

Wieslaw Sasin

DIFFERENTIAL SPACES AND SINGULARITIES
IN DIFFERENTIAL SPACE-TIMES

In this paper we investigate singularities of space-time using of the theory differential spaces in the sense of Sikorski [12], [13], [14]. If space-time is modeled by a differential space rather than by a differential manifold, space-time singularities can be regarded as points of the differential space in question. The theory of differential spaces opens some possibilities to classify singularities of space-times [1], [3]. In Section 3 we present such a classification. The differential space methods turns out to be a very efficient tool in dealing with the classical singularity problems [3], [6].

In Section 1 we recall necessary definitions and theorems from the theory of differential spaces. In Section 2 we describe some properties of functions and forms of class C^k on a differential space, which are very important in the next sections.

1. Preliminaries

Let M be a non-empty set and C a set of real functions defined on M . Denote by τ_C the weakest topology on M in which all functions from C are continuous. Let scc be the set of all real functions on M of the form $\omega \circ (f_1, \dots, f_n)$, where $\omega \in \varepsilon_n$, $f_1, \dots, f_n \in C$, $n \in \mathbb{N}$ and ε_n is the set of all real C^∞ functions on \mathbb{R}^n . For any subset $A \subset M$ we denote by C_A the set

of all real functions f on A such that for any point p of A there exist in τ_C an open neighborhood $U \in \tau_C$ of p and a function $g \in C$ such that $f|A \cap U = g|A \cap U$.

The set C is called the differential structure on M iff $C = \text{sc}C = C_M$. Then the pair (M, C) is said to be the differential space [14], [15]. It is easy to see that C is a linear ring over \mathbb{R} .

A differential structure C on M is said to be generated by a set C_0 of real functions on M if $C = (\text{sc}C_0)_M$. A differential space (M, C) is said to be finitely generated by a set $C_0 = \{f_1, \dots, f_n\}$ if $C = (\text{sc}C_0)_M$. If (M, C) is a differential space and A is an arbitrary non-empty subset of M , then (A, C_A) is also a differential space, which is called a differential subspace of (M, C) .

Let (M, C) and (N, D) be differential spaces. A mapping $F: M \rightarrow N$ is said to be a smooth mapping of (M, C) into (N, D) if $f \circ F \in C$ for any $f \in D$. Then we write $F: (M, C) \rightarrow (N, D)$ [15].

We define the notion of a tangent vector to a differential space (M, C) at a point $p \in M$ as a linear mapping $v: C \rightarrow \mathbb{R}$ satisfying the following condition:

$$v(f \cdot g) = f(p) \cdot v(g) + g(p) \cdot v(f) \quad \text{for any } f, g \in C.$$

The set of all tangent vectors to (M, C) at a point $p \in M$ we denote by $T_p(M, C)$ (shortly $T_p M$) and call the tangent space to (M, C) at p .

If $F: (M, C) \rightarrow (N, D)$ is a smooth mapping between differential spaces then for each point $p \in M$ the mapping $F_{*p}: T_p M \rightarrow T_{F(p)} N$ defined by

$$(F_{*p} v)(f) = v(f \circ F) \quad \text{for any } f \in D \text{ and } v \in T_p M,$$

is a linear mapping.

Let $TM := \bigcup_{p \in M} T_p M$ be a disjoint sum of tangent spaces to (M, C) . By TC we denote the differential structure on TM [10] generated by the set $\{f \circ \pi : f \in C\} \cup \{df : f \in C\}$, where $\pi: TM \rightarrow M$ is defined by the formula

$$\pi(v) = p \quad \text{for any } v \in T_p M \text{ and } p \in M,$$

and $df: TM \rightarrow \mathbb{R}$ is the function defined by

$$(df)(v) = v(f) \quad \text{for } v \in TM.$$

A smooth vector field tangent to (M, C) is a mapping $X: (M, C) \rightarrow (TM, TC)$ such that $\pi \circ X = \text{id}_M$. Denote by $\mathcal{X}(M)$ the C -module of all smooth vector fields tangent to (M, C) .

A differential space (M, C) is said to be of constant differential dimension n if for any $p \in M$ there exist a neighborhood $U \in \tau_C$ of p and smooth vector fields $x_1, \dots, x_n \in \mathcal{X}(U)$ such that for any $q \in U$ the sequence $x_1(q), \dots, x_n(q)$ is a vector basis of $T_q(M, C)$ and x_1, \dots, x_n is a C_U -basis of C_U -module $\mathcal{X}(U)$.

Now let us put [1]

$$T^r M = \left\{ (v_1, \dots, v_r) \in TM \times \dots \times TM : \pi(v_1) = \dots = \pi(v_r) \right\}$$

as well as

$$T^r C = (TC \times \dots \times TC)_{T^r M} \quad \text{for } r = 1, 2, \dots$$

Let $\pi_i: T^r M \rightarrow TM$, for $i = 1, \dots, r$ be the mapping defined by

$$\pi_i(v_1, \dots, v_r) = v_i \quad \text{for } (v_1, \dots, v_r) \in T^r M.$$

A function $\omega: T^r M \rightarrow \mathbb{R}$ is said to be the r -form on (M, C) if the mapping $\omega_p := \omega|_{T_p M \times \dots \times T_p M}$ is r -linear for any $p \in M$.

An r -form ω is called smooth if $\omega \in T^r C$.

For any mapping $F: (M, C) \rightarrow (N, D)$ and a smooth r -form ω on (N, D) $F^* \omega$ is the smooth r -form defined by

$$(F^* \omega)(v_1, \dots, v_r) = \omega(F_* v_1, \dots, F_* v_r) \quad \text{for any} \\ (v_1, \dots, v_r) \in T^r M.$$

Now we recall some properties of the Cartesian product of differential spaces.

Let (M, C) and (N, D) be differential spaces. Let $C \times D$ be the differential structure on $M \times N$ generated by the set of real functions $\{\alpha \circ \text{pr}_1 : \alpha \in C\} \cup \{\beta \circ \text{pr}_2 : \beta \in D\}$, where $\text{pr}_1: M \times N \rightarrow M$ and $\text{pr}_2: M \times N \rightarrow N$ are the projections.

The differential space $(M \times N, CxD)$ is called the Cartesian product of differential spaces (M, C) and (N, D) [15].

For an arbitrary point $p \in M$ let $j_p: N \longrightarrow M \times N$ be the imbedding given by

$$(1.1) \quad j_p(q) = (p, q) \quad \text{for } q \in N.$$

For an arbitrary point $q \in N$ let $j_q: M \longrightarrow M \times N$ be the imbedding defined by

$$(1.2) \quad j_q(p) = (p, q) \quad \text{for } p \in M.$$

A vector $w \in T_{(p, q)}(M \times N)$ is said to be parallel to (M, C) if $(pr_2)_*w = 0$. A vector $w \in T_{(p, q)}(M \times N)$ is said to be parallel to (N, D) if $(pr_1)_*w = 0$.

It is easy to see that the subspace $(j_q)_{*p}(T_p M)$ is the set of all vectors tangent to $(M \times N, CxD)$ at (p, q) parallel to (M, C) and the subspace $(j_p)_{*q}(T_q N)$ is the set of all vectors tangent to $(M \times N, CxD)$ at (p, q) parallel to (N, D) . One can prove [15], that the tangent space $T_{(p, q)}(M \times N)$ is a direct sum of the subspaces $(j_q)_{*p}(T_p M)$ and $(j_p)_{*q}(T_q N)$.

It is easy to prove

Lemma 1.1. Let w_1, w_2 be vectors parallel to (M, C) and z_1, z_2 be vectors parallel to (N, D) . Then

$$(a) \quad w_1 = w_2 \quad \text{iff} \quad (pr_1)_*w_1 = (pr_1)_*w_2,$$

$$(b) \quad z_1 = z_2 \quad \text{iff} \quad (pr_2)_*w_1 = (pr_2)_*w_2.$$

A vector field $Z \in \mathcal{X}(M \times N)$ is said to be parallel to (M, C) if $Z(p, q)$ is parallel to (M, C) for every $(p, q) \in M \times N$. We denote by $\mathcal{X}_M(M \times N)$ the set of all smooth vector fields tangent to $(M \times N, CxD)$. $\mathcal{X}_M(M \times N)$ is a CxD -submodule of the CxD -module $\mathcal{X}(M \times N)$.

A vector field $Z \in \mathcal{X}(M \times N)$ is said to be parallel to (M, C) if $Z(p, q)$ is parallel to (M, C) for every $(p, q) \in M \times N$. We denote by $\mathcal{X}_M(M \times N)$ the set of all smooth vector fields tangent to $(M \times N, CxD)$ which are parallel to (M, C) . It is clear that $\mathcal{X}_M(M \times N)$ is a CxD -submodule of the CxD -module $\mathcal{X}(M \times N)$.

A vector $Z \in \mathcal{X}(M \times N)$ is said to be parallel to (N, D) if

$Z(p, q)$ is parallel to (N, D) for every $(p, q) \in M \times N$. We denote by $\mathcal{X}_N(M \times N)$ the set of all smooth vector fields tangent to $(M \times N, CxD)$ which are parallel to (N, D) . It is clear that $\mathcal{X}_N(M \times N)$ is a CxD -submodule of the CxD -module $\mathcal{X}(M \times N)$.

Now let $X \in \mathcal{X}(M)$ be a smooth vector field tangent to (M, C) . Let $\bar{X}: M \times N \rightarrow T(M \times N)$ be defined by

$$(1.3) \quad \bar{X}(p, q) = (j_q)_* p X(p) \quad \text{for } (p, q) \in M \times N.$$

It is easy to verify that $\bar{X} \in \mathcal{X}_M(M \times N)$.

Analogously, for any $Y \in \mathcal{X}(N)$ we can define the vector field $\bar{Y} \in \mathcal{X}(M \times N)$ parallel to (N, D) by the formula

$$(1.4) \quad \bar{Y}(p, q) = (j_p)_* q Y(q) \quad \text{for } (p, q) \in M \times N.$$

Now, let $Z \in \mathcal{X}(M \times N)$ be an arbitrary vector field tangent to $(M \times N, CxD)$.

Let us define [15]

$$(1.5) \quad Z_M(p, q) = (j_q \circ \text{pr}_1)_* (p, q) Z(p, q) \quad \text{for } (p, q) \in M \times N,$$

$$(1.6) \quad Z_N(p, q) = (j_p \circ \text{pr}_2)_* (p, q) Z(p, q) \quad \text{for } (p, q) \in M \times N.$$

It is easy to see that $Z_M \in \mathcal{X}_M(M \times N)$ and $Z_N \in \mathcal{X}_N(M \times N)$. Moreover, $Z = Z_M + Z_N$.

One can prove [15].

Proposition 1.2. The CxD -module $\mathcal{X}(M \times N)$ is a direct sum of CxD -modules $\mathcal{X}_M(M \times N)$ and $\mathcal{X}_N(M \times N)$.

Now let $X \in \mathcal{X}_M(M \times N)$. For any $q \in N$ let $x^q: M \rightarrow TM$ be defined by

$$(1.7) \quad x^q(p) = (\text{pr}_1)_* (p, q) X(p, q) \quad \text{for } p \in M.$$

It is easy to see that $x^q \in \mathcal{X}(M)$ for every $q \in N$.

Analogously, for $Y \in \mathcal{X}_N(M \times N)$ and $p \in M$ let $y^p: N \rightarrow TN$ be defined by

$$(1.8) \quad y^p(q) = (\text{pr}_2)_* (p, q) Y(p, q) \quad \text{for } q \in N.$$

One can easily prove that $y^p \in \mathcal{X}(N)$ for every $p \in M$.

Now we prove

Lemma 1.3. Let (M, C) and (N, D) be differential spaces.

(M, C) is a differential space of differential dimension m if and only if the CxD -module $\mathcal{X}_M(M \times N)$ is an m -dimensional differential module. (N, D) has a differential dimension n if and only if the CxD -module $\mathcal{X}_N(M \times N)$ is an n -dimensional differential module.

Proof. (\Rightarrow) Assume that (M, C) has a differential dimension m . Let (p, q) be an arbitrary point of $M \times N$. Let $V \in \tau_C$ be an open neighbourhood of p such that on V there is a local vector basis $x_1, \dots, x_m \in \mathcal{X}(V)$ of the C -module $\mathcal{X}(M)$. One can verify [15] that the sequence $\bar{x}_1, \dots, \bar{x}_m \in \mathcal{X}(U \times N)$ of vector fields defined by (1.3) is a local vector basis of CxD -module $\mathcal{X}_M(M \times N)$ on $U \times N \in \tau_{CxD}$.

(\Leftarrow) Assume that $\mathcal{X}_M(M \times N)$ is an n -dimensional differential module. $\mathcal{X}_M(M \times N)$ is a CxD -module of Φ -fields, where $\Phi(p, q) = (j_q)_{*p}(T_p M)$ for $(p, q) \in M \times N$.

Since $(j_q)_{*p}: T_p M \rightarrow \Phi(p, q)$ is an isomorphism for every $(p, q) \in M \times N$, $\dim T_p M = \dim \Phi(p, q) = n$ for any $p \in M$. It is enough to show that for an arbitrary vector $u \in TM$ there exist a vector field $X \in \mathcal{X}(M)$ such that $u = X(\pi_M(u))$, where $\pi_M: TM \rightarrow M$ is the projection. Indeed, for the vector $\bar{u} = (j_q)_{*p}u \in \Phi(p, q)$, where $u \in T_p M$, there exists a vector field $Z \in \mathcal{X}_M(M \times N)$ such that $\bar{u} = Z(p, q)$. Hence we have

$$(pr_1)_{*}(p, q)\bar{u} = (pr_1)_{*}(p, q)Z(p, q)$$

or equivalently

$$u = Z^q(p), \text{ where } Z^q \in \mathcal{X}(M) \text{ is defined by (1.7).}$$

The second part of Lemma 1.3 can be proved analogously.

Lemma 1.4. Let (M, C) and (N, D) be differential spaces. Then, $\dim T_{(p, q)}(M \times N)$ is constant for any $(p, q) \in M \times N$ if and only if $\dim T_p M$ is constant for any $p \in M$ and $\dim T_q N$ is constant for any $q \in N$.

Proof. This Lemma is a simple consequence of the equality

$$\dim T_{(p, q)}(M \times N) = \dim T_p M + \dim T_q N \text{ for any } (p, q) \in M \times N.$$

Now we prove

Proposition 1.5. Let (M, C) and (N, D) be differential spaces. The Cartesian product $(M \times N, C \times D)$ is a differential space of constant differential dimension if and only if (M, C) and (N, D) are differential spaces of constant differential dimension.

Proof. (\Rightarrow) Assume that the Cartesian product $(M \times N, C \times D)$ is a differential space of constant differential dimension. Assume that $\dim T_{p_0} M = m$ and $\dim T_{q_0} N = n$ for certain points $p_0 \in M$ and $q_0 \in N$. In view of Lemma 1.4, $\dim T_p M = m$ for any $p \in M$ and $\dim T_q N = n$ for any $q \in N$. It is enough to prove that every vector tangent to (M, C) or (N, D) is extendible to a smooth vector field tangent to (M, C) or (N, D) , respectively.

Let $u \in T_p M$ for a point $p \in M$. Then $\bar{u} = (j_q)_* u \in T_{(p, q)}(M \times N)$ is a vector parallel to (M, C) . Since $(M \times N, C \times D)$ has constant differential dimension there exist a vector field $Z \in \mathcal{X}(M \times N)$ such that $\bar{u} = Z(p, q)$. It is easy to see that Z_M defined by (1.5) is a smooth tangent vector field parallel to (M, C) such that $\bar{u} = Z_M(p, q)$. Hence we have the equality

$$(pr_1)_*(p, q) \bar{u} = (pr_1)_*(p, q) Z_M(p, q)$$

or equivalently

$$u = (Z_M)^q(p).$$

Thus u is extendible to $(Z_M)^q \in \mathcal{X}(M)$.

(\Leftarrow) Let (M, C) and (N, D) be differential spaces of differential dimension m and n , respectively. Let (p, q) be an arbitrary point of $M \times N$. Let $x_1, \dots, x_m \in \mathcal{X}(U)$ be a local vector basis of $\mathcal{X}(M)$ on a neighborhood $U \in \tau_C$ of p and $y_1, \dots, y_n \in \mathcal{X}(V)$ be a local vector basis of $\mathcal{X}(N)$ on a neighborhood $V \in \tau_D$ of q . It is easy to see [15] that the sequence $\bar{x}_1, \dots, \bar{x}_m, \bar{y}_1, \dots, \bar{y}_n$ of vector fields defined by (1.3) - (1.4) is a local vector basis of the $C \times D$ -module $\mathcal{X}(M \times N)$ on a neighborhood $U \times V$ of (p, q) . This finishes the proof.

Proposition 1.6. Let $X \in \mathcal{X}_M(N \times N)$ and $Y \in \mathcal{X}_N(M \times N)$. Let $c: (-\varepsilon, \varepsilon) \rightarrow M \times N$ be a smooth mapping such that $c(0) = (p, q)$, where $\varepsilon > 0$. Let us put $c_1 = \text{pr}_1 \circ c$ and $c_2 = \text{pr}_2 \circ c$.

The mapping c is an integral curve of X if and only if c_1 is an integral curve of X^q and $c_2(t) = q$ for any $t \in (-\varepsilon, \varepsilon)$.

The mapping c is an integral curve of Y if and only if c_2 is an integral curve of Y^p and $c_1(t) = p$ for any $t \in (-\varepsilon, \varepsilon)$.

Proof. (\Rightarrow) Let c be an integral curve of X . Then

$$(1.9) \quad c_{*t} \frac{d}{ds}|_t = X(c(t))$$

for any $t \in (-\varepsilon, \varepsilon)$. Hence

$$(\text{pr}_1)_{*c(t)} (c_{*t} \frac{d}{ds}|_t) = (\text{pr}_1)_{*c(t)} (X(c(t)))$$

for any $t \in (-\varepsilon, \varepsilon)$ or equivalently

$$(1.10) \quad (c_1)_{*t} \frac{d}{ds}|_t = X^{c_2(t)} (c_1(t))$$

for any $t \in (-\varepsilon, \varepsilon)$. Moreover, from (1.9) it follows that

$$(\text{pr}_2)_{*c(t)} (c_{*t} \frac{d}{ds}|_t) = (\text{pr}_2)_{*c(t)} (X(c(t)))$$

for any $t \in (-\varepsilon, \varepsilon)$ or equivalently

$$(1.11) \quad (c_2)_{*t} \frac{d}{ds}|_t = 0.$$

Hence $c_2(t) = q$ for every $t \in (-\varepsilon, \varepsilon)$.

(\Leftarrow) Now, let c_1 be an integral curve of X^q and $c_2(t) = q$ for any $t \in (-\varepsilon, \varepsilon)$. Thus

$$(c_1)_{*t} \frac{d}{ds}|_t = X^{c_2(t)} (c_1(t))$$

for any $t \in (-\varepsilon, \varepsilon)$ or equivalently by (1.7)

$$(\text{pr}_1)_{*c(t)} (c_{*t} \frac{d}{ds}|_t) = (\text{pr}_1)_{*c(t)} (X(c(t)))$$

for $t \in (-\varepsilon, \varepsilon)$. It is easy to see that the vector $c_{*t} \frac{d}{ds}|_t$ is parallel to (M, C) . From Lemma 1.1 it follows that

$$c \cdot t \frac{d}{ds}|_t = x(c(t)) \quad \text{for } t \in (-\varepsilon, \varepsilon).$$

Analogously one can prove the second part of the proposition.

Proposition 1.7. Let (M, C) and (N, D) be differential spaces. The Cartesian product $(M \times N, C \times D)$ is a finitely generated differential space if and only if (M, C) and (N, D) are finitely generated differential spaces.

Proof. (\Rightarrow) Let $C \times D$ be generated by a set $\{\varphi_1, \dots, \varphi_k\}$.

Then $(C \times D)_{M \times \{q\}}$ is finitely generated by $\{\varphi_1|_{M \times \{q\}}, \dots, \varphi_k|_{M \times \{q\}}\}$ for every $q \in N$. Since $j_q: (M, C) \rightarrow (M \times \{q\}, (C \times D)_{M \times \{q\}})$ is a diffeomorphism, C is a differential structure generated by the set $\{\varphi_1 \circ j_q, \dots, \varphi_k \circ j_q\}$ for any arbitrary $q \in N$. Analogously one can prove that for any $p \in M$ the set $\{\varphi_1 \circ j_p, \dots, \varphi_k \circ j_p\}$ generates D .

(\Leftarrow) It is easy to see that if C is generated by $\{f_1, \dots, f_m\}$ and D is generated by $\{g_1, \dots, g_n\}$, then $C \times D$ is generated by the set $\{f_1 \circ \text{pr}_1, \dots, f_m \circ \text{pr}_1\} \cup \{g_1 \circ \text{pr}_2, \dots, g_n \circ \text{pr}_2\}$.

2. Smooth functions and forms of class C^k on a differential space

Let (M, C) be a differential space. A function $f: M \rightarrow \mathbb{R}$ is said to be of class C^k if for any point $p \in M$ there exist an open neighborhood $V \in \tau_C$ of p and functions $f_1, \dots, f_n \in C$, $\sigma: \mathbb{R}^n \rightarrow \mathbb{R}$ of class C^k such that $f|_V = \sigma \circ (f_1, \dots, f_n)|_V$. It is easy to see that the set $\mathcal{F}^k(M)$ of all real functions on (M, C) of class C^k is a linear ring over \mathbb{R} .

One can easily prove

Lemma 2.1. Let (M, C) be a differential space with the differential structure C generated by a set C_0 . A real function $f: M \rightarrow \mathbb{R}$ is of class C^k (shortly C^k function) on (M, C) if and only if for $p \in M$ there exist a neighbourhood $U \in \tau_C$ of p and functions $f_1, \dots, f_n \in C_0$, a function $\sigma: \mathbb{R}^n \rightarrow \mathbb{R}$ of class C^k , $n \in \mathbb{N}$, such that

$$f|_U = \sigma \circ (f_1, \dots, f_n)|_U.$$

Lemma 2.2. Let $\sigma: \mathbb{R}^n \rightarrow \mathbb{R}$ be a C^k function. If there exists a point $u = (u_1, \dots, u_n) \in \mathbb{R}^n$ such that

$$(*) \quad \sigma(ku) = k\sigma(u) \quad \text{for any } k \in \mathbb{R},$$

then

$$\sigma(u) = \sum_{i=1}^n \frac{\partial \sigma}{\partial x_i}(0) \cdot u_i.$$

Proof. Indeed, $\sigma'_{|u}(0) = \lim_{t \rightarrow 0} \frac{\sigma(tu) - \sigma(0)}{t} = \lim_{t \rightarrow 0} \frac{t\sigma(u)}{t} = \sigma(u).$

$$\text{Hence } \sigma(u) = \sigma'_{|u}(0) = \sum_{i=1}^n \frac{\partial \sigma}{\partial x_i}(0) \cdot u_i.$$

Definition 2.1. An r -form $\omega: T^r M \rightarrow \mathbb{R}$ is said to be smooth of class C^k on (M, C) (shortly C^k r -form) if ω is a C^k function on the differential space $(T^r M, T^r C)$.

Proposition 2.3. Let (M, C) be a differential space with the differential structure C generated by a set C_0 , $p \in M$ an arbitrary point, $\omega: T^r M \rightarrow \mathbb{R}$ a smooth r -form of class C^k on (M, C) and $r \leq k$.

Then there exist a smooth mapping $F: (M, C) \rightarrow (\mathbb{R}^n, \varepsilon_n)$ with the coordinates $F_1, \dots, F_n \in C_0$, $n \in \mathbb{N}$, an r -form $\theta: T^r \mathbb{R}^n \rightarrow \mathbb{R}$ of class C^k on $(\mathbb{R}^n, \varepsilon_n)$ and an open neighbourhood $V \in \tau_C$ of p such that

$$\omega|_{\pi_0^{-1}(V)} = F^* \theta|_{\pi_0^{-1}(V)},$$

where $\pi_0: T^r M \rightarrow M$ is the projection $(v_1, \dots, v_r) \mapsto p = \pi(v_1) = \dots = \pi(v_r)$.

Proof. There exist a neighbourhood $V \in \tau_C$ of p and functions $F_1, \dots, F_n \in C_0$, $n \in \mathbb{N}$ and a C^k function $\sigma: \mathbb{R}^{(r+1)n} \rightarrow \mathbb{R}$ such that

$$\omega|_{\pi_0^{-1}(V)} =$$

$$= \sigma(F_1 \circ \pi_0, \dots, F_n \circ \pi_0, dF_1 \circ \pi_1, \dots, dF_n \circ \pi_1, \dots, dF_1 \circ \pi_r, \dots, dF_n \circ \pi_r)|_{\pi_0^{-1}(V)}.$$

Let $\theta: T^r \mathbb{R}^n \rightarrow \mathbb{R}$ be the r -form of class C^k defined by

$$(2.1) \theta = \sum_{i_1, \dots, i_r=1}^n \frac{\partial^r \sigma}{\partial x_{n+i_1} \partial x_{2n+i_2} \dots \partial x_{rn+i_r}} \circ \iota_{n, (r+1)n} dx_{i_1} \otimes \dots \otimes dx_{i_r},$$

where $\iota_{n, (r+1)n} : \mathbb{R}^n \rightarrow \mathbb{R}^{(r+1)n}$ is given by

$$(2.2) \quad \iota_{n, (r+1)n} (x_1, \dots, x_n) = (x_1, \dots, x_n, 0, \dots, 0)$$

for $(x_1, \dots, x_n) \in \mathbb{R}^n$.

We will show that $\omega|_{\pi_0^{-1}(V)} = F^* \theta|_{\pi_0^{-1}(V)}$.

Let us consider the C^k function $\alpha : \mathbb{R}^n \rightarrow \mathbb{R}$ defined by

$$(2.3) \quad \alpha(x_1, \dots, x_n) = \sigma(F_1(p), \dots, F_n(p), x_1, \dots, x_n, v_2(F_1), \dots, v_2(F_n), \dots, v_r(F_1), \dots, v_r(F_n)) \text{ for } (x_1, \dots, x_n) \in \mathbb{R}^n.$$

It is easy to observe that for the point $u = (v_1(F_1), \dots, v_1(F_n))$ the function α satisfies (*). Thus from Lemma 2.2 it follows that

$$\begin{aligned} \alpha(u) &= \sigma(F_1(p), \dots, F_n(p), v_1(F_1), \dots, v_1(F_n), \dots, v_r(F_1), \dots, \\ &\quad \dots, v_r(F_n)) = \sum_{i_1=1}^n \frac{\partial \sigma}{\partial x_{n+i_1}} (F_1(p), \dots, F_n(p), 0, \dots, 0, \\ &\quad v_2(F_1), \dots, v_2(F_n), \dots, v_r(F_1), \dots, v_r(F_n)) \cdot v_1(F_{i_1}). \end{aligned}$$

Now using Lemma 1 (r-1) times, in the similar way one checks that

$$\begin{aligned} \sigma(F_1(p), \dots, F_n(p), v_1(F_1), \dots, v_1(F_n), \dots, v_r(F_1), \dots, v_r(F_n)) &= \\ &\quad \sum_{i_1, \dots, i_r=1}^n \frac{\partial^r \sigma}{\partial x_{n+i_1} \partial x_{2n+i_2} \dots \partial x_{rn+i_r}} (F_1(p), \dots, F_n(p), 0, \dots, 0) \cdot \\ &\quad \cdot v_1(F_{i_1}) \cdot \dots \cdot v_n(F_{i_n}), \end{aligned}$$

or equivalently

$$\omega(v_1, \dots, v_r) = F^*(\theta)(v_1, \dots, v_r)$$

for an arbitrary $(v_1, \dots, v_n) \in \pi_0^{-1}(V)$.

Therefore $\omega|_{\pi_0^{-1}(V)} = F^* \theta|_{\pi_0^{-1}(V)}$.

Corollary 2.4. Let (M, C) be a differential space and $p \in M$ an arbitrary point. If there exists a non-degenerate r -form ω

of class C^k ($r \leq k$) on (M, C) , then there is an open neighbourhood $U \in \tau_C$ of p such that (U, C_U) can be immersed in the Euclidean space. Moreover, $\dim T_q(M, C) < +\infty$ for any $q \in M$.

Proof. The mapping $F|_U$ in Proposition 2.3 is a smooth immersion. Indeed, since ω is non-degenerate and $\omega|_{\pi_0^{-1}(U)} = F^* \theta|_{\pi_0^{-1}(U)}$ for some open set U containing p , F_{*q} is injective for every $q \in U$. Thus

$F_{*q}: T_q(M, C) \longrightarrow T_{F(q)}(\mathbb{R}^n, \varepsilon_n)$ is an isomorphism onto the image. Hence

$$\dim T_q(M, C) = \dim F_{*q}(T_q(M, C)) \leq \dim T_{F(q)}(\mathbb{R}^n, \varepsilon_n) = n.$$

Definition 2.2. A smooth C^k 2-form $g: T^2 M \longrightarrow \mathbb{R}$ on a differential space (M, C) is said to be a C^k Lorentz metric on (M, C) if for any $p \in M$ the 2-form $g_p := g|_{T_p M \times T_p M}$ is symmetric, non-degenerate and g_p has the signature $(\dim T_p M - 1, 1)$.

Now we prove

Proposition 2.5. Let (M, C) be a connected differential space of constant differential dimension n and g a symmetric, non-degenerate, smooth 2-form of class C^k on (M, C) . If g_p has the signature $(k, 1)$ at a certain point $p \in M$, then g has the signature $(k, 1)$.

Proof. Assume that the signature of g at a certain point $p \in M$ is equal to $(k, 1)$. Let v_1, \dots, v_n be a basis of $T_p M$ such that the matrix $(g(v_i, v_j))_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ has the diagonal form

$$\left(\begin{array}{cccccc} \lambda_1 & & & & & \\ & \ddots & & & & \\ & & \lambda_k & & 0 & \\ & & 0 & \lambda_{k+1} & & \\ & & & & \ddots & \\ & & & & & \lambda_{k+1} \end{array} \right),$$

where $\lambda_1, \dots, \lambda_k > 0$ and $\lambda_{k+1}, \dots, \lambda_{k+1} < 0$.

Since (M, C) is a differential space of differential

dimension n , there exists an open neighborhood $U \in \tau_C$ of p and smooth vector fields $W_1, \dots, W_n \in \mathcal{X}(U)$ such that $W_i(p) = v_i$ for $i=1, \dots, n$, and $W_1(q), \dots, W_n(q)$ is a basis of $T_q M$ for every $q \in U$.

Let $\Delta_i: U \rightarrow \mathbb{R}$ be the smooth function defined by

$$(2.4) \quad \Delta_i(q) = \begin{vmatrix} g_q(W_1(q), W_1(q)) \dots g_q(W_1(q), W_i(q)) \\ \dots \dots \dots \\ g_q(W_i(q), W_1(q)) \dots g_q(W_i(q), W_i(q)) \end{vmatrix}$$

for $q \in U$, $i=1, \dots, n$.

It is easy to see that $\Delta_i(p) > 0$, for $i = 1, \dots, k$, and $\operatorname{sgn} \Delta_i(q) = (-1)^{i-k}$ for $i = k+1, \dots, n$. In view of Proposition 6.1 in [4], for any $q \in U$ there exists a basis e_1, \dots, e_n of the tangent space $T_q M$ such that

$$(2.5) \quad g(v, v) = \frac{\Delta_0(q)}{\Delta_1(q)} \xi_1^2 + \frac{\Delta_1(q)}{\Delta_2(q)} \xi_2^2 + \dots + \frac{\Delta_{n-1}(q)}{\Delta_n(q)} \xi_n^2,$$

for any $v \in T_q M$, where $v = \sum_{i=1}^n \xi_i e_i$.

Let $V \in \tau_C$ be open connected neighborhood of p such that $V \subset U$ and $\Delta_i(q) > 0$ for $q \in V$, $i = 1, \dots, k$ and $\operatorname{sgn} \Delta_i(q) = (-1)^{i-k}$ for $i = k+1, \dots, n$, $q \in V$. Hence from (2.5) it follows that the signature of g is constant on V . Thus the signature of g is locally constant on M . Since (M, τ_C) is a connected topological space, the signature of g is constant on (M, C) .

Proposition 2.6. Let (M, C) be a differential space with the differential structure C generated by a set $C_0 = \{f_1, \dots, f_n\}$ and let $p \in M$ be a point such that $\dim T_p M = n$. If $g: T^2 M \rightarrow \mathbb{R}$ is a symmetric, non-degenerate C^k 2-form ($k \geq 2$) of signature (k, l) at p , then there exist an open neighbourhood $U \in \tau_C$ of p and a pseudo-Riemannian C^k metric η of signature (k, l) on some open subspace of $(\mathbb{R}^n, \varepsilon_n)$ such that $g|_{\pi_0^{-1}(U)} = F^* \eta|_{\pi_0^{-1}(U)}$, where $F = (f_1, \dots, f_n)$.

Proof. There exist a neighbourhood $V \in \tau_C$ of p and a C^k function $\sigma: \mathbb{R}^{3n} \rightarrow \mathbb{R}$ such that

$$g|_{\pi_0^{-1}(V)} = \sigma \circ (f_1 \circ \pi_0, \dots, f_n \circ \pi_0, df_1 \circ \pi_1, \dots, df_n \circ \pi_1, df_1 \circ \pi_2, \dots, df_n \circ \pi_2) |_{\pi_0^{-1}(V)}.$$

Let $\eta: T^2 \mathbb{R}^n \rightarrow \mathbb{R}$ be the 2-form defined by

$$(2.6) \quad \eta = \sum_{i,j=1}^n \frac{\partial^2 \sigma}{\partial x_{n+i} \partial x_{2n+j}} \circ \iota_{n,3n} dx_i \otimes dx_j,$$

where $\iota_{n,3n}: \mathbb{R}^n \rightarrow \mathbb{R}^{3n}$ is the mapping

$$(x_1, \dots, x_n) \mapsto (x_1, \dots, x_n, 0, \dots, 0).$$

Analogously as in the proof of Proposition 2.3, one can check that $g|_{\pi_0^{-1}(V)} = F^* \eta|_{\pi_0^{-1}(V)}$. It is easy to see that η is a symmetric, non-degenerate 2-form (on U).

There exists an open connected neighbourhood A of $F(p)$ such that $F^{-1}(A) \subset V$ and $\det \left(\frac{\partial^2 \sigma}{\partial x_{n+i} \partial x_{n+j}} (\iota_{n,3n}(q)) \right) \neq 0$, for $q \in A$.

Since $F_{*p}: T_p M \rightarrow T_{F(p)} \mathbb{R}^n$ is an isomorphism, η has the signature (k, l) at $F(p)$. From Proposition 2.5 it follows that η has the signature (k, l) on (A, ε_{nA}) . Now, if we put $U = F^{-1}(A)$, we have $g|_{\pi_0^{-1}(U)} = F^* \eta|_{\pi_0^{-1}(U)}$. This finishes the proof.

Proposition 2.7. Let (M, C) be a differential space of class D_0 . If $g: T^2 M \rightarrow \mathbb{R}$ is a symmetric, non-degenerate C^k 2-form of the signature (k, l) at a point p , then there exist an open neighbourhood $U \in \tau_C$ of p and a pseudo-Riemannian manifold (\tilde{M}, \tilde{g}) of dimension $n = \dim T_p M$ such that \tilde{g} is a C^k 2-form of the signature (k, l) , $C_U = C^\infty(\tilde{M})_U$ and $g|_{\pi_0^{-1}(U)} = \iota_U^* \tilde{g}$, where $\iota_U: U \rightarrow \tilde{M}$ is the inclusion mapping.

Proof. There exist an open neighbourhood $V \in \tau_C$ of p and a manifold \tilde{M} containing V such that $C_V = C^\infty(\tilde{M})_V$ [17]. Let $x = (x^1, \dots, x^n)$ be a chart on M defined on V_1 such that $U = V_1 \cap M \subset V$. It is clear that (U, C_U) is a differential space finitely generated by the set $\{x^1|_U, \dots, x^n|_U\}$. From Proposition 2.6 it follows that there exists a pseudo-Riemannian C^k metric η of the signature (k, l) on some

open connected set $W \ni x(p)$ such that

$g|_{\pi_0^{-1}(x^{-1}(W))} = (x|x^{-1}(W)) \circ \eta$. Let us put $\tilde{M} = x^{-1}(W)$ and $\tilde{g} = x \circ \eta$. Of course, \tilde{g} is a C^k pseudo-Riemannian metric on \tilde{M} of the signature (k, l) and $\tilde{g}|_{\pi_0^{-1}(U)} = \iota_U^* \tilde{g}$, where $U = \tilde{M}$.

Now we prove

Lemma 2.8. Let (M, C) be a differential space and a subset $A \subset M$. A real function $f: A \rightarrow \mathbb{R}$ is smooth of class C^k on (A, C_A) if and only if, for any point $p \in A$, there is a neighbourhood $U \in \tau_C|A$ and a function $g: M \rightarrow \mathbb{R}$ smooth of class C^k on (M, C) such that $f|U = g|U$.

Proof. (\Rightarrow) Let $f: A \rightarrow \mathbb{R}$ be a smooth function of class C^k on (A, C_A) and $p \in M$ an arbitrary point. There exist a neighbourhood $W \in \tau_C|A$ and functions $f_1, \dots, f_n \in C_A$, $\sigma: \mathbb{R}^n \rightarrow \mathbb{R}$ of class C^k such that $f|W = \sigma \circ (f_1, \dots, f_n)|W$. There is a neighbourhood $W_1 \in \tau_C|A$ of p and functions $g_1, \dots, g_n \in C$ such that $f_i|W_1 = g_i|W_1$ for $i=1, \dots, n$. Of course, the composition $g = \sigma \circ (g_1, \dots, g_n)$ is of class C^k on (M, C) and $f|U = g|U$, where $U = W_1 \cap W$.

(\Leftarrow) Now, let $f: A \rightarrow \mathbb{R}$ be a real function such that, for any $p \in A$, there exist an open neighbourhood $U \in \tau_C|A$ of p and a function $g: M \rightarrow \mathbb{R}$ smooth of class C^k on (M, C) and $f|U = g|U$. We will show that f is smooth of class C^k on (A, C_A) . For any point $q \in A \subset M$, there exist a neighbourhood $W \in \tau_C$ of q and functions $g_1, \dots, g_n \in C$, $\sigma: \mathbb{R}^n \rightarrow \mathbb{R}$ of class C^k such that $g|W = \sigma \circ (g_1, \dots, g_n)|W$. It is easy to see that

$$f|W \cap U = \sigma \circ (g_1|A, \dots, g_n|A)|W \cap U.$$

This proves that f is smooth of class C^k on (A, C_A) .

Lemma 2.9. Let $F: (M, C) \rightarrow (N, D)$ be a smooth mapping between differential spaces. If $f: N \rightarrow \mathbb{R}$ is a smooth function of class C^k on (N, D) , then the function $F \circ f$ is smooth of class C^k on (M, C) .

Proof. Let f be a smooth real function of class C^k on (N, D) and $p \in M$ be an arbitrary point. There exist a

neighborhood $V \ni f(p)$ open in τ_D and functions $f_1, \dots, f_n \in D$, $\sigma: \mathbb{R}^n \rightarrow \mathbb{R}$ of class C^k such that

$$f|_U = \sigma \circ (f_1, \dots, f_n)|_U.$$

Then $f \circ F|_U|_{F^{-1}(V)} = \sigma \circ (f_1 \circ F, \dots, f_n \circ F)|_{F^{-1}(V)}$. Since $F^{-1}(V) \ni p$ is open in τ_C and $f_i \circ F \in C$, for $i = 1, \dots, n$, $f \circ F$ is smooth of class C^k on (M, C) .

Lemma 2.10. Let (M, C) be a differential space of constant differential dimension n . Then a 2-form $g: T^2 M \rightarrow \mathbb{R}$ is smooth of class C^k on (M, C) if and only if for any local vector basis $w_1, \dots, w_n \in \mathcal{X}(U)$ on $U \in \tau_C$ the coordinates $g_{ij} = g \circ (w_i, w_j)$, $i, j = 1, \dots, n$, are smooth functions of class C^k on (U, C_U) .

Proof. If $g: T^2 M \rightarrow \mathbb{R}$ is smooth of class C^k on (M, C) then in view of Lemma 2.9 the composition $g \circ (w_i, w_j)$ is smooth of class C^k on (U, C_U) . Conversely, if the coordinates g_{ij} , $i, j = 1, \dots, n$, of g with respect to a local vector basis w_1, \dots, w_n on $U \in \tau_C$, are smooth functions of class C^k on (U, C_U) , then evidently $g|_{\pi_0^{-1}(U)} = \sum_{i,j=1}^n g_{ij} \circ \pi \cdot w_i^* \otimes w_j^*$ is smooth of class C^k on (U, C_U) . There exists an open covering \mathcal{U} of (M, τ_C) such that $g|_{\pi_0^{-1}(V)}$ is smooth of class C^k for any $V \in \mathcal{U}$. This proves that g is smooth of class C^k on (M, C) .

Definition 2.3. Let $F: M \rightarrow N$ be a mapping from a differential space (M, C) into a differential space (N, D) . F is said to be a smooth mapping of class C^k from (M, C) into (N, D) if $F^*(\mathcal{F}^k(N)) \subset \mathcal{F}^k(M)$.

It is easy to see that $f \in \mathcal{F}^k(M)$ iff a mapping $f: M \rightarrow \mathbb{R}$ is smooth mapping of class C^k from (M, C) into $(\mathbb{R}, \varepsilon)$.

It is easy to prove *

Lemma 2.11. Let $F: (M, C) \rightarrow (N, D)$ be a smooth mapping between differential spaces. If $f: N \rightarrow \mathbb{R}$ is smooth of class C^k on (N, D) , then $f \circ F$ is smooth of class C^k on (M, C) . Moreover

F is a smooth mapping of class C^k from (M, C) into (N, D) for $k = 1, 2, \dots$.

Definition 2.4. A vector field X tangent to (M, C) is said to be smooth of class C^k if $X: M \rightarrow TM$ is a smooth mapping of class C^k from (M, C) into (TM, TC) .

Let $\mathcal{X}^r(M)$ be the $\mathcal{F}^r(M)$ -module of all smooth vector fields of class C^r tangent to (M, C) .

One can easily prove

Lemma 2.12. Let (M, C) be a differential space of constant differential dimension n . Then a vector field X tangent to (M, C) is smooth of class C^k on (M, C) if and only if for any local vector basis $w_1, \dots, w_n \in \mathcal{X}(U)$ on $U \in \tau_C$, the coordinates $\varphi_i = w_i \circ (X|U)$, $i=1, \dots, n$, of X are smooth functions of class C^k on (U, C_U) .

Now let $N \subset \mathbb{R}^n$ be a subset. Consider the differential space (N, D) , where $D := (\varepsilon_n)_N$. Denote by $\mathcal{F}^r(N)$ the linear ring of all smooth real functions of class C^r on (N, D) .

Let us put $0^r(N) = \{f \in \mathcal{F}^r(\mathbb{R}^n) : f|N \equiv 0\}$.

Let $p \in N$ be an arbitrary point. Let us consider the following linear subspaces of \mathbb{R}^n :

$$\begin{aligned} N_p^r &:= \{h \in \mathbb{R}^n : f'_h(p) = 0 \text{ for any } f \in 0^r(N)\}, \\ G_p^r &:= \{(\text{grad } f)(p) : f \in 0^r(N)\}. \end{aligned}$$

Proposition 2.13. $G_p^r \oplus N_p^r = \mathbb{R}^n$ and G_p^r is orthogonal to N_p^r with respect to the standard metric on \mathbb{R}^n .

Proof. It is easy to see that

$$N_p^r = \{h \in \mathbb{R}^n : (\text{grad } f)(p) \cdot h = 0 \text{ for any } f \in 0^r(N)\} = G_p^{\perp}.$$

Since the standard metric is non-degenerate, $G_p^r \oplus N_p^r = \mathbb{R}^n$.

Corollary 2.14. The following conditions are equivalent:

- (i) $\dim N_p^r = n$,
- (ii) $f'_h(p) = 0$ for any $f \in 0^r(N)$ and $h \in \mathbb{R}^n$.

Proof. From Proposition 2.13 it follows that $\dim N_p^r = n$

iff $\dim G_p^r = 0$. It is clear that $G_p^r = 0$ iff $(\text{grad}f)(p) = 0$ for any $f \in O^r(N)$. This is equivalent to (ii).

Example 2.1. Let $N = \{(t, t^3) : t \in \mathbb{R}\}$. Of course N is the graph of a C^1 function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $x \mapsto x^3$. From Proposition 2.13 it follows that $\dim N_p^1 = 1$, for any $p \in N$. $N \subset \mathbb{R}^2$ is a subspace such that $\dim N_p^1 = 1 < 2$. Let $\alpha: \mathbb{R}^2 \rightarrow \mathbb{R}$ be the C^1 function defined by

$$\alpha(x, y) = x^3 - y \quad \text{for } (x, y) \in \mathbb{R}^2.$$

It is clear that $\alpha \in O^1(N)$ but $\alpha'_{|2}(p) = -1$, for any $p \in N$.

One can easily prove

Lemma 2.15. Let $p \in N$ be an arbitrary point of a subset $N \subset \mathbb{R}^n$. If $r_1 < r_2$ then $O_p^{r_1}(N) \supset O_p^{r_2}(N)$ and $N_p^{r_1}$ is a linear subspace of $N_p^{r_2}$. Moreover, if $\dim N_p^{r_1} = n$ then $\dim N_p^{r_2} = n$.

Example 2.2. Let N be the graph of C^1 function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is not C^2 at any point. Then $N_p^1 \subset N_p^\infty$, $\dim N_p^1 = 1$ and $\dim N_p^\infty = 2$, for every $p \in N$.

Now we prove

Proposition 2.16. If $\dim N_p^r = k \geq 1$, then there exist an open neighbourhood $U \in \tau_D$ of the point p and a k -dimensional C^r surface $S \subset \mathbb{R}^n$ including U and $\mathcal{F}^r(N)_U = C^r(S)_U$, where $C^r(S) := \mathcal{F}^r(\mathbb{R}^n)_S$. Moreover, the integer $k = \dim N_p^r$ is the smallest dimension of such a C^r surface S .

Proof. Clearly, $\dim G_p^r = n-k$. Let $h_1, \dots, h_{n-k} \in \mathbb{R}^n$ be a vector basis of G_p^r . There exist functions $f_1, \dots, f_n \in O^r(N)$ such that $h_i = (\text{grad}f_i)(p)$, for $i=1, \dots, n-k$. Since

$$\text{rank} \left(\frac{\partial f_i}{\partial x_j}(p) \right)_{\substack{1 \leq i \leq n-k \\ 1 \leq j \leq n}} = n-k, \quad \text{the mapping}$$

$(f_1, \dots, f_{n-k}): \mathbb{R}^n \rightarrow \mathbb{R}^{n-k}$ is regular at p . There exists a

neighbourhood V of p open in top \mathbb{R}^n such that rank $\left(\frac{\partial f_i}{\partial x_j}(q) \right) = n - k$ for $q \in V$. From the implicit function theorem [16] it follows that the set $S := \{q \in V : f_1(q) = \dots = f_{n-k}(q) = 0\}$ is a k -dimensional C^r surface in \mathbb{R}^n . Of course, the set $U = N \cap V$ is open in τ_D and $U \subset S$. It is easy to observe that $\mathcal{F}^r(N)_U = C^r(S)_U$. Since $U \subset S$, $0^r(U) > 0^r(S)$. Thus $U_p^r \subset S_p^r$. It is easy to observe that $\dim U_p^r = \dim N_p^r$ and $\dim S_p^r = \dim S$. Therefore $\dim S \geq \dim N_p^r = k$. This finishes the proof.

Now let $N \subset \mathbb{R}^n$ be a subset such that $\dim N_q^r = n$ for any $q \in N$. From Lemma 2.1 it follows that for any function $\alpha \in \mathcal{F}^r(N)$ and a point $q \in N$ there exist a neighbourhood $V \in \text{top } \mathbb{R}^n$ of q and a smooth function $\beta: \mathbb{R}^n \rightarrow \mathbb{R}$ of class C^r such that $\alpha|V \cap N = \beta|V \cap N$. The function β is said to be a local extension of α at the point q .

From Corollary 2.14 it follows the correctness of the following definition:

Definition 2.5. Let $N \subset \mathbb{R}^n$ be a set such that $\dim N_q^r = n$ for $q \in N$. i -th partial derivative of a smooth function $\alpha \in \mathcal{F}^r(N)$ of class C^r at q , ($r \geq 1$), is defined to be the i -th partial derivative of its local extension β at this point

$$(2.7) \quad \alpha'_{|i}(q) := \beta'_{|i}(q) \quad \text{for } q \in N, \quad i = 1, \dots, n.$$

Now let M be an n -dimensional differential C^∞ manifold and M_0 be a subset of M . If $x = (x^1, \dots, x^n)$ is a chart on $U \in \text{top } M$, then the restriction $x_0 = x|_{U \cap M}$ is said to be a chart on $U_0 = U \cap M \subset M_0$.

Let $C_0 = C^\infty(M)_{M_0}$ be a differential structure on M_0 . Let us assume that for any point $p \in M_0$ there exists a chart $x_0 = x|_{U_0}$, $U_0 \ni p$, such that $\dim x_0(U_0)_q^r = n$, for any $q \in U_0$. Then (M_0, C_0) is said to be of constant C^r dimension n . The chart x_0 allows us to define tangent vectors at $p \in U_0$:

$$(2.8) \quad \frac{\partial}{\partial x_0^i}|_p (\psi) := (\psi \circ x_0^{-1})'_i(x_0(p)) \quad \text{for } \psi \in C_0, \quad i=1, \dots, n.$$

The correctness of (2.8) follows from (2.7).

It is easy to see that the vector fields $\frac{\partial}{\partial x_0^1}, \dots, \frac{\partial}{\partial x_0^n}$ are local vector basis of the $\mathcal{X}(M_0)$ -module $\mathcal{X}(M_0)$ of all smooth vector fields of class C^r tangent to (M_0, C_0) .

Lemma 2.17. Let (M_0, C_0) be a subspace of an n -dimensional C^∞ manifold M . If (M_0, C_0) is of a constant C^r dimension n then (M_0, C_0) has constant differential dimension n .

Proof. Since (M_0, C_0) is a differential subspace of $(M, C^\infty(M))$, $\dim T_p M_0 \leq \dim T_p M = n$ for any $p \in M$.

Let $x = (x^1, \dots, x^n)$ be a chart on an open neighbourhood $U \in \text{top } M$ of a point $p \in M_0$ and let $x_0 = x|_{U \cap M_0}$. It is easy to see that vectors $\frac{\partial}{\partial x_0^1}|_q, \dots, \frac{\partial}{\partial x_0^n}|_q$ defined by (2.8) are linearly independent for every $q \in U_0 = U \cap M_0$. Thus $\frac{\partial}{\partial x_0^1}|_q, \dots, \frac{\partial}{\partial x_0^n}|_q$ is a basis of $T_q M_0$ for $q \in U_0$. Therefore $\frac{\partial}{\partial x_0^1}, \dots, \frac{\partial}{\partial x_0^n}$ is a local vector basis of C_0 -module $\mathcal{X}(M_0)$ on a neighbourhood U_0 of p . This finishes the proof.

Proposition 2.18. Let (M_0, C_0) be a differential subspace of M and let (M_0, C_0) be of constant C^r dimension $n = \dim M$. If g is a C^r ($r \geq 2$) Lorentz metric on M , then $\dot{g} = \iota_{M_0}^* g$ is a C^r Lorentz metric on M_0 , where $\iota_{M_0} : M_0 \rightarrow M$ is the inclusion map.

Proof. It is enough to prove that for every $p \in M_0$ the signature of \dot{g} at p is equal to $(n-1, 1)$. Let $x = (x^1, \dots, x^n)$ be a chart on an open neighbourhood $U \in \text{top } M$ of a point $p \in M_0$ and let $x_0 = x|_{U \cap M_0}$.

It is easy to check the equality

$$(2.9) \quad (\iota_{M_0})_* p \left(\frac{\partial}{\partial x_0^i}|_p \right) = \frac{\partial}{\partial x^i}|_p \quad \text{for } i = 1, \dots, n.$$

From Lemma 2.15 it follows that $\dim T_p M_0 = \dim T_p M = n$, for

any $p \in M_0$. Thus $(\iota_{M_0})_{*p}: T_p M_0 \rightarrow T_p M$ is an isomorphism for $p \in M_0$. Now it is clear that $\dot{g}_p = (\iota_{M_0}^* g)_p$ has the signature $(n-1, n)$ for any $p \in M_0$.

Now for any $r \in \mathbb{N}$ and $p \in M$, let $\tilde{T}_p^r M$ be the set of linear mappings $v: \mathcal{F}^r(M) \rightarrow \mathbb{R}$ satisfying the following condition

$$(2.10) \quad v(\sigma \circ (f_1, \dots, f_n)) = \sum_{i=1}^n \sigma'_{|i}(f_1(p), \dots, f_n(p)) \cdot v(f_i)$$

for $\sigma \in \mathcal{E}_n^r$, $f_1, \dots, f_n \in C$.

Clearly $\tilde{T}_p^r M$ is a linear space over \mathbb{R} . It is easy to see that $\tilde{T}_p^r M$ is a linear subspace of the tangent space $T_p^r M$ to $(M, \mathcal{F}^r(M))$ at the point p . Since $C \subset \mathcal{F}^r(M)$, the mapping $\text{id}: (M, \mathcal{F}^r(M)) \rightarrow (M, C)$ is smooth. Let us put $L_p^r = \text{id}_{*p}|_{\tilde{T}_p^r M}$.

Lemma 2.19. For any $p \in M$ and $r \in \mathbb{N}$, the mapping $L_p^r: \tilde{T}_p^r M \rightarrow T_p^r M$ is a monomorphism. If $\dim \tilde{T}_p^r M = \dim T_p^r M$, then L_p^r is an isomorphism.

Proof. It is easy to see that

$$(2.11) \quad L_p^r(v) = v|_C \quad \text{for any } v \in \tilde{T}_p^r M.$$

We will show that L_p^r is a monomorphism. Let $L_p^r(v) = 0$ for a vector $v \in \tilde{T}_p^r M$. By (2.11) $v|_C = 0$.

We will prove that $v = 0$. Let $f \in \mathcal{F}^r(M)$. There exist a neighbourhood $U \in \tau_C$ of p , $n \in \mathbb{N}$, functions $f_1, \dots, f_n \in C$ and $\sigma \in \mathcal{E}_n^r$ such that

$$f|_U = \sigma \circ (f_1, \dots, f_n)|_U.$$

Hence and from (2.10) we have

$$\begin{aligned} v(f) &= v(\sigma \circ (f_1, \dots, f_n)) = \sum_{i=1}^n \sigma'_{|i}(f_1(p), \dots, f_n(p)) \cdot v(f_i) = \\ &= \sum_{i=1}^n \sigma'_{|i}(f_1(p), \dots, f_n(p)) \cdot 0 = 0. \end{aligned}$$

Therefore $v(f) = 0$ for any $f \in \mathcal{F}^r(M)$. Thus $v = 0$.

Lemma 2.20. If $\dim \tilde{T}_p^r M = \dim T_p^r M = n$, then $\dim \tilde{T}_p^k M = n$ for every $k > r$. Moreover, for $k > r$ the mapping L_p^k is an

isomorphism.

Proof. For $k > r$ we have the smooth mapping $\text{id}: (M, \mathcal{F}^r(M)) \rightarrow (M, \mathcal{F}^k(M))$. Let us notice that $\text{id}_{*p}(\tilde{T}_p^r M) \subset \tilde{T}_p^k M$. In fact, for any $v \in \tilde{T}_p^r M$ vector $\text{id}_{*p}v$ satisfies (2.10).

Let $L_p^{r,k}: \tilde{T}_p^r M \rightarrow \tilde{T}_p^k M$ be the mapping defined by

$$(2.12) \quad L_p^{r,k} = \text{id}_{*p}|_{\tilde{T}_p^r M}.$$

It is evident that $L_p^{r,k}$ is a monomorphism. The following diagram

$$\begin{array}{ccc} & L_p^{r,k} & \\ \tilde{T}_p^r M & \xrightarrow{\quad} & \tilde{T}_p^k M \\ L_p^r \searrow & & \swarrow L_p^k \\ & T_p^M & \end{array}$$

is commutative. Since $L_p^{r,k}$ and L_p^k are monomorphisms, $\dim \tilde{T}_p^r M \leq \dim \tilde{T}_p^k M \leq \dim T_p^M$. Thus $n \leq \dim \tilde{T}_p^k M \leq n$. Hence $\dim \tilde{T}_p^k M = n$.

Now we prove

Lemma 2.21. Let (M, C) be a differential space with the differential structure C generated by C_0 .

Then for any mapping $v_0: C_0 \rightarrow \mathbb{R}$ satisfying the condition

(*) for any $\sigma \in \mathcal{E}_n^r, f_1, \dots, f_n \in C_0, n \in \mathbb{N}$

if $\sigma \circ (f_1, \dots, f_n) = 0$, then

$$\sum_{i=1}^n \sigma'_{|i} (f_1(p), \dots, f_n(p)) \cdot v_0(f_i) = 0,$$

there exists a unique vector $v \in \tilde{T}_p^r M$ such that $v|_{C_0} = v_0$.

Proof. Let $v: \mathcal{F}^r(M) \rightarrow \mathbb{R}$ be the mapping given by

$$(2.13) \quad v(f) = \sum_{i=1}^n \sigma'_{|i} (f_1(p), \dots, f_n(p)) \cdot v_0(f_i)$$

for $f \in \mathcal{F}^r(M)$, where $f_1, \dots, f_n \in C_0$ and $\sigma \in \mathcal{E}_n^r$ are such functions that there is an open neighbourhood $U \in \tau_C$ of p and

$$f|U = \sigma \circ (f_1, \dots, f_f)|U.$$

From (*) it follows the correctness of definition (2.13) and the uniqueness of the vector v satisfying the condition $v|C_0 = v_0$.

Proposition 2.22. Let $N \subset \mathbb{R}^n$ be a subset with the differential structure $D = (\varepsilon_n)_N$. Then for any $p \in N$ the mapping $I_p^r: \tilde{T}_p^r N \longrightarrow N_p^r$ defined by

$$(2.14) \quad I_p^r(v) = (v(\pi_1|N), \dots, v(\pi_n|N)) \quad \text{for } v \in \tilde{T}_p^r N,$$

is an isomorphism of linear spaces.

Proof. First, we prove that I_p^r is a monomorphism. If $I_p^r(v) = 0$ for a vector $v \in \tilde{T}_p^r N$, then $v(\pi_1|N) = \dots = v(\pi_n|N) = 0$. By condition (2.10), for any $\alpha \in \mathcal{F}^r(N)$,

$$v(\alpha) = \sum_{i=1}^n \sigma'_i(p) \cdot v(\pi_i|N) = 0,$$

where $\sigma \in \varepsilon_n^r$ is a function such that there exist a neighbourhood $U \in \tau_D$ of p and $\alpha|U = \sigma \circ (\pi_1|N, \dots, \pi_n|N)|U$. Therefore $v = 0$.

Now we verify that I_p^r is an epimorphism. Let $h \in N_p^r$. It means that $f'_h(p) = 0$ for any $f \in \mathcal{F}^r(\mathbb{R}^n)$ such that $f|N = 0$.

Let $v_{0h}: \{\pi_1|N, \dots, \pi_n|N\} \longrightarrow \mathbb{R}$ be the mapping defined by

$$(2.15) \quad v_{0h}(\pi_i|N) = h_i \quad \text{for } i = 1, \dots, n.$$

It is easy to see that v_{0h} satisfies the condition (*) from Lemma 2.21. Thus, in view of Lemma 2.21, there exists a unique vector $v_h \in \tilde{T}_p^r N$ such that $v_h(\pi_i|N) = h_i$, for $i = 1, \dots, n$, or equivalently $I_p^r(v_h) = h$. This finishes the proof.

Proposition 2.23. Let (M, C) be a differential space of constant differential dimension n . Then for any $k \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, $\mathcal{F}^k(M)$ -module $\mathcal{X}^k(M)$ is an n -dimensional differential module.

Proof. One can prove [15] that for any point $p \in M$ there exist a neighbourhood $U \in \tau_C$ of p , a local vector basis $w_1, \dots, w_n \in \mathcal{X}(U)$ of the $\mathcal{F}(M)$ -module $\mathcal{X}(M)$ and smooth functions $\alpha_1, \dots, \alpha_n \in C_U$ such that $w_i(\alpha_j) = \delta_{ij}$, for $i, j = 1, \dots, n$.

Let $X \in \mathcal{X}^k(M)$ be an arbitrary vector field. Then for any

point $p \in U$, $X(p) = \sum_{i=1}^n \varphi^i(p)W_i(p)$, where $\varphi^i: U \rightarrow \mathbb{R}$, $i = 1, \dots, n$, are unique real functions. Moreover, since $\varphi^i = X \circ d\alpha_i$, for $i = 1, \dots, n$, $\varphi^i \in \mathcal{F}^k(M)$, for $i = 1, \dots, n$. Thus W_1, \dots, W_n is a local vector basis of the $\mathcal{F}^k(M)$ -module $\mathcal{X}^k(M)$.

Now we prove

Lemma 2.24. Let (M, C) be a differential space satisfying the condition: there is an $r \in \mathbb{N}$ such that $\dim T_p^M = \dim \tilde{T}_p^r$ for any $p \in M$. Then for any $X \in \mathcal{X}^k(M)$, $f \in \mathcal{F}^l(M)$, $k, l \in \mathbb{N}$, $k, l \geq r$, the function $Xf : M \rightarrow \mathbb{R}$ defined by

$$(2.16) \quad (Xf)(p) = (L_p^1)^{-1}(X(p))(f) \quad \text{for } p \in M,$$

is a smooth function of class C^s on (M, C) , where $s = \min(k, l-1)$.

Proof. For any point $p \in M$ there exist a neighbourhood $U \in \tau_C$ of p and functions $\sigma \in \mathcal{E}_n^1$, $f_1, \dots, f_n \in C$ such that $f|U = \sigma \circ (f_1, \dots, f_n)|U$. Then

$$(Xf)(p) = (L_p^1)^{-1}(X(p))(f) = \sum_{i=1}^n \sigma'_i \circ (f_1, \dots, f_n)(p) \cdot (Xf_i)(p)$$

for $p \in U$.

Thus $Xf|U = \sum_{i=1}^n \sigma'_i \circ (f_1, \dots, f_n)|U \cdot (Xf_i)|U$. Clearly, $\sigma'_i \circ (f_1, \dots, f_n) \in \mathcal{F}^{l-1}(U)$

and $Xf_i \in \mathcal{F}^k(U)$ for $i = 1, \dots, n$. Hence $Xf|U \in \mathcal{F}^{\min(k, l-1)}(U)$.

Therefore $Xf \in \mathcal{F}^s(M)$.

Definition 2.6. A linear mapping $\tilde{X}: \mathcal{F}(M) \rightarrow \mathcal{F}^k(M)$ satisfying

$$(2.17) \quad \tilde{X}(\alpha\beta) = \tilde{X}\alpha \cdot \beta + \alpha \cdot \tilde{X}\beta \quad \text{for any } \alpha, \beta \in \mathcal{F}(M)$$

is said to be a C^k derivation of $\mathcal{F}(M)$.

Let us denote by $\text{Der}^k(\mathcal{F}(M))$ the $\mathcal{F}^k(M)$ -module of all C^k -derivations of $\mathcal{F}(M)$. For any $X \in \mathcal{X}^k(M)$, the mapping $\partial_X: \mathcal{F}(M) \rightarrow \mathcal{F}^k(M)$ given by

$$(2.18) \quad (\partial_X \alpha)(p) = (X\alpha)(p) \quad \text{for } p \in M, \alpha \in \mathcal{F}(M)$$

is a C^k -derivation of the linear ring $\mathcal{F}(M)$.

Now one can prove

Proposition 2.25. The mapping $\epsilon^k: \mathcal{X}^k(M) \longrightarrow \text{Der}^k(\mathcal{F}(M))$ given by

$$(2.19) \quad \epsilon^k(X) = \partial_X \quad \text{for } X \in \mathcal{X}^k(M)$$

is an isomorphism of $\mathcal{F}^k(M)$ -modules.

Proof. It is clear that ϵ^k is a monomorphism. To prove that ϵ^k is an epimorphism it is enough to notice that for any $\tilde{X} \in \text{Der}^k(\mathcal{F}(M))$ the vector field $X: M \longrightarrow TM$ defined by

$$(2.20) \quad X(p)(\alpha) = (\tilde{X}\alpha)(p) \quad \text{for } \alpha \in \mathcal{F}(M) \text{ and } p \in M,$$

is a vector field from $\mathcal{X}^k(M)$ such that $\epsilon^k(X) = \tilde{X}$.

Definition 2.7. Assume that (M, C) is a differential space satisfying the following condition: there exists $r \in \mathbb{N}$ such that $\dim T_p M = \dim T_p^r M$ for any $p \in M$. For any $X, Y \in \mathcal{X}^k(M)$, $k \geq r$, denote by $[X, Y]: \mathcal{F}(M) \longrightarrow \mathcal{F}^{k-1}(M)$ the mapping defined by

$$(2.21) \quad [X, Y](f) = X(Yf) - Y(Xf) \quad \text{for } f \in \mathcal{F}(M).$$

One can verify that $[X, Y]$ is a C^{k-1} -derivation of $\mathcal{F}(M)$.

From Proposition 2.25 it follows that there exists a unique vector field $[X, Y] \in \mathcal{X}^{k-1}(M)$ such that $\partial_{[X, Y]} = [X, Y]$. The vector field $[X, Y]$ is said to be the Lie bracket of $X, Y \in \mathcal{X}^k(M)$. One can check that ϵ^k defined by (2.19) is an isomorphism of the Lie algebras $(\mathcal{X}^k(M), [\cdot, \cdot])$ and $(\text{Der}^k(\mathcal{F}(M)), [\cdot, \cdot])$.

Now for any n -form $\omega: T^n M \longrightarrow \mathbb{R}$ of class C^k on (M, C) and for $l = 0, 1, 2, \dots$, let $\tilde{\omega}: \mathcal{X}^l(M) \times \dots \times \mathcal{X}^l(M) \longrightarrow \mathcal{F}^s(M)$ be the $\mathcal{F}^l(M)$ -module-linear mapping given by

$$(2.22) \quad \tilde{\omega}(x_1, \dots, x_n) = \omega \circ (x_1, \dots, x_n)$$

for $x_1, \dots, x_n \in \mathcal{X}^l(M)$, where $s = \min(k, l)$.

It can be proved

Lemma 2.26. Let (M, C) be a differential space of constant differential dimension and g a semi-Riemannian metric on (M, C) of class C^r , $r = 0, 1, 2, \dots$. Then for any $\mathcal{F}^k(M)$ -linear mapping $\varphi: \mathcal{X}^1(M) \rightarrow \mathcal{F}^k(M)$, $k = 0, 1, 2, \dots$, there exists a unique vector field $A \in \mathcal{X}^s(M)$, $s = \min(k, r)$, such that

$$(2.23) \quad \varphi(Z) = \tilde{g}(A, Z) \quad \text{for any } Z \in \mathcal{X}^1(M), \quad l = 1, 2, \dots$$

Proposition 2.27. Let (M, C) be a differential space satisfying the condition: $\dim T_p M = \dim \tilde{T}_p^1 M$ for any $p \in M$.

Then for any semi-Riemannian metric $g: T^2 M \rightarrow \mathbb{R}$ of class C^r there exists a unique covariant derivative of class C^r [15] such that

$$(2.24) \quad Z\tilde{g}(X, Y) = \tilde{g}(\nabla_Z X, Y) + \tilde{g}(X, \nabla_Z Y),$$

$$(2.25) \quad \nabla_X Y = \nabla_Y X + [X, Y],$$

for any $X, Y, Z \in \mathcal{X}^1(M)$.

Proof. For any $X, Y \in \mathcal{X}^1(M)$ let $\varphi_{X, Y}: \mathcal{X}^1(M) \rightarrow \mathcal{X}^0(M)$ be $\mathcal{F}^0(M)$ -linear mapping given by

$$(2.26) \quad \varphi_{X, Y}(Z) = \frac{1}{2} [\partial_X \tilde{g}(Y, Z) + \partial_Y \tilde{g}(Z, X) - \partial_Z \tilde{g}(X, Y) + \tilde{g}([X, Y], Z) + \tilde{g}([Z, X], Y) - \tilde{g}([Y, Z], X)],$$

for $Z \in \mathcal{X}^1(M)$.

From Lemma 2.26 it follows that for any $\varphi_{X, Y}$, $X, Y \in \mathcal{X}^1(M)$, there exists a unique vector field $\nabla_X Y \in \mathcal{X}^0(M)$ such that

$$\varphi_{X, Y}(Z) = \tilde{g}(\nabla_X Y, Z) \quad \text{for any } Z \in \mathcal{X}^1(M).$$

Let $\nabla: \mathcal{X}^1(M) \times \mathcal{X}^1(M) \rightarrow \mathcal{X}^0(M)$ be the mapping defined by

$$(2.27) \quad \nabla(X, Y) = \nabla_X Y \quad \text{for any } X, Y \in \mathcal{X}^1(M).$$

It can be proved, in the standard way, that ∇ is a covariant derivative of class C^r [7] i.e. for any $X, Y \in \mathcal{X}^{r+1}(M)$,

$$v_X^Y \in \mathcal{X}^r(M).$$

3. Singularities of the fundamental differential space

Definition 3.1. A pair $((\bar{M}, \bar{C}), (M, \bar{C}_M))$ is said to be the fundamental differential space (shortly F-d-space), if (\bar{M}, \bar{C}) is a differential space and M a subset of \bar{M} dense in $(\bar{M}, \tau_{\bar{C}})$ such that (M, \bar{C}_M) is an n -dimensional C^∞ manifold.

The set $\partial M = \bar{M} - M$ is called the boundary of the F-d-space $((\bar{M}, \bar{C}), (M, \bar{C}_M))$.

If $((\bar{M}, \bar{C}), (M, \bar{C}_M))$ and $((\bar{N}, \bar{D}), (N, \bar{D}_N))$ are fundamental differential spaces, then

$((\bar{M} \times \bar{N}, \bar{C} \times \bar{D}), (M \times N, (\bar{C} \times \bar{D})_{M \times N}))$ is a fundamental differential space with the boundary $\partial(M \times N) = \partial M \times \bar{N} \cup \bar{M} \times \partial N$.

Definition 3.2. A boundary point $p \in \partial M$ is called regular if there exists a neighbourhood $U \in \tau_{\bar{C}}$ of p such that the differential subspace (U, \bar{C}_U) has constant differential dimension n . A boundary point $p \in \partial M$ is called singular if p is not regular. A boundary point $p \in \partial M$ is said to be of class D_0 (shortly D_0 -point) if there exists a neighborhood $U \in \tau_{\bar{C}}$ of p such that (U, \bar{C}_U) is a differential space of class D_0 . A boundary point $p \in \partial M$ is called a non- D_0 -point if p is not of class D_0 .

Now we can present the following diagram:

$p \in \partial M$ boundary point			
p regular point	p singular point		
p D_0 -regular point	p D_0 -regular point	p D_0 -singular point	p D_0 -singular point

Example 3.1. Let $\bar{M} = \{(x, y) \in \mathbb{R}^2 : x \geq 0 \wedge y \geq 0\}$ and $\bar{C} = (\varepsilon_2)_{\bar{M}}$. The boundary points $\partial M = \{(x, y) \in \bar{M} : x=0 \vee y=0\}$ are D_0 -regular.

Example 3.2. Let \bar{C} be the differential structure on $\bar{M} = \mathbb{R}^2$ generated by the set $\{\pi_1, \pi_2, f\}$, where $\pi_1: \mathbb{R}^2 \rightarrow \mathbb{R}$, $\pi_2: \mathbb{R}^2 \rightarrow \mathbb{R}$ are the natural projections and $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ is the function defined by

$$f(x, y) = \sqrt{x^2 + y^2} \quad \text{for } (x, y) \in \mathbb{R}^2.$$

Let $M := \mathbb{R}^2 \setminus \{(0, 0)\}$. It is easy to observe that $((\bar{M}, \bar{C}), (M, \bar{C}_M))$ is a fundamental differential space and $\partial M = \{(0, 0)\}$. The point $(0, 0)$ is a D_0 -singular point. It is clear that $\dim T_{(0, 0)}(\bar{M}, \bar{C}) = 3$ and $\dim T_p(\bar{M}, \bar{C}) = 2$ for $p \neq (0, 0)$.

Example 3.3. Let \bar{C} be the differential structure on $\bar{M} = \mathbb{R}^2$ generated by the set $\{\pi_1, \pi_2\} \cup \{f_n: n \in \mathbb{N}\}$, where $f_n: \mathbb{R}^2 \rightarrow \mathbb{R}$ for $n \in \mathbb{N}$ is the function given by

$$f_n(x, y) = \sqrt[n]{x^2 + y^2} \quad \text{for } (x, y) \in \mathbb{R}^2.$$

One can see that $((\bar{M}, \bar{C}), (M, \bar{C}_M))$, where $M = \mathbb{R}^2 \setminus \{(0, 0)\}$ is a fundamental differential space with the boundary $\partial M = \{(0, 0)\}$. The point $(0, 0)$ is non- D_0 -singular.

Example 3.4. Let $N = \{\frac{1}{n} \in \mathbb{R}: n \in \mathbb{N}\} \cup \{0\}$. Let D be the differential structure on N generated by the set $\{\text{id}_N\} \cup \{f_n: n \in \mathbb{N}\}$, where $f_n: N \rightarrow \mathbb{R}$ for $n \in \mathbb{N}$, is defined by

$$f_n(x, y) = \sqrt[n]{x} \quad \text{for } x \in N.$$

It is easy to see that $\dim T_x(N, D) = 0$ for $x \in N$. Let us take the Cartesian product $(\bar{M}, \bar{C}) = (N \times \mathbb{R}^2, D \times \varepsilon_2)$ and let $M = \left\{ \frac{1}{n} \in \mathbb{R}: n \in \mathbb{N} \right\} \times \mathbb{R}^2$. Evidently $((\bar{M}, \bar{C}), (M, \bar{C}_M))$ is a fundamental differential space. (\bar{M}, \bar{C}) is a differential space of constant differential dimension 2. The boundary points are non- D_0 -regular.

Definition 3.3. The pair $((\bar{M}, \bar{C}), (M, g))$ is said to be the C^k differential space-time if $((\bar{M}, \bar{C}), (M, \bar{C}_M))$ is a fundamental

differential space and (M, g) is a dense n -dimensional C^k Lorentz submanifold. The set $\partial M = \bar{M} - M$ is called the boundary of the C^k differential space-time. The C^k Lorentz metric g is said to be extendible on the boundary ∂M if there exists a C^k Lorentz metric \bar{g} on (\bar{M}, \bar{C}) such that $g = \iota_M^* \bar{g}$, where $\iota_M: M \rightarrow \bar{M}$ is the inclusion mapping.

Example 3.5. Let us consider the set $\bar{M} = \{(x, y, z) \in \mathbb{R}^3 : x = 0 \vee y = 0\}$. Let \bar{C} be the differential structure on \bar{M} induced from the Euclidean differential space $(\mathbb{R}^3, \epsilon_3)$. Then $\bar{g} = d\pi_1^2 + d\pi_2^2 - d\pi_3^2$ is an extension of the Lorentz metric from the space-time (M, g) , which is the disjoint union of 2-dimensional Minkowski space-times $(\{(x, y, z) \in \bar{M} : y \neq 0\}, d\pi_2^2 - d\pi_3^2)$ and $(\{(x, y, z) \in \bar{M} : x \neq 0\}, d\pi_1^2 - d\pi_3^2)$. The set of all points of the axis OZ is the boundary of the C^∞ differential space-time $((\bar{M}, \bar{C}), (M, g))$.

Definition 3.4. Let $((\bar{M}, \bar{C}), (M, g))$ be a C^k -differential space-time. A boundary point $p \in \partial M$ is said to be C^k -metric if there exist a neighbourhood $U \in \tau_{\bar{C}}$ of p and C^k Lorentz metric \bar{g} on (U, \bar{C}_U) such that $\iota_{U \cap M}^* \bar{g} = g_{U \cap M}$, where $\iota_{U \cap M}: U \cap M \rightarrow \bar{M}$ is the inclusion mapping. A boundary point $p \in \partial M$ is said to be C^k -metric D_0 -regular if p is D_0 -regular and C^k -metric.

Now we can present the following classification of C^k -metric boundary points.

p C^k -metric point			
p C^k -metric regular point		p C^k -metric singular point	
p C^k -metric D_0 -regular point	p C^k -metric non- D_0 -regular point	p C^k -metric singular point	p C^k -metric non- D_0 singular point

Proposition 3.1. Let $((\bar{M}, \bar{C}), (M, g))$ be a C^k differential space-time. If a point $p \in \partial M$ is C^k -metric and $k \geq 2$, then there exist a neighbourhood $V \in \tau_{\bar{C}}$ of p and the integer $m \in \mathbb{N}$ such that

$$\dim T_q(\bar{M}, \bar{C}) \leq m \text{ for } q \in V.$$

Proof. From Corollary 2.4 it follows that there exist an open neighbourhood $V \in \tau_{\bar{C}}$ of p and a mapping $F: (V, \bar{C}_V) \rightarrow (\mathbb{R}^m, \epsilon_m)$ such that F_{*q} is injective for $q \in V$. Now it is evident that

$$\dim T_q(\bar{M}, \bar{C}) = \dim T_q(V, \bar{C}_V) \leq m \quad \text{for any } q \in V.$$

Example 3.6. Let \mathbb{R}^N be the set of all real sequences. Denote by π_i , for $i \in \mathbb{N}$, the projection of \mathbb{R}^N onto the i -th coordinate given by

$$\pi_i(x) = x_i \quad \text{for } x = (x_i) \in \mathbb{R}^N.$$

Let ϵ_N be the differential structure on \mathbb{R}^N generated by the set $\{\pi_i: i \in \mathbb{N}\}$ [15]. Let us put

$$M_i = \{x \in \mathbb{R}^N: x_j = 0 \text{ for } j \neq i\}, \quad i \in \mathbb{N}.$$

Let $\bar{M} := \bigcup_{i \in \mathbb{N}} M_i$ and $\bar{C} := (\epsilon_N)_{\bar{M}}$, $M = \bar{M} \setminus \{0\}$. It is easy to see that $((\bar{M}, \bar{C}), (M, \bar{C}_M))$ is a fundamental differential space such that $\dim T_0 \bar{M} = \infty$ and $\dim T_x \bar{M} = 1$, for $x \neq 0$. There is no non-degenerate 2-form of class C^k ($k \geq 2$) in a neighbourhood of the singular point $0 = (0) \in \mathbb{R}^N$, because $\dim T_0(\bar{M}, \bar{C}) = \infty$.

Proposition 3.2. Let (M, C) and (N, D) be differential spaces. If $g: T^2 M \rightarrow \mathbb{R}$ a C^k Lorentz metric on (M, C) , $h: T^2 N \rightarrow \mathbb{R}$ is a C^k Riemannian metric on (N, D) and $f: M \rightarrow (0, +\infty)$ is a smooth function of class C^k on (N, D) , then the 2-form $\bar{g}: T^2(M \times N) \rightarrow \mathbb{R}$ defined by

$$(3.1) \quad \begin{aligned} \bar{g}(w_1, w_2) &= (pr_1^* g)(w_1, w_2) + f(pr_1(\pi(w_1))) \cdot \\ &\quad \cdot (pr_2^* h)(w_1, w_2) \quad \text{for } (w_1, w_2) \in T^2(M \times N), \end{aligned}$$

is a C^k Lorentz metric on $(M \times N, C \times D)$, where $\pi: T(M \times N) \rightarrow M \times N$ is the natural projection.

Proof. Let $(p, q) \in M \times N$ be an arbitrary point. Let $v_1, \dots, v_m \in T_p M$ be a vector basis of $T_p M$ such that

$(g(v_i, v_j)) = \begin{pmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & -1 \end{pmatrix}$ and let $u_1, \dots, u_n \in T_q^N$ be a vector basis of T_q^N such that $(h(u_i, u_j)) = \begin{pmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix}$. It is easy to see that

$$w_1 = (j_q)_* p v_1, \dots, w_m = (j_q)_* p v_m,$$

$$w_{m+1} = (j_p)_* q u_1, \dots, w_{m+n} = (j_p)_* q u_n$$

is a vector basis of $T_{(p, q)}(M \times N)$ such that

$$\begin{aligned} (\bar{g}(w_i, w_j)) &= \begin{pmatrix} (g(v_i, v_j)) & & & & 0 \\ & \ddots & & & \\ & & \ddots & & \\ 0 & & & \ddots & f(p) (h(u_i, u_j)) \end{pmatrix} = \\ &= \begin{pmatrix} 1 & & & & 0 \\ & \ddots & & & \\ & & -1 & & \\ & & & f(p) & \\ 0 & & & & \ddots f(p) \end{pmatrix}. \end{aligned}$$

Now it is obvious that \bar{g} is the C^k Lorentz metric on $(M \times N, CxD)$. Analogously one can prove

Proposition 3.3. Let (M, C) and (N, D) be differential spaces. If $g: T^2 M \rightarrow \mathbb{R}$ is a C^k Riemannian metric on (M, C) , $h: T^2 N \rightarrow \mathbb{R}$ is a C^k Lorentz metric on (N, D) and $f: M \rightarrow (0, +\infty)$ is a smooth function of class C^k on (M, C) then the 2-form $\bar{g}: T^2(M \times N) \rightarrow \mathbb{R}$ defined by

$$(3.2) \quad \bar{g}(w_1, w_2) = (pr_1^* g)(w_1, w_2) + f(pr_1(\pi(w_1)))(pr_2^* h)(w_1, w_2)$$

for $(w_1, w_2) \in T^2(M \times N)$, is a C^k Lorentz metric on $(M \times N, CxD)$.

Example 3.7. Let $g = \iota_M^* \eta$ be the metric on the submanifold M from Example 3.1, where η is the Minkowski metric on $(\mathbb{R}^2, \epsilon_2)$. The metric $\bar{g} = \iota_{\bar{M}}^* \eta$ is an extension of g onto \bar{M} . All

points of the boundary ∂M are D_0 - C^k -metric regular.

Example 3.8. Let $(\bar{M}, \bar{C}) = (N \times \mathbb{R}^2, D \times \varepsilon_2)$ be the differential space from Example 3.4. Let η be the Minkowski metric on $(\mathbb{R}^2, \varepsilon_2)$. It is easy to observe that $\bar{g} = \text{pr}_2^* \eta$ is a Lorentz metric on (\bar{M}, \bar{C}) , where $\text{pr}_2: N \times \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is the projection. Thus the boundary point $(0, 0, 0)$ is non- D_0 C^k -metric regular.

Example 3.9. The points of the axis OZ from Example 3.5 are D_0 - C^k -metric singular.

Example 3.10. Let (N, D) be the differential space from Example 3.4 and (\bar{M}, \bar{C}) be the differential space from Example 3.5. The then 2-form $\text{pr}_1^* \bar{g} = \text{pr}_1^* (d\pi_1^2 + d\pi_2^2 - d\pi_3^2)$ is a Lorentz metric on $(\bar{M} \times N, \bar{C} \times D)$. The pair $((\bar{M} \times N, \bar{C} \times D), (\bar{M} \times N_0, \text{pr}_1^* g))$ is a differential space-time, where $N_0 := \{\frac{1}{n} \in \mathbb{R} : n \in \mathbb{N}\}$. All points of the boundary are non- D_0 - C^k -metric singular.

From Proposition 1.5 it follows

Corollary 3.4. Let $((\bar{M}, \bar{C}), (M, \bar{C}_M))$ and $((\bar{N}, \bar{D}), (N, \bar{D}_N))$ be fundamental differential spaces. Then a boundary point $(p, q) \in \partial(M \times N)$ of the Cartesian product $((\bar{M} \times \bar{N}, \bar{C} \times \bar{D}), (M \times N, \bar{C} \times \bar{D}_{M \times N}))$ is regular if and only if p and q are regular. A boundary point $(p, q) \in \partial(M \times N)$ is singular iff $p \in \partial M$ is singular or $q \in \partial N$ is singular.

From Proposition 1.7 it follows

Corollary 3.5. Let $((\bar{M}, \bar{C}), (M, \bar{C}_M))$ and $((\bar{N}, \bar{D}), (N, \bar{D}_N))$ be fundamental differential spaces. Then a boundary point $(p, q) \in \partial(M \times N)$ is a D_0 point if and only if p and q are D_0 points.

Acknowledgement: I express my gratitude towards Prof. Michał Heller and Prof. Zbigniew Zekanowski for inspiring discussions.

REFERENCES

- [1] C.J.S. Clarke: The classification of singularities, GRG Vol.6, No 1 (1975), 35 - 40.
- [2] C.T.J. Dodson: Space-time edge geometry, International Journal of Theoretical Physics, Vol.17, No 6 (1978), 389 - 504.
- [3] C.F.R. Ellis, B.G. Schmidt: Singular space-times, GRG Vol. 8, No 11 (1977), 915 - 953.
- [4] J.M. Gelfand: Wykłady z algebry liniowej, Warszawa 1971.
- [5] D. Gromol, W. Klingerberg, W. Meyer: Riemannsche Geometrie im Grossen, Springer-Verlag Berlin 1968.
- [6] J. Gruszczak, M. Heller, P. Mularzyński: A generalization of manifolds as space-time models, J. Math. Phys. 29 (1988), 2576 - 2580.
- [7] S.W. Hawking, G.F.R. Ellis: The Large-Scale structure of space-time, Cambridge U.P. 1973.
- [8] M. Heller, W. Sasin: Regular singularities in space-time, Acta Cosmol. 17 (1990), 7-18.
- [9] A. Kowalczyk, J. Kubarski: A local property of the subspaces of Euclidean spaces, Demonstratio Math. 11 (1978), 875 - 885.
- [10] A. Kowalczyk: Tangent differential spaces and smooth forms, Demonstratio Math. 13 (1980), 893 - 905.
- [11] W. Sasin: On some exterior algebra of the differential forms over a differential space, Demonstratio Math. 19 (1986), 1063 - 1075.
- [12] W. Sasin, Z. Zekanowski: On locally finitely generated differential space, Demonstratio Math. 20 (1987), 477-487.
- [13] R. Sikorski: Abstract covariant derivative, Colloq. Math. 18 (1967), 251 - 272.
- [14] R. Sikorski: Differential modules, Colloq. Math. 24 (1971), 45 - 70.
- [15] R. Sikorski: Wstęp do geometrii różniczkowej, Warszawa 1972.
- [16] R. Sikorski: Rachunek różniczkowy i całkowy, Warszawa 1969.
- [17] P. Walczak: A theorem on diffeomorphism in the category of differential spaces, Bull. Acad. Poln. Sci., Ser. Sci. Math. 21 (1973), 325 - 329.
- [18] W. Waliszewski: On a coregular division of a differential space by an equivalence relation, Colloq. Math. 26 (1972), 281-291.

[19] W. Waliszewski: Regular and coregular mappings of differential spaces, Ann. Polon. Math. 30 (1975), 263-281.

INSTITUTE OF MATHEMATICS, WARSAW UNIVERSITY OF TECHNOLOGY,
PLAC POLITECHNIKI 1, 00-661 WARSZAWA, POLAND.

Received May 9, 1991.