

Wieslaw Sasin

GEOMETRICAL PROPERTIES OF GLUING OF DIFFERENTIAL SPACES

This work is a continuation of [17]. The aim of this paper is to study geometric properties of gluing of differential spaces.

1. Basic notions

Let (M, C) be a differential space [19]. Let $\mathcal{X}(M)$ be the C -module of all smooth vector fields tangent to (M, C) . For a subset $K \subset M$ we denote by ι_K the embedding of the differential subspace (K, C_K) into (M, C) .

A vector field $X \in \mathcal{X}(M)$ is called tangent to a subset $K \subset M$ [17] if, for any point $p \in K$, there exists a vector $v \in T_p K$ such that $X(p) = (\iota_K)_* p v$. Let $\mathcal{X}^K(M)$ be the C -module of all smooth vector fields tangent to K (see [17]). One can prove that $X \in \mathcal{X}^K(M)$ if and only if $\forall f \in C$ $f|_K = 0 \Rightarrow Xf|_K = 0$.

In the sequel, for $X \in \mathcal{X}^K(M)$, we will denote by $X|_K$ the restriction of X to a subspace (K, C_K) .

It is easy to prove

Lemma 1.1. Let (M, C) be a differential space and $A, B \subset M$ subsets satisfying the following condition:

(1.1) $(\iota_{A \cap B})_* p T_p (A \cap B) = (\iota_A)_* p T_p A \cap (\iota_B)_* p T_p B$ for any $p \in A \cap B$.
Then $\mathcal{X}^A(M) \cap \mathcal{X}^B(M) \subset \mathcal{X}^{A \cap B}(M)$.

Now we prove

Lemma 1.2. For any subset $A \subset M$ $\mathcal{X}^A(M) = \mathcal{X}^{cl A}(M)$, where $cl A$ is the closure of A in M .

Proof. Of course, $\mathcal{X}^A(M) \subset \mathcal{X}^{cl A}(M)$. It is enough to prove the

inclusion $\mathcal{X}^{\text{clA}}(M) \subset \mathcal{X}^A(M)$. Let $x \in \mathcal{X}^{\text{clA}}(M)$. Let $f \in C$ be an arbitrary function such that $f|A=0$. Of course, $f| \text{clA}=0$. Hence $Xf| \text{clA}=0$. Thus $Xf|A=0$. This proves that $x \in \mathcal{X}^A(M)$.

Now let (M_1, C_1) and (M_2, C_2) be differential spaces and $h: \Delta_1 \rightarrow \Delta_2$ a diffeomorphism of differential subspaces (Δ_1, C_{Δ_1}) and (Δ_2, C_{Δ_2}) . Let ρ_h be an equivalence relation on the disjoint sum $(N, D) = (M_1 \sqcup M_2, C_1 \sqcup C_2)$ identifying a point $p \in \Delta_1$ with $h(p) \in \Delta_2$. The quotient space $(N/\rho_h, D/\rho_h)$ is called the gluing of differential spaces (M_1, C_1) and (M_2, C_2) and it will be denoted in the sequel by $(M_1 \cup_h M_2, C_1 \cup_h C_2)$ [17]. For any $f_1 \in C_1$ and $f_2 \in C_2$ such that $f_1|_{\Delta_1} = f_2 \circ h$ we denote by $f_1 \cup_h f_2$ the function from $C_1 \cup_h C_2$, corresponding to the function $f_1 \cup f_2 \in C_1 \sqcup C_2$ [17].

Let $\pi_{\rho_h}: M_1 \sqcup M_2 \rightarrow M_1 \cup_h M_2$ be a canonical mapping and let us put

$$\hat{\iota}_1 := \pi_{\rho_h}|_{M_1}, \quad \hat{\iota}_2 := \pi_{\rho_h}|_{M_2}.$$

Let us put

$$\hat{M}_j = \hat{\iota}_j(M_j), \quad \hat{C}_j = (C_1 \cup_h C_2)_{\hat{M}_j} \quad \text{for } j=1,2$$

and $\Delta = \pi_{\rho_h}(\Delta_1)$.

$$\text{Clearly } \Delta = \pi_{\rho_h}(\Delta_2) = \hat{M}_1 \cap \hat{M}_2.$$

One can prove that [17]

$$(1.2) \quad (\iota_{\Delta})_{*p} (T_p \Delta) = (\hat{\iota}_{M_1})_{*p} (T_p \hat{M}_1) \cap (\hat{\iota}_{M_2})_{*p} (T_p \hat{M}_2) \quad \text{for any } p \in \Delta.$$

Now we prove

Proposition 1.3. Let (M_1, C_1) and (M_2, C_2) be disjoint differential spaces and $h: \Delta_1 \rightarrow \Delta_2$ the gluing diffeomorphism. Assume that Δ_1 is a closed boundary set in M_1 , and Δ_2 is a closed boundary set in M_2 . Then $\mathcal{X}(M_1 \cup_h M_2) = \mathcal{X}^{\Delta}(M_1 \cup_h M_2)$.

Proof. Of course, Δ is a closed boundary set. It is clear that \hat{M}_i is closed ($\pi_{\rho_h}^{-1}(\hat{M}_1) = M_1 \cup \Delta_2$ and $\pi_{\rho_h}^{-1}(\hat{M}_2) = M_2 \cup \Delta_1$). It is easy to see that $\hat{M}_1 \setminus \Delta$ and $\hat{M}_2 \setminus \Delta$ are open subsets. Let us notice that $\hat{M}_i \setminus \Delta$ is dense in \hat{M}_i for $i=1,2$. In fact

$$cl(\hat{M}_i \setminus \Delta) = cl(\hat{M}_i \cap (\hat{M}_1 \cup \hat{M}_2 \setminus \Delta)) = cl\hat{M}_i \cap cl(\hat{M}_1 \cup \hat{M}_2 \setminus \Delta) = \hat{M}_i \cap (\hat{M}_1 \cup \hat{M}_2) = \hat{M}_i.$$

$$\text{Thus } cl_{\hat{M}_i}(\hat{M}_i \setminus \Delta) = \hat{M}_i \cap cl(\hat{M}_i \setminus \Delta) = \hat{M}_i.$$

Now, let $x \in \mathcal{X}(M_1 \cup_h M_2)$. Since $\hat{M}_i \setminus \Delta$ is open, then $x \in \mathcal{X}^{\hat{M}_i \setminus \Delta}(M_1 \cup_h M_2)$ for $i=1,2$. From Lemma 1.2 it follows that $x \in \mathcal{X}^{\hat{M}_i}(M_1 \cup_h M_2)$, $i=1,2$. From Lemma 1.1 it follows that $x \in \mathcal{X}^{\hat{M}_1 \cap \hat{M}_2}(M_1 \cup_h M_2) = \mathcal{X}^{\Delta}(M_1 \cup_h M_2)$ q.e.d.

Now we prove a very useful lemma.

Lemma 1.4. Let (M, C) be an arbitrary differential space.

Then

(i) for any open set U and an arbitrary point $p \in U$, there exists an open subset $V \subset U$ containing p such that $clV \subset U$.

(ii) every "bump" function $\phi: U \rightarrow [0,1]$, $\phi \in C$, such that $\text{supp } \phi \subset V$, is extendible by 0 to a global function $\bar{\phi}: M \rightarrow [0,1]$.

Proof. (i) Let $\psi: M \rightarrow [0,1]$ be a "bump" function such that $\text{supp } \psi \subset U$. There exists an open set $V \in \mathcal{X}_C$ containing p such that $\psi|V=1$ [21]. Of course, $clV \subset cl(\psi^{-1}(\{1\})) = \psi^{-1}(\{1\}) \subset U$.

(ii) It is easy to see that $\{U, M \setminus clV\}$ is an open covering of M . Of course, $\phi|U \cap (M \setminus clV) = 0$. There exists a smooth function $\bar{\phi}: M \rightarrow [0,1]$ such that $\bar{\phi}|U = \phi$ and $\bar{\phi}|(M \setminus clV) = 0$.

Now we prove

Proposition 1.5. Let Δ_1 be closed in (M_1, C_1) and Δ_2 be closed in (M_2, C_2) . Assume that a gluing diffeomorphism $h: \Delta_1 \rightarrow \Delta_2$ satisfies the following condition:

$$(1.3) \quad h(\text{Int} \Delta_1) = \text{Int} \Delta_2.$$

Then

$$(i) \quad \text{Int} \Delta = \pi_{\rho_h}(\text{Int} \Delta_1) \text{ and } \text{Fr} \Delta = \pi_{\rho_h}(\text{Fr} \Delta_1),$$

$$(ii) \quad \mathcal{X}(M_1 \cup_h M_2) \subset \mathcal{X}^{\hat{M}_1}(M_1 \cup_h M_2) \cap \mathcal{X}^{\hat{M}_2}(M_1 \cup_h M_2),$$

$$(iii) \quad \mathcal{X}(M_1 \cup_h M_2) = \mathcal{X}^{\Delta}(M_1 \cup_h M_2).$$

Proof. (i) Of course, $\pi_{\rho_h}^{-1}(\text{Int} \Delta) \subset \text{Int} \Delta_1 \cup \text{Int} \Delta_2$. Thus $\text{Int} \Delta \subset \pi_{\rho_h}(\text{Int} \Delta_1 \cup \text{Int} \Delta_2) = \pi_{\rho_h}(\text{Int} \Delta_1)$. $\pi_{\rho_h}(\text{Int} \Delta_1) = \pi_{\rho_h}(\text{Int} \Delta_1 \cup \text{Int} \Delta_2)$

is open subset of Δ . Thus $\pi_{\rho_h}(\text{Int}\Delta_1) = \text{Int}\Delta$. Of course Δ is closed. Thus $\text{Fr}\Delta = \Delta \setminus \text{Int}\Delta = \pi_{\rho_h}(\Delta_1 \setminus \text{Int}\Delta_1) = \pi_{\rho_h}(\text{Fr}\Delta_1)$.

(ii) Let $X \in \mathcal{X}(M_1 \cup_h M_2)$. Since $\pi_{\rho_h}(\hat{M}_i \setminus \text{Fr}\Delta) = (M_i \setminus \Delta_i) \cup \text{Int}\Delta_1 \cup \text{Int}\Delta_2$, $\hat{M}_i \setminus \text{Fr}\Delta$ is open for $i=1,2$. Thus $X \in \mathcal{X}(\hat{M}_i \setminus \text{Fr}\Delta)(M_1 \cup_h M_2)$ for $i=1,2$.

Analogously as in the proof of Proposition 1.3 one can see that $\hat{M}_i \setminus \text{Fr}\Delta$ is dense in the subspace \hat{M}_i for $i=1,2$. From Lemma 1.2 it follows that $X \in \mathcal{X}(\hat{M}_1 \cap \hat{M}_2)(M_1 \cup_h M_2) = \mathcal{X}^\Delta(M_1 \cup_h M_2)$. Thus $\mathcal{X}(M_1 \cup_h M_2) \subset \mathcal{X}^\Delta(M_1 \cup_h M_2)$. The inclusion $\mathcal{X}^\Delta(M_1 \cup_h M_2) \subset \mathcal{X}(M_1 \cup_h M_2)$ is obvious. This finishes the proof of (ii).

Remark. Assumption 1.3 in Proposition 1.5 is essential. If we glue a one element space $\{0\}$ with a real line \mathbb{R} we obtain \mathbb{R} as a glued space. (i) and (ii) are not true.

Definition 1.1. A gluing diffeomorphism $h: \Delta_1 \rightarrow \Delta_2$ is called locally extendible to a diffeomorphism if for any point $p \in \Delta_1$ there exists an open neighbourhood $U \in \tau_{C_1}$ of p and a diffeomorphism $\bar{h}_p: U \rightarrow h(U)$ onto a open subset $h(U) \in \tau_{C_2}$ such that $\bar{h}_p|_{U \cap \Delta_1} = h|_{U \cap \Delta_1}$.

Now we prove

Proposition 1.6. Let Δ_1 and Δ_2 be closed in (M_1, C_1) and (M_2, C_2) , respectively. Assume that a gluing diffeomorphism $h: \Delta_1 \rightarrow \Delta_2$ is locally extendible to a diffeomorphism.

Then

- (i) $\tau_{C_1 \cup_h C_2} = \tau_{C_1 \sqcup C_2} / \rho_h$,
- (ii) $\hat{\iota}_1: M_1 \rightarrow \hat{M}_1$ and $\hat{\iota}_2: M_2 \rightarrow \hat{M}_2$ are diffeomorphisms,
- (iii) $h(\text{Int}\Delta_1) = \text{Int}\Delta_2$,
- (iv) $\mathcal{X}(M_1 \cup_h M_2) = \mathcal{X}^\Delta(M_1 \cup_h M_2)$,
- (v) The $C_1 \cup_h C_2$ -module $\mathcal{X}^\Delta(M_1 \cup_h M_2)$ is isomorphic to the $C_1 \cup_h C_2$ -module

$$\mathcal{X}_h(M_1, M_2) = \{(x_1, x_2) \in \mathcal{X}^\Delta_1(M_1) \times \mathcal{X}^\Delta_2(M_2) : h_*(x_1|_{\Delta_1}) = x_2|_{\Delta_2}\}.$$

Proof. (i) Let $U_1 \in \tau_{C_1}$ and $U_2 \in \tau_{C_2}$ be sets such that $h(U_1 \cap \Delta_1) = U_2 \cap \Delta_2$. For any point $p \in U_1 \cap \Delta_1$ there exist open subsets $V_1 \in \tau_{C_1}$, $p \in V_1$, $V_2 \in \tau_{C_2}$ and a diffeomorphism $\bar{h}_p: V_1 \rightarrow V_2$ such that $\bar{h}_p|V_1 \cap \Delta_1 = h|V_2 \cap \Delta_2$. It follows from Lemma 1.4 that there are open subsets $W_1 \subset V_1$, $W_2 \subset V_2$ such that $clW_1 \subset V_1$ and $clW_2 \subset V_2$, and $\bar{h}_p(W_1) = W_2$, $p \in W_1$. Let $\phi_1: V_1 \rightarrow [0,1]$ be a bump function such that $\text{supp } \phi_1 \subset W_1$ and $\phi_1(p) = 1$. It is clear that $\phi_1 \circ \bar{h}_p^{-1}$ is a bump function such that $\text{supp } \phi_1 \circ \bar{h}_p^{-1} \subset W_2$. Now, it follows from Lemma 1.4, that ϕ_1 is extendible by 0 to the function $\bar{\phi}_1 \in C_1$ and the function $\phi_2 \circ \bar{h}_p^{-1}$ is extendible by 0 to the function $\bar{\phi}_2 \in C_2$, and $\bar{\phi}_1|_{\Delta_1} = \bar{\phi}_2 \circ h$. $\bar{\phi}_1 \cup \bar{\phi}_2$ is ρ_h -consistent and satisfies $(\bar{\phi}_1 \cup \bar{\phi}_2)(p) = 1$. This proves (i).

(ii) Let $\psi_1: \hat{M}_1 \rightarrow M_1$ be the inverse mapping to $\hat{\iota}_1$. Let $\alpha \in C_1$ be an arbitrary function. We will show that the composition $\alpha \circ \psi_1$ is smooth. If $[p] \in \Delta$ then there exists a neighbourhood $U \in \tau_{C_1}$ of p , such that $U \cap \Delta_1 = \emptyset$ and a function $\alpha_1 \in C_1$ such that $\alpha_1|U = \alpha|U$, $\alpha_1|M_1 \setminus U = 0$. It is clear that $\alpha_1 \circ 0_{M_2}$ is consistent with ρ_h . It is easy to show that $\alpha \circ \psi_1|_{\pi_{\rho_h}(U) \cap \hat{M}_1} = \alpha_1 \circ h^0_{M_2}|_{\pi_{\rho_h}(U) \cap \hat{M}_1}$. If $\hat{\iota}_1(p) = [p] \in \Delta$, then there are open sets $V_1 \in \tau_{C_1}$, $V_2 \in \tau_{C_2}$, $p \in V_1$ and a diffeomorphism $\bar{h}_p: V_1 \rightarrow V_2$ such that $\bar{h}_p|V_1 \cap \Delta_1 = h|V_2 \cap \Delta_1$. Let W_1 , W_2 and $\bar{\phi}_1 \cup \bar{\phi}_2$ be as in (i). By construction $\text{supp}(\bar{\phi}_1 \cup \bar{\phi}_2) \subset W_1 \cup W_2$. There is an open subset $B \subset W_1$ such that $\bar{\phi}_1|B = 1$ (see [21]). Let us denote by $\alpha \circ \bar{h}_p^{-1} \cdot \bar{\phi}_2$ the extension by 0 of the function $\alpha \circ \bar{h}_p^{-1} \cdot (\bar{\phi}_2|V_2)$. It is easy to see that $\alpha \circ \bar{\phi}_1 \cup \alpha \circ \bar{h}_p^{-1} \cdot \bar{\phi}_2$ is ρ_h -consistent and $\alpha \circ \psi_1|_{\pi_{\rho_h}(B) \cap \hat{M}_1} = \alpha \bar{\phi}_1 \cup \alpha \circ \bar{h}_p^{-1} \cdot \bar{\phi}_2|_{\pi_{\rho_h}(B) \cap \hat{M}_1}$. Analogously one can prove the smoothness of the inverse mapping to $\hat{\iota}_2$. This finishes the proof of (ii).

(iii) For any point $p \in \text{Int} \Delta_1$, there exists an open neighbourhood U_p of p such that $U_p \subset \text{Int} \Delta_1$, $\bar{h}_p(U_p) \in \tau_{C_2}$. Of course, $\text{Int} \Delta_1 = \bigcup_{p \in \text{Int} \Delta_1} U_p$, $\text{Int} \Delta_2 = \bigcup_{p \in \text{Int} \Delta_1} h(U_p)$. Now, it is evident that

$$h(\text{Int}\Delta_1) = h\left(\bigcup_{p \in \text{Int}\Delta_1} U_p\right) = \bigcup_{p \in \text{Int}\Delta_1} h(U_p) = \text{Int}\Delta_2.$$

(iv) is a consequence of (iii) and Proposition 1.5.

(v) Let $X \in \mathcal{X}(M_1 \cup_h M_2)$. By Proposition 1.5 (ii), $X \in \hat{\mathcal{X}}^{\hat{\Delta}}_1(M_1 \cup_h M_2)$ and $X \in \hat{\mathcal{X}}^{\hat{\Delta}}_2(M_1 \cup_h M_2)$. Let us put $X_i = (\hat{\iota}_i^{-1})_*(X|_{\hat{M}_i})$, $i=1,2$. It is clear that $X_1 \in \mathcal{X}^{\Delta_1}(M_1)$ and $X_2 \in \mathcal{X}^{\Delta_2}(M_2)$. Now, let $H: \mathcal{X}_h(M_1, M_2) \rightarrow \mathcal{X}^{\Delta}(M_1 \cup_h M_2)$ be defined by

$$(1.4) \quad H(Y_1, Y_2) = Y_1 \cup_h Y_2,$$

where $Y_1 \cup_h Y_2$ is the vector field satisfying $Y_1 \cup_h Y_2|_{\hat{M}_j} = (\hat{\iota}_j)_* Y_j$, for $j=1,2$ [17]. Of course, H is an isomorphism.

The following equalities hold:

$$(1.5) \quad f_1 \cup_h f_2 \cdot Y_1 \cup_h Y_2 = f_1 Y_1 \cup_h f_2 Y_2,$$

$$(1.6) \quad (Y_1 \cup_h Y_2) (f_1 \cup_h f_2) = Y_1 f_1 \cup_h Y_2 f_2,$$

$$(1.7) \quad [X_1 \cup_h X_2, Y_1 \cup_h Y_2] = [X_1, Y_1] \cup_h [X_2, Y_2]$$

for any $(X_1, X_2), (Y_1, Y_2) \in \mathcal{X}_h(M_1, M_2)$ and $(f_1, f_2) \in C_1 \times C_2$ such that $f_1|_{\Delta_1} = f_2 \circ h$.

One can prove

Lemma 1.7. If Δ_1, Δ_2 are submanifolds of differential spaces (M_1, C_1) and (M_2, C_2) of class D_0 [24], then every vector $w \in T\Delta$ is extendible to a smooth vector field.

Proof. Let $w \in T_p \Delta$, $p = [p_1] = [p_2]$. Let $X \in \mathcal{X}(\Delta)$ be a vector field such that $w = X(p)$. There are vector fields $Y_1 \in \mathcal{X}^{\Delta_1}(M_1)$ and $Y_2 \in \mathcal{X}^{\Delta_2}(M_2)$, $(\hat{\iota}_1)_*(Y_1|_{\Delta_1}) = X$ and $(\hat{\iota}_2)_*(Y_2|_{\Delta_2}) = X$. It is easy to see that $Y_1 \cup_h Y_2$ is a vector field such that $w = (Y_1 \cup_h Y_2)(p)$.

Proposition 1.8. Let (M_1, C_1) and (M_2, C_2) be differential spaces of class D_0 and $h: \Delta_1 \rightarrow \Delta_2$ be a gluing diffeomorphism between closed boundary subspaces.

Then, for any $p \in \Delta$, the subspace $T_p^{\text{ex}}(M_1 \cup_h M_2)$ of all extendible vectors is equal to $(\iota_\Delta)_*(T_p^{\text{ex}}\Delta)$.

Proof. Let $w \in T_p^{\text{ex}}(M_1 \cup_h M_2)$, $p \in \Delta$. There exists a vector field $X \in \mathcal{X}(M_1 \cup_h M_2)$ such that $w = X(p)$. By Proposition 1.3 $X \in \mathcal{X}^{\Delta}(M_1 \cup_h M_2)$. Let $Y \in \mathcal{X}(\Delta)$ be a vector field such that $(\iota_\Delta)_* Y(q) = X(q)$ for $q \in \Delta$. Thus $w = X(p) = (\iota_\Delta)_* Y(p) \in (\iota_\Delta)_*(T_p^{\text{ex}}\Delta)$. Conversely, let

$w \in (i_\Delta)_*(T_p^{\text{ex}} \Delta)$. There is a vector field $Y \in \mathcal{X}(\Delta)$ such that $w = (i_\Delta)_* p^* Y(p)$. Since (M_1, C_1) and (M_2, C_2) are spaces of class D_0 and Δ_1, Δ_2 are closed, there exist vector fields $X_1 \in \mathcal{X}^{\Delta_1}(M_1)$, $X_2 \in \mathcal{X}^{\Delta_2}(M_2)$ such that $(i_1)_*(X_1|_{\Delta_1}) = Y$, $(i_2)_*(X_2|_{\Delta_2}) = Y$. Now it is clear that $Y = X_1 \cup_h X_2|_{\Delta}$. Thus

$$w = (i_\Delta)_* p^* Y(p) = (X_1 \cup_h X_2)(p) \in T_p^{\text{ex}}(M_1 \cup_h M_2).$$

This finishes the proof.

Now we prove

Lemma 1.9. Let (M_1, C_1) and (M_2, C_2) be differential spaces and $h: \Delta_1 \rightarrow \Delta_2$ be a gluing diffeomorphism. If $c: [a, b] \rightarrow M_1 \cup_h M_2$ is a smooth curve such that $c(a) \in \hat{M}_1$, $c(b) \in \hat{M}_2$, then $c'(t) \in \bar{T}\Delta := (\iota_\Delta)_* T\Delta$, for any $t \in c^{-1}(\Delta)$.

Proof. Let $t_0 \in c^{-1}(\Delta)$. Of course, $c|_{[a, t_0]}$ is a smooth curve in \hat{M}_1 . Thus $c'(t_0) \in T_{p^*} \hat{M}_1$, where $p = c(t_0)$. Analogously, $c|_{[t_0, b]}$ is a smooth curve in \hat{M}_2 and $c'(t_0) \in T_{p^*} \hat{M}_2$. Hence $c'(t_0) \in T_{p^*} \hat{M}_1 \cap T_{p^*} \hat{M}_2 = T_p \Delta$.

Definition 1.2. Curves $c_1: (a, t_0 + \varepsilon) \rightarrow M_1$ and $c_2: (t_0 - \varepsilon, b) \rightarrow M_2$, where $t_0 \in (a, b)$, $\varepsilon > 0$, are said to be ε - ρ_h -consistent if $c_1(-\varepsilon, \varepsilon) \subset \Delta_1$, $c_2(-\varepsilon, \varepsilon) \subset \Delta_2$ and $h(c_1(t)) = c_2(t)$ for $t \in (-\varepsilon, \varepsilon)$.

Of course, for any ε - ρ_h -consistent curves $c_1: (a, t_0 + \varepsilon) \rightarrow M_1$ and $c_2: (t_0 - \varepsilon, b) \rightarrow M_2$, the mapping $c_1 \cup_h c_2: (a, b) \rightarrow M_1 \cup_h M_2$ given by the formula

$$(c_1 \cup_h c_2)(t) = \begin{cases} \pi_{\rho_h}(c_1(t)) & \text{for } t \in (a, t_0] \\ \pi_{\rho_h}(c_2(t)) & \text{for } t \in (t_0, b) \end{cases}$$

is a smooth curve.

It is easy to prove

Proposition 1.10. Let $X = X_1 \cup_h X_2 \in \mathcal{X}(M_1 \cup_h M_2)$ be an arbitrary vector field on the glued space $(M_1 \cup_h M_2, C_1 \cup_h C_2)$. If $c_1: (a, t_0 + \varepsilon) \rightarrow M_1$ is an integral curve of X_1 , ($\varepsilon > 0$, $t_0 \in (a, b)$), $c_2: (t_0 - \varepsilon, b) \rightarrow M_2$ is an integral curve of X_2 and c_1, c_2 are ε - ρ_h -consistent curves, then $c_1 \cup_h c_2 = \pi_{\rho_h} \circ (c_1 \cup c_2): (a, b) \rightarrow M_1 \cup_h M_2$ is an integral curve of X . If $c_1: (a, t_0] \rightarrow M_1$ is an integral curve of X_1 and $c_2: [t_0, b) \rightarrow M_2$ is an integral curve of X_2 and $h(c_1(t_0)) = c_2(t_0) \in \Delta_2$, then $c_1 \cup_h c_2$ is a piecewise smooth

integral curve of X .

Now we will define a special case of a gluing diffeomorphism which produces a special kind of singularity so called of the edge type.

Definition 1.3. A gluing diffeomorphism $h: \Delta_1 \rightarrow \Delta_2$ of disjoint differential spaces (M_1, C_1) and (M_2, C_2) is said to be the edge type if there exist differential spaces (B_1, \mathcal{B}_1) , (B_2, \mathcal{B}_2) and (Z, \mathcal{Z}) such that the following conditions are satisfied :

(1) for any point $p \in \Delta_1$, there exist open neighbourhoods $W_1 \in \tau_{C_1}$ of p and $W_2 \in \tau_{C_2}$ of $h(p)$, open sets $U_1 \in \tau_{B_1}$, $U_2 \in \tau_{B_2}$, $T \in \tau_Z$, points $b_1 \in B_1$, $b_2 \in B_2$ and diffeomorphisms $\phi_1: W_1 \rightarrow U_1 \times T$, $\phi_2: W_2 \rightarrow U_2 \times T$,

$$(2) \Delta_1 \cap W_1 = \phi_1^{-1}(\{b_1\} \times T), \Delta_2 \cap W_2 = \phi_2^{-1}(\{b_2\} \times T)$$

$$(3) \phi_2 \circ h|_{\Delta_1 \cap W_1} = h_0 \circ \phi_1|_{\Delta_1 \cap W_1}, \text{ where } h_0: \{b_1\} \times T \rightarrow \{b_2\} \times T \text{ is}$$

the diffeomorphism given by:

$$h_0(b_1, t) = (b_2, t) \text{ for } t \in T.$$

Now one can prove

Proposition 1.11. Let (M_1, C_1) , (M_2, C_2) be disjoint differential spaces and $h: \Delta_1 \rightarrow \Delta_2$ be a gluing diffeomorphism of the edge type between closed spaces.

Then

$$(i) \tau_{C_1 \cup h C_2} = \tau_{C_1 \sqcup C_2} / \rho_h,$$

(ii) the mappings $\hat{\iota}_1: M_1 \rightarrow \hat{M}_1$ and $\hat{\iota}_2: M_2 \rightarrow \hat{M}_2$ are embeddings,

$$(iii) T_p(M_1 \cup_h M_2) = T_{p_1} M_1 \oplus T_{p_2} M_2 \text{ for } p \in \Delta, p = [p_1] = [p_2],$$

$$(iv) \mathcal{X}(M_1 \cup_h M_2) = \mathcal{X}^\Delta(M_1 \cup_h M_2),$$

(v) $\tilde{T}\Delta := (\iota_\Delta)_* T\Delta$ is the set of all vectors tangent to the glued space at singular points extendible to smooth vector field.

Proof is similar to the proof of Proposition 3.2 in [17].

Example 1.1. Let M_1 and M_2 be differential manifolds of dimension n_1 and n_2 respectively, let Δ_1 and Δ_2 be k -dimensional submanifolds ($k < \min\{n_1, n_2\}$), and let

$h: \Delta_1 \rightarrow \Delta_2$ be a gluing diffeomorphism. Then h is a gluing diffeomorphism of the edge type. In fact, for any point $p_1 \in \Delta_1$ there exist charts $\phi_1: W_1 \rightarrow U_1 \times T \subset \mathbb{R}^{n_1}$ on M_1 and $\phi_2: W_2 \rightarrow U_2 \times T \subset \mathbb{R}^{n_2}$ on M_2 such that W_1 is an open neighbourhood of p_1 , W_2 is an open neighbourhood of $h(p_1)$, $U_1 \subset \mathbb{R}^{n_1-k}$, $U_2 \subset \mathbb{R}^{n_2-k}$, $T \subset \mathbb{R}^k$ are open subsets, and $\phi_1(\Delta_1 \cap W_1) = \{0\} \times T$, $\phi_2(\Delta_2 \cap W_2) = \{0\} \times T$ (see [6] for example). It is obvious that if we put $(B_1, \mathcal{B}_1) = (\mathbb{R}^{n_1-k}, C^\infty(\mathbb{R}^{n_1-k}))$, $(B_2, \mathcal{B}_2) = (\mathbb{R}^{n_2-k}, C^\infty(\mathbb{R}^{n_2-k}))$, $(Z, \mathcal{Z}) = (\mathbb{R}^k, C^\infty(\mathbb{R}^k))$, the conditions of Definition 1.2 are satisfied.

2. Gluing of tangent bundles, forms and connections

Let (M_1, C_1) and (M_2, C_2) be differential spaces, and $h: \Delta_1 \rightarrow \Delta_2$ be a gluing diffeomorphism. Of course, $h_*: T\Delta_1 \rightarrow T\Delta_2$ is a diffeomorphism of differential spaces, which induces a diffeomorphism $\bar{h}_*: \bar{T}\Delta_1 \rightarrow \bar{T}\Delta_2$ of the spaces $\bar{T}\Delta_1 := (\iota_{\Delta_1})_* T\Delta_1$ and $\bar{T}\Delta_2 := (\iota_{\Delta_2})_* T\Delta_2$ such that the following diagram

$$\begin{array}{ccc} T\Delta_1 & \xrightarrow{h_*} & T\Delta_2 \\ (\iota_{\Delta_1})_* \downarrow & & \downarrow (\iota_{\Delta_2})_* \\ \bar{T}\Delta_1 & \xrightarrow{\bar{h}_*} & \bar{T}\Delta_2 \end{array}$$

commutes.

Now we may consider $\bar{h}_*: \bar{T}\Delta_1 \rightarrow \bar{T}\Delta_2$ as a gluing diffeomorphism of tangent differential spaces (TM_1, TC_1) and (TM_2, TC_2) [7]. Let $\Phi: TM_1 \cup_{\bar{h}_*} TM_2 \rightarrow T(M_1 \cup_h M_2)$ be a mapping given by :

$$(2.1) \quad \Phi(\pi_{\rho_{\bar{h}_*}}(v)) = (\pi_{\rho_h})_* v \text{ for any } v \in TM_1 \cup TM_2.$$

It is easy to verify the correctness of (2.1). The smoothness of Φ is a consequence of the following equalities:

$$(2.2) \quad d(f_1 \cup_h f_2) \circ \Phi = df_1 \cup_{\bar{h}_*} df_2,$$

$$(2.3) \quad f_1 \cup_h f_2 \circ \pi \circ \Phi = f_1 \circ \pi_1 \cup_{\bar{h}_*} f_2 \circ \pi_2$$

for any $f_1 \in C_1$, $f_2 \in C_2$, $f_2 \circ h = f_1 \mid \Delta_1$, where $\pi: T(M_1 \cup_h M_2) \rightarrow M_1 \cup_h M_2$, $\pi_1: TM_1 \rightarrow M_1$, $\pi_2: TM_2 \rightarrow M_2$ are the canonical projections.

Let $\tilde{\pi}: TM_1 \cup_{h_*} TM_2 \rightarrow M_1 \cup_h M_2$ be defined by:

$$(2.4) \quad \tilde{\pi}(\pi_{\rho_{h_*}}(v)) = \pi_{\rho_h}(v) \text{ for any } v \in TM_1 \cup TM_2.$$

It is easy to verify

$$(2.5) \quad f_1 \cup_h f_2 \circ \tilde{\pi} = f_1 \circ \pi_1 \cup_{h_*} f_2 \circ \pi_2 \text{ for any } f_1 \cup_h f_2 \in C_1 \cup_h C_2.$$

Thus $\tilde{\pi}$ is a smooth projection. The following diagram

$$\begin{array}{ccc} TM_1 \cup_{h_*} TM_2 & \xrightarrow{\Phi} & T(M_1 \cup_h M_2) \\ \tilde{\pi} \searrow & & \swarrow \pi \\ & M_1 \cup_h M_2 & \end{array}$$

commutes. Of course, for any point $p \in \Delta_1$ the fiber $\tilde{\pi}^{-1}([p]) = \{\pi_{\rho_{h_*}}(v) : v \in T_p M_1 \cup T_{h(p)} M_2\}$ corresponds to the subset

$\Phi(\tilde{\pi}^{-1}([p])) = (\pi_{\rho_h})_* p T_p M_1 \cup (\pi_{\rho_h})_* h(p) T_{h(p)} M_2$. It is easy to show that Φ is a bijection of $TM_1 \cup_{h_*} TM_2$ onto $\tilde{T}(M_1 \cup_h M_2) :=$

$$= (\pi_{\rho_h})_* TM_1 \cup (\pi_{\rho_h})_* TM_2.$$

Now we prove

Lemma 2.1. Let (M_1, C_1) and (M_2, C_2) be disjoint differential spaces and let $p_i \in M_i$, $i=1,2$, be arbitrary points. Let $*: \{p_1\} \rightarrow \{p_2\}$ be the natural gluing diffeomorphism of one-element subspaces.

Then the bijection $\Phi: TM_1 \cup_* TM_2 \rightarrow \tilde{T}(M_1 \cup_* M_2)$ is a diffeomorphism onto its image $\tilde{T}(M_1 \cup_* M_2)$. Moreover, the fiber $\tilde{\pi}^{-1}([p_1])$ is diffeomorphic to the glued space $T_{p_1} M_1 \cup_* T_{p_2} M_2$ obtained by identifying zero vectors.

Proof. Of course, $\tilde{T}\Delta_1 = \{0\}$, $T\bar{\Delta}_2 = \{0\}$. It follows from Proposition 3.1 in [17] that the differential space $(TM_1 \cup_* TM_2, TC_1 \cup_* TC_2)$ is generated by the set

$$\overbrace{\{df_1 : f_1 \in C_1\}}^{\wedge} \cup \overbrace{\{df_2 : f_2 \in C_2\}}^{\wedge} \cup \overbrace{\{f_1 \circ \pi_1 : f_1 \in C_1\}}^{\wedge} \cup \overbrace{\{f_2 \circ \pi_2 : f_2 \in C_2\}}^{\wedge},$$

where the symbol \hat{F} means the constant extension of a given function F to the glued space (see [16], [17]). Let Ψ be the inverse mapping to Φ . It is easy to verify the following equalities:

$$(2.6) \quad \widehat{df}_i \circ \Psi = \hat{df}_i|_{\tilde{T}(M_1 \cup_* M_2)},$$

$$(2.7) \quad \widehat{f_i \circ \pi_i} \circ \Psi = \hat{f}_i \circ \pi_i|_{\tilde{T}(M_1 \cup_* M_2)},$$

for any $f_i \in C_i$, $i=1,2$. Thus Ψ is smooth.

Proposition 2.2. Let (M_1, C_1) and (M_2, C_2) be disjoint differential spaces and let $p_i \in M_i$, $i=1,2$, be arbitrary points. For an arbitrary differential space (Z, \mathcal{Z}) , let $h: \{p_1\} \times Z \rightarrow \{p_2\} \times Z$ be the diffeomorphism defined by

$$(2.8) \quad h(p, z) = (p, z) \text{ for } z \in Z.$$

Then the bijection $\Phi^Z: T(M_1 \times Z) \cup_{\tilde{h}_*} T(M_2 \times Z) \rightarrow \tilde{T}(M_1 \times Z \cup_h M_2 \times Z)$ defined analogously to (2.1) is a diffeomorphism. Moreover, every fiber $\tilde{\pi}^{-1}(\{p_1, z\})$ is diffeomorphic to the glued space

$$T_{(p_1, z)}(M_1 \times Z) \cup_{\tilde{h}_*(p_1, z)} T_{(p_2, z)}(M_2 \times Z).$$

Proof. Let $\pi_{M_1}: M_1 \times Z \rightarrow M_1$, $\pi_{M_2}: M_2 \times Z \rightarrow M_2$, $\pi_Z: M_1 \times Z \rightarrow Z$, $\tilde{\pi}_Z: M_2 \times Z \rightarrow Z$ be the natural projection. It is evident that the diffeomorphisms

$$((\pi_{M_1})_*, (\tilde{\pi}_Z)_*): T(M_1 \times Z) \rightarrow TM_1 \times TZ$$

and

$$((\pi_{M_2})_*, (\tilde{\pi}_Z)_*): T(M_2 \times Z) \rightarrow TM_2 \times TZ$$

induce, for the spaces $TM_1 \times TZ$ and $TM_2 \times TZ$, the gluing diffeomorphism $h_Z: \{0_{p_1}\} \times TZ \cup \{0_{p_2}\} \times TZ$ defined by

$$(2.9) \quad h_Z(0_{p_1}, w) = (0_{p_2}, w) \text{ for } w \in TZ,$$

where $0_{p_1} \in TM_1$ is the zero vector from the fiber $T_{p_1} M_1$, and $0_{p_2} \in TM_2$ is the zero vector from the fiber $T_{p_2} M_2$. h_Z corresponds to the gluing diffeomorphism \tilde{h}_* . One can see that the natural mapping $((\pi_{M_1})_*, (\tilde{\pi}_Z)_*) \cup_{\tilde{h}_*} ((\pi_{M_2})_*, (\tilde{\pi}_Z)_*)$ from

$T(M_1 \times Z) \cup_{h_*} T(M_2 \times Z)$ onto $TM_1 \times TZ \cup_{h_z} TM_2 \times TZ$ is a diffeomorphism.

By Proposition 3.2 in [17], there exists the natural diffeomorphism between $TM_1 \times TZ \cup_{h_z} TM_2 \times TZ$ and $(TM_1 \cup_* TM_2) \times TZ$.

Therefore, $T(M_1 \times Z) \cup_{h_*} T(M_2 \times Z)$ is diffeomorphic to $(TM_1 \cup_* TM_2) \times TZ$. On the other hand, since in view of Proposition 3.2 in [17] $M_1 \times Z \cup_h M_2 \times Z$ is diffeomorphic to $(M_1 \cup_* M_2) \times Z$, the space $T(M_1 \times Z \cup_h M_2 \times Z)$ is naturally diffeomorphic to $T(M_1 \cup_* M_2) \times TZ$.

It is easy to see that the following diagram

$$\begin{array}{ccc} T(M_1 \times Z) \cup_{h_*} T(M_2 \times Z) & \xrightarrow{\Phi^Z} & T(M_1 \times Z \cup_h M_2 \times Z) \\ \text{diffeo} \downarrow \cong & & \downarrow \text{diffeo} \cong \\ (TM_1 \cup_* TM_2) \times TZ & \xrightarrow{\Phi \times \text{id}} & T(M_1 \cup_* M_2) \times TZ \end{array}$$

commutes, where $\Phi: TM_1 \cup_* TM_2 \rightarrow \tilde{T}(M_1 \cup_* M_2)$ is the bijection from Lemma 2.1. Since, by Lemma 2.1, Φ is a diffeomorphism onto its image, $\Phi \times \text{id}$ is a diffeomorphism onto its image. Now is clear that Φ^Z is a diffeomorphism onto its image. Of course

$$\tilde{T}(M_1 \times Z \cup_h M_2 \times Z) \cong \tilde{T}(M_1 \cup_* M_2) \times TZ.$$

From Proposition 2.2 it follows

Corollary 2.3. Let (M_1, C_1) , (M_2, C_2) be disjoint differential spaces and $h: \Delta_1 \rightarrow \Delta_2$ be a gluing diffeomorphism of the edge type between closed spaces. Then the bijection $\Phi: TM_1 \cup_{h_*} TM_2 \rightarrow \tilde{T}(M_1 \cup_h M_2)$ defined by (2.1) is a diffeomorphism.

Moreover, for any point $[p] \in \Delta$, where $p \in \Delta_1$, every fiber $\tilde{\pi}^{-1}([p])$ is diffeomorphic to the glued space $T_p M_1 \cup_{h_*} T_{h(p)} M_2$, where $\tilde{h}_{*p} := \tilde{h}_* | \tilde{T}_{p \Delta_1}$.

Now we describe a gluing of global forms.

Let $h: \Delta_1 \rightarrow \Delta_2$ be a gluing diffeomorphism of differential spaces (M_1, C_1) and (M_2, C_2) .

Definition 2.1. Two global k-forms

$\omega_1: \mathcal{X}(M_1) \times \dots \times \mathcal{X}(M_1) \rightarrow C_1$ and $\omega_2: \mathcal{X}(M_2) \times \dots \times \mathcal{X}(M_2) \rightarrow C_2$ are called h -consistent if the following condition is satisfied:

for any $x_1, \dots, x_k \in \mathcal{X}^{\Delta_1}(M_1)$ and $y_1, \dots, y_k \in \mathcal{X}^{\Delta_2}(M_2)$, if $h_*(x_i|_{\Delta_1}) = y_i|_{\Delta_2}$, for $i=1, 2, \dots, k$, then

$$\omega_1(x_1, \dots, x_k)|_{\Delta_1} = \omega_2(y_1, \dots, y_k) \circ h.$$

For arbitrary h -consistent k -forms $\omega_1 \in \Omega^k(M_1)$ and $\omega_2 \in \Omega^k(M_2)$ let ω be k -form on $M_1 \cup_h M_2$ defined by:

$$(2.10) \quad \omega(x_1 \cup_h y_1, \dots, x_k \cup_h y_k) = \omega_1(x_1, \dots, x_k) \cup_h \omega_2(y_1, \dots, y_k)$$

for any h -consistent vector fields $x_1, \dots, x_k \in \mathcal{X}(M_1)$ and $y_1, \dots, y_k \in \mathcal{X}(M_2)$.

In the sequel, k -form ω defined by (2.10) will be denoted by $\omega_1 \cup_h \omega_2$.

Now one can easily prove

Lemma 2.4. For any pointwise k -forms $\omega_1 \in \mathcal{A}^k(M_1)$ and $\omega_2 \in \mathcal{A}^k(M_2)$ such that $\iota_{\Delta_1}^* \omega_1 = h^* \omega_2$, the global k -forms $\bar{\omega}_1$ and $\bar{\omega}_2$, which are images of ω_1 and ω_2 respectively by the natural homomorphism [9], are h -consistent.

Proof. It is evident that the condition $\iota_{\Delta_1}^* \omega_1 = h^* \omega_2$ is equivalent to the following condition:

$$(2.11) \quad \omega_1((\iota_{\Delta_1})_* u_1, \dots, (\iota_{\Delta_1})_* u_k) = \omega_2(h_* u_1, \dots, h_* u_k)$$

for any $(u_1, \dots, u_k) \in T^k \Delta_1$.

Let $x_1, \dots, x_k \in \mathcal{X}(M_1)$ and $y_1, \dots, y_k \in \mathcal{X}(M_2)$ be arbitrary vector fields such that $h_*(x_i|_{\Delta_1}) = y_i|_{\Delta_2}$, for $i=1, 2, \dots, k$. It is easy to see (using (2.11)) that

$$\begin{aligned} \omega_1((\iota_{\Delta_1})_* (x_1|_{\Delta_1})(p), \dots, (\iota_{\Delta_1})_* (x_k|_{\Delta_1})(p)) &= \\ &= \omega_2(h_*(x_1|_{\Delta_1})(p), \dots, h_*(x_k|_{\Delta_1})(p)) \end{aligned}$$

for $p \in \Delta_1$, or equivalently

$$\omega_1(x_1(p), \dots, x_k(p)) = \omega_2(y_1(h(p)), \dots, y_k(h(p))) \text{ for } p \in \Delta_1.$$

Hence

$$\bar{\omega}_1(x_1, \dots, x_k)(p) = \bar{\omega}_2(y_1, \dots, y_k)(h(p)) \text{ for any } p \in \Delta_1.$$

Thus $\bar{\omega}_1(x_1, \dots, x_k)|_{\Delta_1} = \bar{\omega}_2(y_1, \dots, y_k) \circ h$. This finishes the proof.

Corollary 2.5. Every k -forms $\bar{\omega}_1 \in \Omega^k(M_1)$ and $\bar{\omega}_2 \in \Omega^k(M_2)$ such

that $i_{\Delta_1}^* \omega_1 = h^* \omega_2$ may be glued together to the global k -form $\bar{\omega}_1 \cup_h \bar{\omega}_2 \in \Omega^k(M_1 \cup_h M_2)$.

Now one can easily prove

Proposition 2.6. Let $\Omega^k_{h}(M_1, M_2)$ be the set of all h -consistent pairs $(\omega_1, \omega_2) \in \Omega^k(M_1) \times \Omega^k(M_2)$. Assume that Δ_1 and Δ_2 are closed boundary subsets in M_1 and M_2 , respectively. Then the mapping $\square: \Omega^k_{h}(M_1, M_2) \rightarrow \Omega^k(M_1 \cup_h M_2)$, given by

$$(2.12) \quad \square(\omega_1, \omega_2) = \omega_1 \cup_h \omega_2$$

is a monomorphism of $C_1 \cup_h C_2$ -modules.

Definition 2.2. Global $(k, 1)$ tensor fields $\omega_1: \mathcal{X}(M_1) \times \dots \times \mathcal{X}(M_1) \rightarrow \mathcal{X}(M_1)$ and $\omega_2: \mathcal{X}(M_2) \times \dots \times \mathcal{X}(M_2) \rightarrow \mathcal{X}(M_2)$ are said to be h -consistent if for any $x_1, \dots, x_k \in \mathcal{X}^{\Delta_1}(M_1)$ and $y_1, \dots, y_k \in \mathcal{X}^{\Delta_2}(M_2)$ satisfying $h_*(x_i \mid \Delta_1) = y_i \mid \Delta_2$ for $i=1, \dots, k$, the following conditions are satisfied:

$$\omega_1(x_1, \dots, x_k) \in \mathcal{X}^{\Delta_1}(M_1), \quad \omega_2(y_1, \dots, y_k) \in \mathcal{X}^{\Delta_2}(M_2) \text{ and}$$

$$h_*(\omega_1(x_1, \dots, x_k) \mid \Delta_1) = \omega_2(y_1, \dots, y_k) \mid \Delta_2.$$

For any h -consistent tensor fields ω_1 and ω_2 of the type $(k, 1)$ let ω be the tensor field on $M_1 \cup_h M_2$ defined by

$$(2.13) \quad \omega(x_1 \cup_h y_1, \dots, x_k \cup_h y_k) = \omega_1(x_1, \dots, x_k) \cup_h \omega_2(y_1, \dots, y_k).$$

In the sequel the tensor field ω defined by (2.13) will be denoted by $\omega_1 \cup_h \omega_2$.

Analogously to (2.12), for the space satisfying the assumptions of Proposition 2.6, the mapping $(\omega_1, \omega_2) \mapsto \omega_1 \cup_h \omega_2$ is a monomorphism of $C_1 \cup_h C_2$ module of all pairs of h -consistent tensor fields of type $(k, 1)$ into $C_1 \cup_h C_2$ module of tensor fields of type $(k, 1)$ on the glued space $M_1 \cup_h M_2$.

Definition 2.3. Linear connection ∇ in (M_1, C_1) and ∇ in (M_2, C_2) are called h -consistent if for any $x_1, x_2 \in \mathcal{X}^{\Delta_1}(M_1)$ and $y_1, y_2 \in \mathcal{X}^{\Delta_2}(M_2)$ such that $h_*(x_i \mid \Delta_1) = y_i \mid \Delta_2$ for $i=1, 2$, the following conditions are satisfied:

$$\nabla_{x_1}^{x_2} \in \mathcal{X}^{\Delta_1}(M_1), \quad \nabla_{y_1}^{y_2} \in \mathcal{X}^{\Delta_2}(M_2) \text{ and } h_*(\nabla_{x_1}^{x_2} \mid \Delta_1) = \nabla_{y_1}^{y_2} \mid \Delta_2.$$

Now it is easy to prove

Proposition 2.7. Let (M_1, C_1) , (M_2, C_2) be disjoint

differential spaces and $h: \Delta_1 \rightarrow \Delta_2$ be a gluing diffeomorphism.

For any linear connection ∇ in (M_1, C_1) and ∇ in (M_2, C_2) if they are h -consistent, then the mapping $\nabla: \mathcal{X}(M_1 \cup_h M_2) \times \mathcal{X}(M_1 \cup_h M_2) \rightarrow \mathcal{X}(M_1 \cup_h M_2)$ defined by

$$(2.14) \quad \nabla_X^Y = \nabla_{X_1}^{Y_1} \cup_h \nabla_{X_2}^{Y_2}$$

for $X, Y \in \mathcal{X}(M_1 \cup_h M_2)$, where $X = X_1 \cup_h X_2$, $Y = Y_1 \cup_h Y_2$, is a linear connection in the glued space $(M_1 \cup_h M_2, C_1 \cup_h C_2)$.

Proof is a simple consequence of (1.5)-(1.7).

In the sequel the connection ∇ given by (2.14) corresponding to ∇ and ∇ will be denoted by $\nabla \cup_h \nabla$.

Definition 2.4. Let (M_1, C_1) , (M_2, C_2) be differential spaces of constant differential dimension, let ∇_1 be a linear connection in M_1 and ∇_2 be a linear connection in M_2 .

The product connection $\nabla_1 \times \nabla_2$ ([6]) in the Cartesian product $M_1 \times M_2$ is defined by

$$(2.15) \quad (\nabla_1 \times \nabla_2)_w Y = (i_q)_*(K_1 \circ \text{pr}_{M_1} \circ Y_* w) + (i_p)_*(K_2 \circ \text{pr}_{M_2} \circ Y_* w)$$

for any $w \in T_{(p, q)}(M_1 \times M_2)$, $Y \in \mathcal{X}(M_1 \times M_2)$, $(p, q) \in M_1 \times M_2$, where

$$\text{pr}_{M_1}: M_1 \times M_2 \rightarrow M_1, \quad \text{pr}_{M_2}: M_1 \times M_2 \rightarrow M_2$$

are the natural projections,

$$i_q: M_1 \rightarrow M_1 \times M_2, \quad i_p: M_2 \rightarrow M_1 \times M_2$$

are the natural imbeddings,

$$K_1: TTM_1 \rightarrow TM_1, \quad K_2: TTM_2 \rightarrow TM_2$$

are the connection mappings corresponding to ∇_1 and ∇_2 respectively [1], [6].

Now we prove

Proposition 2.8. Let (M_1, C_1) , (M_2, C_2) , (Z, \mathcal{Z}) be differential spaces of constant differential dimension and $(p_1, p_2) \in M_1 \times M_2$ an arbitrary point. Let $h: \Delta_1 \rightarrow \Delta_2$ be a gluing diffeomorphism of $M_1 \times Z$ and $M_2 \times Z$ defined by (2.8), where $\Delta_1 = \{p_1\} \times Z$, $\Delta_2 = \{p_2\} \times Z$. Then

- (i) For arbitrary connections ∇_1 in M_1 , ∇_2 in M_2 , ∇_3 in Z , the product connections $\nabla_1 \times \nabla_3$ and $\nabla_2 \times \nabla_3$ are h -consistent.
- (ii) There exists the linear connection $\nabla = \nabla_1 \times \nabla_3 \cup_h \nabla_2 \times \nabla_3$ in the

glued space $M_1 \times Z \cup_h M_2 \times Z$ corresponding to $\nabla_1 \times \nabla_3$ and $\nabla_2 \times \nabla_3$, by (2.14).

Proof. (i) Let $x_1, y_1 \in \mathcal{X}_1(M_1 \times Z)$ and $x_2, y_2 \in \mathcal{X}_2(M_2 \times Z)$ such that $h_*(x_1 \mid \Delta_1) = x_2 \mid \Delta_2$ and $h_*(y_1 \mid \Delta_1) = y_2 \mid \Delta_2$. There exist vector fields $A, B \in \mathcal{X}(Z)$ such that $x_i \mid \Delta_i = (i_{p_i})_* A$ and $y_i \mid \Delta_i = (i_{p_i})_* B$, for $i=1,2$.

Now, for a fixed $z \in Z$, let us put $w_i = x_i(p_i, z)$, $i=1,2$. Of course, $w_i = (i_{p_i})_* A(z)$.

It is easy to verify the following equalities :

$$(2.16) \quad \pi_{M_i}^* y_i \circ w_i = 0 \text{ for } i=1,2,$$

$$(2.17) \quad \pi_Z^* y_i \circ w_i = B_{*z}(A(z)) \text{ for } i=1,2.$$

Hence from (2.15) we obtain:

$(\nabla_i \times \nabla_3)_{w_i} y_i = (i_{(i,z)})_* K_3 \circ \pi_Z^* y_i \circ w_i = i_{(i,z)} K_3(B_{*z}(A(z))),$ for $z \in Z$, $i=1,2$, where K_3 is the connection mapping corresponding to ∇_3 , $i_{(i,z)}: Z \rightarrow M_i \times Z$ is the embedding

$$i_{(i,z)}(z) = (p_i, z), \quad i=1,2.$$

Hence it is evident that $(\nabla_i \times \nabla_3)_{w_i} y_i$ is tangent to Δ_i , for $i=1,2$, and

$$h_*((\nabla_1 \times \nabla_3)_{x_1} y_1 \mid \Delta_1) = (\nabla_2 \times \nabla_3)_{x_2} y_2 \mid \Delta_2.$$

(ii) is a consequence of (i) and Proposition 2.7.

Proposition 2.9. Let (M_1, C_1) , (M_2, C_2) , (Z, \mathcal{Z}) be differential spaces of constant differential dimension and $(p_1, p_2) \in M_1 \times M_2$ an arbitrary point. Let $h: \Delta_1 \rightarrow \Delta_2$ be a gluing diffeomorphism of $M_1 \times Z$ and $M_2 \times Z$ defined by (2.8).

Then

(i) For any semi-Riemannian metrics g_1 on M_1 , g_2 on M_2 , g_3 on Z , the semi-Riemannian metrics $\eta_1 = \pi_{M_1}^* g_1 + \pi_Z^* g_3$ and $\eta_2 = \pi_{M_2}^* g_2 + \pi_Z^* g_3$ are h -consistent.

(ii) The Levi-Civita connections ∇^1 and ∇^2 corresponding to metrics η_1 and η_2 , respectively, are h -consistent.

(iii) The glued connection $\nabla = \nabla \cup_h \nabla$, with respect to the glued metric $\eta = \eta_1 \cup_h \eta_2$, satisfies the well-known condition:

$$Z\eta(X, Y) = \eta(\nabla_Z X, Y) + \eta(X, \nabla_Z Y),$$

$$\nabla_X Y = \nabla_Y X + [X, Y].$$

Sketch of the proof. (i) It is easy to observe that $i_{p_1}^* \eta_1 = g_3$ and $i_{p_2}^* \eta_2 = g_3$, where $i_{p_i} : Z \rightarrow M_i \times Z$, $i=1, 2$, are the natural embeddings. Thus it is clear that $i_{\Delta_1}^* \eta_1 = h^* \eta_2$.

(ii) Let ∇_1 , ∇_2 , ∇_3 be the Levi-Civita connection corresponding to the metrics g_1 , g_2 , g_3 , respectively. By using local vector basis in the Cartesian product, the definition of the Levi-Civita connection and (2.15) one can verify that $\nabla = \nabla_i \times \nabla_3$ for $i=1, 2$.

Now, from Proposition 2.8 it follows that ∇^1 and ∇^2 are h -consistent.

The proof of (iii) is a simple verification. (iii) is a simple consequence of the similar properties of the Levi-Civita connections ∇^1 and ∇^2 and the equalities (1.5)-(1.7).

3. Some comments on applications

a) Gluing of Robertson-Walker spacetimes.

Let S be a connected three dimensional Riemannian manifold of constant curvature $k=-1, 0$ or 1 with the metric tensor g . Let I_1 and I_2 be intervals in \mathbb{R} and let $f_1 > 0$, $f_2 > 0$ be smooth functions on I_1 and I_2 , respectively. Consider the Robertson-Walker spacetimes $I_1 \times_{f_1} S$ and $I_2 \times_{f_2} S$ [8]. By definition the Robertson-Walker spacetime $I_i \times_{f_i} S$, $i=1, 2$, is the product space $I_i \times S$ furnished with the metric tensor

$$(3.1) \quad \eta_i = -d\pi_{I_i} \otimes d\pi_{I_i} + (f_i \circ \pi_{I_i})^2 \pi_S^* g, \text{ for } i=1, 2.$$

Let $t_1 \in I_1$ and $t_2 \in I_2$ be arbitrary points. Let $h: \Delta_1 \rightarrow \Delta_2$ be the gluing diffeomorphism given by

$$(3.2) \quad h(t_1, p) = (t_2, p) \text{ for } p \in S,$$

where $\Delta_1 = \{(t_1, p) : p \in S\}$ and $\Delta_2 = \{(t_2, p) : p \in S\}$.

Consider the glued space $I_1 \times_S h I_2 \times S$. It is evident, that if the scale functions f_1 and f_2 satisfy the condition $f_1(t_1) = f_2(t_2)$, then the metrics η_1 and η_2 are h -consistent. In view of Proposition 2.6 one can glue η_1 and η_2 . The glued 2-form $\eta = \eta_1 \cup_h \eta_2$ is a semi-Riemannian metric on $I_1 \times_S h I_2 \times S$ of the signature $(- + + +)$ in Δ .

Let ∇_i , $i=1,2$, be the Levi-Civita connection of $I_i \times S$ corresponding to η_i .

Now we prove

Proposition 3.1. Let $I_i \times_{f_i} S$, $i=1,2$, be Robertson-Walker spacetimes with $f_1(t_1) = f_2(t_2)$, for some $t_1 \in I_1$, $t_2 \in I_2$.

Then

- (i) If $f_1'(t_1) = f_2'(t_2) = 0$, the Levi-Civita connections are h -consistent,
- (ii) the glued connection $\nabla = \nabla_1 \cup_h \nabla_2$ is the Levi-Civita connection corresponding to η and the Riemann curvature tensors R of ∇ and R_i of ∇_i satisfy $R = R_1 \cup_h R_2$,
- (iii) if additionally $f_1''(t_1) = f_2''(t_2)$, then the Ricci curvature of η is the gluing of respective curvatures of η_1 and η_2 .

Sketch of the proof. (i) Let $X_1, Y_1 \in \mathcal{X}^1(I_1 \times S)$ and $X_2, Y_2 \in \mathcal{X}^1(I_2 \times S)$ be vector fields such that X_1 is h -consistent with X_2 and Y_1 is h -consistent with Y_2 . There exist vector fields $A, B \in \mathcal{X}(S)$ such that $X_i|_{\Delta_i} = (i_{t_i})_* A$ and $Y_i|_{\Delta_i} = (i_{t_i})_* B$, for $i=1,2$, where $i_{t_i} : S \rightarrow I_i \times S$ is the natural embedding. Let \bar{A}, \bar{B} be the lifts of A and B to $I_1 \times S$. Consider Δ_1 as a semi-Riemannian submanifold of $I_1 \times S$. From Lemma 1.4 in [8] it follows that

$$(\nabla_{X_1} Y_1)(t_1, p) = (\nabla_{\bar{A}} \bar{B})(t_1, p),$$

for every $p \in S$. By Corollary 8.12 in [8], the normal component of $\nabla_{\bar{A}} \bar{B}$ has the following form:

$$\text{nor}_{1\bar{A}}^{\bar{B}} = \eta_1(A, B) \cdot \frac{f'}{f} \cdot \partial_t,$$

where ∂_t is the lift of $\frac{\partial}{\partial t}$ on I_1 to $I_1 \times S$.

Now it is clear that if $f'(t_1) = 0$, then $\text{nor}_{1\bar{A}}^{\bar{B}}(t_1, p) = 0$, for $p \in S$. Thus

$$(\nabla_{1X_1} Y_1)(t_1, p) = \tan(\nabla_{1\bar{A}}^{\bar{B}})(t_1, p) = (\nabla'_{\bar{A}|\Delta_1} \bar{B}|\Delta_1)(t_1, p),$$

where $\tan(\nabla_{1\bar{A}}^{\bar{B}})$ denotes the tangent component of $(\nabla_{1\bar{A}}^{\bar{B}})$ (see [8]) and ∇' is the Levi-Civita connection of the submanifold Δ . Since the embedding $i_{t_1} : S \rightarrow \Delta_1$ is a homothety, i_{t_1} preserves the Levi-Civita connections ([8]). Thus $\nabla'_{\bar{A}|\Delta_1} \bar{B}|\Delta_1 = (i_{t_1})_*(\nabla_{0A}^B)$, where ∇_0 is the Levi-Civita connection of S . Therefore $(\nabla_{1X_1} Y_1)|_{\Delta_1} = (i_{t_1})_*(\nabla_{0A}^B)$. Analogously one can prove the equality $(\nabla_{2X_2} Y_2)|_{\Delta_2} = (i_{t_2})_*(\nabla_{0A}^B)$. This shows that ∇_1 and ∇_2 are h-consistent.

(ii) The Levi-Civita properties of the glued connection ∇ are simple consequence of the respective properties of ∇_1 and ∇_2 .

Now we will prove that R_1 and R_2 are h-consistent. Let $X_1, Y_1, Z_1 \in \mathcal{X}^{\Delta_1}(I_1 \times S)$ and $X_2, Y_2, Z_2 \in \mathcal{X}^{\Delta_2}(I_2 \times S)$ be h-consistent. There exist vector fields $A, B, C \in \mathcal{X}(S)$ such that $X_i|_{\Delta_i} = (i_{t_i})_* A$, $Y_i|_{\Delta_i} = (i_{t_i})_* B$, $Z_i|_{\Delta_i} = (i_{t_i})_* C$, for $i=1,2$.

From Corollary 9.12 in [8] it follows that

$$R_1(X_1, Y_1) Z_1|_{\Delta_1} = \left[\left(\frac{f_1'}{f_1} \right)^2 + \frac{k}{f_1^2} \right] [\eta_1(\bar{A}, \bar{C}) \bar{B}|\Delta_1 - \eta_1(\bar{B}, \bar{C}) \bar{A}|\Delta_1].$$

Hence

$$R_1(X_1, Y_1) Z_1|_{\Delta_1} = [(f_1'(t_1))^2 + k] [g(A, C) \bar{B}|\Delta_1 - g(B, C) \bar{A}|\Delta_1].$$

Analogously one can see the equality

$$R_2(X_2, Y_2) Z_2|_{\Delta_2} = [(f_2'(t_2))^2 + k] [g(A, C) (i_{t_1})_* B - g(B, C) (i_{t_1})_* A|\Delta_1].$$

Since $f_1'(t_1) = f_2'(t_2) = 0$, it is evident that

$$h_*(R_1(X_1, Y_1) Z_1|_{\Delta_1}) = R_2(X_2, Y_2) Z_2|_{\Delta_2}.$$

(iii) By Corollary 10.12 in [8]

$$\begin{aligned}
 \text{Ric}_1(X_1, Y_1)|_{\Delta_1} &= \text{Ric}_1(\bar{A}, \bar{B})|_{\Delta_1} = \\
 &= \left\{ \left[2 \left(\frac{f_1'}{f_1} \right)^2 + \frac{2k}{f_1^2} + \frac{f_1''}{f_1} \right] \eta_1(\bar{A}, \bar{B}) \right\} |_{\Delta_1} = \\
 &= \left[2 \left(\frac{f_1'(t_1)}{f_1(t_1)} \right)^2 + \frac{2k}{f_1(t_1)^2} + \frac{f_1''(t_1)}{f_1(t_1)} \right] f_1(t_1)^2 g(A, B).
 \end{aligned}$$

Thus $\text{Ric}_1(X_1, Y_1)|_{\Delta_1} = [2k + f_1''(t_1) f_1(t_1)] g(A, B)$.

Analogously, $\text{Ric}_2(X_2, Y_2)|_{\Delta_2} = [2k + f_2''(t_2) f_2(t_2)] g(A, B)$.

Now it is clear that Ric_1 and Ric_2 are h -consistent and $\text{Ric} = \text{Ric}_1 \cup_h \text{Ric}_2$.

b) Gluing of Friedman cosmological models.

Recall that a Friedman cosmological model is a Robertson-Walker spacetime such that the scale function f satisfies the Friedman equation $f'^2 + k = \frac{A}{f}$, where $A = \frac{8\pi M}{3}$ and $H = \frac{f'}{f}$ is positive, for some t_0 [8].

Now, let $I_1 = (-\infty, 0]$ and $I_2 = [0, \infty)$. Assume that $f_1: I_1 \rightarrow \mathbb{R}$ and $f_2: I_2 \rightarrow \mathbb{R}$ are continuous functions satisfying the Friedman equation. Consider Friedman models $I_1 \times_{f_1} S$ and $I_2 \times_{f_2} S$. Of course, the metrics η_1 and η_2 , given by (3.1), degenerate on $\Delta_1 = \{(0, p) : p \in S\} \subset I_1 \times S$ and $\Delta_2 = \{(0, p) : p \in S\} \subset I_2 \times S$, respectively. Let $h: \Delta_1 \rightarrow \Delta_2$ be the gluing diffeomorphism given by (3.1), for $t_1 = 0$ and $t_2 = 0$. The glued 2-form η is degenerate on the set of singular points Δ . Since $\lim_{t \rightarrow 0^-} f_1'(t) = \infty$, $\lim_{t \rightarrow 0^+} f_2'(t) = \infty$, all points of Δ are the curvature singularities in the classification scheme by Ellis and Schmidt [2] as it can be easily seen from Corollary 9.12 and 9.13 in [8].

Let $t_1 \in \text{Int}I_1$ and $t_2 \in \text{Int}I_2$ be such elements that $f_1(t_1) = f_2(t_2)$. If we glue together the Friedman models $I_1 \times_{f_1} S$ and $I_2 \times_{f_2} S$ by the gluing diffeomorphism h given by (3.2), we obtain the set Δ of quasi-regular singularities [2]. This is a consequence of the fact that $I_1 \times_{f_1} S$ and $I_2 \times_{f_2} S$ may be embedded into the glued space by \hat{i}_1 and \hat{i}_2 . The geometry of the glued

space $I_1 \times_{S^h} I_2 \times S$ is determined by the geometry of $I_1 \times_{f_1} S$ and $I_2 \times_{f_2} S$.

Acknowledgement: I express my gratitude towards Prof. Michał Heller and Prof. Zbigniew Zekanowski for inspiring discussions.

REFERENCES

- [1] K.Cegiełka: A connection in a differential module, *Colloq. Math.* 34 (1976), 271-286.
- [2] G.F.R. Ellis, B.G. Schmidt: Singular space-times, *GRG* Vol.8, No. 11 (1977), 915-953.
- [3] S.W. Hawking, G.R.R. Ellis: The Large Scale structure of space-time, Cambridge U.P. 1973.
- [4] M. Heller, P. Multarzyński, W. Sasin: The algebraic approach to space-time geometry, *Acta Cosmol.* 16 (1989), 53-85.
- [5] M. Heller, W. Sasin: Regular singularities in space-time, *Acta Cosmol.* 17 (1990), 7-18.
- [6] D. Gromoll, W. Klingerberg, W. Meyer: Riemannsche Geometrie im Grossen, Springer-Verlag, Berlin, 1968.
- [7] A. Kowalczyk: Tangent differential spaces and smooth forms, *Demonstratio Math.*, 13 (1980) 893-905.
- [8] B. O'Neill: Semi-riemannian manifolds, Academic Press, New York 1981.
- [9] W. Sasin: On some exterior algebra of the differential forms over a differential space, *Demonstratio Math.* 19 (1986), 1063-1075.
- [10] W. Sasin, Z. Zekanowski :On locally finitely generated differential space, *Demonstratio Math.* 20 (1987), 477-487.
- [11] W. Sasin: On equivalence relation on a differential space, Praha, Czechoslovakia CMUC 29, 3 (1988), 529-539.
- [12] W. Sasin: On locally countably generated differential spaces, *Demonstratio Math.* 21 (1988), 897-912.
- [13] W. Sasin, Z. Zekanowski: Some relation between almost symplectic, pseudo-riemannian and almost product structures on differential spaces, *Demonstratio Math.* 21 (1988), 1139-1152.
- [14] W. Sasin: The de Rham cohomology of differential spaces, *Demonstratio Math.* 22 (1989), 249-270.

- [15] W. Sasin: Infinite Cartesian product of differential groups, *Math. Nachr.* 149 (1990), 61-70.
- [16] W. Sasin: The wedge product of differential spaces, *Proc. Winter School on Geometry and Physics, Srni, 6-13 January, 1990, Supplemento ai Rendiconti del Circolo Matematico di Palermo*, in press.
- [17] W. Sasin: Gluing of differential spaces, *Demonstratio Math.* 25 (1992), in press.
- [18] W. Sasin, K. Spallek: Gluing of differentiable spaces and applications, to be published.
- [19] R. Sikorski: Abstract covariant derivative, *Colloq. Math.* 18 (1967), 251-272.
- [20] R. Sikorski: Differential modules, *Colloq. Math.* 24 (1971), 45-70.
- [21] R. Sikorski: *Wstęp do geometrii różniczkowej*, PWN, Warszawa, 1972.
- [22] K. Spallek: Differenzierbare Räume, *Math. Ann.* 180 (1969), 269-296.
- [23] S. Sternberg: Lectures on differential geometry, Prentice Hall, Inc. Englewood Cliffs, N.J. 1964.
- [24] P. Walczak: On a class of differential spaces satisfying the theorem on diffeomorphism, *Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys.* 22 (1974), 805-814.
- [25] W. Waliszewski: On a coregular division of a differential space by an equivalence relation, *Colloq. Math.* 26 (1972), 281-291.

INSTITUTE OF MATHEMATICS, WARSAW UNIVERSITY OF TECHNOLOGY,
00-661 WARSZAWA, POLAND.

Received May 9, 1991.