely 
regular if D is regular and there exists n e IN such that 
dim Dp = n, for any p e M. 

The number n is called the dimension of the completely 
regular distribution D on (M, C). 

Example 1.1 Let (M, C) be a differential space. A 
function D which assigns to each point p e M a linear space 
D = T M is a distribution on (M, C). The distribution D on P P 
(M, C), defined above, is called the maximal distribution. Of 
course, in this case 1(D) = 

Example 1.2 Let (M, C) be a differential space such that 
M = { (x,y) e [R2: xy = 0} and C = C°°(IR2)M-

Now, observe that dim T. . = 1 when (x,y) e M and x * 0 or ( x < y / y * 0, and dim T. . M = 2. Moreover, one can prove that any (u, u) 
smooth vector field X on (M, C) is guch that X(0,0) = 0. Hence 
the maximal distribution D on (M, C) is not regular. 

Example 1.3 Let (M, C) be as in Example 1.2 and let D be 
a distribution on (M, C) defined in the following way: 

D(x,y) 
T. . M when x * 0 and y = 0 i *»y) 

{0} when x = 0 and y e IR. 
Q 

Now, let us observe that i(D) = {7^-a : a € C}, where 
= Hence, D is a regular distribution on (M, C) but 

it is not a completely regular distribution. 
Example 1.4 Let (M, C) and (N, B) be differential spaces. 

Consider the Cartesian product (MxN, CxB) of these 
differential spaces, and let D be a distribution on (MxN, CxB) 
defined by the formula 
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°(P,q) = V ( T P M ) ' 
for any (p, q) e MxN, where i g: M > MxN, iq(p) = (p, q), 
is the natural embedding of (M, C) into (MxN, CxB). 

In this case, as it is easy to observe, 

1(D) = {* e £ (MxN) : X(0.prN) = 0, |3 e B>, 

where prN: MxN > N is the natural projection. 
Hence, we see that the distribution D on (MxN, CxB), 

defined above, is regular iff the maximal distribution on 
(M, C) is regular. Moreover, D is completely regular iff 
(M, C) is a differential space of constant differential 
dimension. 

One can prove 
Proposition 1.1 A distribution D on a differential space 

(M, C) is completely regular iff 1(D) is a differential 
module. 

Similarly as in the theory of differentiable manifolds, we 
may equivalently define a distribution D on a differential 
space (M, C) as a subset D of the tangent bundle TM of (M, C) 
such that 

D = D A T M P P 
is a linear subspace of T pM for any p e M. 

In the category of differential spaces the following 
proposition holds. 

Proposition 1.2 Any distribution D on a differential 
space (M, C) is a vector subbundle of TM. 

Definition 1.3 A distribution D on a differential space 
(M, C) is said to be involutive if [X, Y] e £(D) for any 
X, Y e £(D) . 

Hence we have 
Corollary 1.3 The maximal distribution on any 

differential space is involutive. 
One can show that all distributions considered in the 

above examples are involutive distributions. 
Lemma 1.4 If D is an involutive distribution on a 
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differential space (M, C) then, for an arbitrary smooth 1-form 
(j on (M, C) such that u(X) = 0, for X e 1(D), we have 

du(X, Y) = 0 
for any X, Y e í(D). 

Proof. By assumption, for any X, Y e í(D), we have 

du(X, Y) = ì{X(u(Y)) - Y(u(X)) - u([X, Y])} = 0. 

One can prove 
Lemma 1.5 Let D be a regular distribution on a 

differential space (M, C) of D - class and of constant 
differential dimension [9]. Then D is an involutive 
distribution on (M, C) if, for an arbitrary smooth 1-form w on 
(M, C) such that D c kerw, 

du(X, Y) = 0 
for any X, Y e í(D). 

From Lemmas 1.4 and 1.5 it follows 
Corollary 1.6 Let D be a regular distribution on (M, C) 

of D - class and of constant differential dimension. Then the o 
following conditions are equivalent: 

(1) D is an involutive distribution on (M, C), 
(2) For an arbitrary smooth 1-form u on (M, C), if D c keru 

then dcj(X, Y) = 0, for arbitrary local D-vector fields 
X, Y. 

Definition 1.4 A distribution D on a differential space 
(M, C) is said to be integrable if, for each point p e M, 
there exists a differential subspace (N, B) of (M, C) such 
that p e N and D g = (iN)^(TgN) for any q e N, where i N is the 
natural embedding. 

A differential subspace (N, B), satisfying the conditions 
of Definition 1.4 is called the integral differential subspace 
of D at a point p (or the integral of D, for short). 

Let us observe that the distribution D on (MxN, CxB), 
described in Example 1.4, is an integrable distribution. 
Indeed, for any (p, q) e MxN, iq(M) with the differential 
structure induced from (MxN, CxB) is an integral differential 
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subspace of D, because (p, g) e ig(M) and D^- = 
= T ( p f q ) < 1 q W > ' f o r <P' 6 V M ) * 

Evidently, every maximal distribution on a differential 
space (H, C) is integrable. 

From the above considerations it follows 
Corollary 1.7 Regularity and the property of being an 

involutive distribution on a differential space are not 
necessary conditions for a distribution to be integrable. 

We shall prove 
Proposition 1.8 Let D be an integrable distribution on a 

differential space (M, C). Then D is involutive. 
Proof. By Definition 1.4, for each point p e M, there 

exists a differential subspace (N, B) of (M, C) such that 
p e N and D = (i )*_(T N), for q e N. Let X, Y be D-vector HI H 4 
fields on (M, C). It is obvious that X, Y are tangent to N, 
i.e. X(q), Y(q) e ( i

N)* q( T
q
N)' f o r a nY q e N. 

One can prove that a vector field Z e i(M) is tangent to N 
if and only if Z satisfies the following condition: 
(*) V f e C (f|N = 0 > Zf|N = 0). 

It is evident that the commutator [X, Y] satisfies the 
condition (*), where X, Y are D-vector fields on (M, C). Thus 
[X, Y] is tangent to N. Hence [X, Y](p) € (i„)*„(T N) = D . 

N P P P 
for an arbitrary point p e M. Therefore D is involutive. 

2. Let (M, C) be differential space and let C be a 
differential substructure of the differential structure C on 
M. 

Definition 2.1 A vector v e T M is said to be a C-vector P on (M, C) at a point p e M if v(a) = 0, for any a e C. 
Of course, if C = R then each vector v e T M is a C-vector o p o 

on (M, C). In turn, if C = C then only the zero vector is a 
C-vector on (M, C). 

Let us denote by Cp the set of all C-vectors on (M, C) at 
the point p e M. One can easily prove 

Lemma 2.2 For every point p e M, C p is a linear subspace 
of T m". . P 
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Hence we get 

Corollary 2.3 A function which assigns to each point 

p e M a linear subspace Cp of TpM is a distribution on (M, C), 

called a distribution of C-vectors on (M, C). 

Analogously as in the Section 1, by i(C) we denote the set 

of all vector fields X € I(M) such that X(p) e C p for any 

p e M. 

One can prove 

Lemma 2.4 Let X be a smooth vector field on (M, C). Then 

X e I(C) if and only if X(a) = 0, for any a e C. 

Lemma 2.5 The set i(C) is a C-submodule of the C-module 

I (M) as well as a Lie subalgebra of the Lie algebra 3f(M). 

Hence we get 

Corollary 2.6 For an arbitrary differential substructure 

C of a differential structure C on M, the distribution of o ' 

C-vectors on (M, C) is involutive. 

In particular we have 

Corollary 2.7 If (M, C) is a differentiable manifold then 

each distribution of C-vectors is integrable in the category 

of differential spaces. 

Now, let (M, C) be a differential space and let J(M) be a 

C-submodule of I(M). Let us put 

o 

TpM = {v e TpM: v = X(p) for X e |(M)>. 

It is easy to prove o 
Lemma 2.8 The set T p M is a linear subspace of the tangent 

space TpM to (M, C) at p e M, for any p e M. 

Consequently, we get 

Corollary 2.9 The function I which assigns to each point o 
p e M a linear subspace T M of T M is a distribution on 

P P 
(M, C). 

Evidently, in this case we have 
o 

? = T M and 1(1) D I (M) , op P o 1 ' ' 
o 

where £(|) = {X e I(M) : X(p) e T p M for p e M}. Of course, X(X) 

is a C-submodule of the C-module I(M). 
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Lemma 2.10 A distribution I on a differential space 
(M, C) , determined by a C-submodule f(M) of i(M), is regular 

o 
iff dim TpM < oo, for any p e M. Moreover, | is an involutive 
distribution iff i(I) is a Lie subalgebra of i(M). 

Next, let us put 
Cj := {a e C: X(a) = 0 for X e |(M)>. © 

Lemma 2.11 The set C^, defined above, is a differential 
o 

substructure of the differential structure C on M. 
Proof. Let o^,...,«* e Cj, (J e C°°(Rn) and X e I (M) . Then 

o 
we have n 

X(u.(B1,...,an)) uJi(a1,...,«n)X(ai) = 0. 

Hence u®(a^,...,an) e C^. Next, let a e C be such that, for o any p e M, there is an open neighborhood U of p and |3 e 
o 

such that = «HJ. Then, for any X e | (M) we have 

X|U(0£|U) = x ( a ) i u = X | U ^ | U ) = X<*>|U = 
Hence a e C^. 

o ~ 
Of course, the differential substructure of C 

o 
determines also a distribution of C^-vectors- on (M, C). 

o 
Obviously, by Corollary 2.6, the distribution of C^-vectors on 

o 
(M, C) is involutive. 

3. Let (M, C) be a differential space. 

Definition 3.1 A skew-symmetric 2-linear mapping 
{•,•} : CxC » C satisfying the conditions 

(i) {<*'£/ r} = a-{/3, y} + |3-{a, y }, 
(ii) {{a, 0}, y} + {{T, a}, 13} + {{|3, y}, a} = 0, 

for any a, y e C is called the Poisson structure on a 
differential space (M, C). 

The system ((M, C), {•,•}) will be called the Poisson 
differential space. From Definition 3.1 it follows immediately 
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that (C, {•,•}) is a Lie algebra. 

Next, from (i) it follows that, for every a e C, the 

mapping X a: = {•, a} : C > C is a smooth vector field on 

(M, C), called the Hamiltonian vector field and a is called 

the hamiltonian of the vector field X a on the Poisson 

differential space ((M, C), {•,•}). 

Let ((M, C), {•»•}) be a Poisson differential space. A 

function a e C is said to be a Casimir function if {a, 0} = 0, 

for any |3 e C. 

Denote by C c the set of all Casimir functions on the 

Poisson differential space ((M, C), { • , } ) . Analogously as in 

Lemma 2.10 we prove 

Lemma 3.1 The set C c of all Casimir functions on a 

Poisson differential space ((M, C), { • , } ) is a differential 

substructure of the differential structure C on M. 

It is easy to verify that C c is an ideal of the Lie 

algebra (C, {•,•}). The set of all Hamiltonian vector fields 

on ((M, C), {-,-}) is usually denoted by H(M). 

One can prove 

Lemma 3.2 The set W(M) of all Hamiltonian vector fields 

on a Poisson differential space ((M, C), { • , } ) is a module 

over C c. Moreover, H(M) is a Lie subalgebra of the Lie algebra 

i(M) . 

It is easy to verify that 

[Xa, X p] = x { a ^ } 

for any a, |3 e C. 

From Definition 3.1 and the definition of Casimir function 

it follows 

Corollary 3.3 Every Casimir function a is a first 

integral of any Hamiltonian vector field X 0 on a Poisson 
p 

differential space ((M, C), {•,•}). 

Observe that, by Lemma 3.1, the differential substructure 

C c on ((M, C), { • , } ) determines on (M, C) a distribution H of 

all C c~vectors. 

Similarly as in Section 2 by 1(H) we denote the set of all 

C r-vector fields on ((M, C), {•,•}). Of course, 1(H) is a 
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C-submodule of 3E (M) and a Lie subalgebra of i(M). 
Definition 3.2 The vector fields of 1(H) are said to be a 

generalized Hamiltonian vector fields on ((M, C), {•,•}). 
The distribution on ((M, C), {•,•>) determined by 1(H) is 

called the Hamiltonian distribution. 
From Corollary 2.5 we get 
Corollary 3.4 Every Hamiltonian distribution on a Poisson 

differential space is involutive. 
Consequently, we get 
Corollary 3.5 Every Hamiltonian distribution on a Poisson 

differentiable manifold is an integrable distribution. 
Once again we come back for a moment to the Lie algebra 

i(M). As is known, the mapping 

L x := [X, • ]: I (M) » I (M) 

for any X e X(M), is an endomorphism of the linear space I(M) , 
and the set gl(3C(M)) of all such endomorphisms, with the Lie 
bracket given by 

[Lx, L y] = L x»L y - L yoL x = L [ X / Y ] 

for any X, Y e i(M), is a Lie algebra. 
One can easily prove 
Proposition 3.6 If C is a differential substructure of 

the differential structure C on M, then *(£) is an 
Lx~invariant linear subspace of the linear space i(M), for any 
X € i(C). 

Hence we get 
Corollary 3.7 Let D be a distribution on a differential 

space (M, C). Then the following assertions are equivalent: 

(i) D is involutive, 

(ii) 1(D) is a Lie subalgebra of the Lie algebra I(M), 

(iii) 1(D) is an Lx~invariant linear subspace of the, 
linear space I(M) over (R, for any X e 3E(D). 

Finally, let us consider a Poisson differential space 
((M, C) , {•,•}). In this case we have at least two Lie 
algebras: (C, {•,•}) and (*(M), [•,•]). 
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The mappings 

p: C 3 a i > X a € H(M) 

as well as 

a: I(M) a X i > L x e gl (I(M)) , 

called the adjoin representations, are homomorphisms of the 

Lie algebras (C, {•,•}) and (I(M), [•,•]), respectively. Of 

course, the composition o°°p is a homomorphism of the Lie 

algebra (C, {•,•}) into the Lie algebra (i(M), [•»•]). 

Evidently, ker (o-°p) = C is an ideal of C and * 
Im(o"op) = H (M) := gl(K(M)) is a Lie subalgebra of the Lie 

algebra gl(3E(M)). 

Evidently, by definition, 

X*(M) = {L v : a c C and X e H(M)>. 
a a 

Moreover, it is easy to prove the relations L v + L v = L v 
x a /3 a+p 

and [Lv , L v ] = L Y , for any a, |S e C. 
a 

It seems to be justified the following 

Definition 3.3 A smooth 1-form L v e H (M) with values in 
a 

3f(M) is said to be a Hamiltonian 1-form on the Poisson 

differential space ((M, C), {•,•}). 

It is easy to prove 

Proposition 3.8 The linear space W(M) is L v -invariant 
x a 

linear subspace of the linear space X(M) over IR, for any 

X a e H (M). 

And finally, 

Proposition 3.9 The Lie algebras: C/CQ, H(M) and H*(M) 

are isomorphic. 
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