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DIFFERENTIAL SPACES AND SINGULARITIES 
IN DIFFERENTIAL SPACE-TIMES 

In this paper we investigate singularities of space-time 
using of the theory differential spaces in the sense of 
Sikorski [12], [13], [14]. If space-time is modeled by a 
differential space rather than by a differential manifold, 
space-time singularities can be regarded as points of the 
differential space in question. The theory of differential 
spaces opens some possibilities to classify singularities of 
space-times [1], [3]. In Section 3 we present such a 
classification. The differential space methods turns out to be 
a very efficient tool in dealing with the classical 
singularity problems [3], [6]. 

In Section 1 we recall necessary definitions and theorems 
from the theory of differential spaces. In Section 2 we 

v 
describe some properties of functions and forms of class C on 
a differential space, which are very important in the next 
sections. 

1. Preliminaries 

Let M be a non-empty set and C a set of real functions 
defined on M. Denote by x c the weakest topology on M in which 
all functions from C are continuous. Let scC be the set of all 
real functions on M of the form u«(f ,...,f ), where w e e n, 

f1,...,fn e C, n 6 H and e n is the set of all real C00 

functions on Rn. For any subset A c M we denote by C the set 
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of all real functions f on A such that for any point p of A 
there exist in z^ an open neighborhood U e t c of p and 

a function g e C such that f | A n U = g | A r \ U . 

The set C is called the differential structure on M iff 
C = scC = C„. Then the pair (M,C) is said to be the 11 
differential space [14], [15]. It is easy to see that C is a 
linear ring over R. 

A differential structure C on M is said to be generated by 
a set Cg of real functions on M if C = (scCQ)M. A differential 
space (M, C) is said to be finitely generated by a set 
CQ = {f l f...,f n> if C = (scCQ)M. If (M,C) is a differential 
space and A is an arbitrary non-empty subset of M, then (A,CA) 
is also a differential space, which is called a differential 
subspace of (M,C). 

Let (M,C) and (N,D) be differential spaces. A mapping 
F: M » N is said to be a smooth mapping of (M,C) into (N,D) 
if foF e c for any f e D. Then we write F: (M,C) > (N,D) 
[15]. 

We define the notion of a tangent vector to a differential 
space (M,C) at a point p e M as a linear mapping v: C • R 
satisfying the following condition: 

v(f-g) = f(p)v(g) + g(p)-v(f) for any f,g e C. 
The set of all tangent vectors to (M,C) at a point p e M we 
denote by Tp(M,C) (shortly T pM) and call the tangent space to 
(M,C) at p. 

If F: (M,C) > (N,D) is a smooth mapping between 
differential spaces then for each point p e M the mapping 
F.p : V — » T f (p)N defined by 

(F.pV)(f) = v(f»F) for any f e D and v e T pM, 

is a linear mapping. 
Let TM := U T M be a disjoint sum of tangent spaces to 

peM p 

(M,C). By TC we denote the differential structure on TM [10] 
generated by the set {f °n : feC} u {df: f eC}, where 
n: TM > M is defined by the formula 
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tt(v) = p for any v € T p M and p e M, 

and df: TM » R is the function defined by 

(df)(v) = v(f) for v e TM. 

A smooth vector field tangent to (M,C) is a mapping 

X: (M,C) > (TM,TC) such that iz « X = id M > Denote by X(M) the 

C-module of all smooth vector fields tangent to (M,C). 

A differential space (M,C) is said to be of constant 

differential dimension n if for any p e M there exist a 

neighborhood U e t c of p and smooth vector fields 

X l f . . . , X n e OC(U) such that for any q e U the sequence 

X^(q),..., x
n(l) is a vector basis of Tg(M,C) and X 1 # . . . , X n is 

a Cy-basis of Cy-module X(U). 

Now let us put [1] 

T r M = |(v 1,...,v r) e TMx . . . xTM: n(v 1) = . . .=7r(vr) | 

as well as 

T r C = (TCx...xTC) for r = 1,2,... . 
T M 

r • Let ti^: T M > TM, for l = 1,.. . ,r be the mapping defined by 

"¿(Vj^,... ,vr) = w L for (v1,...,vr) e T rM. 

A function w: T r M » IR is said to be the r-form on (M,C) if 

the mapping <Jp := u|T pMx. .. xT^M is r-linear for any p e M. 

An r-form w is called smooth if u e T rC. 

For any mapping F: (M,C) > (N,D) and a smooth r-form u 

on (N,D) F u is the smooth r-form defined by 

(F*(j) (v l f... ,vr) = (JiF^, ... ,F.vr) for any 

(v 1,...,v r) e T rM. 

Now we recall some properties of the Cartesian product of 

differential spaces. 

Let (M,C) and (N,D) be differential spaces. Let C x D be 

the differential structure on M x N generated by the set of 

real functions {aopr^: a eC} u {/3°pr2: 0 e D}, where 

pr.: M x N > M and pr_: M x N > N are the projections. 
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The differential space (MxN , CxD) is called the Cartesian 
product of differential spaces (MfC) and (N,D) [15]. 

For an arbitrary point p e M let j : N — » MxN be the 
imbedding given by 

(1.1) jp(q) = (p,q) for q e N. 

For an arbitrary point q e N let j : M » MxN be the 
imbedding defined by 

(1.2) j (p) = (p,q) for p e M. 
A vector w e T^ (MxN) is said to be parallel to (M,C) 

if (pr2)#w = 0 . A vector w € T(p q) ( M x N ) i- s said to be 
parallel to (N,D) if (prx),w = 0. 

It is easy to see that the subspace (j ). (T M) is the set 
of all vectors tangent to (MxN , CxD) at (p,q) parallel to 
(M,C) and the subspace (j (T N) is the set of all vectors 
tangent to (MxN , CxD) at (p,q) parallel to (N,D) . One can 
prove [15], that the tangent space ^(MxN) is a direct sum 

of the subspaces (j ) (T M) and (jp).q(TgN). 

It is easy to prove 
Lemma 1.1. Let w^, w 2 be vectors parallel to (M,C) and z , 

z 2 be vectors parallel to (N,D). Then 

(a) = w 2 iff (pr1).w1 = (pr1).w2, 

(b) z 1 = z 2 iff (pr2).w1 = (pr2).w2. 

A vector field Z e X(MxN) is said to be parallel to (M,C) 
if Z(p,q) is parallel to (M,C) for every (p,q) e MxN. We 
denote by XM(MxN) the set of all smooth vector fields tangent 
to (MxN , CxD) ,XM(MXN) is a CxD-submodule of the CxD-module 
X (MxN) . 

A vector field Z e X(MxN) is said to be parallel to (M,C) 
if Z(p,q) is parallel to (M,C) for every (p,q) e MxN. We 
denote by XM(MxN) the set of all smooth vector fields tangent 
to (MxN , CxD) which are parallel to (M,C). It is clear that 
XM(MXN) is a CxD-submodule of the CxD-module X(MxN). 

A vector Z € X(MxN) is said to be parallel to (N,D) if 
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Z(p,q) is parallel to (N,D) for every (p,q) e MxN. We denote 
by In(MxN) the set of all smooth vector fields tangent to 
(MxN , CxD) which are parallel to (N,D). It is clear that 
JN(MXN) is a CxD-submodule of the CxD-module X(MxN). 

Now let X e X (M) be a smooth vector field tangent to 
(M,C). Let X: MxN > T(MxN) be defined by 

(1.3) X(p,q) = (jg).pX(p) for (p,q) € MxN. 

It is easy to verify that X e XM(MxN). 
Analogously, for any Y e X(N) we can define the vector field 
Y e X(MxN) parallel to (N,D) by the formula 
(1.4) Y(p,q) = (jp).q Y(q) for (p,q) e MxN. 

Now, let Z e X(MxN) be an arbitrary vector field tangent 
to (MxN , CxD) . 

Let us define [15] 

(1-5) z
M(P'<2) " ^q°P ri).(p,q) Z(P'^) f o r « MxN, 

(1-6) ZN(P,q) = Op«Pr 2). ( p jZ(p,q) for (p,q) e MxN. 

It is easy to see that Z M e XM(MxN) and ZN e XN(MxN) . 
Moreover, Z = Z„ + Z„. 

M N 
One can prove [15]. 
Proposition 1.2. The CxD-module X(MxN) is a direct sum of 

CxD-modules XM(MxN) and XN(MxN). 
Now let X € XM(MxN) . For any q e N let Xg: M > TM be 

defined by 

(1-7) Xq(p) = (Pr1).(p q)X(p,q) for p € M. 

It is easy to see that Xq e X(M) for every q e N. 
Analogously, for Y e XN(MxN) and p e M let Yp: N > TN be 
defined by 

(1-8) YP(q) = (pr 2 ) . ( p > q ) x(p,q) for q e N. 

One can easily prove that Y p € X(N) for every p e M. 
Now we prove 
Lemma 1.3. Let (M,C) and (N,D) be differential spaces. 



606 W. Sasin 

(M,C) is a differential space of differential dimension m if 
and only if the CxD-module XM(MxN) is an m-dimensional 
differential module. (N,D) has a differential dimension n if 
and only if the CxD-module XN(MxN) is an n-dimensional 
differential module. 

Proof. (—») Assume that (M,C) has a differential dimension 
m. Let (p,q) be an arbitrary point of MxN. Let V e r c be an 
open neighbourhood of p such that on V there is a local vector 
basis X1# ,Xm e X(V) of the C-module X(M) . One can verify 
[15] that the sequence X1,...,X e X(UxN) of vector fields 
defined by (1.3) is a local vector basis of CxD-module XM(MxN) 
on UxN <= t C x D. 

(«=) Assume that X„(MxN) is an n-dimensional differential M 
module. XM(MxN) is a CxD-module of $-fields, where 
*(P,q) = (jq).p(TpM) for (p,q) € MxN. 
Since (j ) : T^M > ®(P/q) is an isomporphism for every 
(pfq) e MxN, dim TpM = dim $(p,q) = n for any p e M. It is 

enough to show that for an arbitrary vector u e TM there exist 
a vector field X e X(M) such that u = X(7iM(u)), where 
7iM: TM > M is the projection. Indeed, for the vector 
u = (ja)»n

u e $(p,q) , where u e T M, there exists a vector "l r P 
field Z e XM(MxN) such that u = Z(p,q). Hence we have 

or equivalently 

u = Zq(p), where Z q e X(M) is defined by (1.7). 

The second part of Lemma 1.3 can be proved analogously. 

Lemma 1.4. Let (M,C) and (N,D) be differential spaces. 
Then, dim ^(MxN) is constant for any (p,q) e MxN if and 

only if dim T M is constant for any p e M and dim T N is P q 
constant for any q e N. 

Proof. This Lemma is a simple consequence of the equality 

dim T. . (MxN) = dim T M + dim T N for any (p,q) € MxN. (p»q) P q 
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Now we prove 
Proposition 1.5. Let (M,C) and (N,D) be differential 

spaces. The Cartesian product (MxN , CxD) is a differential 
space of constant differential dimension if and only if (M,C) 
and (N,D) are differential spaces of constant differential 
dimension. 

Proof. Assume that the Cartesian product (MxN , CxD) 
is a differential space of constant differential dimension. 
Assume that dim T M = m and dim T N = n for certain points 

po qo 
pQ € M and q Q e N. In view of Lemma 1.4, dim TpM = m for any 
p e M and dim T^N = n for any q e N. It is enough to prove 
that every vector tangent to (M,C) or (N,D) is extendible to a 
smooth vector field tangent to (M,C) or (N,D), respectively. 

Let u e TpM for a point p e M. Then 
u = (j ). u e T, . MxN) is a vector parallel to (M.C). Since 

q *P ( P , q ) 

(MxN , CxD) has constant differential dimension there exist a 
vector field Z e X(MxN) such that u = Z(p,q). It is easy to 
see that Z M defined by (1.5) is a smooth tangent vector field 
parallel to (M,C) such that u = ZM(p,q) . Hence we have the 
equality 

(Pri>.(P/q) G = <Pri>.(P,q)ZM(P'q) 

or equivalently 
u = (ZM)g(p). 

Thus u is extendible to (ZM)q e X(M) . 

Let (M,C) and (N,D) be differential spaces of 
differential dimension m and n, respectively. Let (p,q) be an 
arbitrary point of MxN. Let e ^(U) b e a local vector 
basis of DC (M) on a neighborhood U e r c of p and 

e be a local vector basis of 3C(N) on a 
neighborhood V e of q. It is easy to see [15] that the 

sequence X ,...,Xm,Y^...,Yn of vector fields defined by 
(1.3) - (1.4) is a local vector basis of the CxD-module I(MxN) 
on a neighborhood UxV of (p,q). This finishes the proof. 
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Proposition 1.6. Let X e XM(NxN) and Y e. XN(MxN) . Let 
c: (-c,e) —» MxN be a smooth mapping such that c(0) = (p,g) , 
where e > 0. Let us put c^ = p ^ • c and c 2 = pr2 ° c. 

The mapping c is an integral curve of X if and only if c.̂  is 

an integral curve of X*' and c2(t) = q for any t e (-e,e). 

The mapping c is an integral curve of Y if and only if c 2 is 

an integral curve of Y^ and c ^ t ) = p for any t e (-e,e). 

Proof. (=*) Let c be an integral curve of X. Then 

(1-9) c.t "Hilt " x ( c ( t ) ) 

for any t e (-e,e) . Hence 

<Prl>.c(t) K t d i l t ) = ( P r i J - c t t j i * « ^ » 

for any t e (—e,e) or equivalently 
d 

i1'10» <cl>.t dilt = X 

for any t e (-c,e). Moreover, from (1.9) it follows that 

<Pr2>.c(t) (c.tdflt) = (Pr2).c(t)(X(c(t))) 

for any t e (-e,e) or equivalently 

i 1' 1 1) <c2>.t dilt = 

Hence c2(t) = q for every t e (-e,e). 

(<=) Now, let c^ be an integral curve of X^ and c2(t) = q for 
any t e (-e,e). Thus 

d S ^ ) 
<cl>.t dilt = X 

for any t e (-c,e) or equivalently by (1.7) 

(Prl>.c(t)(c.t dilt) = (P^ 1). c ( t )( x( c( t))) 

for t e (-e,c). It is easy to see that the vector c # t gfl^ 

is parallel to (M,C). From Lemma 1.1 it follows that 



Differential spaces and singularities 609 

c.t g|| t = X(c(t)) for t e (~e,e). 

Analogously one can prove the second part of the proposition. 

Proposition 1.7. Let (M,C) and (N,D) be differential 

spaces. The Cartesian product (MxN , CxD) is a finitely 

generated differential space if and only if (M,C) and (N,D) 

are finitely generated differential spaces . 

Proof. (=») Let CxD be generated by a set {ip^,. .. Pk> • 

Then ^ C x D^Mx{q} finitely generated by 

IMx{q> ,...,p^lMxiq}! for every q e N. Since 

j : (M,C) > (Mx{q} , ( C x D ) M x ^ ^ ) is a diffeomorphism, C is a 

differential structure generated by the set 

{<Pi ° j„f»»«f<Pv ° ir,} any arbitrary q e N. Analogously one l q k q 
can prove that for any p e M the set {<p ° j , ...,<pv ° j_> 1 P K p 
generates D. 

It is easy to see that if C is generated by {f l f...,f m} 

and D is generated by {g1#...,g }, then CxD is generated by 

the set o p r ^ . . . , ^ » p r i } u {g1 » p r 2 > . . . , g n <> pr 2>. 

v 
2. Smooth functions and forms of class C on a 

differential space 

Let (M,C) be a differential space. A function f: M > IR 
v 

is said to be of class C if for any point p e M there exist 

an open neighborhood V e zc of p and functions e C ' 

<r: R n * R of class C k such that fIV = a • (f ,...,f )|V. It 
v i n 

is easy to see that the set ? (M) of ail real functions on 
v 

(M,C) of class C is a linear ring over IR. 

One can easily prove 

Lemma 2.1. Let (M,C) be a differential space with the 

differential structure C generated by a set C Q. A real v v 
function f: M > IR is of class C (shortly C function) on 

(M, C) if and only if for p e M there exist a neighbourhood 

U e T_ of p and functions f f e C , a function 
n v i n u 

cr: R » R of class C , n e IN, such that 
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f |U = a o (fi#...,fn)|u. 

Lemma 2.2. Let a: R n • R be a C k function. If there 
exists a point u = ) e R n such that 

(*) (T(ku) = ka(u) for any k e R, 

then 
»(u) = E (0)-u. • 

i=l xi 1 

Proof, indeed, <r' (0) = lim Mtu)-°-(°) = l i m ^ i H i = a ( u ) . 1 u t—>0 ^ t—>0 ^ 
n -

Hence <r(u) = <rfu(0) = (0)-u^ 

Definition 2.1. An r-form u: T rM > R is said to be 
k k k smooth of class C on (M,C) (shortly C r-form) if u is a C 

function on the differential space (TrM,TrC). 

Proposition 2.3. Let (M,C) be a differential space with 
the differential structure C generated by a set C_, p e M an 

r k arbitrary point, u: T M » R a smooth r-form of class C on 
(M,C) and r s k. 

Then there exist a smooth mapping F: (M,C) » 
with the coordinates F 1 # ..., F e CQ, n e IN, an r-forn 

0: T rR n • R of class C^ on (Rn,en) and an open neighbourhood 
V e t c of p such that 

wlTT 1̂ (V) = F*e I n'1 (V), 

where TrQ: T rM » M is the projection (v1,...,vr) i » p = 
=TT(V1) = . . . = 7T(Vr) . 

Proof. There exist a neighbourhood V e t c of p and 
v 

functions F 1 #.. ., F e CQ, n e IN and a C function 

cr: R ( r + 1 ) n > R such that 

= cr (F^ o nQ,...,Fn « "Q.dFj^ ° n1,...dFn « TT^.-^dFj^ . nr,... 

Let 8: T rR n > R be the r-form of class C k defined by 
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w h e r e l . . : IRn > | R ( r + 1 ) n i s g i v e n b y n,(r+i)n 

( 2 ' 2 ) L n , ( r + 1 ) n ( x l x n ) = ( x l x n ' ° 0 ) 

for (x 1,...,x n) e IRn. 

We w i l l s h o w t h a t u l n ^ C V ) = F ' e l r r ^ i V ) . 

L e t u s c o n s i d e r t h e C k f u n c t i o n a : IRn » IR d e f i n e d b y 

( 2 . 3 ) « ( x . ^ . . . ^ ) = ^ ( F ^ p ) , . . . , F n ( p ) , x i r . . . # x n # v 2 ( F 1 ) , . . . 

• • • / V 2 ( F n ) , . . . , v r ( F 1 ) , . . . , v r ( F n ) ) f o r ( x 1 , . . . , x n ) e IR? 

I t i s e a s y t o o b s e r v e t h a t f o r t h e p o i n t 

u = ( v 1 ( F ^ , . . . , v 1 ( F n ) ) t h e f u n c t i o n a s a t i s f i e s ( • ) . T h u s 

f r o m L e m m a 2 . 2 i t f o l l o w s t h a t 

a ( u ) = c r ( F 1 ( p ) , . . . , F n ( p ) , v 1 ( F 1 ) , . . . , v 1 ( F n ) , . . . , v r ( F 1 ) , . . . 

n -
• • • , v r ( F n ) ) = I — ( F ^ ( p ) , . . . , F ^ ( p ) , 0 , . . . , 0 , 

i^=l n+i^ 

V 2 ( F 1 ) , . . . , V 2 ( F n ) , . . . , v r ( F 1 ) , . . . , V r ( F n ) ) • V 1 ( F i ^ ) . 

Now u s i n g L e m m a 1 ( r - 1 ) t i m e s , i n t h e s i m i l a r w a y o n e c h e c k s 

t h a t 

" • ( F ^ p ) , . . . , F n ( p ) ^ ( F ^ , . . . , v 1 ( F n ) , , . . . , v r ( F 1 ) , . . . , v r ( F n ) ) = 

n _ r 

I . 3 x , 8 x a* ( F i ( p ) ' • • • ' F n ( p ) 0 ) ' 
i , . . . , i = 1 d X n + i d X 2 n + i ' • • d X r n + i 1 n 

o r e q u i v a l e n t l y 

v l ( F ) - . . . • v n ( F i ) , 
1 n 

u f v . ^ . . . , v r ) = F ( 6 ) ( v x , . . . , v r ) 

f o r a n a r b i t r a r y ( v l f . . . , v ) e tt"1 ( V ) . 

T h e r e f o r e w l n ^ i V ) = F ' e i n ' ^ V ) . 

C o r o l l a r y 2 . 4 . L e t ( M , C ) b e a d i f f e r e n t i a l s p a c e a n d p e M 

a n a r b i t r a r y p o i n t . I f t h e r e e x i s t s a n o n - d e g e n e r a t e r - f o r m u 
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of class (rsk) on (M,C), then there is an 
neighbourhood U e x c of p such that (UjCy) can be immersed 

open 
in 

the Euclidean space. Moreover, dim Tg(M,C) < +00 for any q e M. 

Proof. The mapping F|U in Proposition 2.3 is a smooth 
immersion. Indeed, since u is non-degenerate and 

uln^iU) = F*0|7I^(U) for some open set 
is injective for every q e U. Thus 

U containing p, F 

*q 

image 

Tq(M,C) T,,. . (IRn,e ) is an isomorphism onto b (q; n 

*q 

the 

Hence 

dim T (M,C) = dim F (T (M,C)) s dim T 

Definition 2.2. A 
qv g 
smooth 

F(q) 
2-form g: 

(R1 
2 T M 

,en) = n. 

-> IR on 
differential space (M,C) is said to be a C Lorentz metric 
(M, C) if for any p e M the 2-form g 
symmetric, non-degenerate and 
(dim T pM -1, 1) . 

P 
has 

= gIT M x T M P P 

a 
on 
is 

the signature 

Now we prove 
Proposition 2.5. Let (M,C) be a connected differential 

space of constant differential dimension n and g a symmetric, 
k ' 

non-degenerate, smooth 2-form of class C on (M,C). If g^ has 
the signature (k,l) at a certain point p e M, then g has the 
signature (k,l). 

Proof. Assume that the signature of g at a certain point 
p e M is equal to (k,l). Let b e a basis of T^M such 

that the matrix (g(v^,v^))1<^<n has the diagonal form 
li]in 

k+1 

where 
k+1 

,Xk > 0 and < 0. 

Since (M,C) is a differential space of differential 
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dimension n, there exists an open neighborhood ü « x c of p and 
smooth vector fields W, .,Wn € Ï(U) such that W ^ p ) = v i 

i=l,...,n, and W^fq),...,Wn(q) is a basis of 
q e U. 

Let A 

T M q for 
for 

every 

(2.4) 

u 

V q ) 

IR be the smooth function defined by 

9q(W^(q),W1(q)) .gq(W1(q),Wi(q)) 

gq(W.(q) ,W1(q)) . . • g q (W^ (q) ,W..(q)) 

for q e U, i=l,.. 
It is easy to see 

i-k 
that A^(p) > 0, for i = l,...,k, and 

for i = k+l,...,n. In view of Proposition sgn Ai(q) = (-1) 
6.1 in [4], for any q € U there exists a basis 
the tangent space T^M such that 

(2.5) g(v,v) = 
A0(q) 
A1(q) 

2 + — 

for any v e T^M, where 
n 

v = E 
i=l 

2 

el'' -• , en 

V q ) n 

of 

Let V € x c be open connected neighborhood of p such 
V c U and for A.(q) > 0 

r-k sgn A^(q) = (-1) for l = k+1, 

that 
and 

(2.5) 
q e V , i=l,...,k 
,n, q e V. Hence from 

it follows that the signature of g is constant on V. Thus the 
signature of g is locally constant on M. Since (M,xc) is a 
connected topological space, the signature of g is constant on 
(M,C). 

Proposition 2.6. Let (M,C) be a differential space with 
the differential structure C generated by a set 
C0 = <fl< ' V and let p e M be point such that 
dim T M = n. If g: T M P IR is a symmetric, non-degenerate 
2-form (k=2) of signature (k,l) at p, then there exist an open 

k neighbourhood U e t c of p and a pseudo-Riemannian C metric y 
of signature (k,l) on some open subspace of (IRn,en) such that 
g|7r^(U) = F*tj I Tip1 (U) ,where F = (f^...,^). 

Proof. There exist a neighbourhood V e x c of p and 

function <t: R 3n IR such that 
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g|7r^l(V) = a » (Î^TTQ, . .. ' f
n
o 7 r

0' d fl o i rl' • • • ' d fn° nl' d fl o 7 r2' ' ' ' ' 

d fn , n2> | 7 10 (V) . 
Let v : T2IRn 

(2.6) 

where L 

IR be the 2-form defined by 
n d2a 

. ? a3E—Taï : ° L- —'dx-®dx 
L,j=l n+i 2n+j 
m3n 

n, 3n l j' 

n, 3n* is the mapping 

(*» • • • » 
Analogously as in the proof of Proposition 2.3, one can check 
that gln^1 (V) = F*TJ |TT"1 (V) . It is easy to see that is 
symmetric, non-degenerate 2-form (on U). 

There exists an open connected neighbourhood A of F(p) 

such that F _ 1(A) c V and det 

q e A. 

* 0, for 

Since F I T M •p p TF(P) R is an isomorphism, has the 

signature (k,l) at F(p). From Proposition 2.5 it follows that 
Now, if we put 

the -\J u 
proof. 

Tj has the signature (k,l) on " 
U = F-1(A), we have glrc'^U) = F % I TT'1 (U) . This finishes 

Proposition 2.7. Let (M,C) be a differential space of 
class Dq. If g: T M IR is a symmetric, non-degenerate C 
2-form of the signature (k,l) at a point p, then there exist 

a pseudo-Riemannian an open neighbourhood U e z c of p and 
- - . ~ v manifold (M,g) of dimension n = dim T^M such that g is a C 

2-form of the signature (k,l), Cy = C ^ M J y and glrr^'fU) = i*g, 

where i^: U M is the inclusion mapping. 

Proof. There exist an open neighbourhood V e z c of p and a 
manifold M containing V such that C v = C°°(M)V [17]. Let 
x = (x1,... ,xn) be a chart on M defined on V̂ ^ such that 
U = V ^ M c V. It is clear that (UjCy) is a differential space 
finitely generated by the set {x^U,... ,xn|U}. From 
Proposition 2.6 it follows that there exists 
pseudo-Riemannian C metric TJ of the signature (k,l) on some 
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open connected set W s x(p) such that 

g|n"1(x"1(W)) = (X|x_1(W))%. Let us put M = x - 1 ( W ) and 
* " If w 

g = x Tj. Of course, g is a C pseudo-Rieir.annian metric on M of 
the signature (k,l) and gIn"1 (U) = t^g, where U = M. 

Now we prove 
Lemma 2.8. Let (M,C) be a differential space and a subset 

A c M. A real function f: A • IR is smooth of class C* on 
(A,Ca) if and only if, for any point p e A, there is a 
neighbourhood U e xclA and a function g: M » IR smooth of 
class C k on (M,C) such that f|U = g|U. 

Proof. Let f: A » IR be a smooth function of class 
v 

C on ( A , C a ) and p e M an arbitrary point. There exist a 
neighbourhood W € T CIA a n d functions flf...,f € C^, 
a: IRn • IR of class C k such that f |W = <70 (f . .. ,f ) |w. There 
is a neighbourhood W^ e t c I A of p and functions g ,...,g e C 

such that fjJW^ = f o r i=l, . ..,n. Of course, the 
k 

composition g = o-» (g^,. .. ,gn) is of class C on (M,C) and 

f|U = glU, where U = W^ n W. (*=) Now, let f: A • IR be a real function such that, for any 
p e A, there exist an open neighbourhood U e "C^lA of p and a 

k function g: M » IR smooth of class C on (M,C) and f |U = g|U. 
k 

We will show that f is smooth of class C on (A,CA). For any 
point q e A c M, there exist a neighbourhood W e t c of q and 
functions 91»»»*»9n

 € c» r11 * R o f class C k such that 
glW = <ro (g ,.. . ,g ) |w. It is easy to see that 

f |W n U = a o (g^ I A, . . . , g | A) IW n U . 

k 
This proves that f is smooth of class C on (A,CA). 

Lemma 2.9. Let F: (M,C) » (N,D) be a smooth mapping 
between differential spaces. If f: N » IR is a smooth k function of class C on (N,D), then the function F®f is smooth v of class C on (M,C). 

v 
Proof. Let f be a smooth real function of class C on 

(N,D) and p e M be an arbitrary point. There exist a 
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neighborhood V a f(p) open in x D and functions f1,...,fn e D, 

a: IRn > IR of class C k such that 

f |U = a o (f^ . .. ,fn) |U. 

Then f«F|F-1(V) = <r°(f1«F,.../fn°F)|F-1(V). Since F-1(V) s p 
is open in xr and f.«F € C, for i=l,...,n, f«F is smooth of 

k class C on (M,C). 

Lemma 2.10. Let (M,C) be a differential space of constant 
2 differential dimension n. Then a 2-form g: T M • R is smooth 

k of class C on (M,C) if and only if for any local vector basis 
W, ..... W e X(U) on U e t„ the coordinates g. . = g » (W., W .) , 1' n C ^l j ^ x l j' 
i,j=l,...,n, are smooth functions of class C on (U,Cy). 

2 k Proof. If g: T M > R is smooth of class C on (M,C) then 
in view of Lemma 2.9 the composition g«(W^,Wj) is smooth of 

)r 
class C on (UjCy). Conversely, if the coordinates j/ 
i,j=l,...,n, of g with respect to a local vector basis 
W^,...fW on U e t^, are smooth functions of class C on 

-i n « (U,^), then evidently gI7tq (U) = £ g ^ » n-W.^ ® W.. is 
i, j=1 

smooth of class C on (U,Cy). There exists an open covering U 
-l k of (M,tc) such that g I tt0 (V) is smooth of class C for any 

V € It. This proves that g is smooth of class C on (M,C) . 

Definition 2.3. Let F: M > N be a mapping from a 
differential space (M,C) into a differential space (N,D). F is 

said to be a smooth mapping of class C from (M,C) into (N,D) 

if F*(5k(N)) c ?k(M). 
v It is easy to see that f e ? (M) iff a mapping f: M > R 

k 
is smooth mapping of class C from (M,C) into (R,c). 

It is easy to prove 
Lemma 2.11. Let F: (M,C) » (N,D) be a smooth mapping 

between differential spaces. If f: N » IR is smooth of class k k C on (N,D), then f°F is smooth of class C on (M,C). Moreover 
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k 
F is a smooth mapping of class C from (M,C) into (N,D) for 

Jc _ 1 ̂  2 f • • • • 

Definition 2.4. A vector field X tangent to (M,C) is said 

to be smooth of class C if X: M > TM is a smooth mapping of 

class C k from (M,C) into (TM , TC) . 
Let Z r(M) be the ? r(M)-module of all smooth vector fields j-

of class C tangent to (M,C). 

One can easily prove 

Lemma 2.12. Let (M,C) be a differential space of constant 

differential dimension n. Then a vector field X tangent to 

(M,C) is smooth of class C on (M,C) if and only if for any 

local vector basis e X(U) on U e x c > the coordinates 

<p. = W? o (XIU) , i=l,...,n, of X are smooth functions of 
1 1 k class C on (U,Cy). 

Now let N c IRn be a subset. Consider the differential 

space (N,D), where D := (e n) N. Denote by 5 r(N) the linear ring 

of all smooth real functions of class C r on (N,D). 

Let us put 0r(N) = {f e 5r([Rn) : f|N = 0}. 

Let p e N be an arbitrary point. Let us consider the 

following linear subspaces of IRn: 

Np := {h e IRn: f|h(P) = 0 for any f e 0 r(N)}, 

Gp := {(grad f) (p) : f <= 0r(N) > . 

Proposition 2.13. G r ® N r = IRn and G r is orthogonal to N r 

P P P P 

with respect to the standard metric on R n. 

Proof. It is easy to see that 

Np = {h e IRn: (gradf) (p) -h = 0 for any f € 0 r(N)} = G^. 

Since the standard metric is non-degenerate. G r © N r = IRn. P P 
Corollary 2.14. The following conditions are equivalent: 

(i) dim N r = n, P 

(ii) f|h( p) = 0 f o r any f 6 0r(N) and h e IRn. 

Proof. From Proposition 2.13 it follows that dim N r = n 



618 W. Sasin 

iff dim Gp = 0. It is clear that Gp = 0 iff (gradf)(p) = 0 for 
any f e 0r(N). This is equivalent to (ii). 

5 

Example 2.1. Let N = {(t,t3): t e IR} .Of course N is the 
5 1 . 3 graph of a C function f: IR » IR defined by x i—> x . From 

Proposition 2.13 it follows that dim N^ = 1, for any p e N. 
2 . 1 2 N c IR is a subspace such that dim N = 1<2. Let a: IR > IR be 
1 . . p 

the C function defined by 
5 
3 2 a(x/Y) = x ~ y f o r (x,y) e IR . 

It is clear that a e (^(N) but aj2(p) = -1, for any p e N. 
One can easily prove 

Lemma 2.15. Let p e N be an arbitrary point of a subset 
r r r 

N c IRn. If r, < r_ then 0 1 (N) d 0 2 (N) and N 1 is a linear 1 2 P P P 
r2 ri r2 subspace of N . Moreover, if dim N = n then dim N = n. P P P 

Example 2.2. Let N be the graph of C1 function f: IR > IR 
2 1 oo 1. which is not C at any point. Then N c N , dim N = 1 and " P P P 

dim N™ = 2, for every p e N. 
Now we prove 
Proposition 2.16. If dim N^ = k s 1, then there exist an 

open neighbourhood U e rQ of the point p and a k-dimensional 
Cr surface S c IRn including U and ^(NJy = C^SJy, where 
Cr(S) := yr(Rn)„. Moreover, the integer k = dim Nr is the ® P 
smallest dimension of such a Cr surface S. 

Proof. Clearly, dim = n-k. Let h , ...,h . e IRn be a 
r " n r vector basis of G . There exist functions f„,...,f e 0 (N) p I n 

such that = (9radfi) (P) / f o r i=l,...,n-k. Since 

rank 
at 
aST <P> = n - k, the mapping 

lsisn-k 
lsjsn 

(f ..., fn_jc) : IRn » IRn ̂  is regular at p. There exists 
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neighbourhood V of p open in top IRn such that 

rank 
a f. 

= n - k for g e V. From the implicit function 

theorem [16] it follows that the set S := {qeV: f^Cq) = ... 
= fn_k(<3) = is a k-dimensional C r surface in R n. Of course, 
the set U = N a V is open in t q and U c S. It is easy to 
observe that ?r(N) = Cr(S) . Since U c S, 0r(U) 3 0r(S). 

r r r r Thus U c S . It is easy to observe that dim U =dim N and P P P P 
dim S r = dim S. Therefore dim S 2 dim N r = k. This finishes 

P P 
the proof. 

Now let H c R n be a subset such that dim N r = n for any q 
q e N. From Lemma 2.1 it follows that for any function 
a € yr(N) and a point q e N there exist a neighbourhood 
V e top IRn of q and a smooth function j3: IRn > IR of class C r 

such that a|V n N = p|V n N. The function ¿3 is said to be a 
local extension of a at the point q. 

From Corollary 2.14 it follows the correctness of the 
following definition: 

Definition 2.5. Let N c R n be a set such that dim N r = n P 
for q e N. i-th partial derivative of a smooth function 
a e ?r(N) of class C r at q,(rsl), is defined to be the i-th 
partial derivative of its local extension (3 at this point 

(2.7) a j ^ q ) := ^ ( q ) for q e N, i = l,...,n. 

Now let M be an n-dimensional differential Cro manifold and 
Mg be a subset of M. If x = (x1,...^11) is a chart on 
U € top M, then the restriction x Q = x|UnM is said to be a 

chart on U Q = UnM c M Q. 

Let Cn = C°°(M)„ be a differential structure on M_. Let us 
0 MQ 0 

assume that for any point p e M Q there exists a chart 
x0 = x|Uo' U0 9 p' s u c h t h a t d i m xo^uo^q = n' f o r a n y q 6 V 
Then (M 0 /C 0) is said to be of constant C r dimension n. The 
chart x Q allows us to define tangent vectors at p e U Q: 
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(2.8) I (ip) := (^«x"1) fiiXoCP)) for V> e C , i=l,...,n. 
3x p 
o 

The correctness of (2.8) follows from (2.7). 
d d It is easy to see that the vector fields —j,..., are 

3 x S 
local vector basis of the 5r(M)-module lr(MQ) of all smooth 

r vector fields of class C tangent to (M0,CQ). 
Lemma 2.17. Let (M0,CQ) be a subspace of an n-dimensional 

Cro manifold M. If (M0,CQ) is of a constant C r dimension n then 
(M0,C0) has constant differential dimension n. 

Proof. Since (M0,CQ) is a differential subspace of 
(M, C°°(M)), dim TpMQs dim TpM = n for any p e M. 
Let x = (x1, ... ,xn) be a chart on an open neighbourhood 
U e top M of a point p e M Q and let xQ = x|UnMQ. It is easy to 
see that vectors —̂ ¡-1 ,...,—^—1 defined by (2.8) are linearly 

3 X° 3 xo a a independent for every g e UQ = Ur\MQ. Thus — — n ' q a 

basis of T M. for q e U„. Therefore — . . .,—— is a local q 0 0 < 
vector basis of C0-module £(MQ) on a neighbourhood U Q of p. 
This finishes the proof. 

Proposition 2.18. Let (MQ,C0) be a differential subspace 
of M and let (MQ,C0) be of constant C r dimension n = dim M. If 
g is a C r (r^2) Lorentz metric on M, then g = l* g is a C r 

0 
Lorentz metric on MQ/ where t-M : MQ » M is the inclusion 
map. 

Proof. It is enough to prove that for every p € M Q the 
signature of g at p is equal to (n-1,1). Let x = (x1,...,xn) 

be a chart on an open neighbourhood U e top M of a point 
p e M q and let xQ = x|UnMQ. 
It is easy to check the equality 

( 2 ' 9 ) V * e ^ ' P * = ¿ ' P f ° r i = 1 n ' 

From Lemma 2.15 it follows that dim T M . = dim T M = n. for p 0 P 
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any p e Thus (t„ ). : T M„ » T M is an isomorphism for * 0 MQ'»P p o p r 

p € M„. Now it is clear that g = (t* g) has the signature 0 p MQ p 
(n-l,n) for any p e M . 

Now for any r e IN and p e M, let T M be the set of linear r P , , mappings v: 5 (M) • IR satisfying the following condition 
n 

(2.10) v(<r. (flf...,fn)) = J o-ji(f1(p),...,fn(p))-v(f.) 

for <r e e^, flf...,f e C. -r-
Clearly TpM, is a linear space over IR. It is easy to see that 
TpM is a linear subspace of the tangent space T^M to (M,?r(M)) 
at the point p. Since C c ?r(M) , the mapping 
id: (M,5r(M)) » (M,C) is smooth. Let us put Lp = id#p|TpM. 

Lemma 2.19. For any p e M and r e IN, the mapping 
Lf: T^M » T M is a monomorphism. If dim TrM = dim T M, then P P P P P 
Lp is an isomorphism. 

Proof. It is easy to see that 
(2.11) Lp(v) = v|C for any v e T^M. 
We will show that L^ is a monomorphism. Let Lp(v) = 0 for a 
vector v e TpM. By (2.11) v|C = 0. 

We will prove that v = 0. Let f e ?r(M) . There exist a 
neighbourhood U e t of p, n e IN, functions f , ...,f e C and y* i n 
<t e c such that n 

f |U = (T . (f1, . . . ,fn) |U. 
Hence and from (2.10) we have 

n 
v(f) = v(<r o (f1#...fffn)) = £ aji(f1(p),...,fn(p))-v(fi) = 

n 
= E cr'(f (p), ...,f (p)) 0 = 0 . 

i=l 1 
Therefore v(f) = 0 for any f e ?r(M) . Thus v = 0. 

Lemma 2.20. If dim T^M = dim T M = n, then dim T^M = n P P P 
for every k > r. Moreover, for k > r the mapping Lp is an 
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isomorphism. 

Proof. For k > r we have 

id: (M,?r(M)) * (M,yk(M)). Let 

the 

us 

smooth 

notice 
TÎSl. id (T^M) c 

*P P P 
satisfies (2.10). 

-r. In fact, for any v e T M vector P 

mapping 

that 
i d . p v 

Let L r , k: TrM > T^M be the mapping defined by p p p 

(2.12) P *P P 
It is evident that L r , k 

P 
diagram 

is a monomorphism. The following 

.r,k 

is commutative. Since 
s dim T M. P 

monomorphisms, 
s n. Hence dim T rM * dim T 1^ P P 

dim = n. P 
Now we prove 

Lemma 2.21. Let (M,C) be a differential space with the 
differential structure C generated by c . 

Then for any mapping vQ: CQ > 

(•) for any a e e*,^,...,^ e CQ, 

IR satisfying the condition 

n e IN 

if er 
n 

(flf...,fn) = 0, then 

¿ 1
 £ rj.( fi( p )'"-' fn ( p )) " v0(fi> = 

there exists a unique vector v e TrM such that v | C„ = v„. 
r P 0 0 

Proof. Let v: 9 (M) > IR be the mapping given by 

(2.13) v(f) = crj. (f1(p),...,fn(p)) v0(f.) 

for f € ?r(M), where f^,...,^ e CQ and a € c^ are such 
functions that there is an open neighbourhood U e x c of p and 



Differential spaces and singularities 623 

f |U = cr • (fx,... ,ff) IU. 
From (•) it follows the correctness of definition (2.13) 

and the uniquess of the vector v satisfying the condition 
v | c o = V 

Proposition 2.22. Let N c IRn be a subset with the 
differential structure D = (e )„. Then for any p e N the n N 
mapping 1^: TpN » N^ defined by 

(2.14) l£(v) = (v(ir1lN),...,v(nnlN)) for v e T^N, 

is an isomorphism of linear spaces. 
. r • Proof. First, we prove that I is a monomorphism. If 

Ir(v) = 0 for a vector v e TrN, then 
P P 

viir^lN) = ... = v(rrnlN) = 0. By condition (2.10), for any 
a e ?r(N), n 

v(a) = I cr' (p)-v(n.IN) = 0, 
i=l Ii 1 

where cr e c r is a function such that there exist a n 
neighbourhood U e of p and a|U = cr ° (7^IN,.. . ,n IN) |U. 
Therefore v = 0. 

Now we verify that is an epimorphism. Let h j Np. It 
means that f|h(P) = 0 for any f e ?r(IRn) such that f\if= 0. 

Let vQli: {t^IN,. .. ,ti IN} > IR be the mapping defined by 
(2.15) v o h ( n i | N ) = hi for i = l,...,n. 
It is easy to see that v Q h satisfies the condition (•) from 
Lemma 2.21. Thus, in view of Lemma 2.21, there exists a unique 
vector v. € T rN such that v. (rc.|N) = h., for i = l,...,n, or n p n i l 
equivalently Ip(vh) = h. This finishes the proof. 

Proposition 2.23. Let (M,C) be a differential space of 
constant differential dimension n. Then for any 
k e IN0 = INu{0}, ?k(M) -module Xk(M) is an n-dimensional 
differential module. 

Proof. One can prove [15J that for any point p e M there 
exist a neighbourhood U € x c of p, a local vector basis 
Wl'*"' Wn e o f t h e y ( M ) - m o d u l e *(M) and smooth functions 
a1,...,an € Cy such that W^(a^) = for i,j = l,...,n. 

Let X e X^(M) be an arbitrary vector field. Then for any 
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point p e U, X(p) = Y. f> (p)W. (p) , where <p : U » IR, 
i=l 

i = l,...,n, are unique real functions. Moreover, since 
i i k <p = X o da., for i = 1, ... ,n, f e J (M) , for i = 1, ... ,n. 

1 V 

Thus is a local vector basis of the 5 (M)-module 
X k (M) . 

Now we prove 
Lemma 2.24. Let (M,C) be a differential space satisfying 

the condition: there is an r e IN such that dim T M = dim T rM 
k I P P for any p e M. Then for any X e X (M) , f e ? (M) , k, 1 e IN, 

k, 1 £ r, the function Xf : M » IR defined by 

(2.16) (Xf) (p) = (L^)"1 (x(p)) (f) for p e M, 
• s is a smooth function of class C on (M,C), where 

s = min(k,1-1). 
Proof. For any point p e M there exist a neighbourhood 

U e t c of p and functions a e en, f , ...,f e C such that 
f |U = <r • (f^.. . ,fn) |U. Then 

i -i n 
(Xf)(p) = (Lp) (X(p)) (f) -.Z o-ji • (f1/---,fn)(P) ' (Xf.)(p) 

for p e U. 
n 

Thus Xf |U = £ cr' . o (f ,..., f ) | u • (Xf.)|U. Clearly, i=l H i 
<r'n . (f1,...,fn) e 5 1 _ 1(U) 

and Xfi e ?k(U) for i = l,...,n. Hence XflUe ? m i n ( k ' ( U ) . 
Therefore Xf € (M). 

Definition 2.6. A linear mapping X: 5(M) > fk(M) 
satisfying 
(2.17) X(a/3) = Xa-/3 + a-X|3 for any a,|3 e ?(M) 

lr is said to be a C derivation of ?(M). 
Let us denote by Derk(?(M)) the ?k(M)-module of all 
k k C -derivations of £(M). For any X e X (M) , the mapping 
3X: ?(M) » ?k(M) given by 
(2.18) (3 a) (p) = (Xot) (p) for p e M, a e 5(M) 
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v 
is a C -derivation of the linear ring ^(M). 

Now one can prove 

Proposition 2.25. The mapping e k: Xk(M) > Derk(y(M)) given by 

(2.19) ek(X) = a x for X e Xk(M) 
v is an isomorphism of 9 (M)-modules. 

lr 
Proof. It is clear that e is a monomorphism. To prove 

v 
that e is an epimorphism it is enough to notice that for any 

X e D e r k ( M ) ) the vector field X: M > TM defined by 

(2.20) X(p)(a) = (Xa)(p) for a e ?(M) and p e M, 

is a vector field from Xk(M) such that ek(X) = X. 
Definition 2.7. Assume that (M,C) is a differential space 

satisfying the following condition: there exists r e IN such 
that dim T pM = dim T^M for any p € M. For any X,Y e X^(M) , 
k £ r, denote by [X,Y]: ?(M) » 5 k - 1(M) the mapping defined 
by 

(2.21) [X,Y](f) = X(Yf) - Y(Xf) for f € ?(M). 
k-1 

One can verify that [X,Y] is a C -derivation of 9(M). 
From Proposition 2.25 it follows that there exists a 

unique vector field [X,Y] e X k - 1(M) such that 3 r v V 1 = [X,Y]. Lx/ * J 
The vector field [X,Y] is said to be the Lie bracket of 
X,Y e ¡^(M). One can check that e k defined by (2.19) is an 
isomorphism of the Lie algebras (X (M),[•,•]) and 
(Derk(?(M)), [•, ]). n k Now for any n-form w: T M > IR of class C on (M,C) and 
for 1 = 0,1,2,..., let w: X 1 (M) x. .. xX1 (M) > ?S(M) be the 

(M) -module-linear mapping given by 

(2.22) u(X1#...,Xn) = (J o (X1,...,Xn) 

for X ,...,X e X1(M), where s = min(k,1). 
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It can be proved 
Lemma 2.26. Let (M,C) be a differential space of constant 

differential dimension and g a semi-Riemannian metric on (M,C) 
r k of class C , r = 0,1,2,... . Then for any f (M)-linear mapping 

l k <p: I (M) » 5 (M), k = 0,1,2, , there exists a unique 
vector field A e XS(M), s = min(k,r), such that 

(2.23) <p(Z) = g(A,Z) for any Z € X1(M), 1 = 1,2,... . 

Proposition 2.27. Let (M,C) be a differential space 

satisfying the condition: dim T pM = dim T^M for any p e M. 
2 r Then for any semi-Riemannian metric g: T M » R of class C 

( r 
there exists a unique covariant derivative of class C [15] 
such that 
(2.24) Zg(X,Y) =i(? zX,Y) +5(X,V ZY), 

(2.25) VXY = VyX + [X,Y], 

for any X,Y,Z € X1(M) . 

Proof. For any X,Y e I1(M) let ipv v: I1(M) > ?°M be A , X 
?°(M)-linear mapping given by 

(2.26) <pXiY(Z) = \ [3X5(Y,Z) + aYg(z,x) - azg(x,Y) + 

+ g([x,Y],z) + g([z,x],Y) - g([Y,z],x)], 

for Z € X1(M). 
From Lemma 2.26 it follows that for any ip v , 

x, Y 
X, Y e X1(M), there exists a unique vector field V XY e X°(M) 
such that 

^X,Y^^ = 5( vx Y' Z ) f o r a n y Z e x l( M>-

Let V: X1(M)xX1(M) > X°(M) be the mapping defined by 

(2.27) V(X,Y) = VXY for any X,Y e X1(M). 

It can be proved, in the standard way, that V is a covariant 
r 1-4-1 derivative of class C [7] i.e. for any X,Y e X (M), 
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V X Y e X R ( M ) . 

3. Singularities of the fundamental differential space 

Definition 3.1. A pair ((M,C) , (M,CM)) is said to be the 
fundamental differential space (shortly F-d-space), if (M,C) 
is a differential space and M a subset of M dense in (M,x_) 

C 
such that (M,C„) is an n-dimensional C manifold. M 

The set 3M = M - M is called the boundary of the F-d-space 

((M,C) , (M,Cm)). 

If ((M,C) , (M,C m)) and ((N,D) , (N,D n)) are fundamental 
differential spaces, then 

((MxN , Cx5) , (MxN,(Cx5)MxN)) is a fundamental differential 

space with the boundary 3 (MxN) = 3MxN u Mx3N. 
Definition 3.2. A boundary point p e 3M is called regular 

if there exists a neighbourhood U e z_ of p such that the 
C 

differential subspace (U,Cy) has constant differential 

dimension n. A boundary point p e 3M is called singular if p 
is not regular. A boundary point p e 3M is said to be of class 
Dq (shortly DQ-point) if there exists a neighborhood U e x_ of 

p such that (U,Cy) is a differential space of class DQ. A 

boundary point p e 3M is called a non-DQ-point if p is not of 

class DQ. 

Now we can present the following diagram: 

p £ 9H boundary point 

p regular point p singular point 

P 
DQ-regular 

point 
P 

non-DQ-regular 
point 

P 
DQ-singular 

point 
P 

non-D -singular 
point 
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- 2 Example 3.1. Let M = {(x,y) e R :x £ 0 a y s 0} and 

C = (e_) . The boundary points SM = {(x,y) e M : x=0 v y=0> 
2 M 

are DQ-regular. 

Example 3.2. Let C be the differential structure on 
- 2 2 M = R generated by the set {it ,Tr2,f}, where tt̂ : IR > R, 

2 . 2 tt2: R • R are the natural projections and f: R » R is 
the function defined by 

i r 2 x +y for (x,y) e R . 

Let M := R2\{(0,0)}. It is easy to observe that ((M, C) , (M, CM)) 
is a fundamental differential space and 3M = {(0,0)}. The 
point (0,0) is a DQ-singular point. It is clear that 
dim (M, C) = 3 and dim Tp(M,C) = 2 for p * (0,0). 

- - 2 Example 3.3. Let C be the differential structure on M = R 
generated by the set {it ,7^} u n e N}» where 

2 fR: R » R for n e IN is the function given by 

3 n/—2 2~' 2 f
n( x'Y) = V x2+ Y2 for (x,y) 6 R . 

One can see that ((M,C),(M,CM)), where M = R \{(0,0)} is a 
fundamental differential space with the boundary 3M = {(0,0)}. 
The point (0,0) is non-DQ-singular. 

Example 3.4. Let N = { R: n € IN } u {0}. Let D be the 
differential structure on N generated by the set 
{idN} u {fn: n € IN}, where fn: N >R for n € IN, is defined by 

fn(x,y) = 2V x for x e N. 

It is easy to see that dim T (N,D) = 0 for x e N. Let us take 
- - 2 the Cartesian product (M,C) = (NxR , Dxe2) and let 

M = | ^ e R : n e In|- x R2. Evidently ((M,C) , (M,CM)) is a 

fundamental differential space. (M,C) is a differential space 
of constant differential dimension 2. The boundary points are 
non-DQ-regular. 

Definition 3.3. The pair ((M,C),(M,g)) is said to be the 
C k differential space-time if ((M,C),(M,CM)) is a fundamental 
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differential space and (M,g) is a dense n-dimensional C 
Lorentz submanifold. The set 3M = M - M is called the boundary 

k k of the C differential space-time. The C Lorentz metric g 1$ v 
said to be extendible on the boundary dM if there exists a C 
Lorentz metric g on (M,C) such that g = t-*g, where t-M: M > M 
is the inclusion mapping. - 3 Example 3.5. Let us consider the set M = {(x,y,z) € IR : 
x = 0 v y = 0}. Let C be the differential structure on M 

3 
induced from the Euclidean differential space (R , e ). Then 
- 2 2 2 . 

g = dn^ + djr2 - drr3 is an extension of the Lorentz metric from 
the space-time (M,g), which is the disjoint union of 
2-dimensional Minkovski space-times ({(x,y,z) e M:y * 0}, O O — 0 0 

dn* - dir̂ ) and ({(x,y,z) e M:x * 0}, di^ - d7i3) . The set of 
all points of the axis OZ is the boundary of the C°° 
differential space-time ((M,C) , (M,g)). 

Definition 3.4. Let ((M,C),(M,g)) be a Ck- differential v space-time. A boundary point p e 9M is said to be C -metric if v 
there exist a neighbourhood U e T of p and C Lorentz metric 

. _ c _ 
g on (U,^) such that t U n Mg = g U n M, where <-UnM:UnM > M is 
the inclusion mapping. A boundary point p e 9M is said to be 
k k C -metric Dn-regular if p is Dn-regular and C -metric. 

Now we can present the following classification of v C -metric boundary points. 

p C -metric point 
V p C -metric regular point V p C -metric singular point 

V 
p C -metric 
DQ-regular 

point 

p C -metric 
non-DQ-regular 

point 

V 
p C -metric 
singular point 

V 
p C -metric 

non-D singular 
point 

— — k Proposition 3.1. Let ((M,C),(M,g)) be a C differential 
k space-time. If a point p e 3M is C -metric and k a 2, then 

there exist a neighbourhood V e x of p and the integer m € N 
C 

such that 
dim T (M,C) s m for q e V. 
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Proof . From Corol lary 2 .4 i t fo l lows t h a t t h e r e e x i s t an 
open neighbourhood V e x of p and a mapping 

C 
F: (V,Cv) > (IR ,em) such t h a t F>g i s i n j e c t i v e f o r q e V. 

Now i t i s evident t h a t 

dim T (M,C) = dim T (V,C ) s m f o r any q e V. 4 4 * 

Example 3 . 6 . Let (RN be the s e t of a l l r e a l sequences . 

Denote by TT̂ , f o r i e IN, the p r o j e c t i o n of r n onto the i - t h 
coordinate given by 

T T ^ ( X ) = x^ f o r x = (x^) eRIN. 

Let e^ be the d i f f e r e n t i a l s t r u c t u r e on IR1" generated by 
the s e t {TT^: i € IN} [ 1 5 ] . Let us put 

M. = { x 6 RN: X J = 0 f o r j * i } , i e IN. 

Let M:= U M. and C := (e ) , M = M\{0}. I t i s easy t o 
ieIN M 

see t h a t ((M,C),(M,CM)) i s a fundamental d i f f e r e n t i a l space 

such t h a t dim TQM = oo and dim T̂ M = 1, f o r x * 0 . There i s no 
v 

non-degenerate 2-form of c l a s s C (k £ 2) in a neighbourhood 
IN — — of the s i n g u l a r point 0 = (0) e (R , because dim TQ(M,C) = oo. 

Propos i t ion 3 . 2 . Let (M,C) and (N,D) be d i f f e r e n t i a l 
2 k spaces . I f g : T M > IR a C Lorentz metr i c on (M,C), 

2 k h: T N » IR i s a C Riemiannian metr i c on (N,D) and 
k f : M > (0,+to) i s a smooth funct ion of c l a s s C on (N,D), 

- 2 then the 2-form g: T (MxN) » IR defined by 

( 3 . 1 ) g(w1 ,w2) = (pr 'g ) (w1,w2) + f ( p ^ ( r c ^ ) ) • 

• (pr*h)(w 1 ,w 2 ) f o r (w1,w2) e T2(MxN), 

i s a C Lorentz metr i c on (MxN , CxD) , where n: T (MxN) » MxN 
i s the na tura l p r o j e c t i o n . 

Proof . Let (p,q) e MxN be an a r b i t r a r y p o i n t . Let 
v, , . . . , v e T M be a vec tor b a s i s of T M such t h a t i m p p 
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(giv^v.)) = 
0 

•l 
0 -1 

and let u.,...,u e T N be a vector 1 n g 

basis of TgN such that (h(u^,ujj) = 

see that 

It is easy to 

W 1 = ( V * P V 1 W m = ( j q ) - p v m ' 

m+1 = (3p).qui' 

IR 

W m+n 

is a vector basis of T. .(MxN) such that 

(g(wifw.)) = 
(g(vi'vj)) 

f(p)(h(u.,u.)) 

• - 1 

f (P) 

'f(p) 

Now it is obvious that g is the C Lorentz metric on 

(MxN , CxD). Analogously one can prove 

Proposition 3.3. Let (M,C) and (N,D) be differential 

spaces. If g: T M 

IR is 

IR is a C Riemannian metric on (M,C) , 

h: T 2 N C Lorentz metric on (N,D) and 

f: M (0, +oo) is a smooth function of class C on (M,C) then 

the 2-form g: T (MxN) > IR defined by 

(3.2) g(w 1,w 2) = (pr'g) (w 1 (w 2) + f (prx (n (w]L))) (pr*h) (w 1,w 2) 

2 k for (w1,w2) e T (MxN), is a C Lorentz metric on (MxN , CxD). 

Example 3.7. Let g = l^ t j be the metric on the submanifold 

M from Example 3.1, where tj is the Minkowski metric on 
2 - • -(IR ,e_). The metric g = L tj i s an extension of g onto M. All 

* M 
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jc points of the boundary 9M are DQ-C -metric regular. 

Example 3.8. Let (M,C) = (NxIR2 , Dxe2) be the differential 
space from Example 3.4. Let tj be the Minkowski metric on 

2 - * (IR ,g2) . It is easy to observe that g = pr27) is a Lorentz 
- - 2 2 . . metric on (M,C) , where pr 2

: NxlR * R l s t h e projection. Thus 
v the boundary point (0,0,0) is non-DQ C -metric regular. 

Example 3.9. The points of the axis OZ from Example 3.5 
v 

are DQ-C -metric singular. 
Example 3.10. Let (N,D) be the differential space from 

Example 3.4 and (M,C) be the differential space from Example 
» 2 2 2 3.5. The then 2-form pr^g = pr^fdir^ + drr2 - dir3) is a Lorentz 

metric on (MxN , CxD). The pair ((MxN , CxD) , (MxNQ,pr*g)) is 

a differential space-time, where NQ := {i e IR: n € IN}. All 

points of the boundary are non-DQ-C -metric singular. 

From Proposition 1.5 it follows 
Corollary 3.4. Let ((M,C) , (M,CM)) and ((N,D) , (N,5N)) 

be fundamental differential spaces. Then a boundary point 
(p,q) e 3(MxN) of the Cartesian product 
((MxN , CxD) , (MxN , Cx5 M x N)) is regular if and only if p and 

q are regular. A boundary point (p,q) e a(MxN) is singular iff 
p e 3M is singular or q € 3N is singular. 

From Proposition 1.7 it follows 
Corollary 3.5. Let ((M,C) , (M,CM)) and ((N,D) , (N,5N)) 

be fundamental differential spaces. Then a boundary point 
(p,q) e 3(MxN) is a D Q point if and only if p and q are D Q 

points. 
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