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GEOMETRICAL PROPERTIES OF GLUING OF DIFFERENTIAL SPACES

This work is a continuation of [17]. The aim of this paper
is to study geometric properties of gluing of differential
spaces.

1. Basic notions

Let (M,C) be a differential space [19]. Let X(M) be the
C-module of all smooth vector fields tangent to (M,C). For a
subset KcM we denote by Lk the embedding of the differential
subspace (K’CK) into (M,C).

A vector field XeX(M) is called tangent to a subset KcM
{17] if, for any point peK, there exists a vector veTpK such
that X(p)=(LK)*pv. Let IK(M) be the C-module of all smooth
vector fields tangent to K (see[17]). One can prove that
xex¥(M) if and only if VfeC £|K=0 s Xf|K=0.

In the sequel, for XeX"(M), we will denote by XIK the
restriction of X to a subspace (K’CK)'

It is easy to prove

Lemma 1.1. Let (M,C) be a differential space and A,BcM
subsets satisfying the following condition:

(1.1) T A n (L T B for any peAnB.

Tp(AnB) (LA)*p p B)*p -

(tanB) *p
Then *™ (M) nxB (M) cx® B (y).

Now we prove

Lemma 1.2. For any subset AcM IA(M)=X
the closure of A in M.

Proof. Of course, IA(M)cICIA(M). It is enough to prove the

ClA(M), where clA is
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clA clA

iclusion I (M)cIA(M). Let XeX (M). Let feC be an arbitrary
function such that fiA=0. Of course, flclA=0. Hence Xf]|clA=0.
Thus Xf|lA=0. This proves that XGIA(M).

Now let (Ml,cl) and (Mz,cz) be differential spaces and
h:A1 - A2 a diffeomorphism of differential subspaces (Al,CAl)

and (A2 Let Pr be an equivalence relation on the

RE
4

disjoint sum (N,D)=(M1uM Clucz) identifying a point peAlwith

2l
h(p)eAz. The quotient space (N/ph,D/ph) is called the gluing

of differential spaces (Ml’cl) and (Mz,Cz) and it will be
denoted in the sequel by (MluhMZ’Cluhcz) {17]). For any flec1

and fzec2 such that f1IA1=f2oh we denote by fluhf2 the
function from CiYRCy corresponding to the function
flufzeclnc2 [17].

Let m_ :M_uM
P

144, — Mlu M., be a canonical mapping and let us
h

h 2
put
L, :=n IMZ'

Let us put

N

Mj=Lj(Mj), Cj=(CluhC2)ﬁj for j=1,2
and A=m A
Ph(

Clearly A=nph(A2)=MlnM2.

One can prove that [17)

1)'

(1.2) (LA)*p(TpA)=(Lﬁl)*p(Tle)n(Lﬁz)*p(TpMZ) for any peA.

Now we prove

Proposition 1.3. Let (Ml,Cl) and (Mz,cz) be disjoint
differential spaces and h:A1 — A2 the gluing diffeomorphism.
Assume that Alis a closed boundary set in M, and A2 is a

. _eoA
closed boundary set in Mz. Then X(MluhMZ)—I (Mluth).

Proof. Of course, A is a closed boundary set. It is clear
A . _lA _
that Mi is closed (nph (Ml)—MluA2 and nph
easy to see that Ml\A and MZ\A are open subsets. Let us notice
that Mi\A is dense in Mi for i=1,2. In fact

-1,5 . _ .
(Mz)—MzuAl). It is



Gluing of differential spaces 637

cl(Mi\A)=c1(Min(M1uM2\A))=c1Mincl(MluM2\A)=Min(M1uM2)=Mi.

Thus clﬁi(Mi\A)=Mincl(Mi\A)=Mi.

Now, let XEI(MluhMZ). Since Mi\A is open, then
XeIMi\A(MluhMZ) for i=1,2. From Lemma 1.2 it follows that
XEIMi(Mluhnz), i=1,2. From Lemma 1.1 it follows that

M nﬁ _oA
xex™1™2 (M v, M) =2t (M v M) q.e.d.

Now we prove a very useful lemma.

Lemma 1.4, Let (M,C) be an arbitrary differential space.

Then
(i) for any open set U and an arbitrary point peU, there
exists an open subset VcU containing p such that clvcU.
(ii) every "bump" function ¢:U — [0,1], ¢e€C, such that
supp¢cV, is extendible by 0 to a global function ¢:M — [0,1].

Proof. (i) Let ¥Y:M — [0.1] be a "bump" function such that
suppycU. There exists an open set Veté containing p such that
¥IV=1 [21]. Of course, clVcel(¢ L({1}))=¢"1({1})cU.

(ii) It is easy to see that {U,M\clV} is an open covering
of M. Of course, ¢|Un(M\clV)=0. There'exists a smooth function

¢:M — [0,1] such that ¢|U=¢ and | (M\clv)=0.

Now we prove

Proposition 1.5. Let A1 be closed in (Ml'cl) and A2 be
closed in (Mz,cz). Assume that a gluing diffeomorphism
h:A1 — A2 satisfies the following condition:

(1.3) | h(IntA1)=IntA2.
Then
(1) IntA=np (IntA1) and FrA=np (FrAl),
h h
(ii) I(Mluhnz)<IM1(M1uhM2)nIM2(Mluth),
s _oA
(iii) X(Mluhnz)—x (Mluth).

Proof. (i) Of course, , -1(IntA)cIntA1uIntA2. Thus
h
IntAcnp (IntAluIntA2)=nph(IntA1). np

(IntA,)=n_ (IntA,uIntA.)
h h 1oy 1 2
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is open subset of A. Thus "p (IntA1)=IntA. Of course A is

closed. Thus FrA=A\IntA=nph(Al\IntA1)=nph(FrA1).
(ii) Let XeI(Mluth). Since nph(Mi\FrA)=

=(Mi\Ai)uIntA1uIntA2, ﬁi\FrA is open for i=1,2. Thus

Xem"i\FrA(MluhMZ) for i=1,2.

Analogously as in the proof of Proposition 1.3 one can see

A

that Mi\FrA is dense in the subspace M, for 1i=1,2. From

PN

Lemma 1.2 it follows that XeIMlnMZ(M v, M )=IA(M U, M_ ). Thus
1"h 2 1"h2
A X . A
I(Mluhuz)cx (MluhMZ). The inclusion X (Mluth)cI(Mlu

obvious. This finishes the proof of (ii).

th) is

Remark. Assumption 1.3 in Proposition 1.5 is essential. If

we glue a one element space {0} with a real line R we obtain R
as a glued space. (i) and (ii) are not true.

Definition 1.1. A gluing diffeomorphism h:A1 — A2 is
called locally extendible to a diffeomorphism if for any point

peA1 there exists an open neighbourhood Uet of p and a

C

1

diffeomorphism ﬁp:U — h(U) onto a open subset h(U)e‘cC such
2

that ﬁp |UnA,=h|UnA, .

Now we prove

Proposition 1.6, Let Al and A2 be closed in (Ml’cl) and
(Mz,cz), respectively. Assume that a gluing diffeomorphism

h:A1 — A2_is locally extendible to a diffeomorphism.

Then
(i) = =T /Py
CluhCZ CluC2 h
(ii) lenl — M1 and L2:M2 — M2 are diffeomorphisms,

(iii) h(IntA1)=IntA2,

: _oA
(iv) x(MiuhMZ)—I (Mluth),
A . . .
(v) The Cluhcz-module X (Mluhnz) is 1isomorphic to the
Cluhcz-module

T, (M) M) ={ (X,,X,) efIAl(Ml) xxb2 (M) th, (X, 14,)=X,14,}.
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Proof. (i) Let U, et and U,etT be sets such that

1 C1 2 C2
h(UlnA1)=UznA2. For any point peUlnA1 there exist open subsets
Vletcl, pevl, Vzetc2 and a diffeomorphism hp:vl — V2 such

that ﬁprlnAl=h|V2nA2. It follows from Lemma 1.4 that there
are open subsets WicV WZcV2 such that clwlcV1 and clwzcvz,
and h (W )—WZ, pew Let ¢ .V — [0,1] Dbe a bump function
such that supp¢1cw and ¢ (p) 1. It is clear that ¢1ohp is a

bump function such that supp ¢1ohp1cw2 Now, it follows from

Lemma 1.4, that ¢1 is extendible by 0 to the function_ alecl
and the function ¢2oﬁ-l is extendible by 0 to the function
¢25C2, and ¢1|A1=¢2oh. ¢1u¢2 is ph—con51stent and satisfies

($1u$2)(p)=1. This proves (i).

(ii) Let y :M, — M, be the inverse mapping to t,. Let
1°71 1 1

aeCy be an arbitrary function. We will show that the

composition aowl is smooth. If [p]¢A then there exists a

neighbourhood Uet of p, such that UnA 1=2 and a function

C

1
alecl such that a1|U=aIU, allMl\U=0. It is clear that aluOM is
consistent with Pp- It is easy to show that
aowllnph(U)nM —aluhoM I ph(U)an. If Ll(p)=[p]eA, then there
are open sets Vletc , vV etc , peV1 and a diffeomorphism

Hp:V1 — V, such that h IV nA) hIV nA,. Let W, w2 and $1u$2
be as in (i). By constructlon supp(¢lu¢2)cw uw There is an
1 such that ¢1|B—1 (see [21]). Let us denote by

“°ﬁp-1'¢2 the extension by 0 of the function aoh (¢2|V ).

open subset BcW

It easy to see that «-¢ naoﬁp_1-$2 is -con51stent and

Ph

aowllnph(B)nM1= =a¢1uhaoh (B)nM. . Analogously one can

.a |n
p "2'7p 1 X

prove the smoothness of the inverse mapping to This

5
finishes the proof of (ii).
(iii) For any point peIntAl, there exists an ° open

neighbourhood Up of p such that UpcIntA ’ h (U )et . Of
2
course, IntA,= U Up' Inta,= U h(U ). Now, it is
peIntA1 peIntA

evident that



640 W. Sasin

h(IntA1)=h( U Up)= U h(Up)=IntA2.
peIntA1 peIntA1

(iv) is a consequence of (iii) and Proposition 1.5.
(v) Let XeI(Mluhnz). By Proposition 1.5 (ii),

A ~ ~ -1 -
xex™1 (M, u M) and Xex"2(M Let us put X =(i, 1), (XIN;),

1VnM2) -

i=1,2.It is clear that XleIAl(Ml) and xzeIAZ(MZ). Now, let
. A .

H.xh(Ml,Mz) — X (MluhMZ) be defined by

(1.4) H(Y,,Y,)=Y,u Y,

where Ylth2 is the vector field satisfying YlthZIMj=(Lj)*Y

for j=1,2 [17]. Of course, H is an isomorphism.

jl

The following equalities holad:

(1.5) fluhfz-Ylth2=f1Yluhf2Y2,
(1.6) (Ylthz)(fluhf2)=Y1f1th2f2,
(1.7) (X9 X, ¥ 0 Yo 1=(X,, Y 1y (X, Y,)

for any (Xl,xz),(Yl,Yz)exh(Ml,Mz) and (fl,fz)eclxc2 such that
f1|A1=f2oh. :

One can prove

Lemma 1.7. If Al,A2 are submanifolds of differential
spaces ( Ml’cl) and (Mz’cz) of class DO [24], then every
vector weTA is extendible to a smooth vector field.

Proof. Let weTpA, p=[p1]=[p2]. Let XeX(A) be a vector
field such that w=X(p). There are vector fields YleIAl(Ml) and

A -~ ~
Y,eX 2 (M,), (L), (Y 14;)=X and (¢
see that Ylthz is a vector field such that w=(Y1th2)(p).
Proposition 1.8. Let (Ml'cl) and (Mz,cz) be differential

spaces of class Do and h:A1 — A2 be a gluing diffeomorphism

2)*(Y2|A2)=x. It is easy to

between closed boundary subspaces.
Then, for any peld, the subspace Tgx(Mluhnz) of all

extendible vectors is equal to (LA)*(TSXA).

Proof. Let weTgx(MluhMZ), peA. There exists a vector field
XeX(M v M,) such that w=X(p). By Proposition 1.3 XeIA(Mluhmz).
Let YeX(A) be a vector field such that (iA)*Y(q)=x(q) for qeA.

_ s ex
Thus w—X(p)—(lA)*pY(p)e(LA)*(Tp A). Conversely, let
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we(iA)*(T:xA). There is a veéfor field YeX(A) such that
w=(1A)*pY(p). Since (Ml'cl) and (M2,C2) are spaces of ciass Do

and Al,A2 are closed, there exist vector fields xleI l(Ml),

A i _ n _ s
XzeI 2(M2) such that (11)*(x1|A1)—Y, (12)*(x2lA2)—Y. Now it is
clear that Y=X.uv X_|A. Thus

1°'h"2
w=(iA)*pY(p)=(X1uhX2)(p)eTgx(Mluth).

This finishes the proof.

Now we prove

Lemma 1.9. Let (Ml’cl) and (M2,C2) be differential spaces
and h:Al - A2 be a gluing diffeomorphism. AIf
c:[a,?] — MluhM2 is a smooth curve such that c(a)eMl,
c(b)eM,,then ¢’ (t)eTA:=(L,),TA, for any tec (A).

Proof. Let toec-l(A). Of course, cl[a,to] is a smooth

curve in Ml' Thus c’(to)eTpﬁ where p=c(t0). Analogously,

1’

cI[to,b] is a smooth curve in M2 and c’(to)eTpMZ. Hence
c (to)ETlenTpM2=TpA.

Definition 1.2, Curves clz(a,t6+c) — M, and
c2:(to-c,b) — Mz, where toe(a,b), €>0, are said to be

e-ph—consistent if cl(-c,e)cAl, c2(-e,e)cA2 and h(cl(t))=c2(t)
for te(-c,c).

Of course, for any c-ph—consistent curves clz(a,to+e) — M
(a,b) - M

1

and cz:(to-c,b) — M the mapping 1UhM2

Y C1YnCyt
given by the formula
n (cl(t)) for te(a,to]
(c,upe,) (£)={ Pn
nph(CZ(t)) for te(to,b)

is a smooth curve.

It is easy to prove

Proposition 1.10. Let X=X1uhxze1(M1uhM2) be an arbitrary
vector field on the glued space (Mluth,Cluhcz). If
1 (e>0, toe(a,b)),
2 is an integral curve of x2 and €, ¢, are
c-ph-consistent curves, then cluhc2=npho(clncz):(a,b) — Mluth
is an integral curve of X. If clz(a,to] — M1 is an integral

curve of Xy and cz:{to,b) — M, is an integral curve of X, and

h(cl(to))=c2(to)eA2, then CVpC, 1is a piecewise smooth

clz(a,to+c) — M is an integral curve of X
c2:(t0—c,b) — M
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integral curve of X.

Now we will define a special case of a dgluing
diffeomorphism which produces a special kind of singularity so
called of the edge type.

Definition 1.3. A gluing diffeomorphism h:A1 - A2 of
disjoint differential spaces (Ml,Cl) and (M2,Cé),is said to be
the edge type if there exist differential spaces (Bl,ﬂl),
(32,32) and (Z,Z) such that the following conditions are
satisfied :

(1) for any point peAl, there exist open neighbourhoods

Wletclof p and ertczof h(p) , open sets UlerBll U2et32’ Tetz,
points bleBl,bzeB2 and diffeomorphisms ¢1:W1 - leT,
¢2:w2 — szT,
_. =1 ., =1
(2) Aan1—¢1 ({bl}xT), Aznwz—¢2 ({bz}xT)

(3) ¢2oh|A1nW1=hoo¢1|Alnwl, where ho:{bl}xT — {bz}xT is

the diffeomorphism given by:
ho(bl,t)=(b2,t) for teT.

Now one can prove
Proposition 1.11. Let (Ml'cl)' (M2,C2) be disjoint

differential spaces and h:A1 — A, be a gluing diffeomorphism

2
of the edge type between closed spaces.

Then

(1) = =T /Py,
Cluhc2 CluC2 h

(ii) the mappings L,:M, — M. and (.:M, — M, are embeddings,

1°1 1 2°7°2 2

(iii) T _(M,u, M, )=T _ M.eT M  for peld, p=[p,]l=[P,],
p''1°h2 P, 1 P, 2 ! 1 2

(iv)  T(Mpu M) =1t (v M),
(v) TA:=(LA)*TA is the set of all vectors tangent to the qlued'
space at singular points extendible to smooth vector field.
Proof is similar to the proof of Proposition 3.2 in
(17].
Example 1.1. Let Ml and M2 be differential manifolds of
dimension n and n respectively, let A1 and A be

1 2 2
k-dimensional submanifolds ( k<min{nl,n2} ), and let
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h:A1 - A2 be a gluing diffeomorphism. Then h is .a gluing
diffeomorphism of the edge type. In fact, for any point pleA1

there exist charts ¢1:W1 — leTcRnl on Ml and
¢2:w2 — U2xTcRn2 on Mz such that W1 is an open neighbourhood
of pﬁ, W2 is an open neighbourhood of h(pl), UlcRnl-k,
U,cR 27K,” pcRF are open subsets, and ¢, (A W, )={0}xT,

¢, (A,NW,_ )={0}xT ( see [6] for example ). It obvious that if we
272 2 n,-k o, .n.,-k n.~k o, n.-k
put (Bl'Bl)=(IR 1 (R T)), (82132)=(|R 2 ,C (R2 }).

(Z,Z)=(Rk,cm(Rk)), the conditions of Definition 1.2 are
satisfied.

2. Gluing of tangent bundles, forms and connections

Let (Ml’cl) and (M2,C2) be differential spaces, and
h:A1 — A2 be a gluing diffeomorphism. of course,
h*:TA1
which induces a diffeomorphism h,:TA, — TA, of the spaces
TA1:=(LA1)*TA1 and TA2:=(LA2)*TA2 such that the following

- TA2 is a diffeomorphism of differential spaces,

diagram
h*
TA]_————>TA2
(ty )s 1 l (L )
1 = 2

- h* -

TAl—)TA2
commutes.

Now we may consider ﬁ*:TAl — TAZ as a gluing
diffeomorphism of tangent differential spaces (TMl’Tcl) and
- T(Mluth) be a mapping given

(TM,,TC,) (7). Let &: TMluH*TMz
by :
(2.1) o(m

_ (v))=(m_ ), v for any veTM_ uTM,.
ph* Pn * 1772

It is easy to verify the correctness of (2.1). The
smoothness of ¢ is a consequence of the following equalities:

(2.2) d(fluhf2)0@=df1uﬁ*df2,

(2.3) fluhfzonot=f1on1 2 fzon

* 2
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for any f eCl, fzecz, f2oh=f1|A1, where
n:T(M M ) — Ml h 27 nl:TM1 — Ml, 112:TM2 — M2 are the

canonical projections.

Let n:TMluE*TM2 — Mluth be defined by:

(2.4) n(npfl*(v)):nph

It is easy to verify

(mr(v)) for any veTMluTMz.

(2.5) fluhfzon=f1on1 Uﬁ*f2°"2 for any f hfzecluh 2°

Thus 7 is a smooth projection. The following diagram

T™ 1A TM ——————»T(M

N A

M1YnM2
commutes. Of course, for any point peA1 the fiber
1
={n V) :veT M uT corresponds to the subset
((p1)={ PR (v) o1V Th (p) M2} po
*

Q(ﬁ-l([p])=(n )*p T M u(n )*h(p)Th(p)Mz' It is easy to show

that ¢ is a bljectlon of TM TM onto T(M

1Yh, nMy) =

= (nph)*TMlu(nph)*TMz.
Now we prove
Lemma 2.1. Let (Ml'cl) -and (Mz'cz) be disjoint
differential spaces and let p;eM,, i=1,2, be arbitrary points.
Let *: {pl} - {pz} be the natural gluing diffeomorphism of
onhe-element subspaces.

Then the bijection  &:TM,u,TM, — T(Mlu

2)'

([pl]) is diffeomorphic to the glued space Tp MlU*TPZM

*Mz) is a

dlffeomorphlsm onto its image T(M Moreover, the fiber

obtained by identifying zero vectors.

Proof, Of course, TA1={0}, TZZ={O}. It follows from
Proposition 3.1 in ([17] that the differential space
(TM v TMZ,TC v,TC )is generated by the set

/N /\ N
{df i f eC }u{df f eC )u{f 1314 :flecl}u{fzonzzfzecz},
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where the symbol § means the constant extension of a given
function F to the glued space (see [16], [17]). Let ¥ be the
inverse mapping to ¢&. It 1is easy to verify the following

equalities:
~ - -
(2.6) af,-¥ = df,IT(M,v,M,),
~ N -
(2.7) £iomy ¥ = fiom, IT(M UM,),

for any fieci, i=1,2. Thus ¥ is smooth.

Proposition 2.2, Let (M;,C;) and (MZ’CZ) be disjoint
differential spaces and let pieMi, i=1,2, be arbitrary points.
For. an arbitrary differential space (z2,%), let
h:{pl}xz — {pP,}x2 be the diffeomorphism defined by

(2.8) h(p,z)=(p,2) for zeZ.

Then the bijection #%:T(M xZ)up T(M,xZ) — T (M xZu,M,x2)
*

n'2
defined anlogously to (2.1) 1is a diffeomorphism. Moreover,
every fiber ﬁ_l([pl,z]) is diffeomorphic to the glued space

T (M, xZ)vugs T (M,xZ).
(pllz) 1 h*(pl,z) (pzlz) 2
Proof. Let anzmle — Ml, nMZ:MZxZ — Mz, ﬁZ:Mlxz — 2,
ﬁZ:MZxZ — Z be the natural projection. It is evident that the
diffeomorphisms

((an)*,(ﬁz)*):T(Mlxz) —> TM, xTZ

and

(T ) ar (Ry) ) sT(Myx2) — T,xT2

induce, for the spaces TM, xT2 and TszTZ, the gluing
diffeomorphism h,:{0_ }xTZ-»{0_ }xTZ defined by
L 1 Py

(2.9) hz(opl,w)=(0p2,w) for weTZ,
where 0p eTM1 is the zero vector from the fiber T Ml, and

1 . 1
0 i i .
pzeTM2 is the zero vector from the fiber Tp2M2 hz

corresponds to the gluing diffeomorphism ﬁ*. One can see that
the natural mapping ((nM )*,(ﬁz)*)UE ((nM )*,(ﬁz)*) from
1 * 2
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T(Mle) U T(szz) onto TM, xTZ v, TM,xT2 is a diffeomorphism .
*

h
z
By Proposition 3.2 in [17], there exists the natural

hzTMZXTZ and (TMlu*TMZ)xTZ.

Therefore, T(Mlxz)uH T(szZ) is diffeomorphic to
*

diffeomorphism between TMleZu

(TMlu*TMZ)xTZ. on the other hand, since in view of Proposition
3.2 in [17] Mleu M_xZ is diffeomorphic to (Mlu*Mz)xZ, the

h 2
space T(MleuhnzxZ) is naturally diffeomorphic to
T(Mlu*Mz)xTZ.
It is easy to see that the following diagram
Z
3
T(Mle)uh*T(szz)—————-—»T(MlxzuhMZxZ)
diffeol ldiffeo
(TM,u,T™. ) xTZ —2X39 | ¢ (M_u. M. )xT2
1" *772 1 *°2
commutes, where Q:TMlu*TM2 — T(Mlu*Mz) is the bijection from

Lemma 2.1. Since, by Lemma 2.1, & is a diffeomorphism onto its
image, 9xid is a diffeomorphism onto its image. Now is clear
that #2 is a diffeomorphism onto its image. Of course

T (M, xZu) M, xZ) =T (M, U M, ) xTZ.
From Proposition 2.2 it follows
Corollary 2.3. Let (Ml,Cl), (M2,C2) be disjoint

differential spaces and h:A; — A, be a gluing diffeomorphism
of the edge type between closed spaces. Then the bijection

Q:TMIUE*TMZ —> T(Mluth) defined by (2.1) is a diffeomorphism.

Moreover, for any point [p]eA, where peAl,every fiber ﬁ_l([p])

is diffeomorphic to the glued space T M. u=- where

1S dittee P 1R, "h(p) 2!
h*p:=h*lTpA1.
Now we describe a gluing of global forms.
Let h:A1 - A2 be a gluing diffeomorphism of differential
spaces (Ml’cl) and (MZ'CZ)’
Definition 2.1, Two global k-forms
wl:I(Ml)x...xI(Ml) - C1 and wzzx(Mz)x...xI(Mz) — C2
are called h-consistent if the following condition is

satisfied:
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A A .
for any xl,...,xkex 1(M1) and Yl,...,Ykex 2(M2), if
h*(xi|A1)=Yi|A2' for i=1,2,...k, then

ul(xl,...,xk)IA1=w2(Y1,...,Yk)oh.

For arbitrary h-consistent k-forms wlenk(Ml) and wzenk(Mz)

let w be k-form on M UM, defined by:

(2.10) w(xlthl,...,Xkthk)=w1(X1,(..,Xk)uhwz(Yl,...,Yk)
for any h-consistent vector fields X
Yl,...,YkeI(Mz) .

In the sequel, k-form w defined by (2.10) will be denoted
by W VW, .

l,...,xkeI(Ml) and

Now one can easily prove
Lemma 2.4, For any pointwise k-forms wleAk(Ml) and

w eAk(Mz) such that LA*wl=h*w2, the global k-forms w, and

2 1 21
1
which are images of wy and W, respectively by the natural
homomorphism (9], are h-consistent.
Proof. It is evident that the condition ¢, w1=h*w2 is

4

equivalent to the following condition:
(2.11) wl((LAl)*ul,...,‘LAl)*uk)=w2(h*u1,...,h*uk)

k
for any (ul,...,uk)eT A.

Let xl,...,xkex(Ml) and Yl,...,Ykex(Mz) be arbitrary
vector fields such that h*(xi|A1)=Yi|A2' for i=1,2,...k. It is
easy to see (using (2.11)) that

wl((LAi* (xllAl)(p)""'(LAi*(XklAl)(p))=
=0, (h, (X, 18,) (), -+ D, (X 14,) (P))
for peAl, or equivalently
Ul(xl(P):---,Xk(P))=w2(Yl(h(p)),---,Yk(h(P))) for pel,.
Hence
Gl(xl,...,xk)(p)=62(y1,...,yk)(h(p)) for any peA,.
Thus Gl(xl,...,xk)IA1=52(Y1,...,Yk)oh. This finishes the proof.

Corollary 2.5. Every k-forms Gler(Ml) and Gzeﬂk(Mz) such
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that iA: w1=h*w2 may be glued together to the global k-form
Bluhazeﬂk(Mluth).

Now one can easily prove

Proposition 2.6. Let Qkh(Ml’Mz) be the set of all
h~-consistent pairs (wl,wz)en (Ml)xQ (Mz). Assume that A1 and
A2 are closed boundaiy subsets in Ml and MZ'
Then the mgpping o:Q h(M M ) - Q (M, v given by

respectively.

1°h 2)'

(2.12) n(wl,w2)=w1uhw2

is a monomorphism of C hC2 -modules.
Definition 2,2. Global (k,1) tensor fields
w °I(M )x...xI(M ) — X(M ) and W, -x(M IXe o o xX (M) — I(Mz)
are sald to be h- cons1stent if for any Xl,...,Xkelil(M } and
Yl,...,YkeI 2(M ) satisfying h, (X | A )—Y IA2 for i=1,...,k,
the following condltlons are satlsfled.
0 (Xy, ... X et 0y (¥, ..., ¥ )exb2 (M) and

hy (03 (Xp,ee e X ) 1A ) =0, (Y, 0o, Y ) 1A,
For any h-consistent tensor fields w, and w, of the type

1 2
(k,1) let w be the tensor field on M, v defined by

1VnM
(2.13) w(xlthl,...,Xkthk)=w1(xl,..., k)uh (Yl,...,Yk).

In the sequel the tensor field w defined by (2.13) will be
denoted by W, VW, -
Analogously to (2.12), for the space satisfying the

assumptions of Proposition 2.6, the mapping (w P, ) —> w,

Yh*2
is a monomorphism of Cluhc2 module of a11 palrs of
h-consistent tensor fields of type (k,1l) into C hC2 module of
tensor fields of type (k,1) on the glued space M h 2°

1 2

Definition 2.3. Linear connection V in (Ml,cl) and V in

(M2,C2) are called h-consistent if for any Xl,xzeZAl(Ml) and
A = s

Yl,YzeI 2(M2) such that h*(xi|A1)_Yi|A2 for i=1,2, the
following conditions are satisfied :

1 A 2 A 1 2

Ty xzex 1(M,), leyzem 2(M,) and h*(VXlleAl)=VY1Y2|A2.

Now it is easy to prove
Proposition 2,7. Let (Ml’cl)’ (MZ’CZ) be disjoint
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differential spaces and h:A1 — A2 be a gluing diffeomorphism.
1 2
For any linear connection V in (Ml’cl) and V in (M2,Cz) if

they are h-consistent, then the mapping
V:I(Mluhuz)xI(MluhMZ) — I(Mluhmz) defined by
1 2
(2.14) VXY=Vx Yluhvx Y2
1 2
for X,YeI(MluhMZ), where x=x1uhx2, Y=Y1th2, is a 1linear

connection in the glued space (MluhMZ,Cluhcz).

Proof is a simple consequence of (1.5)-(1.7).

In the sequel the connection v given by (2.14)
1 2 1 2
corresponding to V and V will be denoted by Vuhv.

Definition 2.4, Let (Ml’cl)’ (Mz,cz) be differential
spaces of constant differential dimension, let v be a 1linear

connection in Ml and V2 be a linear connection in Mz.

The product connection v,xv, :([6]) in the CcCartesian

product M, xM is defined by

2
(2.15) (levz)wY=(iq)*(K1°prM1**Y*w)+(ip)*(K2°prM2**Y*w)

for any weT )(MlxMz), YeI(MlxMz), (p,q)eMlxMz, where

(p,q
per.MlxM2 — M, per.MlxMz — M,

are the natural projections,
1q:M1 — M, xM,, 1p:M — M.xM
are the natural imbedings,

KI:TTMl - TM1 ’ KZ:TTM2 — TM2

are the connection mappings corresponding to V1 and V2

respectively (1], (6].

Now we prove

Proposition 2.8. Let (Ml,cl), (Mz'cz)' (2,Z) be
differential spaces of constant differential dimension and
(pl,pz)eMlxM2 an arbitrary point . Let h:A1 — A2 be a gluing
diffeomorphism of M.x2Z and M,xZ defined by (2.8), where

1 2
A1={p1}xZ, A1={p2}xz. Then
(i) For arbitrary connections Vl in Ml’ V2 in MZ' V3 in Z, the

product connections lev3 and lev3 are h~-consistent.

(ii) There exists the linear connection V=V1xV3uhV2xV3 in the
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glued space Mleu

(2.14).
. A A
Proof. (i) Let Xl,YleI 1(M1xz) and xz,YzeI 2(M2xZ) such

that h*(x1|A1)=x2|A2 and h*(YllA1)=Y2IA2. There exist vector
fields A, BeX(Z) such that XilAi=(1pi)*A and Yi'Ai=(1pi)*B'

hszz corresponding to lev3 and szv3, by

for i=1,2.
Now, for a fixed zeZ, let us put wi=Xi(pi,z), i=1,2. Of
course, wi=((ip')*A)(z).

It is easy to verify the following equalities :

(2.16) T, ex¥ja¥;=0 for i=1,2,

(2.17) By wxYjs¥W;=By, (A(2)) for i=1,2.

Hence from (2.15) we obtain:

(vixv3)wlyi=(i(i,z))*x Z**Yl*wl (i,z)K3(B*z(A(z))’

for zeZ, i=1,2, where K, is the connection mapping

corresponding to V 12— MixZ is the embedding

3 i(i,z)
i(i,Z) (z)=(Pi:Z) , i=1,2.

Hence it is evident that (Vixv3)w Yi is tangent to Ai' for
i
i=1,2, and
h*((lev3)X1Y1IA1)=(V2xV3)x2Y2IAZ.
(ii) is a consequence of (i) and Proposition 2.7.
Proposition 2.9. Let (Ml’cl)' (M2,C2), (Z,2) be

differential spaces of constant differential dimension and
(pl,pz)eMIxM2 an arbitrary point. Let h:A1 — A2 be a gluing

diffeomorphism of M, xZ and M, x2 defined by (2.8).

1
Then
(i) For any semi-Riemannian metrics g, on M;, g, on Mz, g, on
: . . . L * 1% *
Z, the semi-Riemannian metrics nl—nM1g1+nzg3 and n,= nM g2+ﬁzg3
are h-consistent.
1 2

(ii) The Levi-Civita connections V and V corresponding to
metrics ny and LY respectively, are h-consistent.
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1 2
(iii) The glued connection V=VuhV, with respect to the
glued metric Lt PN P satisfies the well-known condition:

2 (X, Y) =0 (X, ¥) 40 (X, V,Y),

VY=V X+[X,Y¥].
Sketch of the proof. (i) It is easy to observe that

. * . LI . oy =

1p1 nl—g3 and 1p2 My=94¢ where ;p..z — Mixz, i=1,2, are the

. 1»\. . " %* *
natural embeddings. Thus it is cle&r that i, n1=h n,-
1
(ii) Let Vi Voo 4 be the Levi-Civita connection
corresponding to the metrics 9y 9,0 94, respectively. By

using local vector basis in the Cartesian product, the

definition of the Levi-Civita connection and (2.15) one can
i
verify that v=V,xV_ for i=1,2.
13 1 2
Now, from Proposition 2.8 it follows that Vv and V are

h-consistent.

The proof of (iii) is a simple verification. (iii) is a

simple consequence of the similar properties of the
1 2
Levi-Civita connections V and v and the equalities

(1.5)-(1.7).

3. Some comments on applications

a) Gluing of Robertson-Walker spacetimes.
Let S be a connected three dimensional Riemannian manifold
of constant curvature k=-1,0 or 1 with the metric tensor gq.

Let I1 and I2 be intervals in R and let f1>0, f2>0 be smooth

functions on I and I,, respectively. Consider the

1
Robertson-Walker spacetimes and I,x. S [(8]. By

I.x,. S
1 fl 2°f

2
definition the Robertson-Walker spacetime I s, 1i=1,2, is

+ X
i fi
the product space IixS furnished with the metric tensor

— o 21 % s
(3.1) ;= anieani+(fi nIi) g 9, for i=1,2.

Let tleI1 and tzelz be arbitrary points. Let h:A1 — A2 be
the gluing diffeomorphism given by
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(3.2) h(tl,p)=(t2,p) for peS,
where A1={(t1,p):peS} and A2={(t2,p):peS}.
consider the glued space I,x8u I, xS. It is evident, that if
the scale functions f1 and f2 satisfy the condition
fl(t1)=f2(t2), then the metrics ny and n, are h-consistent. In
view of Proposition 2.6 one can glue L and n,-. The glued
2-form n=n,vM, is a semi-Riemannian metric on leSuhszS of
the signature ( - - + + + ) in A.

Let Vi, i=1,2, be the Levi-civita connection of Iixs

corresponding to ny-
Now we prove

Proposition 3,1. Let Iix S, 1i=1,2, be Robertson-Walker

£

spacetimes with fl(t1)=f2(t2), for some tleI
Then

(i) If fl’(t1)=f2’(t2)=0, the Levi-Civita connections are

17 tzeIz.

h-consistent,

(ii) the glued connection V=V1uhV2 is the L;vi-civita
connection corresponding to 7 and the Riemann curvature
tensors R of V and Ri of \7i satisfy R=R,u;R,,
(iii) if additionally fl“(t1)=f2“(t2), then the Ricci
curvature of n is the gluing of respective curvatures of n,
and n,- A

Sketch of the proof. (i) Let xl,YleI 1(leS) and
Xz,YzexAZ(szS) be vector fields such that X1 is h-consistent
with X, and Yl is h-consistent with Y,. There exist vector

fields A,BeX(S) such that XiIA.

1=(1ti)*A and'YiIAi=(1ti)*B'-f°r

i=1,2, where i :S — I xS is the natural embedding. Let A,B
i
be the 1lifts of A and B to leS. Consider Al as a

semi-Riemannian submanifold of I,xS. From Lemma 1.4 in [8] it
follows that

(1%, ¥2) (t,,P)=(Y,3B) (t,,p),

for every peS. By Corollary 8.12 in [8], the normal component

of leﬁ has the following form:
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B= L
noerKB—nl(A,B) F at,

where 8, is the 1lift of ag on I, to I1,xS. _
Now it is clear that if f’(t1)=0, then norleB(tl,p)=0,
for peS. Thus
(lelvl)(tl,p)=tan<v1;§)(tl,p)=(V';|A1§|Al>(tl,p>,
where tan(VlKE) denotes the tangent component of (Vlﬁﬁ) (see
[8]) and V' is the Levi-Civita connection of the submanifold

A. Since the embedding it :S — A1 is a homothety, it

1 1
preserves the Levi-Civita connections (rsly). Thus

v KlAlB|A1=(1t1)*(VOAB)’ where Vo is the Levi-Civita

connection of S. Therefore (V1x1Y1)|A1=(1t1)(VOAB).

Analogously one can prove the equality (sz Y2)|A2=
2

=(1t2)*(v0AB)' This shows that Vl and V2 are h-consistent.

(ii) The Levi-Civita properties of the glued connection V
are simple consequence of the respective properties of vy and
V2.

Now we will prove that R, and R, are h-consistent.
A A
Let Xl, Yl’ ZleI 1(I1xS) and Xz, Y2, ZzeI 2(szS) be
h-consistent. There exist vector fields A, B, CeX(S) such that

xilAi=(iti)*A, YiIAi=(iti)*B, ZilAi=(iti)*c’ for i=1,2.
From Corollary 9.12 in [8] it follows that

£1° x o
+ —,| [n,(A,C)B-n,(B,C)AllA,.

Rl(xl'Yl)leA1=[[;—_
1 1

Hence
’ 2 5 -
Ry (X,Y,)2, 1A, =[(£3(t,))"+k][g(A,C)BIA,-g(B,C)AlA,].
Analogously one can see the equality
p 2 : .
Ry (Xp:¥3) 2518571 (F (£5)) 4K G(A,C) (i ),B-9(B,C) (ig ) ,AIA,].
Since f1 (t1)=f2 (t2)=0, it is evident that
h*(Rl(Xl,Yl)leA1)=R2(x2,Y2)ZzlAz.
(iii) By Corollary 10.12 in [8)
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Rlcl(xl,Yl)lA1=R1c1(A,B)IA1=

2
£’ 2k £
={[2[—1—] + — —1—] nl(i,ﬁ)}|A1=
£ 55
2
£,/ () 2k £.7°(t,)
=[2[ 1 '"1 ] + + 1t

2
fl(tl) fl(tl) fl(tl)

Thus Ric,(X,,Y,) |8,=[2k+£7(t,) £ (t,)19(A,B).

]fl(tl) ?9(a,B).

Analogously, Ricz(xz,Yz)IA2=[2k+fg(t2)f2(t2)]g(A,B).
Now it is clear that Ricl and Ric2 are h-consistent and
Ric=Ric, v, Ric,.
b) Gluing of Friedman cosmological models.
Recall that a Friedman cosmological model is a Robertson-

Walker spacetime such that the scale function f satisfies the

where A = 8™ and H = £ is

3 £

Friedman equation f’2+k = %,

positive, for some t, (81.

Now, let Il=(-m,0] and IZ=[0,m). Assume that flle — R
and f2:I2 — R are continuous functions satisfying the
Friedman equation. Consider Friedman models lefls and szfzs.
Of course, the metrics L and LY given by (3.1), degenerate
on A1={(0,p):peS}cI1xS and A2={(0,p):peS}c12xS, respectively.
Let h:A1 — A2 be the gluing diffeomorphism given by (3.1),
for t1=0 and t2=0. The glued 2-form 71 is degenerate on the set

of singular points A. Since 1lim f! (t)=w, 1lim f.(t)=o, all
t-0” 1 t-0T 2
points of A are the curvature singularities in the

classification scheme by Ellis and Schmidt [2] as it can be
easily seen from Corollary 9.12 and 9.13 in [8].

Let tleIntIl and tzeIntI2 be such elements that

£f.(t,)=f_(t,). If we glue together the Friedman models I.x. S
171 272 1 f1

and I,xe 8 by the gluing diffeomorphism h given by (3.2), we
2

obtain the set A of quasi-regular singularities [2]). This is a
S and I_x_. S may be embedded
f1 2 f2

into the glued space by Zl and :2. The geometry of the glued

consequence of the fact that le
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space leSuhI xS is determined by the geometry of I Xe S and

2 1 1
I.x. S.
2 f2
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