

Włodzimierz Waliszewski

INDUCING AND COINDUCING IN GENERAL DIFFERENTIAL SPACES

0. Introduction

The concept of an analytical premanifold (see [4]) is a slight modification of the R. Sikorski's concept of a differential space. Therefore in the present paper analytical premanifolds and complex premanifolds (see [5]) as well will be called general differential spaces. An analytical premanifold will be also called an \mathbb{R} -differential space (\mathbb{R} -d.s.). For any indexed set of mappings, a \mathbb{K} -d.s. ($\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$) induced by this indexed set is defined and characterized by a universal property. Similarly, a \mathbb{K} -d.s. coinduced by any indexed set of mappings is defined and universally characterized. It is proved that the topology of the induced (coinduced) \mathbb{K} -d.s. is the induced (coinduced) topology by the indexed set of the mappings. In particular, the topology of the quotient \mathbb{K} -d.s. M/\equiv , where M is a \mathbb{K} -d.s. and \equiv is any equivalence relation on the set of all points of M , is equal to the quotient topology $(\text{top}M)/\equiv$, where $\text{top}M$ is the topology of M . It leads to quite a different situation than in the theory of R. Sikorski's differential spaces (see [1]), where the topology of the quotient differential space may be essentially weaker than the quotient topology even in the case of a division of a differentiable manifold by a foliation.

For any function f (treated here as a set of ordered pairs) its domain is denoted by D_f . The f -counterimage of any set T will be denoted by $f^{-1}T$. For any set $S \subset D_f$ the f -image

of S is denoted by fS . For any functions f and g we have the well defined function $g \circ f$ in such a way that $D_{g \circ f} = f^{-1}D_g$ and $(g \circ f)(x) = g(f(x))$ for $x \in D_{g \circ f}$. For any functions g, f_1, \dots, f_n we have the function f with the domain D_f of the shape $D_{f_1} \cap \dots \cap D_{f_n}$ and $f(x) = (f_1(x), \dots, f_n(x))$ for any $x \in D_f$, and the function $g \circ f$ being denoted by $g(f_1, \dots, f_n)$.

We recall the concept of a K -d.s. ($K = \mathbb{R}$ or $K = \mathbb{C}$). For any set M of functions with values in K the set $\bigcup_{a \in M} D_a$ is denoted by \underline{M} (see [4] and [5]). The smallest topology on \underline{M} such that all the sets $a^{-1}A$, where $a \in \underline{M}$ and A is open in K , are open is denoted by $\text{top}M$. For any $S \subset \underline{M}$ the set of all functions b with values in K and satisfying the condition: for any $p \in D_b$ there exist $U \in \text{top}M$ and $a \in M$ for which $p \in U \cap S \subset D_b$, $U \subset D_a$ and $b|U \cap S = a|U \cap S$, is denoted by M_S .

For a topology X on a set X and for any $S \subset X$, the topology induced from X to S we denote by $X|S$. We have then $\text{top}M_S = (\text{top}M)|S$. The set of all functions $g(a_0, \dots, a_n)$, where $a_0, \dots, a_n \in M$ and g is any function with values in K and analytic on the set D_g open in K^{n+1} , n is any in \mathbb{N} , is denoted by $\text{an}M$. A set M of functions with values in K satisfying the condition $M = \underline{M} = \text{an}M$ is said to be a K -d.s. For any set G of functions with values in K , the set $(\text{an}G)_{\underline{G}}$ being the smallest K -d.s. containing G is called the K -d.s. generated by G .

Let M and N be K -d.s. and f be a function with $D_f = \underline{M}$ and $f\underline{M} \subset \underline{N}$, i. e. $f: \underline{M} \longrightarrow \underline{N}$. We say that f maps smoothly M into N what we write in the form

$$(0.1) \quad f: M \longrightarrow N$$

iff for any $b \in N$ we have $b \circ f \in M$. If N is generated by G then we have (0.1) iff for any $b \in G$ the function $b \circ f$ belongs to M .

For any set S the set of all functions with values in K and domains contained in S will be denoted by $\text{discr}(S, K)$ and called the discreet K -d.s. on S .

1. Inducing of K -d.s.

Let $f = (f_i; i \in I)$ and $N = (N_i; i \in I)$, where f_i are

functions, N_i are K -d.s. and $f_i D_{f_i} \subset N_i$ for $i \in I$. For any function b with values in K and the domain D_b contained in $\bigcup_j N_j$, assume $f_i^*(b) = b \circ f_i$. We have then $f_i^* N_i = \{b \circ f_i; b \in N_i\}$. This yields

$$(1.1) \quad \bigcup_i f_i^* N_i = \bigcup_i D_{f_i}.$$

The K -d.s. $f^* N$ of the form $(\text{an } \bigcup_i f_i^* N_i) \bigcup_j D_{f_j}$ will be called

the induced K -d.s. from the indexed set N of K -d.s. by the indexed set f of functions.

The following theorem gives a universal characterization of the induced K -d.s. $f^* N$.

Theorem 1.0 $f^* N$ is the exactly one K -d.s. fulfilling the condition

(i) for any K -d.s. L and any h we have $h: L \rightarrow M$ iff
 $h: L \rightarrow \bigcup_j D_{f_j}$, $h^{-1} D_{f_i} \in \text{top} L$ and
 $f_i \circ h: L_{h^{-1} D_{f_i}} \rightarrow N_i$ for $i \in I$.

For this M the equality $M = \bigcup_j D_{f_j}$ holds.

By a direct verification we get the following lemmas for any K -d.s. L and M .

Lemma 1.1 If $a \in M$ and $D_a \subset S \subset M$ then $a \in M_S$.

Lemma 1.2 If $h: L \rightarrow M$ and $S \subset M$ then

$$h|_{h^{-1} S}: L_{h^{-1} S} \rightarrow M_S.$$

Lemma 1.3 If $S \in \text{top} L$ then $L_S \subset L$.

Proof. (of Th. 1.0.) First we prove that (i) yields

$$(1.2) \quad M = \bigcup_i D_{f_i}.$$

Let $j \in I$. We set $L = \text{discr}(D_{f_j}, K)$ and $h = \text{id}_L$. We have then

$h: L \longrightarrow \bigcup_i D_{f_i}$ and, for any $i \in I$, $h^{-1}D_{f_i} = D_{f_j} \cap D_{f_i}$.

Thus $L_{h^{-1}D_{f_i}} = \text{discr}(D_{f_j} \cap D_{f_i}, K)$

and

$$f_i \circ h = f_i|_{D_{f_j} \cap D_{f_i}}: L_{h^{-1}D_{f_i}} \longrightarrow N_i.$$

Moreover, $h^{-1}D_{f_i} \in \text{topdiscr}(D_{f_i}, K) = \text{topL}$. According to (i)

we have: $L \longrightarrow M$. In other words, $h: \text{discr}(D_{f_j}, K) \longrightarrow M$.

This yields $D_{f_j} \subset M$ for $j \in I$. Now, we take $h = \text{id}_M$.

We have then $h: M \longrightarrow M$. From (i) it follows that $h: M \longrightarrow \bigcup_i D_{f_i}$. This yields $M \subset \bigcup_i D_{f_i}$, and we get (1.2).

Let us assume that a K -d.s. M_1 also fulfills (i). Hence it follows that $M_1 = \bigcup_i D_{f_i}$. Taking $L = M_1$ and $h = \text{id}_L$, according to (i) fulfilled by M_1 , we get $h: M_1 \longrightarrow M$. Hence $M \subset M_1$. Similarly, $M_1 \longrightarrow M$. It is to be proved that the K -d.s. M of the form f^*N fulfills (i). To do this let us take any K -d.s. L and $h: L \longrightarrow M$. By definition of f^*N from 1.1 it follows that $f_i: M_{D_{f_i}} \longrightarrow N_i$. By 1.2 we get

$$h|_{h^{-1}D_{f_i}}: L_{h^{-1}D_{f_i}} \longrightarrow M_{D_{f_i}}.$$

This yields

$$(1.3) \quad h: L \longrightarrow \bigcup_i D_{f_i},$$

$$(1.4) \quad h^{-1}D_{f_i} \in \text{topL} \text{ and } f_i \circ h: L_{h^{-1}D_{f_i}} \longrightarrow N_i$$

for $i \in I$.

Now, assume (1.3) and (1.4). Let us take $b \in \bigcup_i f_i^*N_i$. Then $b = a \circ f_i$, where $a \in N_i$ and $i \in I$. According to (1.3) we get $b \circ h = a \circ f_i \circ h \in L$. Thus, $h: L \longrightarrow M$. Q.E.D.

The Cartesian product $\prod_i N_i$ of an arbitrary indexed set $(N_i; i \in I)$ of K -d.s. is said to be the induced K -d.s. from this indexed set by $(f_i; i \in I)$, where $f_i(p) = p(i)$ for $i \in \prod_j N_j$. According to 1.0, the product $\prod_i N_i$ is exactly one

K -d.s. such that for any K -d.s. L and any function h we have
 $h: L \rightarrow M$ iff $h: \underline{L} \rightarrow \underline{P_j N_j}$, $h^{-1} \underline{P_j N_j} \in \text{top}_L$ and
 $h_i: \underline{L}^{-1} \underline{P_j N_j} \rightarrow N_i$, where $h_i(q) = h(q)(i)$ for $q \in \underline{L}$ and
 $i \in I$.

Theorem 1.4 The topology $\text{top}_f^* N$ is the smallest topology X on the set $\bigcup_i D_{f_i}$ such that

(ii) $D_f \in X$ and $f_i: X|D_f \rightarrow \text{top}_N_i$ for $i \in I$.

Proof. Let us set $M = f^* N$. By (i) we get $D_{f_i} \in \text{top}_M$ and
 $f: M_{D_{f_i}} \rightarrow N_i$. Then $f_i: \text{top}_M|D_{f_i} \rightarrow \text{top}_N_i$ for $i \in I$. Now,
assume that a topology X on the set $\bigcup_i D_{f_i}$ fulfills (ii). Take
any $a \in f^* N_i$ and any set A open in K . Then $a = b \circ f_i$, where
 $b \in N_i$. Thus $a^{-1} A \in X|D_{f_i} \subset X$. This yields $a^{-1} \in X$. Hence it
follows that for any $a \in \bigcup_i f_i^* N_i$ and any A open in K we have
 $a^{-1} A \in X$. Therefore $\text{top}_M \subset X$. Q.E.D.

The smallest topology X on the set $\bigcup_i D_{f_i}$ satisfying the condition .

(iii) $D_{f_i} \in X$ and $f_i: X|D_{f_i} \rightarrow Y_i$ for $i \in I$

is the induced topology from the indexed set $(Y_i; i \in I)$ of topologies by f of the form $(f_i; i \in I)$. According to 1.4, the topology of the induced K -d.s. from $(N_i; i \in I)$ by f is the induced topology from $(\text{top}_N_i; i \in I)$ by f . In particular, $\text{top}_P_j N_i = P_i \text{top}_N_i$.

2. Coinducing of K -d.s.

Let us consider the indexed set M of the form $(M_i; i \in I)$, where the K -d.s. M_i satisfies $\underline{M_i} = D_{f_i}$ for $i \in I$. For any function b with values in K and $D_b \subset \bigcup_i f_i D_{f_i}$ we set

$f_j^*(b) = b \circ f_j$ for $j \in I$. It is easy to check that

$$\bigcap_i f_i^{*-1} M_i = \text{an} \bigcap_i f_i^{*-1} M_i.$$

Let us set

$$f_* M = \left(\bigcap_i f_i^{*-1} M_i \right) \bigcup_j D_{f_j}.$$

The K -d.s. $f_* M$ will be called the coinduced K -d.s. from M by f .

Theorem 2.0 $f_* M$ is the exactly one K -d.s. N fulfilling the condition

(iv) for any K -d.s. P and any h we have $h: N \rightarrow P$ iff

$$(2.1) \quad h: \bigcup_i f_i M_i \rightarrow P \text{ and } h \circ f_i: M_i \rightarrow P \text{ for } i \in I.$$

Proof. Let us set $N = f_* M$. We have then $f_i: M_i \rightarrow N$. Assuming that $h: N \rightarrow P$ we get (2.1). Now, let us assume (2.1) and take $b \in P$. Then $b \circ h \circ f_i \in M_i$ for $i \in I$. Thus, $b \circ h \in \bigcap_i f_i^{*-1} M_i$, i. e. $b \circ h \in f_* M = N$. Therefore $h: N \rightarrow P$.

Let us take any K -d.s. N and N_1 fulfilling (iv). Setting $P = N$ and $h = \text{id}_N$ we get $N = \bigcup_i f_i M_i$ and $f_i: M_i \rightarrow N$ for $i \in I$. Similarly, $N_1 = \bigcup_i f_i M_i$ and $f_i: M_i \rightarrow N_1$ for $i \in I$. By (iv) we have $h: N \rightarrow N_1$ and $h: N_1 \rightarrow N$. Therefore $N = N_1$. Q.E.D.

Theorem 2.1 The topology $\text{top} f_* M$ is the largest topology Y on the set $\bigcup_i f_i M_i$ such that

$$(v) \quad f_i: \text{top} M_i \rightarrow Y \text{ for } i \in I.$$

Proof. We have $f_i: M_i \rightarrow f_* M$. Thus $f_i: \text{top} M_i \rightarrow \text{top} f_* M$ for $i \in I$. Assume that a topology Y on $\bigcup_i f_i M_i$ fulfills (v).

Let us take any set $V \in Y$. Then $f_i^{-1} V \in \text{top} M_i$. Hence it follows that the function $0_{f_i^{-1} V}$ with the domain equal to $f_i^{-1} V$ and the only value 0 belongs to M_i . We remark that $0_V \circ f_i = 0_{f_i^{-1} V}$ and $V \subset \bigcup_j f_j M_j$. Thus, $0_V \in f_i^{*-1} M_i$ for $i \in I$. Hence it follows that $0_V \in f_* M$. Q.E.D.

According to 2.1 the topology of the coinduced K -d.s. from $(M_i; i \in I)$ by f of the form $(f_i; i \in I)$ is the coinduced topology from $(\text{top}M_i; i \in I)$ by f (cf. [2]).

A very important case is that I is a one element set and the only function f_i is the quotient mapping of an equivalence relation on the set of all points of a given K -d.s.

Let M be a K -d.s. and \equiv be an equivalence relation on the set M . We have the set M/\equiv of all cosets of the relation \equiv and the natural mapping $f_1: M \longrightarrow M/\equiv$. Here $I = \{1\}$, $M_1 = M$, $D_{f_1} = M$ and $f_1 D_{f_1} = M/\equiv$. According to 2.1 we have $\text{top}(M/\equiv) = (\text{top}M)/\equiv$.

3. Comparison between R -d.s. and R. Sikorski's differential spaces

R. Sikorski in the paper [1] introduced the concept of a differential space as a system (S, C) , where S is a set and C is a set of all real valued functions defined on S . Sikorski assumed that C is closed with respect to localization and with respect to superposition with all C^∞ -functions on \mathbb{R}^n for any natural n . Recall the meaning of the localization. Following Sikorski denote the weakest topology on S for which all the functions $a \in C$ are continuous by τ_C . Let C_S denote the set of all $b: S \longrightarrow \mathbb{R}$ such that for any $p \in S$ there exist $U \in \tau_C$ and $a \in C$ for which $b|U = a|U$, $p \in U$. Closedness with respect to localization means $C = C_S$. Similarly, denote the set of all $g(a_0, \dots, a_n)$, where $a_0, \dots, a_n \in C$ and g is a real valued C^∞ -function on \mathbb{R}^{n+1} , $n \in \mathbb{N}$ (cf. [3]) by scC . Closedness with respect to superposition with C^∞ -functions means $C = scC$. Following Sikorski we say that a function f maps smoothly a differential space (M, C) into (N, D) iff $f: M \longrightarrow N$ and for any $b \in D$ we have $b \circ f \in C$.

For any equivalence relation \equiv on S we have the smooth natural mapping $p: \mapsto \equiv(p): (S, C) \longrightarrow (S/\equiv, C/\equiv)$, where C/\equiv is the set of all functions $b: S/\equiv \longrightarrow \mathbb{R}$ such that the function $p \mapsto b(\equiv(p))$ belongs to C . It is easy to state that $\tau_{C/\equiv} \subset \tau_{C/\equiv}$. This inclusion cannot be replaced by the equality

$\tau_{C/\equiv} = \tau_C/\equiv$ even in the case when \equiv is given by a foliation of a differentiable manifold.

Example. Let $S = \mathbb{R}^2 - \{(0, 1)\}$ and F be a foliation all the leaves of which are $\mathbb{R} \times \{y\}$, when $y \neq 0$, $(-\infty; 0) \times \{0\}$ and $(0; +\infty) \times \{0\}$ as well. Let $p \equiv q$ iff $p, q \in S$ and for some leaf L of F the points p and q are in L . The set of all C^∞ -functions on S is denoted by C . It is easy to check that $\tau_{C/\equiv} \neq \tau_C/\equiv$.

The above example shows a lack of coherence of the topology of the quotient Sikorski's differential space and the topology of leaves in the theory of foliations, while the coherence between the topology of quotient \mathbb{R} -d.s. and the topology of leaves is preserved.

REFERENCES

- [1] R. Sikorski: Abstract covariant derivative, *Colloq. Math.* 18 (1967), 251-272.
- [2] E. Spanier: *Algebraic topology*, McGraw-Hill Book Company, 1966.
- [3] W. Waliszewski: Regular and coregular mappings of differential spaces, *Ann. Polon. Math.* 30 (1975), 263-281.
- [4] W. Waliszewski: Analytical premanifolds, *Zeszyty Naukowe Politechniki Śląskiej*, Seria: *Matematyka-Fizyka* 48 (1986), 217-226.
- [5] W. Waliszewski: Complex premanifolds and foliations, *Deformations of mathematical structures* (J. Lawrynowicz ed.) 65-78, © 1989 by Kluwer Academic Publishers.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, LÓDŹ
BRANCH, 90-136 LÓDŹ, POLAND

Received May 9, 1991.