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GEOMETRICAL PROPERTIES OF GLUING OF DIFFERENTIAL SPACES 

This work is a continuation of [17]. The aim of this paper 
is to study geometric properties of gluing of differential 
spaces. 

1. Basic_notions 

Let (M,C) be a differential space [19]. Let X(M) be the 
C-module of all smooth vector fields tangent to (M,C). For a 
subset KcM we denote by tR the embedding of the differential 
subspace (K,CK) into (M,C). 

A vector field XeX(M) is called tangent to a subset KcM 
[17] if, for any point peK, there exists a vector veT K such 

K that X(p) = ((.„) . v. Let X (M) be the C-module of all smooth X\ *P 
vector fields tangent to K (see[17]). One can prove that 
XeXK(M) if and only if VfeC f|K=0 Xf|K=0. 

In the sequel, for XeXK(M), we will denote by XIK the 
restriction of X to a subspace (K,C ). 

It is easy to prove 
Lemma 1.1. Let (M,C) be a differential space and A,BcM 

subsets satisfying the following condition: 

i1'1* ( L A n B > * p V A n B ) = C - A ^ p V ^ ( LB>*p Tp B f° r a n y P € A " B ' 
T h e n ^ ( M ) a X B ( M ) c 0 ^ n B ( M ) . 

Now we prove 
Lemma 1.2. For any subset AcM X ^ M ^ X ^ ^ M ) , where clA is 

the closure of A in M. 
Proof. Of course, X ^ M ) cX c l A(M) . It is enough to prove the 
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iclusion IclA(M)cXA(M). Let XeXclA(M). Let fee be an arbitrary 
function such that f|A=0. Of course, f|clA=0. Hence Xf|clA=0. 
Thus Xf I A=0. This proves that XeOC^M) . 

Now let (M1,C1) and (M2,C2) be differential spaces and 
h:&1 —> A2 a diffeomorphism of differential subspaces (A^fC^ ) 

and L e t ''h a n e <I ui v al e n c e relation on the 

disjoint sum (N,D) = (M1jiM2,C1uC2) identifying a point peA^with 
h(p)eA2. The quotient space (N/ph,D/ph) is called the gluing 
of differential spaces (M^,^) and (M2,C2) and it will be 
denoted in the sequel by ( M

1
u
h
M
2> ci uh C2^ t17]' F o r a n¥ f i e C i 

and f_eC_ such that f, |A,=f_»h we denote by f„u.f_ the 2 2 1 1 2 1 h 2 
function from ci uh C2' corresponding to the function 

Let tt :M,uM_ —• M,u.M_ be a canonical mapping and let us p. 1 2 1 h 2 
put 

Let us put 

I. :=TT IM., L :=7i I M_ . 1 p h 1 2 p h 2 

Mj = L j < V ' C j = ( C l U h C 2 ^ . f° r J"1'2 

and A=tt (A,) . 
ph 1 

Clearly A=ti (A_)=M,nM_. 
ph 

One can prove that [17] 

(1.2) ( L * p ( T p A ) = ( LM 1
) * p ( V * ^ ° ( lM 2

} *p(Tp^2) f°r any peA. 

Now we prove 
Proposition 1.3. Let (M1,C1) and (M2,C2) be disjoint 

differential spaces and hiA.^ —> A2 the gluing dif feomorphism. 
Assume that A^is a closed boundary set in M^, and A2 is a 
closed boundary set in M2. Then X(M1uhM2)=3CA(M1uhM2) . 

Proof. Of course, A is a closed boundary set. It is clear 

that M. is closed (n - 1(M )=M uA and n - 1(M )=M uA ). It is Pĵ  ^ X & Pĵ  ¿t 6 1 
easy to see that M.\A and M_\A are open subsets. Let us notice A 1 A ' 
that M^\A is dense in M^ for i=l,2. In fact 
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cl(M i\A) =cl(Mjn(MjUi^\A))
 =c1M^ac1 (M 1uM 2\A) =M in(MjUl^) =M i. 

Thus cl" (M.\A)=M.ncl(M.\A)=M.. 1 1 1 1 

Now, let X€Z(M 1u hM 2). Since M^\A is open, then 

X e I M i ^ A ( M 1 u h M 2 ) for i=l,2. From Lemma 1.2 it follows that 

X e a ^ i i M j U j ^ ) , i-1,2. From Lemma 1.1 it follows that 

X e I M l n M 2 ( M j U ^ ) =X A ( M j U ^ ) q. e. d. 

Now we prove a very useful lemma. 

Lemma 1.4. Let (M,C) be an arbitrary differential space. 

Then 

(i) for any open set U and an arbitrary point peU, there 

exists an open subset VcU containing p such that clVcU. 

(ii) every "bump" function <p:U — > [0,1], <peC, such that 

supp^cV, is extendible by 0 to a global function 0:M —> [0,1]. 

Proof, (i) Let 0:M —» [0.1] be a "bump" function such that 

supptffcU. There exists an open set V e r c containing p such that 

0|V=1 [21]. Of course, clVccl ({1}) ) =i>~1 ( {1}) cU. 

(ii) It is easy to see that {U,M\clV} is an open covering 

of M. Of course, <£|Un(M\clV)=0. There exists a smooth function 

—» [0,1] such that =<p and 0|(M\clV)=O. 

Now we prove 

Proposition 1.5. Let A^ be closed in (M^C^) and A 2 be 

closed in (M 2,C 2). Assume that a gluing diffeomorphism 

h:A 1 —» A 2 satisfies the following condition: 

(1.3) h(IntA 1)=IntA 2. 

Then 

(i) IntA=n p (IntA1) and FrA=irp (FrA^) , 

A A 

(ii) I f M ^ l c A l H ^ H ^ A t M ^ ) , 

(iii) X i M ^ M ^ Z ^ M ^ M . , ) . 

Proof. (i) Of course, n (IntA)clntA ulntA . Thus p h 1 2 
IntAcTi (IntA ulntA,) =n (IntA.). n (IntA.)»!! (IntA,uIntA_) 

Ph x z p. j. p j. p. 1 2 
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i s open subset of A. Thus n ( I n t A , ) = I n t A . Of course A i s 
p h 1 

c losed. Thus FrA=A\IntA=ir ( A . \ I n t A . ) = n (FrA,) . p. 1 1 p. 1 h n 

( i i ) Let X e l i M j ^ u ^ ) . Since n (M^\FrA) = 

= ( M i \ A i ) u I n t A 1 u I n t A 2 , M^\FrA i s open for i = l , 2 . Thus 
A 

X e a ^ i ^ ^ t M uhM ) for i = l , 2. 

Analogously as i n the proof of Proposit ion 1 . 3 one can see 
A A 

t h a t M.\FrA i s dense i n the subspace M. for i = l , 2 . From 
A A ^ 

Lemma 1 . 2 i t fol lows t h a t X e A 0 ^ (M1uhM2)=XA(M1uhM2) . Thus 

X(M1uhM2)cXA(M1uhM2) . The i n c l u s i o n O C ^ M j U ^ ) c X f M ^ M ^ i s 
obvious. T h i s f i n i s h e s the proof of ( i i ) . 

Remark. Assumption 1 . 3 i n Proposit ion 1 . 5 i s e s s e n t i a l . I f 
we glue a one element space {0} with a r e a l l i n e (R we obtain IR 
as a glued space, ( i ) and ( i i ) are not t r u e . 

D e f i n i t i o n 1 . 1 . A gluing diffeomorphism h : A 1 —> A2 i s 
c a l l e d l o c a l l y extendible to a diffeomorphism i f for any point 
peA. there e x i s t s an open neighbourhood Uer of p and a 1 

diffeomorphism h :U —» h(U) onto a open subset h(U)ex_ such 
p 2 

that h I Ur>A. =h I UnA. . p i 1 
Now we prove 
P r o p o s i t i o n 1 . 6 . Let A 1 and A2 be c losed i n (M ,C^) and 

( M 2 , C 2 ) , r e s p e c t i v e l y . Assume that a g lu ing diffeomorphism 
h:Aj^ —* A2 i s l o c a l l y extendible to a d i f feomorphism. 

Then 

( i ) T
C l U . C - ^ C . j i C , / p h ' 1 n 2 1 2 

A A A A 

( i i ) J-̂ rM^ —» M̂  and L
2

: M 2 —* M2 a r e feomorphisms, 

( i i i ) h ( I n t A 1 ) = I n t A 2 , 

( iv) X ( K j U ^ ) =XA (M1uhM2) , 
(v) The C^u^C^-module •rA(MiuhM2^ isomorphic to the 
C,u. C_-module 1 h 2 

I h ( M 1 , M 2 ) = { ( X 1 > X 2 ) e X A l ( M 1 ) x X A 2 ( M 2 ) : ( X x I A ^ = X 2 | A 2 } . 
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Proof.(i) Let U1exr and D ex be sets such that 1 z <_2 
h(U1nA1)=U2nA2. For any point pel^nA^ there exist open subsets 
V ex. , peV., V si and a diffeomorphism h :V —• V such X X « 2 
that h IV, nA, =h IV_nA_. It follows from Lemma 1.4 that there p 1 l 2 2 
are open subsets W^cVlfW2cV2 such that clW^cV^ and clW2cV2, 
and hp(W1)=W2, peV^. Let —* [Of1] b e a bump function 
such that supp^cW^ and ^1(p)=l. It is clear that is a 
bump function such that supp ^»h ^cV^. Now, it follows from 
Lemma 1.4, that is extendible by 0 to the function 
and the function ^»h 1 is extendible by 0 to the function 
02eC2, and 01IA1=^2<>h. is p^-consistent and satisfies 

(p)=l. This proves (i). 
A A 

(ii) Let ^ sM^ —» M^ be the inverse mapping to l^. Let 
aeC^ be an arbitrary function. We will show that the 
composition a»^ is smooth. If [p]«A then there exists a 
neighbourhood Uex of p, such that UnA=0 and a function 
a,eC, such that a, |U=a|U, a, |M, \U=0. It is clear that a,iiO„ is 1 1 1 1 1 l M2 
consistent with p^. It is easy to show that 
ao^lrc ("J^^oijUjjOjj In (UJnM^ If t1(p) = [p]eA, then there 

h 2 h 
are open sets V

1
6 T

C > V2exc ' PeVi a n d a diffeomorphism 
h :V, —> V_ such that h | V.nA =h| V.nA, . Let W. , W„ and p i 2 p 1 1 1_ 1_ 1' 2 1 2 
be as in (i) . By construction suppf^ii^) cW^W^ There is an 
open subset BcW1 such that 0 |B=1 (see [21]). Let us denote by 

- - 1 - - 1 --<t>0 the extension by 0 of the function a°h |V_). 
It easy to see that oc-5,iia°h '<t>~ is p.-consistent and 

_ _ P 2 -v h 
a«(l̂ Irr (B)nM^= =a01uha°h '<p2\n (B)nM^. Analogously one can 
prove the smoothness of the inverse mapping to t2< This 
finishes the proof of (ii). 

(iii) For any point pelntA^ there exists an open 
neighbourhood U of p such that U clntA,, h (U )er_ . Of P P 1 P P c2 
course, IntA = U , IntA = ^ h(U ) . Now, it is 

peIntA1 p ^ pelntA^ p 

evident that 
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h ( I n t A ) = h ( U U ) = U h ( U ) = I n t A . 
p e l n t A ^ F p e I n t A 1

 F 

( i v ) i s a c o n s e q u e n c e o f ( i i i ) a n d P r o p o s i t i o n 1 . 5 . 

( v ) L e t X e l C M j U j ^ ) . B y P r o p o s i t i o n 1 . 5 ( i i ) , 
A A 

X e ^ l ( M j U ^ ) a n d X e X 1 ^ ( M ^ M ^ ) . L e t u s p u t X ^ ( t i " 1 ) ^ ( X I M i ) , 

i = l , 2 . I t i s c l e a r t h a t X 1 e X A l ( M 1 ) a n d X 2 e X A 2 ( M 2 ) . Now, l e t 

H : I h ( M 1 , M 2 ) —> X A ( M ^ M ^ b e d e f i n e d b y 

( 1 . 4 ) H < Y l ' Y 2 > = Y l u h Y 2 ' 
A A 

w h e r e Y , u . Y _ i s t h e v e c t o r f i e l d s a t i s f y i n g Y , v , Y _ |M. = ( t . ) . V . , l h 2 3 1 h 2 ] ] ' * j 

f o r j = l , 2 [ 1 7 ] . Of c o u r s e , H i s a n i s o m o r p h i s m . 

T h e f o l l o w i n g e q u a l i t i e s h o l d : 

i 1 ' 5 * f l V 2 - V h Y 2 = f l V h f 2 Y 2 ' 

( 1 . 6 ) ( V h Y
2 ) ( f l U h f 2 ) = Y l f l U h Y 2 f 2 ' 

( 1 . 7 ) ^ i V S ' V h V ^ l ' V V V V 

f o r a n y ( X ^ X ^ , ( Y 1 , Y 2 ) e X ^ M ^ M ^ a n d ( f l f f 2 ) e C j X C ^ s u c h t h a t 

f l | A l = V h ' 

One c a n p r o v e 

Lemma 1 . 7 . I f a r e s u b m a n i f o l d s o f d i f f e r e n t i a l 

s p a c e s ( M ^ C ^ ) a n d ( M 2 , C 2 ) o f c l a s s [ 2 4 ] , t h e n e v e r y 

v e c t o r weTA i s e x t e n d i b l e t o a s m o o t h v e c t o r f i e l d . 

P r o o f . L e t W€T A , p = [ p , ] = [ p . , ] • L e t X e X ( A ) b e a v e c t o r 
P A 

f i e l d s u c h t h a t w = X ( p ) . T h e r e a r e v e c t o r f i e l d s Y ^ X 1 ( 1 ^ ) a n d 

Y 2 e X A 2 ( M 2 ) , ( t 1 ) J t ( Y 1 I A 1 ) - X a n d ( l 2 ) ^ ( Y 2 I A 2 ) = X . I t i s e a s y t o 

s e e t h a t a v e t t o r f i e l d s u c h t h a t w = ( Y 1 U j i Y 2 ) ( p ) . 

P r o p o s i t i o n 1 . 8 . L e t ( M ^ C ^ a n d ( M 2 , C 2 ) b e d i f f e r e n t i a l 

s p a c e s o f c l a s s E q a n d h : A 1 —» A 2 b e a g l u i n g d i f f e o m o r p h i s m 

b e t w e e n c l o s e d b o u n d a r y s u b s p a c e s . 
e x 

T h e n , f o r a n y p e A , t h e s u b s p a c e T ( M ^ ^ 1 ^ ) o f a 1 1 

• . e x e x t e n d i b l e v e c t o r s i s e q u a l t o ( < - A ) * ( T p A) . 

e x . • P r o o f . L e t weT (M,u, M _ ) , p e A . T h e r e e x i s t s a v e c t o r f i e l d p 1 h 2 . 
XeX(M^u^M 2 ) s u c h t h a t w = X ( p ) . By P r o p o s i t i o n 1 . 3 X e X f l ( M ^ j ^ ) . 

L e t Y e X ( A ) b e a v e c t o r f i e l d s u c h t h a t ( i ^ ) ^ Y ( q ) = X ( q ) f o r q e A . 

T h u s w = X ( p ) = ( i A ) ^ p Y ( p ) e ( t A ) A ( T ® x A ) . C o n v e r s e l y , l e t 
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we(iA)^(T®XA). There is a vector field Yel(A) such that 
w=(iA) 4pY(p) . Since (M^t^) and (M2,C2) are spaces of class T>q 
and A ^ J A J are closed, there exist vector fields X^eX^liM^), 
X2eXA2(M2) such that (i^ ̂  (Xx I Ax) =Y, (i2) *(X2 IA2)=Y. Now it is 
clear that Y=X.u.X_|A. Thus l h 2 

W=(i A), pY(p)=( X lu hX 2)(p) e T® X( M lu hM 2). 
This finishes the proof. 

Now we prove 
Lemma 1.9. Let (M^C^) and (M2>C2) be differential spaces 

and h:A —» A_ be a gluing diffeomorphism. If 
^ ' A 

c:[a,b] —» Mi uh M2 a s m o o t h curve such that cfaJeM^, 
c (b) eM2 , then c' (t) eTA: = ((.̂ ) *TA, for any tec_1(A). 

Proof. Let tQec 1(A). Of course, cl[a,tQ] is a smooth 
curve in M^. Thus c' (tgJeTpM^, where p=c(tQ). Analogously, 
c|[t.,b] is a smooth curve in M_ and c' (t„)eT M_. Hence 0 * A 2 0 p 2 
C (t 0) eT p M lnT pM 2=T pA. 

Definition 1.2. Curves c.̂ : (a,tQ+e) —» M^ and 
c2:(tQ-c,b) —» M2, where t e(a,b), e>0, are said to be 
e-p^-consistent if c^-e.eJcA^ c2(-e,e)cA2 and h (t)) =c2 (t) 
for te(-c,c) . 

Of course,for any c-p^-consistent curves c^:(a,tQ+e) —> M^ 
and c2:(t0~c,b) —> M2, the mapping c1uhc2:(a,b) —> Mi uh M2 
given by the formula 

[no (c (t)) for te(a,t ] 
(c u c )(t)=] ph 

(ti (c (t)) for te(t ,b) 
ph . u 

is a smooth curve. 
It is easy to prove 
Proposition 1.10. Let X=X1uhX2eO:(M^^M^ be an arbitrary 

vector field on the glued space ( Mi uh M2' Cl uh C2^" 
c1:(a,tQ+c) —> M̂ ^ is an integral curve of X ^ (e>0, t e(a,b)), 
c2:(tQ-c,b) —• M 2 is an integral curve of X2 and c ^ c 2 are 
c-ph~consistent curves,then c

1
uj 1

c
2
= T r

p
 0 ( C

1
U C

2 ) : ( a» b) —* Mi uh M2 
h 

is an integral curve of X. If c1:(a,tQ] —» M^ is an integral 
curve of X̂ ^ and c2:[tQ,b) —> M 2 is an integral curve of X2 and 
h(c^ (tQ)) =c2 (tQ) eA2, then c

1
uf 1

c
2
 a piecewise smooth 
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integral curve of X. 
Now we will define a special case of a gluing 

diffeomorphism which produces a special kind of singularity so 
called of the edge type. 

Definition 1.3. A gluing diffeomorphism hiAĵ  —» A2 of 
disjoint differential spaces (M1,C1) and (M^C^) is said to be 
the edge type if there exist differential Spaces (B1#S1), 
(B2,®2) and (Z,Z) such that the following conditions are 
satisfied : 

(1) for any point peA^ there exist open neighbourhoods 
V̂ eTj, of p and W2e-uc of h(p) , open sets U^ex^ , U2

ez% > T€Tz' 
points b1eB1,b2eB2 and diffeomorphisms —* u1xT/ 
V W 2 U2XT' 

(2) A1nW1=01"1({b1}xT), A2nW2=02_1({b2}xT) 
(3) ̂ 2oh|A1nW1=h()o^1l where hQ:{b1}xT —> {b2>xT is 

the diffeomorphism given by: 
h0(blft)=(b2,t) for teT. 

Now one can prove 
Proposition 1.11. Let (M^C^) , (M2,C2) be disjoint 

differential spaces and h:A1 —> A2 be a gluing diffeomorphism 
of the edge type between closed spaces. 
Then 
(i) T W 2

= T V C 2 / P h ' 
A A A A 

(ii) the mappings î rMĵ  —» ^ and L2:M2 —* M2 a r e e m b e d di n9 s' 
(iii) Tp(M1uhM2)=Tp^M1©Tp^M2 for peA, [p13=[p21, 

(iv) I(MlUhM2)=XA(MlUhM2), 
(v) TA:=(l^)^TA is the set of all vectors tangent to the glued 
space at singular points extendible to smooth vector field. 

Proof is similar to the proof of Proposition 3.2 in 
[17]. 

Example 1.1. Let M^ and M2 be differential manifolds of 
dimension n̂ ^ and n2 respectively, let Â^ and A2 be 
k-dimensional submanifolds ( k<min{n1,n2> ), and let 
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h:A1 —> A2 be a gluing diffeomorphism. Then h is a gluing 
diffeomorphism of the edge type. In fact, for any point p^eA^^ 
there exist charts —* l^xTcR11! on M^ and 
<f>,:W_ —> U_xTcRn2 on M such that W is an open neighbourhood 

n -k 
of p , W_ is an open neighbourhood of h(p ), U cR l , 

ri -k k 
U2cR 2 , TcR are open subsets, and ( A ^ W ^ ={0}xT, 
<t>2 (A2aW2)={0}xT ( see [6] for example ). It obvious that if we 
put (B1,B1) = (Rni~k,CtD(Rni~k)), (B2,S2) = (Rn2"k,C00(Rn2"k)) , 
(Z,Z)=(Rk,C°°(Rk)), the conditions of Definition 1.2 are 
satisfied. 

2. Gluing of tangent bundles, forms and connections 

Let (M1,C1) and (M2,C2) be differential spaces, and 
2 be a gluing diffeomorphism. Of course, 
TA_ is a diffeomorphism of differential spaces, 

hzAj^ — 
h * : T A l 
which induces a diffeomorphism h.:TA TA, of the spaces 
TA1: = (j-a ) aTAĵ  and TA,: = (la ) such that the following 

diagram 

(«•A ) 

TA, 

TA, 

-»TA. 

< V * 
-»TA, 

commutes. 
Now we may consider h * : T A l TA, as gluing 

diffeomorphism of tangent differential spaces (TM^TC^) and 
(TM2,TC2) [7]. Let TM2 —> T( Ml uh M2^ b e a m aPPi n9 given 
by : 

(2.1) *( n
p- (v))=(n )*v any veTM^uTM2. 

h 

It is easy to verify the correctness of (2.1). The 
smoothness of <f> is a consequence of the following equalities: 

(2.2) 

(2.3) 

d(f 1. hf 2)o $= df 1u^df 2, 

fl uh f2 o 7 r° $ = fl o T rl u h / 2 ° n 2 
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fo r any f ^ C ^ , f 2 e C 2 ' f 2 ° h = f l ' A l ' where 
n i T ^ u ^ ) —» M j U ^ , n^TM —> M ,̂ "2 :TM2 —» M2 a r e the 
canon ica l p r o j e c t i o n s . 

Let 7i:TM, ur- TM_ —• M,u, M, be de f ined by: 1 2 1 h 2 

(2 .4 ) ir(7r (v))=7i ( i r (v) ) fo r any veTM.iiTM . 
ph# ph i * 

I t i s easy to v e r i f y 

(2 .5 ) f ^ h f 2 ^ = f l ° n i U h/ 2 o 7 r 2 f ° r ^ V h W h V 

Thus ir i s a smooth p r o j e c t i o n . The fo l lowing diagram 

™lUh ™2 (MlUhM2 > 

MlUhM2 

commutes. Of course , fo r any point p<=A the f i b e r 
—1 n ([p])={7ip_ (v) :v«T MjUT^ }M2} corresponds to the subset 

* ( n " 1 ( [ p ] ) = ( n p h ) 4 p T p M 1 u ( r r p h ) ^ h ( p ) T h ( p ) M 2 . I t i s easy to show 

t h a t $ i s a b i j e c t i o n of TM,u;-TM_ onto T(M.u, M.) : = 1 h^ 2 1 h 2 

h n 
Now we prove 
Lemma 2 . 1 . Let (M1,C1) -and (M2 ,C2) be d i s j o i n t 

d i f f e r e n t i a l spaces and l e t p^eM^, i = l , 2 , be a r b i t r a r y p o i n t s . 
Let * : {p^> —» {p2} be the n a t u r a l g l u ing diffeomorphism of 
one-element subspaces . 

Then the b i j e c t i o n $:TM^U^TM2 —> T(M1<J^M2) i s a 
d i f feomorphism onto i t s im=.ge T(M u M ) . Moreover, the f i b e r 
— 1 . . 
n ( [P^] ) 1 S d i f feomorphic to the g lued space Tp Mj^Tp M2 

obta ined by i d e n t i f y i n g zero v e c t o r s . 
Proof, Of course , TA^={0}, TA2={0}. I t fo l l ows from 

Propos i t ion 3 . 1 in [17] t h a t the d i f f e r e n t i a l space 
(TM ^U ^TM 2 ,TCJO ^TC 2 ) i s generated by the s e t 

{ ^ l : f l 6 C l > U { ^ 2 : f 2 e C 2 } u { V 7 I i : f l 6 C l } u { V 7 r 2 : f 2 e C 2 > ' 
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where the symbol F means the constant extension of a given 

function F to the glued space (see [16], [17]). Let i be the 

inverse mapping to f. It is easy to verify the following 

equalities: 

(2.6) d f ^ * = dfilT(M1u)lrM2) , 

(2.7) fi.rr. = fio7ii Iffliju^), 

for any i=l,2. Thus i is smooth. 

Proposition 2.2. Let (M 1,C 1) and (M 2,C 2) be disjoint 

differential spaces and let p^eM^, i=l,2, be arbitrary points. 

For. an arbitrary differential space (Z,H), let 

h:{p 1>xZ — » {p 2>xZ be the diffeomorphism defined by 

(2.8) h(p,z)=(p,z) for zeZ. 

Z ~ Then the bijection $ :T(M 1xZ)u^ T(M 2xZ) — • T(M^xZu^t^xZ) 

defined anlogously to (2.1) is a diffeomorphism. Moreover, 

every fiber ir 1([p 1,zJ) is diffeomorphic to the glued space 

(M.xZ). 

Proof. Let 7RM : M^xZ — » M 1 , ttM : M 2 x Z — > M 2 , H ^ H ^ X Z — » Z , 

^ z:M 2xZ —> Z be the natural projection. It is evident that the 

diffeomorphisms 

( (ttm^) (Az)*) :T(M1xZ) —> T M l X T Z 

and 

( ( T rM 2
)*' (^Z )* ) : T ( M 2 x Z ) ~~* TM 2xTZ 

induce, for the spaces TR^xTZ and TM2xTZ, the gluing 

dif feomorphism h :{0 }xTZ->{0 )xTZ defined by 
Z P 1 p 2 

(2.9) h
7(°r, «w) = (0 ,w) for weTZ, 
Z P 1 p 2 

where () €TM. is the zero vector from the fiber T M„, and 
P 1 1 P 1 1 

0 eTM. is the zero vector from the fiber T M_. h„ P 2 2 p 2 2 Z 

corresponds to the gluing diffeomorphism h^. One can see that 

the natural mapping ( ) *» u h ( ( T I M } * ' * } F R O M 

1 * 2 
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T(M^xZ) T(M 2XZ) onto TM^xTZ u h TM 2xTZ is a diffeomorphism . 
* z 

By Proposition 3.2 in [17], there exists the natural 

i l x T Z u h ™ 2 x T Z a n d ( ™ 1
u * ™ 2 ) z 

Therefore, T i M ^ Z J u ^ T(M 2xZ) is diffeomorphic to 

(TM^u^TM^)xTZ. On the other hand, since in view of Proposition 

3.2 in [17] M^xZu^MjXZ is dif feomorphic to ( M j U ^ M ^ x Z , the 

space T(M^xZu^M 2xZ) is naturally diffeomorphic to 

T(M 1u i kM 2)xTZ. 

It is easy to see that the following diagram 
.Z 

TfMjXZJUjj T(M 2XZ) » T C f ^ x Z u ^ x Z ) 

diffeo diffeo 

(TM1uJkTM2) xTZ
 $ X l d ) T ( M 1 u A M 2 ) x T Z 

commutes, where $:TM 1u J (TM 2 —> T(M u^M 2) is the bijection from 

Lemma 2.1. Since, by Lemma 2.1, $ is a diffeomorphism onto its 

image, $xid is a diffeomorphism onto its image. Now is clear 

that $ is a diffeomorphism onto its image. Of course 

T(M 1xZu hM 2xZ) 3T(M 1u j tM 2) xTZ. 

From Proposition 2.2 it follows 

Corollary 2.3. Let (M 1,C 1), (M 2,C 2) be disjoint 

differential spaces and h:A 1 —> i 2 be a gluing diffeomorphism 

of the edge type between closed spaces. Then the bijection 

izTMjU^ TM 2 — > ^( Mi uh M2^ d e f i n e d by (2.1) is a diffeomorphism. 

Moreover, for any point [p]eA, where p e ^ , e v e r y fiber n 1([p]) 

is diffeomorphic to the glued space T M ur T. \ M2' where 
P *p 

h :=h IT A . *p * p i 

Now we describe a gluing of global forms. 

Let htAj^ — > A 2 be a gluing diffeomorphism of differential 

spaces ( M ^ C ^ ) and (M 2,C ). 

Definition 2.1. Two global k-forms 

u ^ X C M ^ x . . .xXCM^ —> C 1 and CJ2 : X (M2) x . . . xX (M2) — » C 2 

are called h-consistent if the following condition is 

satisfied: 
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for any X , . . . , X k e X
A l ( M 1 ) and Y ,...,Y keX

A2(M 2), if 

h.(X.I A )=Y.I A , for i=l,2,...k, then " 1 1 1 6 

X k) |A 1=U 2(Y 1 ,Yk) oh. 

V k 
For arbitrary h-consistent k-forms o^eD (M^) and u 2

e n 

let to be k-form on M,u.M_ defined by: 1 n 2 

(2.10) W (X 1u hY 1, . . . , X ku hY k) - u 1 (X1, ... . , X k) u ^ ( Y ^ . . . ^ ) 

for any h-consistent vector fields X ^ . . . jX^Xfl^) and 

In the sequel, k-form u defined by (2.10) will be denoted 

by « W V 

Now one can easily prove 

Lemma 2.4. For any pointwise k-forms w e A (M.) and 
k * * — -u 2 e A (M2) such that (J1=h w 2, the global k-forms w^ and u 2 , 

which are images of cĵ  and w 2 respectively by the natural 

homomorphism [9], are h-consistent. 

Proof. It is evident that the condition «..* (J,=h*w_ is A^ 1 2 

equivalent to the following condition: 

(2.11) U l ( (t ) jku1,.. ., (tA ) Au k) =u 2 ( h ^ , . . . ,h^uk) 

v 
for any (u^,...,uk)eT A. 

Let X x,...,X keX(M 1) and Y ,...,YkeX(M2) be arbitrary 

vector fields such that h.(X.I A.)=Y.IA_, for i=l,2,...k. It is * 1 1 1 £ 
easy to see (using (2.11)) that 

V < L A [ * ( x I i a I } (P) C - A M W ( p ) ) = 

=W 2(h^(X 1IA 1)(p),...,h^(X kIA 1)(p)) 

for peA^, or equivalently 

u 1(X 1(p) /...,X k(p))=w 2(Y 1(h(p)),...,Y k(h(p))) for peA 1. 

Hence 

u 1(X 1,...,X k)(p)=5 2(Y 1,...,Y k)(h(p)) for any p e A ^ 

Thus « ^ ( X ^ — ,Xk) |A 1=u 2(Y 1, .. . ,Yk) «h. This finishes the proof. 

Corollary 2.5. Every k-forms ¿J1en
k(M1) and (J2en

k(M2) such 
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that i^* u^h*«^ may be glued together to the global k-form 

Now one can easily prove 
k Proposition 2.6. Let CI . (M.,M_) be the set of all 

k k h-consistent pairs (w1,w2)e£2 (M^xQ (M2) . Assume that A^ and 
A_ are closed boundary subsets in M. and M,, respectively. 

k k Then the moping • :£} n 9 i v e n bY 

(2.12) • = w
1
u
h
t J2 

is a monomorphism of c
1
uj1

c
2-modules. 

Definition 2.2. Global (k,l) tensor fields 
(j^OrCM^) x. . .xl(M1) —» £(1^) and (¿2 :0f (M2) x . . . xX(M ) -^X(M^) 
are said to be h-consistent if for any X^,.. .,X^eCC l(M^) and 
Yx,.. ., YkeIA2 (M2) satisfying hJ[(Xi I A1)=Yi I A2 for i=l,...,k, 
the following conditions are satisfied: 

(^(X^ . .. ,Xk)€3fAl(M1) , cj2(Y1( .. . ,Yk)eIA2(M2) and 

^ ( ^ ( X ^ . . • ,Xk) |A1)=<j2(Y1, . . . ,Yk) |A2. 
For any h-consistent tensor fields and w 2 of the type 

(k,l) let o) be the tensor field on defined by 
(2.13) "(XjVJ^, . . . /XkuhYk)=w1(X1, . . • /Xk)uhu2(Y1, . . . ,Yk) . 

In the sequel the tensor field w defined by (2.13) will be 
denoted by u,u. u_. 1 h 2 

Analogously to (2.12), for the space satisfying the 
assumptions of Proposition 2.6, the mapping (u>1,u»2) i > u,iuhttt2 
is a monomorphism of ci uh C2 module of all pairs of 
h-consistent tensor fields of type (k,l) into C ^ j ^ module of 
tensor fields of type (k,l) on the glued space M u,M_. 

1 1 n 2 2 
Definition 2.3. Linear connection 7 in (M ,C ) and V in 

A 

(M2,C2) are called h-consistent if for any X ^ X ^ l ltM^ and 
Y1,Y2eXA2(M2) such that h^(X iIA^=Y i|A 2 for i=l,2, the 
following conditions are satisfied : 

1 A 2 A 1 2 

l' ' V Y 1
Y 2 e I 2 ( M2 } a n d h* ( VX 1

X2 | Al ) = VY 1
Y2 | A2* 

Now it is easy to prove 
Proposition 2.7. Let (M^C^), (M2,C2) be disjoint 
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differential spaces and h:A —> A, be a gluing diffeomorphism. 
I 1 ^ 2 

For any linear connection V in (M1,C1) and V in (M 2,C 2) if 

they are h-consistent, then the mapping 

7:0C(M 1u hM 2)xï(M 1u hM 2) —» x ( M 1
w
h M 2 ) defined by 

(2.14) V = V l V x 2
Y 2 

for X,Yeï(M,u. M_) , where X=X.u.X_, Y=Y.u,Y_, is a linear 1 h 2 1 h 2 1 h 2 ' 
connection in the glued space ( M^ ui 1

M2' Cl uh C2^ " 

Proof is a simple consequence of (1.5)-(1.7). 

In the sequel the connection V given by (2.14) 
1 2 1 2 

corresponding to V and V will be denoted by 

Definition 2.4. Let (M^C.^), (M2,C2) be differential 

spaces of constant differential dimension, let 7^ be a linear 

connection in M^ and 7 2 be a linear connection in M 2-

The product connection i n Cartesian 

product M 1 x M 2 is defined by 

(2.15) ( V 1 x V 2 ) w Y = ( i q ) ^ ( K 1 o P r M i ^ Y ^ w ) + (i p)^(K 2opr M 2^Y J kw) 

for any w e T ( p g ) ( M ^ M ^ , Y€Ï(M l XM 2) , (p,q) e M j X M ^ where 
V M i

: M 1 X M 2 M l > P r
M ^

 : M
1
x M

2 - » M 2 

are the natural projections, 

i_:M —» M.xM_, i :M_ —» M.xM_ q l 1 2 p 2 1 2 

are the natural imbedings, 

Kj^TTMJ^ —» TM^ , K 2:TTM 2 —» TM 2 

are the connection mappings corresponding to 7^ and 7 2 

respectively [1], [6]. 

Now we prove 

Proposition 2.8. Let (M^C^), (M 2,C 2), (Z,Z) be 

differential spaces of constant differential dimension and 

(p^,p2) eM^xM 2 an arbitrary point . Let hiA^^ —> A 2 be a gluing 

diffeomorphism of M ^ Z and M 2xZ defined by (2.8), where 
A l = { p l } x Z ' A

1 = { P 2 >
x Z - T h e n 

(i) For arbitrary connections 7 X in M ^ 7 2 in M 2, 7 3 in Z, the 

product connections ^ 1
x V

3 and ^><^3 are h-consistent. 
(ii) There exists the linear connection v = v i x v 3 u h 7 2 x v 3 t h e 
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glued space M^xZu^l^xZ corresponding to and ^2*^3' ^Y 
(2.14). 

Proof, (i) Let X »Y^eX^ (l^xZ) and X2,Y2«XA2(M2xZ) such 
that hJ[(X1IA1)=X2IA2 and h^ (Yx IA^ =Y2 I A2. There exist vector 
fields A, BeX(Z) such that X.|A.=(i ).A and Y.|A.=(i ).B, 

1 1 p^ * 1 1 p^ * 
for i=l, 2. 

Now, for a fixed zeZ, let us put w^=X^(p^,z), i=l,2. Of 
course, wL=((ip )*A)(z). 

It is easy to verify the following equalities : 

(2.16) " M i** Yi* Wi = 0 f° r i = 1' 2' 

(2.17) k z ^Y i^W i=B^(A(z)) for i=l,2. 

Hence from (2.15) we obtain: 
i Vi x y3iw i

Yi-< i(i f«))* K3-*Z« Yi. Wi- i(i f«J K3< B* ii A<»>>' 
for zeZ, i=l,2, where K3 is the connection mapping 
corresponding to V^, *(i z):Z —* M i x Z emkedding 

z)(2)=(Pi/Z)/ i=l,2. 

Hence it is evident that tangent to A^, for 

i=l,2, and 
h* < < V V XX

Y11 Al> = ( V V X 2
Y2 1 A2 • 

(ii) is a consequence of (i) and Proposition 2.7. 
Proposition 2.9. Let (M^C ) , (M2,C2), (Z,Z) be 

differential spaces of constant differential dimension and 
(P1,P2)€M1xM2 an arbitrary point. Let hiA^^ —> A2 be a gluing 
diffeomorphism of I^xZ and M2xZ defined by (2.8). 

Then 
(i) For any semi-Riemannian metrics ĝ ^ on M^, g 2 on M^, g 3 on 

* 1 * * 2 * Z, the semi-Riemannian metrics 9i+7rzg3 a T,2=irM g2 Zg3 

are h-consistent. 
1 2 

(ii) The Levi-Civita connections V and V corresponding to 
metrics tĵ  and r)2, respectively, are h-consistent. 
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1 2 
(iii) The glued connection , with respect to the 

glued metric T'=7'iuh7,2' s a t i - s f i e s t h e well-known condition: 

ZT,(X,Y)=T)(VzX,Y)+T}(X,VzY) , 

V xY=V yX+[X,Y]. 

Sketch of the proof. (i) It is easy to observe that * * 
l tIi^t a n d wher6 l :Z —> M.xZ, 1=1,2, are the 

1 P 2 z J 1 ^ * 
natural embeddings. Thus it is cle«r that i^ tj^h tj2. 

(ii) Let 7^, V 2, V 3 be the Levi-Civita connection 

corresponding to the metrics g , g 2, g 3, respectively. By 

using local vector basis in the Cartesian product, the 

definition of the Levi-Civita connection and (2.15) one can 
i 

verify that 7=7.x7 for i=l,2. 
1 2 

Now, from Proposition 2.8 it follows that 7 and 7 are 

h-consistent. 

The proof of (iii) is a simple verification. (iii) is a 

simple consequence of the similar properties of the 
1 2 

Levi-Civita connections 7 and 7 and the equalities 

(1.5)-(1.7). 

3. Some comments on applications 

a) Gluing of Robertson-Walker spacetimes. 

Let S be a connected three dimensional Riemannian manifold 

of constant curvature k=-l,0 or 1 with the metric tensor g. 

Let and I 2 be intervals in R and let f 1>0, f 2
> 0 b e smooth 

functions on I and I 2, respectively. Consider the 

Robertson-Walker spacetimes I,x„ S and I-,*« S [8]. By 
1 r l 2 r2 

definition the Robertson-Walker spacetime ij^f s/ i=l,2, is 

the product space I^xS furnished with the metric tensor 

(3.1) Tj.=-d7TT ®djr +(f. ott ) 2A* g, for i=l,2. 
l 1 i i i 1 1 i b 

Let t 1 « I 1 and t 2 e l 2 be arbitrary points. Let h:A 1 —» A 2 be 
the gluing diffeomorphism given by 
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(3.2) h(t l fp)=(t 2,p) for pes, 

where A x={(t^p):peS} and A 2={(t 2,p):peS}. 

Consider the glued space I^xSu^IjxS. It is evident, that if 

the scale functions f^ and f 2 satisfy the condition 

f 1(t 1)=f 2 (t2) , then the metrics tĵ  and tj2 are h-consistent. In 

view of Proposition 2.6 one can glue T)1 and tj2. The glued 

2-form Ti=1iiuj1
T,2 a s e m i ~ R i e m a n n i a n metric on I^xSu^IjXS of 

the signature ( - - + + + ) in A. 

Let V^, i=l,2, be the Levi-Civita connection of I^xS 

corresponding to tj^. 

Now we prove 

Proposition 3.1. Let I^x^ S, i=l,2, be Robertson-Walker 

spacetimes with f 1 (t1) =f 2 (t2) , for some t ^ I ^ t 2 e l 2 . 

Then 

(i) If f^' ( t
1 )

= f 2 ' )=0, the Levi-Civita connections are 

h-consistent, 

is the Levi-Civita 

connection corresponding to tj and the Riemann curvature 

tensors R of V and R. of 7. satisfy R=R„u,R„. l l 1 h 2 
(iii) if additionally f "(t )=f "(t ), then the Ricci 

curvature of tj is the gluing of respective curvatures of tĵ  

and i)2. 
Sketch of the proof. (i) Let X ,Y eX Al(I xS) and 

A 

X 2,Y 2eX 2(I2xS) be vector fields such that X̂ ^ is h-consistent 

with X 2 and Y^ is h-consistent with Y 2. There exist vector 

fields A,BeX(S) such that X.|A.=(i. ).A and Y.|A,=(i. ).B, for X X t^ * X I u^ * . 
i=l,2, where i^ :S —> I^xS is the natural embedding. Let A,B 

be the lifts of A and B to I xS. Consider A^ as a 

semi-Riemannian submanifold of I xS. From Lemma 1.4 in [8] it 

follows that 

for every pes. By Corollary 8.12 in [8], the normal component 

of V^-B has the following form: 

(ii) the glued connection 
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g 

where is the lift of a £ on ^ to I^xS. 

Now it is clear that if f' (t1)=0, then norV 1-B(t 1 <p)=O f 

for pes. Thus 
( V1X V ( ^ . P J - t a n i V ^ B ) (t1'P) = (

7 ' A | A 1
S | A l ) ( t l ' p ) ' 

where t a n ( V ^ B ) denotes the tangent component of (^jJ^ ( s e e 

[8]) and 7' is the Levi-Civita connection of the submanifold 
A. Since the embedding i. :S —> A is a homothety, i. 

r l 1 

preserves the Levi-Civita connections ([8]). Thus 

A|A )*(V o aB), where V Q is the Levi-Civita 

connection of S. Therefore ( 7ix " 

Analogously one can prove the equality ( V2X 

=(i^ )*(V q aB). This shows that and V 2 are h-consistent. 

(ii) The Levi-Civita properties of the glued connection 7 

are simple consequence of the respective properties of V^ and 

V 
Now we will prove that R 1 and R 2 are h-consistent. 

Let X x , Y l f Z 1eX
Al(I 1xS) and X 2, Y 2, Z 2eX

A2(I 2xS) be 

h-consistent. There exist vector fields A, B, CeX(S) such that 
X iIA. = (i t Y.|A i=(i t ),B, Z.|A. = (i )itC, for i=l,2. 

i i i 

From Corollary 9.12 in [8] it follows that 

[tj1(A/C)B-T)1(B,C)A] | A r R 1 ( X 1 , Y 1 ) Z 1 I A 1 = V - 2 k 
+ 

Hence 

R 1(X 1,Y 1)Z 1IA 1=[(f' 1(t 1))
2+k] [g(A,C)B|A 1-g(B,C)A|A 1]. 

Analogously one can see the equality 

R 2(X 2,Y 2)Z 2IA 2=[(f' 2(t 2))
2+k][g(A,C) (it )^B-g(B,C) (ifc J ^ A I A ^ 

Since f ^ (t 1)=f 2' (t2)=0, it is evident that 

h i k ( R 1 ( X 1 , Y 1 ) Z 1 I A 1 ) = R 2 ( X 2 , Y 2 ) Z 2 I A 2 . 

(iii) By Corollary 10.12 in [8] 
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Ric 1(X 1,Y 1) l A ^ R i c ^ Ä J ) IAJ-

/ 2 

W 

2k 

2k 

1 J 

f 

T?1(A,B) I V 

1 <*!> f 1(t 1)'g(A,B). 

Thus RiCj^iXj^,*^ |A1-[2k+f'1'(t1)f1(t1) ]g(A,B). 

Analogously, Ric 2(X 2,Y 2) I A2=[2k+f^'(t2) f 2 (t2) ]g(A,B) 

Now it is clear that Ric, and Ric„ are h-consistent 

Ric=Ric,u. Ric 

and 1 2 

b) Gluing of Friedman cosmological models. 

Recall that a Friedman cosmological model is a Robertson-

Walker spacetime such that the scale function f satisfies the 
2 A Friedman equation f' +k = 

positive, for some t Q [8]. 

where A = 87IM and H = f' 

Now, let 1^= (-00,0] and I2=[0,oo) . 

and f 2:I 2 - » 

Assume that 

are continuous functions satisfying 

f l : I l 

is 

R 

the 

Friedman equation. Consider Friedman models I.x, S and I-x_ S. 
1 r l * r2 

Of course, the metrics tj1 and t)2, given by (3.1), degenerate 

on (0,p):peS}cI^xS and A 2={(0,p):peS}cI 2xS, respectively. 

Let h:A^ —» A 2 be the gluing diffeomorphism given by (3.1), 

for t^=0 and t 2=0. The glued 2-form tj is degenerate on the set 

of singular points A. Since lim f' (t)=oo, lim f' (t)=oo, all 
t-0" t-0 

points of A are the curvature singularities in the 

classification scheme by Ellis and Schmidt [2] as it can be 

easily seen from Corollary 9.12 and 9.13 in [8]. 

Let t^elntl^ and V I n t I 2 be such elements that 

f^(t^)=f 2(t 2). If we glue together the Friedman models I
1
x f s 

and I x- S by the gluing diffeomorphism h given by (3.2), we 
* 2 

obtain the set A of quasi-regular singularities [2]. This is a 

consequence of the fact that I.x- S and I,x, S may be embedded 
« 1 2 

into the glued space by ^ and L2. The geometry of the glued 
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space I xSu. I.xS is determined by the geometry of I-ix« s 
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