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DIFFERENTIAL SPACES AND SINGULARITIES
IN DIFFERENTIAL SPACE-TIMES

In this paper we investigate singularities of space-time
using of the theory differential spaces in the sense of
Sikorski (12}, [13], [14]. If space-time is modeled by a
differential space rather than by a differential manifold,
space-time singularities can be regarded as points of the
differential space in question. The theory of differential
spaces opens some possibilities to classify singularities of
space-times [1], [3]. In Section 3 we present such a
classification. The differential space methods turns out to be
a very efficient tool in dealing with the classical
singularity problems [3], [6].

In Section 1 we recall necessary definitions and theorens
from the theory of differential spaces. In Section 2 we
describe some properties of functions and forms of class Ck on
a differential space, which are very important in the next
sections.

1. Preliminaries

Let M be a non-empty set and C a set of real functions

defined on M. Denote by T, the weakest topology on M in which

C
all functions from C are continucus. Let scC be the set of all

real functions on M of the form we (f fn)’ where w e €e_,

AR n

1,...,fn € C, ne N and £ is the set of all real ¢c°

functions on R". For any subset A ¢ M we denote by CA the set

f
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of all real functions f on A such that for any point p of A

there exist in T, an  open neighborhood U e <t

a function g € C such that f|A n U = g|A n U.

c of p and

The set C is called the differential structure on M iff
C =scC = CM' Then the pair (M,C) is said to be the
differential space [14), [15]. It is easy to see that C is a
linear ring over R.

A differential structure C on M is said to be generated by
a set S of real functions on M if C = (scco)M. A differential
space (M,C) 1is said to be finitely generated by a set
Cy = {fl,...,fn} if c = (scCo)M. If (M,C) 1is a differential
space and A is an arbitrary non-empty subset of M, then (A,CA)
is also a differential space, which is called a differential
subspace of (M,C).

Let (M,C) and (N,D) be differential spaces. A mapping
F: M — N is said to be a smooth mapping of (M,C) into (N,D)
if fc-F e C for any f € D. Then we write F: (M,C) — (N,D)
[15].

We define the notion of a tangent vector to a differential
space (M,C) at a point pe M as a 1linear mapping v: C— R
satisfying the following condition:

v(f-g) = £(p)-v(g) + g(p)- Vv(f) for any f,g e C.
The set of all tangent vectors to (M,C) at a point peM we
denote by Tp(M,C) (shortly TpM) and call the tangent space to
(M,C) at p.

If F: (M,C) — (N,D) is a smooth mapping between
differential spaces then for each point p e M the mapping

F‘p: TpM — Tf(p)N defined by

(F,oV) (f) = V(feF)  for any f ¢ D and v € T M,

is a linear mapping.
Let TM := U T M be a disjoint sum of tangent spaces to

peM
(M,C). By TC we denote the differential structure on TM [10]
generated by the set {fem : feC} v {df: feC}, where

n: TM — M is defined by the formula
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n(v) =p for any v € TpM and p € M,
and df: TM — R is the function defined by
(df) (v) = Vv(£f) for v € TM.

A smooth vector field tangent to (M,C) is a mapping
X: (M,C) — (TM,TC) such that m o X = idy,. Denote by ¥ (M) the
c-module of all smooth vector fields tangent to (M,C).

A differential space (M,C) is said to ‘be of constant
differential dimension n if for any p e M there exist a
neighborhood U e T of P and smooth vector fields
x1""'xn € X(U) such that for any qe U the sequence
Xl(q),...,xn(q) is a vector basis of Tq(M,C) and xl,...,xn is
a CU-basis of CU-module xX(U).

Now let us put [1]
r
T M = {(vl,...,vr) € TMx...xTM: n(v1)=...=n(vr)}
as well as
Tfc = (TCx...xTC) c for r = 1,2,...

"M
Let M ™™ — ™, for i=1,...,r be the mapping defined by

= r
ﬁi(vl,...,vr) =v; for (vl,...,vr) e T M.

A function w: T'M —3 R is said to be the r-form on (M,C) if

the mapping wp

An r-form w is called smooth if w e T'C.

1= w|Tpr...prM is r-linear for any p € M.

For any mapping F: (M,C) — (N,D) and a smooth r-form w
on (N,D) Fw is the smooth r-form defined by

(F'w)(v ..,vr) = w(F,v .,F‘vr) for any

pree
r
..,vr) e T M.

1’

(vl,.

Now we recall some properties of the Cartesian product of
differential spaces.

Let (M,C) and (N,D) be differential spaces. Let Cx D be
the differential structure on M x N generated by the set of
real functions {aoprlz o eC} v {Boprz: B € D}, where
pr;: Mx N — M and pPr,: M x N — N are the projections.
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The differential space (MxN , CxD) is called the Cartesian
product of differential spaces (M,C) and (N,D) [15].

For an arbitrary point p e M 1let jp: N —> MxN be the

imbedding given by

(1.1) jp(q) = (p,q) for q € N.

For an arbitrary point g e N 1let jq: M — MxN be the
imbedding defined by

(1.2) ig(P) = (p,@) for p e M.
A vector w € T(p q)(MxN) is said to be parallel to (M,C)
if (prz)'w = 0. A vector we T(p q)(MxN) is said to be
!

parallel to (N,D) if (prl)'w = 0.

It is easy to see that the subspace (jq)-p(TpM) is the set
of all vectors tangent to (MxN , CxD) at (p,q) parallel to
(M,C) and the subspace (jp)‘q(TqN) is the set of all vectors
tangent to (MxN , CxD) at (p,q) parallel to (N,D). One can

prove (15], that the tangent space T (MxN) is a direct sum

(p,q)

M) and (jp) (T _N).

T
( ‘9’ q

of the subspaces (jq)'p

It is easy to prove

P

Lemma 1.1, Let Wi W be vectors parallel to (M,C) and z

2 ll

z., be vectors parallel to (N,D). Then

2
(a) w1 = w2 iff (prl)_w1 = (prl)'wz,
(b) 2, =z, iff (prz)_w1 = (prz)_wz.

A vector field Z € X(MxN) is said to be parallel to (M,C)
if Z(p,q) is parallel to (M,C) for every (p,q) € MxN. We
denote by 1M(MxN) the set of all smooth vector fields tangent

to (MxN , CxD).IM(MxN) is a cxD-submodule of the CxD-module
X (MxN) .

A vector field Z € X(MxN) is said to be parallel to (M,C)
if Z(p,q) is parallel to (M,C) for every (p,g) € MxN. We
denote by IM(MxN) the set of all smooth vector fields tangent
to (MxN , CxD) which are parallel to (M,C). It is clear that
IM(MxN) is a CxD-submodule of the CxD-module X (MxN).

A vector Z € Y(MxN) is said to be parallel to (N,D) if
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Z(p,q) is parallel to (N,D) for every (p,q) € MxN. We denote
by IN(MxN) the set of all smooth vector fields tangent to
(MxN , CxD) which are parallel to (N,D). It is clear that
IN(MxN) is a CxD-submodule of the CxD-module X (MxN).

Now let X € Y(M) be a smooth vector field tangent to
(M,C). Let X: MxN —> T(MxN) be defined by

(1.3) X(p,q) = (3g) pX(P)  fOr (p,q) € MxN.

It is easy to verify that X e Xy (MxN) .
Analogously, for any Y € X(N) we can define the vector field
Y € X(MxN) parallel to (N,D) by the formula

(1.4) ¥(p,q) = (3p).q Y(@) for (p,q) € MxN.
Now, let Z € X(MxN) be an arbitrary vector field tangent
to (MxN , CxD).

Let us define [15]

(1.5) Zy(p,q) = (34°Pr,) 2(p,q) for (p,q) € MxN,

q *(p,q)
(1.6) Zy(p,q) = (3

°pPr,) 2(p,q) for (p,q) '€ MxN.

P *(p,q)

It 1is easy to see that ZM € IM(MxN) and ZN € 1N(MxN).

Moreover, Z = ZM + ZN'
One can prove {15].
Proposition 1.2, The CxD-module X(MxN) is a direct sum of

CxD-modules IM(MxN) and IN(MxN).

Now let X € T, (MxN). For any geN let XI: M— T™ be
defined by

(1.7) x¥(p) = (pr)) X(p,q) for p e M.

*(p.q)
It is easy to see that x9 e X(M) for every q € N.

Analogously, for Y e IN(MxN) and pe M let YP: N — TN be
defined by

(1.8) YP(q) = (pr,) X(p,q) for q e N.

*(p,q)
One can easily prove that YP e X(N) for every p € M.

Now we prove

Lemma 1.3, Let (M,C) and (N,D) be differential spaces.
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(M,C) is a differential space of differential dimension m if
and only if the CxD-module 1M(MxN) is an m-dimensional
differential module. (N,D) has a differential dimension n if
and only if the CxD-module IN(MxN) is an n-dimensional
differential module.

Proof. (=») Assume that (M,C) has a differential dimension
m. Let (p,q) be an arbitrary point of MxN. Let V e To be an
open neighbourhood of p such that on V there is a local vector
basis xl,...,xm € X(V) of the C-module X(M). One can verify
{15]) that the sequence xl,...,xm € X(UxN) of vector fields

defined by (1.3) is a local vector basis of CxD-module IM(MxN)

on UxN e erD'

(<) Assume that iM(MxN) is an n-dimensional differential
module. IM(MxN) is a CxD-module of ¢-fields, where

¢(p,q) = (jq).p(TpM) for (p,q) € MxN.

Since (jq)-p: TpM — &(p,q) 1is an isomporphism for every

(p,q) € MxN, dim TpM = dim &(p,q) = n for any pe M. It |is

enough to show that for an arbitrary vector u e TM there exist
a vector field X € X(M) such that u = X(nM(u)), where
m,: TM — M 1is the projection. 1Indeed, for the vector

M

u = (jq)_pu € $(p,q), where u € TpM, there exists a vector

field 2 € X, (MxN) such that u = 2(p,q). Hence we have

(pr,) (pr,) Z(p,q)

sp,)” T *(p,q)

or equivalently
u = Zq(p), where 29 ¢ X (M) is defined by (1.7).
The second part of Lemma 1.3 can be proved analogously.

Lemma 1.4. Let (M,C) and (N,D) be differential spaces.
Then, dim T(p’q)(MxN) is constant for any (p,q) € MxN if and
only if dim TpM is constant for any pe€ M and dim TqN is
constant for any q € N.

Proof. This Lemma is a simple consequence of the equality

dim T(p'q)(MxN) = dim TpM + dim TqN for any (p,q) € MxN.
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Now we prove

Proposition 1.5. Let (M,C) and (N,D) be differential
spaces. The Cartesian product (MxN , CxD) is a differential
space of constant differential dimension if and only if (M,C)
and (N,D) are differential spaces of constant differential
dimension.

Proof. (=) Assume that the Cartesian product (MxN , CxD)
is a differential space of constant differential dimension.

Assume that dim Tp M =m and dim Tq N = n for certain ©points
0 0
PoeM and 9y € N. In view of Lemma 1.4, dim TpM =m for any

P € M and din TqN =n for any q € N. It 1is enough to prove
that every vector tangent to (M,C) or (N,D) is extendible to a
smooth vector field tangent to (M,C) or (N,D), respectively.

Let u e TpM for a point p e M. Then

u=(j uefT
Oglep (p,q) _ _
(MxN , CxD) has constant differential dimension there exist a

MxN) is a vector parallel to (M,C). Since

vector field Z e X(MxN) such that u = Z(p,q). It is easy to
see that ZM defined by (1.;) is a smooth tangent vector field
parallel to (M,C) such that u = ZM(p,q). Hence we have the
equality

(pr,) u = (pr,) Zy(pP,q)

*(p,q) *(p,q)

or equivalently .
u = (z,)%p).

Thus u is extendible to (ZM)q e X(M).

(=) Let (M,C) and (N,D) be differential spaces of
differential dimension m and n, respectively. Let (p,q) be an

arbitrary point of MxN. Let X X, € X(U) be a local vector

qree

basis of X(M) on a neighborhood U € T, of p and

(o
Yl,...,Yn € X(V) be a 1local vector basis of X(N) on a

neighborhood V € Ty of gq. It is easy to see [15] that the

sequence X im’ql""'gn of vector fields defined by

qrecee
(1.3) - (1.4) is a local vector basis of the CxD-module %X (MxN)

on a neighborhood UxV of (p,q). This finishes the proof.
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Proposition 1.6. Let X e IM(NxN) and Y € xN(MxN). Let
c: {-€,€) — MxN be a smooth mapping such that c(0) = (p,9).,
where € > 0. Let us put Cy =pr, °c and C, = pPr, ° C.

The mapping c is an integral curve of X if and only if N is

an integral curve of x? and cz(t) =q for any t € (-¢,¢).

The mapping c is an integral curve of Y if and only if c, is

an integral curve of YP and cl(t) =p for any t € (-g,¢€).

Proof. (=) Let c be an integral curve of X. Then

d

(1.9) Cor —a§|t

= X(C(t))

for any t € (-¢£,€). Hence

d
(PT1) () (Cep 3sle) = (PT1)uc (k) (X(c(t)))
for any t € (~€,£) or equivalently

d c,(t)
(1.10) (€1)ut E't = X (cl(t))

for any t € (-£,€). Moreover, from (1.9) it follows that

d
(prz)-c(t) (C.t @It) = (prz),c(t) (X(c(v)))
for any t € (-¢,£) or equivalently

d

(1.11) (€ 35le =

0.

Hence cz(t) =g for every t € (-g,¢g).

(&) Now, let ¢, be an integral curve of x? ana cz(t) = q for

1
any t € (-¢,¢e). Thus

a c, (t)
(1)ug gsle = X (e (®))

for any t € (-¢,¢) or equivalently by (1.7)
d
(Pry) oo ey (Cop gsle) = (PFp)u(y) (X(e(E)))
d

St @slt
is parallel to (M,C). From Lemma 1.1 it follows that

for t € (-g£,£). It is easy to see that the vector
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Coe oly = X(c(t)) for t e (-¢,e).

Analogously one can prove the second part of the proposition.
Proposition 1.7. Let (M,C) and (N,D) be differential
spaces. The Cartesian product (MxN , CxD) is a finitely
generated differential space if and only if (M,C) and (N,D)
are finitely generated differential spaces
Proof., (=) Let CxD be generated by a set {wl,...,wk}.

Then is finitely generated by

(CXD)Mx{q}
{wllMx{q},...,wklMx{q}} for every g € N. Since
jq: (M,C) — (Mx{q} , (CxD)MX{q}) is a diffeomorphism, C is a
differential structure generated by the set
{py © Jg
can prove that for any p e M the set {pg jp""’wk ° jp}

rese Py ° jq} for any arbitrary q € N. Analogously one

generates D,

(<) It is easy to see that if C is generated by {fl,...,fm}
and D is generated by {gl,...,gm}, then CxD is generated by

the set {f1 ° prl,...,fm ° prl} v {g1 o Pryseces9y, ° prz}.

2. Smooth functions and forms of class Ck on a

differential space

Let (M,C) be a differential space. A function f: M — R
is said to be of class Ck if for any point p e M there exist
an open neighborhood V e T 1,...,fn € C,
o0: R" — R of class Ck such that f]V =0 o (fl,...,fn)IV. It
is easy to see that the set 9k(M) of alil real functions on

of p and functions f

(M,C) of class Ck is a linear ring over R.
One can easily prove

Lemma 2.1. Let (M,C) be a differential space with the

differential structure C generated by a set C,- A real

function £f: M —» R is of class ck (shortly Ck function) on
(M,C) if and only if for p e M there exist a neighbourhood
UeT of p and functions f ;£ €C

nC X 1’/°°°'"n o’
o: R —> R of class C°, n € N, such that

a function
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fIU=0 o (f £)1U.

qreeee
Lemma 2.2. Let 0: R" — R be a ck function. If there

exists a point u = (u ,...,un) e R" such that

1
(*) o(ku) = ko(u) for any k € R,
then N,
o(u) = ¥ 5 (0)-u, -
i=1 9% 1
Proof. Indeed, ¢f (0) = lim () =7(0) = 15p 22 = oqu).
t—0 t-—0
0 a0
Hence o (u) = oiu(o) = E Ex—i (0)-ui.

Definition 2.1. An r-form w: T'M — R is said to be
smooth of class Ck on (M,C) (shortly Ck r-form) if w is a ck

function on the differential space (TrM,TrC) .

Proposition 2.3, Let (M,C) be a differential space with

the differential structure C generated by a set C P€EM an

’
arbitrary point, w: ™M — R a smooth r-form of colass ck on
(M,C) and r = k. '

Then there exist a smooth mapping F: (M,C) — (Rn,cn)
with the coordinates Fl' e ,Fn € C nen, an r-forn

k

ol
8: T'R™ —5 R of class C* on (an,cn) and an open neighbourhood
V e Te of p such that
- * -
wing' (V) = 1~w9|n°1 vy,

where LAY T'M — M is the projection (vl, .o ,vr) — p =

=n(v1) = ... = n(vr).

Proof. There exist a neighbourhood V e T of p and
functions Fl,.. .,Fn € Co, neN and a Ck function
o IR(I.'H)n — R such that

w|n61~(V) =

= o-(l-‘1 ° no,...,Fn ° "o'dFl ° nl,...an ° "1""'dF1 o M

r,..a‘
-1
...,_an ° nr) |1ro (V).

Let 6: T'R™ — R be the r-form of class Ck defined by
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n

(2.1)6= ¥ 3
. . X_ .
11,...,1r=1 n+i

a¥a

Ix ceeed
1 2n+12

X, ®...edXx,
d i dx1 ,

o"n,(r+1)n 1 r

Xrn+i
. N (r+1)n . .

where Ln,(r+1)n tR — R is given by

(2.2) Ln,(r+1)n (xl,...,xn) = (xl,...,xn,o,...,O)

for (xl,...,xn) e R

We will show that wlnal(V) = F'elnét(V).

Let us consider the Ck function a: R™ — R defined by

(2.3) a(Xy,eeesX)) = o(Fl(p),...,Fn(p),xl,...,xn,vz(Fl),...
n

""Vz(Fn)""'vr(Fl)""'vr(Fn)) for (x;,...,x)) € R.

It is easy to observe that for the point
u = (vl(Fl)}...,vl(Fn)) the function « satisfies (*). Thus
from Lemma 2.2 it follows that
‘a(u) = U(FI(P),---,Fn(P),VI(Fl),---,VI(Fn),---,Vr(Fl),---
ao

ax_ ., .
1= n+i,

vz(Fl),...,vz(Fn),...,vr(Fl),...,vr(Fn))~VI(Fi1).

(F1(P) s -+« sF (P),0,..-,0,

n
...,vr(Fn)) = . ¥

Now using Lemma 1 (r-1) times, in the similar way one checks
that .
U(Fl(p) I"'IFn(p) lvl(F1)1'°'lv1(Fn) ’ :“'lvr(Fl) I”'Ivr(Fn)) =

n ato
) (F,(P)y.--,F_(P),0,...,0)
. s _, O . 9Xx s ... 0X : 1 n
11""’1r_1 n+i, 2n+12 rn+i
vl(Fi )-...-vn(Fi Y,

1 n
or equivalently

’ »
w(vl,...,vr) =F (6)(v1,...,vr)
for an arbitrary (Vireeesvy) € nal(V).

Therefore wlnal(V) = F'elnal(V)-

Corollary 2.4. Let (M,C) be a differential space and p e M
an arbitrary point. If there exists a non-degenerate r-form w
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of class Ck (rsk) on (M,C), then there is an open

neighbourhood U € T of p such that (U,CU) can be immersed in
the Euclidean space. Moreover, dim Tq(M,C) < +o for any q € M.

Proof. The mapping F|U in Proposition 2.3 1is a smooth

immersion. Indeed, since W is non-degenerate and

wlnal(U) = F'elnal(U) for some open set U containing p, F*q
is injective for every q € U. Thus

. n . . .
F-q° Tq(M,C) — TF(q)(R ,cn) is an isomorphism onto the
image. Hence

dim T (M,C) = din F (Tg(M,€)) = din TF(q)(Rn,cn) = n.

*q
Definition 2.2, A smooth Ck 2-form g: T2M —> R on a
differential space (M,C) is said to be a Ck Lorentz metric on
(M,C) if for any peM the 2-form gp := gITpM x TpM is
symmetric, non-degenerate and gp has the signature
(dim TpM -1, 1).

Now we prove R

Proposition 2.5, Let (M,C) be a connected differential
space of constant differential dimension n and g a symmetric,
non-degenerate, smooth 2-form of class Ck on (M,C).LIf gp has
the signature (k,1l) at a certain point p € M, then g has the

signature (k,1).

Proof. Assume that the signature of g at a certain point

P € M is egual to (k,1l). Let VyreeoaVy be a basis of TpM such
that the matrix (g(vi’vj))ISiSn has the diagonal form
1sj=n
7\1.
hk 0 ,
0 Ak+1
! A+l

where Al,...,hk > 0 and hk+1""'kk+1 < 0.

Since (M,C) is a differential space of differential
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dimension n, there exists an open neighborhood U e Te of p and
smooth vector fields wl,...,wn € X(U) such that Wi(p) =V for
i=1,...,n, and Wl(q),..c,wn(q) is a basis of TqM for every
q e U.
Let Ai: U —> R be the smooth function defined by

Iq(W (D) Wy (D)) - v 9y (W) (@), W5 (Q))
(2.4) Ai(q) = Cesesisesssecs et es e s s esnsesensann

g (W3 (Q) Wy (@) - o9, (W3 (@), W, (D)
for gq e U, i=1,...,n.
It is easy to see that Ai(p) >0, for i=1...,k, and
sgn Ai(q) = (-1)1"k for i = k+1,...,n. In view of Proposition

6.1 in (4], for any q € U there exists a basis SIRRRENT - of
the tangent space TqM such that

A A A
(2.5) g(v,v) = Zg%;; £2 + Ki%g; £+ ...+ Kﬁ%%;gl gﬁ',
n
for any v € TqM, where v = igl Eiei .
Let V e Te be open connected neighborhood of p such that
VecU and A.(q) >0 for qeV, i=1,...,k and
sgn A; (q) = (—l)f—k for i = k+1,...,n, g € V. Hence from (2.5)

it follows that the signature of g is constant on V. Thus the

signature of g is locally constant on M. Since (M,rc) is a

connected topological space, the signature of g is constant on
(M,C).
Proposition 2.6. Let (M,C) be a differential space with

the differential structure c generated by a set
Co = {fl,...,fn} and let peM be a point such that
dim TpM = n. If g: TzM —> R is a symmetric, non-degenerate Ck
2-form (kz2) of signature (k,l) at p, then there exist an open

neighbourhood U € t, of p and a pseudo-Riemannian Ck metric 17

C
of signature (k,1) on some open subspace of (Rn,en) such that

-1 Ld -1
gln0 (U) = F nlno (U) ,where F = (fl,...,fn).

Proof. There exist a neighbourhood Ve t, of p and a Ck

C

function o: R3n — R such that
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-1 = -] -] -] ° o -]
gln0 (V) = ¢ (fl "o""’fn no,df1 nl,...,dfn nl,df1 LPYRERY"

-1
af om,) Imy (V).

Let 7: TZIRn —— R be the 2-form defined by

n 620
(2.6) n= T Fo0—s— °L dx,edx.,
i,j=1 axn+iax2n+j n,3n1 J

where : R® — R" is the mapping
n,3n

(xl,...,xn) — (xl,...,xn,o,...,O).

Analogously as in the proof of Proposition 2.3, one can check
that g|n61(V) = F'nlnéi(V). It is easy to see that 7 is a
symmetric, non-degenerate 2-form (on U).

There exists an open connected neighbourhood A of F{p)

2
such that F Y(A) c V and det 8 g

5% . (Ln 3n(q)) # 0, for
J I’

n+i%*n+
q € A.

. n
: T, . R
Since F,: T M — Tp .,

signature (k,l) at F(p). From Proposition 2.5 it follows that

is an isomorphism, =m has the

n has the signature (k,1) on (A,e Now, if we put

-1 -1 * -1 nA). s P
U=F “(A), we have glno (U) =F nlno (U). This finishes the

proof.

Proposition 2.7. Let (M,C) be a differential space of
class Do. If g: TZM —> R is a symmetric, non-degenerate Ck
2-form of the signature (k,1l) at a point p, then there exist

an open neighbourhood U e T of p and a pseudo-Riemannian

C
manifold (M,g) of dimension n = dim TpM such that g is a ck
2-form of the signature (k,1), CU = Cm(ﬁ)U and glnai(U) = LG&,
where (: U — M is the inclusion mapping.
Proof. There exist an open neighbourhood V e Teo of p and a

manifold M containing V such that cy = C°°(r71)V [17]. Let
X = (xl,...,xn) be a chart on M defined on V1 such that
U= VlnM ¢ V. It is clear that (U,CU) is a differential space
finitely generated by the set {xllU,...,xnIU}. From
Proposition 2.6 it follows that there exists a

pseudo-Riemannian Ck metric n of the signature (k,l1) on some
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open connected set W 3 x(p) such that

gln{,‘(x'l(w)) = (xIxY(W))"™n. Let us put H=x'(W) and

g =xmn. Of course, g is a C° pseudo-Riemannian metric on M of
the signature (k,1l) and §In61(U) = L;Ja, where U = M.

Now we prove

Lemma 2.8. Let (M,C) be a differential space and a subset
A ¢ M. A real function f: A —» R is smooth of class Ck on
(A,CA) if and only if, for any point p e A, there is a
neighbourhood U € 'cCIA and a function g: M — R smooth of
class Ck on (M,C) such that f|U = g|U.

Proof. (=) Let f: A — R be a smooth function of class
Ck on (A,CA) and p e M an arbitrary point. There exist a

1""’an CA’

fn) IW. There

neighbourhood We tCIA and functions f

o: R® — R of class Ck such that f|W = cro(fl,...,

is a neighbourhood W, € tCIA of p and functions 9yre--19, € C

1
such that filwl = gilw1 for i=1,...,n. Of course, the
composition g = o (gl, e ,gn) is of class Ck on (M,‘C) and

fiU = g|U, where U = wl nWw.

(&) Now, let f: A — R be a real function such that, for any
P € A, there exist an open neighbourhood U e 1:CIA of p and a
function g: M —5 R smooth of class Ck on (M,C) and f|U = g|U.

We will show that f is smooth of class Ck on (A,C For any

).
A

point gq € A ¢ M, there exist a neighbourhood W € Teo of q and
functions 9yreees9p, € Cc, o: R®” — R of class ck such that

glw = oo(gl,...,gn) IW. It is easy to see that

fIWNnU=¢ o (gllA,...,gnIA)Iw n U

This proves that f is smooth of class Ck on (A,CA) .
Lemma 2.9, Let F: (M,C) —> (N,D) be a smooth mapping
between differential spaces. If f: N— R is a smooth

K on (N,D), then the function Fe«f is smooth

function of class C
of class Ck on (M,C).

Proof. Let f be a smooth real function of class Ck on

({N,D) and pe€eM be an arbitrary point. There exist a
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neighborhood V » f(p) open in Th and functions fl""’fn € D,

o: R" — R of class Ck such that

£IU =0 o (£,,...,£)1U.
1wv). since F V) sp
and fioF e C, for i =1,...,n, foF is smooth of

Then £<FIF (V) = 0o (f,oF, ... £ oF) IF
is open in Te
k
class C on (M,C).
Lemma 2.10. Let (M,C) be a differential space of constant
differential dimension n. Then a 2-form g: M — R is smooth

of class Ck on (M,C) if and only if for any local vector basis

wl,...,wn € X(U) on U € Te the coordinates gij =g o (wi,wj),

i,j=1,...,n, are smooth functions of class Ck on (U,CU).

Proof. If g: T2M —> R is smooth of class Ck on (M,C) then
in view of Lemma 2.9 the composition go(wi,wj) is smooth of
k

class C on (U,CU). Conversely, 1if the coordinates gij’

i,j=1,...,n, of g with respect to a 1local vector basis

wl,...,wn on U e Tor are smooth functions of class Ck on

u,c th identl Sty = 7 W, @ W, i

(u, U), en evidently qln0 (uy = . §_1 gij° mW, e j is
,J=

smooth of class Ck on (U,C There exists an open covering U

U)'
of (M,tc) such that glnal(V) is smooth of class Ck for any

V € U. This proves that g is smooth of class Ck on (M,C).

Definition 2.3. Let F: M— N be a mapping from a
differential space (M,C) into a differential space (N,D). F is

said to be a smooth mapping of class Ck from (M,C) into (N,D)
if F (3¥m)) < ).

It is easy to see that f e ?k(M) iff a mapping f: M — R
is smooth mapping of class Ck from (M,C) into (R,€).

It is easy to prove

Lemma 2.,11. Let F: (M,C) —> (N,D) be a smooth mapping

between differential spaces. If f: N — R is smooth of class

Ck on (N,D), then f-F is smooth of class Ck on (M,C). Moreover
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F is a smooth mapping of class Ck from (M,C) into (N,D) for
kK=1,2,....
Definition 2.4. A vector field X tangent to (M,C) is said

to be smooth of class Ck if X: M — TM is a smooth mapping of

class Ck from (M,C) into (TM , TC).

Let Ir(M) be the ?r(M)—module of all smooth vector fields
of class cf tangent to (M,C).

One can easily prove

Lemma 2,12, Let (M,C) be a differential space of constant
differential dimension n. Then a vector field X tangent to
(M,C) is smooth of class Ck on (M,C) if and only if for any

local vector basis W ,...,wn € X(U) onUecT the coordinates

1 c’

¢; = w; o (X|U), i=1,...,n, of X are smooth functions of

class ck on (U,CU).
Now let N ¢ R®” be a subset. Consider the differential

space (N,D), where D := (cn)N. Denote by ?r(N) the linear ring
of all smooth real functions of class c' on (N,D).
Let us put 0°(N) = {f € $°(R™) : fIN = 0}.

Let p € N be an arbitrary point. Let us consider the
following linear subspaces of R™:

N := {h e R": £1,(p) = 0 for any f e of ()},

r
p
G; := {(grad f)(p): f € Or(N)}.

n r

ces r r
Proposition 2,13, G_ @ N_ =R
P P ) P

and G; is orthogonal to N
with respect to the standard metric on R"™.
Proof. It is easy to see that

L
N; = {h e R™: (gradf) (p) -h =0 for any f € Or(N)} = Gp.
Since the standard metric is non-degenerate, G; @ N; = R,

Corollary 2.14. The following conditions are equivalent:

(1) dim N; n,
(ii) f£f,(p) =0 for any f e o (N) and h e R".

Proof. From Proposition 2.13 it follows that dim N; =n
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iff dim G; = 0. It is clear that Gp = 0 iff (gradf)(p) = 0 for
any f e Or(N). This is equivalent to (ii).
5
Example 2.1, Let N = {(t,ta): t e R} . Of course N 1is the
5
graph of a C1 function f: R — R defined by x +—> x>. From

Proposition 2.13 it follows that dim N; =1, for any ©p € N.

N c Rz is a subspace such that dim N; = 1<2. Let a: Rz——+ R be
the ¢! function defined by

S

a(x,y) = x> - Y for (x,y) € mz.

It is clear that a € Ol(N) but aiz(p) = -1, for any p € N.

One can easily prove

Lemma 2.15. Let p € N be an arbitrary point of a subset
r r r

n 1 2 1 . .
NcR . If r, <r, then 0 N) >0 N) and N is a 1linear
1< T, o (N) > 0,%(N) b
r, r, r, .
subspace of Np . Moreover, if dim Np = n then dim Np = n.

Example 2,2, Let N be the graph of C1 function f: R— R

which is not c? at any point. Then N; C N;, dim N; =1 and

dim N; = 2, for every p € N.

Now we prove

Proposition 2.16. If dim N; =k =z 1, then there exist an
open neighbourhood U € Th
cf surface S c R" including U and f‘ir(N)U = Cr(S)U, where

of the point p and a k-dimensional

Cr(S) := 9r(Rn)S. Moreover, the integer Xk = dim NT is the

P
smallest dimension of such a c' surface S.

Proof. Clearly, dim G; = n-k. Let hl""’hn-k e R" be a
vector basis of GE. There exist functions fl""'fn € Or(N)
such that hi = (gradfi)(p), for i=1,...,n-k. Since
. afi
rank % (p) =n - k, the mapping

lsisn-k
1=j=n

(f rR" — Rn-k is reqgular at p. There exists a

1,...,fn_k):
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neighbourhood V of P open in top R" such that

af.

rank [ Eii (q)] =n -k for q € V. From the implicit function
J

theorem [16] it follows that the set S := {geV: fl(q) = ...

= fn_k(q) = 0} is a k-dimensional cf surface in R™. of course,

the set U=Nn V is open in Th and Uc S. It is easy to

observe that ?r(N)U = Cr(S)U. Since U c S, Or(U) > Or(S).
Thus Uf ¢ Sz. It is easy to observe that dim U;=dim N; and

dim S; = dim S. Therefore  dim S = dim N; = k. This finishes
the proof.
Now let N ¢ R™ be a subset such that dim N; =n for any

q € N. From Lemma 2.1 it follows that for any function
o€ 9r(N) and a point gq e N there exist a neighbourhood
V € top R of g and a smooth function B8: R"— R of class cr
such that a|lV n N =8|V n N. The function 8 is said to be a
local extension of a at the point q.

From Corollary 2.14 it follows the correctness of the
following definition:

Definition 2.5. Let N ¢ R" be a set such that dim N; =n

for q e N. 1i-th partial derivative of a smooth function
a e ?r(N) of class cf at q,(rzl), is defined to be the i-th
partial derivative of its local extension g at this point

(2.7) aii(q) = Bii(q) for geN, i=1,...,n.
Now let M be an n-dimensional differential ¢ manifold and
Mo be a subset of M. If x = (xl,...,xn) is a chart on

U € top M, then the restriction x, = x|UnM is said to be a

0

chart on Uo = UnM c Mo.

Let Cy = Cm(M)M be a differential structure on Mo. Let us
o

assume that for any point p e MO there exists a chart

X, = xIUo, Uo » p, such that dim xO(U =n, for any qeU

)r
0 0'q 0°
Then (MO,CO) is said to be of constant c¥ dimension n. The

chart Xo allows us to define tangent vectors at p € UO:
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a RS _
{(2.8) ;;I lp (¥) = (¢ X, )ii(xo(p)) for ¢ € Co, i=1,...,n.
o
The correctness of (2.8) follows from (2.7).
It is easy to see that the vector fields —éi,...,—gﬁ are
axo 8x0

local vector basis of the ?r(Mo)-module Ir(MO) of all smooth
vector fields of class c' tangent to (MO,CO).

Lemma 2.17. Let (MOKCo) be a subspace of an n-dimensional
c® manifold M. If (MO,CO) is of a constant cf dimension n then
(Mo,co) has constant differential dimension n.

Proof. Since (Mo,co) is a differential subspace of

(M,c®(M)), dim TpMos dim TpM =n for any p € M.
Let x = (xl,...,xn) be a chart on an open neighbourhood

U e top M of a point p € MO and let Xy = xlUnMo. It is easy to
see that vectors —E—I —E—I defined by (2.8) are linearly

sy
8x3 q axg 9
independent for every q € U T ,...,—E—I is a
q ngq

axo 8x0
Therefore 8 8 is a 1local

Tre
axo axo

vector basis of Co-module I(Mo) on a neighbourhood U

This finishes the proof.

_ 2]
0= UnMO. Thus ——|

basis of TqMO for q € Uo.

0 of p.

Proposition 2,18, Let (MO,CO) be a differential subspace
of M and let (Mo,co) be of constant c¥ dimension n = dim M. If

g is a cr (r=2) Lorentz metric on M, then g = L; g is a ct
0
Lorentz metric on Mo, where Ly * Mo — M 1is the inclusion
0

map.

Proof, It is enough to prove that for every p € Mo the

signature of 6 at p is equal to (n-1,1). Let x = (xl,...,xn)
be a chart on an open neighbourhood Ue top M of a point

p € Mo and let Xg = xIUnMo.

It is easy to check the equality

a a .
2.9 L —| = — for i=1,...,n.
(-9 ( Mo)'p (6x3 2 axllp B
From Lemma 2.15 it follows that dim Tp!do = dim TpM =n, for
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: TM, — T M is an isomorphism for

any p € Mo. Thus (LM )'p oMo P
0

p e M.. Now it is clear that g_ = (L' g) has the signature
0 P M,7'p

(n-1,n) for any p € MO.
Now for any r e N and p € M, let f;M be the set of linear

mappings v: FE (M) — R satisfying the following condition
n
(2.10) v(oo(fl,...,fn)) = 151 crii(fl(p),...,fn(p))-v(fi)

r
for coee_, £

n 1,...,f € C.

n
Clearly T;M, is a linear space over R. It is easy to see that
T;M is a linear subspace of the tangent space T;M to (M,?r(M))

at the point P Since Cc 9r(M), the mapping
id: (M,¥°(M)) — (M,C) is smooth. Let us put L; = id,plffgu.
Lemma 2.19, For any peM and r € N, the mapping
r, ~r . . NS o .
L : TM— T M is a monomorphism. If dim T M = dim T M then
p- P P P P P’
L; is an isomorphism.
Proof. It is easy to see that
(2.11) L;(v) = v|C for any V € T;M.

We will show that L; is a monomorphism. Let L;(v) =0 for a
vector v e T;M. By (2.11) VIC = 0.

We will prove that v = 0. Let f e 9r(M). There exist a

neighbourhood U e T f e€eC and

of p, n € N, functions fl""’ n

C
o e cz such that

£IU =0 o (£,...,£)1U.

1’
Hence and from (2.10) we have

v(f)

v(o o (fl,...,fn)) =

[
[N =]

Uji(fl(p),---,fn(P))'V(fi)

n
Yy o/ (£.(P)ss-.,E (P)):O =0 .
i=1 |1( 1 n )

Therefore v(f) = 0 for any f ¢ 9r(M‘. Thus v = 0.

1]
3

Lemma. 2.20. If dim 'I';M = dim T M =n, then dim "f";u

for every k > r. Moreover, for k > r the mapping L: is an
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isomorphism.
Proof. For k>r wve have the smooth mapping
id: (M,?r(M)) — (M,?k(M)). Let us notice that

(fgn) c Tgu. In fact, for any V e @;M vector id_pv
satisfies (2.10).

Let L;’k: T;M — TkH be the mapping defined by
r,k
2.12 L '™ = T M.
( ) - ,pl P
It is evident that L;'k is a monomorphism. The following
diagram
Lr,k
P
~r ~
T M > TkM
P P
r
L k
L
P p
T M
p
is commutative. Since LI‘K and L: are monomorphisms,
dim T M s dim TkM = dim TpM. Thus n s dim T:M s n. Hence

dim TkM

Now we prove

Lemma 2.21. Let (M,C) be a differential space with the
differential structure C generated by Co-

Then for any mapping Vgi € — R satisfying the condition

0
(*) for any o € c;,fl,...,fn € Co, nenN
if o o (fl,...,f ) =0, then
n
L o-l (f (P)fo--:f (P)) : vo(fi) =0,
i=1

there exists a unique vector v € ﬁ;M such that vIC0 = V-

Proof. Let v: ?r(M) — R be the mapping given by

n
(2.13) v(f) = ): ofs (E4(P)s-vesE (P)) Vo (£;)

r

r
for £f € ¥ (M), where fl""’fn € C0 and o € €, are such

functions that there is an open neighbourhood U € To of p and
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£IU=0 o (£,,...,£5) U,

From (*) it follows the correctness of definition (2.13)
and the uniquess of the vector v satisfying the condition
vlC0 =Vy-
Proposition 2.22, Let Nc R"” be a subset with the

differential structure D = (en)N. Then for any p e N the
mapping I;: T;N — N; defined by

r ~r
(2.14) Ip(v) = (v(nllN),...,v(nnIN)) for v e TpN,

is an isomorphism of linear spaces.
Proof. First, we prove that I; is a monomorphism. If

I;(v) = 0 for a vector Vv e f;N, then

v(nllN) = .., = v(nnlN) = 0. By condition (2.10), for any
o € FE(N), N
v(a) = T o’ (p)-v(n;IN) =0,
i=1 i
where o € c; is a function such that there exist a
neighbourhood U e Th of p and «lU=o0 o (nllN,...,nnlN)IU.

Therefore v = 0.
Now we verify that I; is an epimorphism. Let h § N;. It

. p
means that £, (p) = 0 for any f ¢ 5 (R") such that £|N = o.

Let Von® {nllN,...,nnlN} — R be the mapping defined by
(2.15) th(niIN) = hi for i =1,...,n.

It is easy to see that v satisfies the condition (*) from

Lemma 2.21. Thus, in vieghof Lemma 2.21, there exists a unique
vector v, € ng.such that v, (m;IN) =h,, for i=1,...,n, or
equivalently Ip(vh) = h. This finishes the proof.

Proposition 2.23. Let (M,C) be a differential space of
constant differential dimension n. Then for any
k e N, = Nu{0}, ?k(M)—module Ik(M) is an n-dimensional
differential module.

Proof. One can prove [15] that for any point p e M there
exist a neighbourhood U € e of p, a local vector basis
wl""’wn € X(U) of the ¥F(M)-module ¥(M) and smooth functions

Qyypeee,0 €C such that Wi(aj) = Si for i,j=1,...,n.

U 3’ ;
Let X € Ik(M) be an arbitrary vector field. Then for any
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point p e U, X(p) = 'g wi(p)wi(p), where wi: U — R,
i=1,...,n, are uniqﬁz 1real functions. Moreover, since
wi =X o dai, for i=1,...,n, wi € ?k(M), for i=1,...,n.
Thus wl,...,wn is a local vector basis of the 9k(M)-module
™y .

Now we prove

Lemma 2.24. Let (M,C) be a differential space satisfying
the condition: there is an r € N such that dim T M = dim T'M
for any p € M. Then for any X € Ik(M), f e 91(M)f) k, 1€ 5,

k, 1 2 r, the function Xf : M — R defined by

(2.16) (Xf) (p) = (Lpl,)-1 (X(P))(£)  for p e M,

is a smooth function of class cs on (M,C), where

s = min(k,1-1).

Proof., For any point p ¢e M there exist a neighbourhood

1L ¢ .,f_ e C such that

U e T of p and functions o € € n

flU =0 o (f ..,fn)IU. Then

170
1"

_ n
(X£) () = (L) (X)) (D) =T of; ¢ (£ 00 E) () © (XEH) ()

i=1

for p € U.

n
Thus XflU= ¥ oii ° (fl,...,fn)IU . (Xfi)IU. Clearly,

i=1

1-1
ofi o (£, ) € FH(U)

and Xf, e Fk(U) for i =1,...,n. Hence Xf|U « 9m1n(k,1-1)(U).

Therefore Xf e ¥° (M).

Definition 2.6. A 1linear mapping X: s(M) — 9k(M)
satisfying

(2.17) X(aB) = Xa-8 + 0-XB for any «,B8 € F(M)

is said to be a Ck derivation of ¥(M).

Let us denote by Derk(g(M)) the 9k(M)—module of all
Ck-derivations of ¥(M). For any X e Ik(M), the mapping
ax: FM) — ?k(M) given by

(2.18) (axa)(p) = (Xa) (p) for pe M, a € F(M)
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is a ck-derivation of the linear ring ¥(M).

Now one can prove

Proposition 2.25. The mapping ok xk(M) — Derk(E(M))
given by

(2.19) oX(x) = 8, for X e o (M)

is an isomorphism of ?k(M)-modules.

Proof. It is clear that ek is a monomorphism. To prove
that ek is an epimorphism it is enough to notice that for any
X e Derk(y(M)) the vector field X: M — TM defined by
(2.20) X(p) (x) = (ia)(p) for « ¢ ¥(M) and p € M,
is a vector field from Ik(M) such that ek(x) = X.

Definition 2.7. Assume that (M,C) is a differential space
satisfying the following condition: there exists r e N such
that dim TpM = dim f;M for any pe€ M. For any X,Y e Ik(M),

k =z r, denote by [X,Y]: F(M) — ?k-l(M) the mapping defined
by

(2.21) [X,Y](f) = X(Yf) - Y(Xf) for £ e F(M).

X-1_gerivation of F(M).

From Proposition 2.25 it follows that there exists a
unique vector field (X,Y] € Ik_l(M) such that a[x,Y] = [X,Y].
The vector field {X,Y] is said to be the Lie bracket of
X,Y € Ik(M). One can check that ek defined by (2.19) 1is an
isomorphism of the Lie algebras (xk(M),[-,-]) and
(Der ), [-,-1).-

k

Now for any n-form w: TnM — R of class C" on (M,C) and

One can verify that [X,Y] is a C

for 1 =0,1,2,..., let &: ¥ (Myx...xxl(M) —> ¥5(M) be the
?l(M)-module-linear mapping given by
(2.22) a(xl,...,xn) =w e (X;,.00,X))

X € Il(M), where s = min(k,1).

for xl""’ n
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It can be proved

Lemma 2.26., Let (M,C) be a differential space of constant
differential dimension and g a semi-Riemannian metric on (M,C)
of class Cr, r=20,1,2,... . Then for any ?k(M)-linear mapping

P: Il(M) —_— ?k(M), k=0,1,2,..., there exists a unique
vector field A € 1S(M), s = min(k,r), such that

(2.23) ©(2) = g(A,2) for any Z e xl(M), 1=1,2,... .
Proposition 2;27. Let (M,C) be a differential space
satisfying the condition: dim TpM = dim T;M for any p € M.

2 r

Then for any semi-Riemannian metric g: T"'M — R of <class C
there exists a unique covariant derivative of class cf [15)

such that
(2.24) Zg(X,Y) = g(V,X,¥) + g(X,V,Y),

(2.25) Y = U X + [X,Y],

Yx Y

for any X,Y,Z e Il(M).
Proof, For any X,Y e Il(M) let Px v Il(M) — 90M be
’
?O(M)-linear mapping given by ’

1 ~ ~ -~
(2.26) Py y(B) =3 [0,(¥,2) + 8,3(2,%) - 8,§(X,¥) +

+ g([X,Y],2) +g([2,X],Y) - g([¥,2),X)],

for Z e XI(M).

From Lemma 2.26 it follows that for any Px v ’
’

X,Y € Il(M), there exists a unique vector field VxY € x°(M)
such that

~ 1
wx,Y(Z) = g(VxY,Z) for any 2 € X7 (M).
Let V: xl(M)xII(M) — IO(M) be the mapping defined by

(2.27) V(X,Y) = V.Y for any X,Y e X} (M).

X
It can be proved, in the standard way, that Vv is a covariant

r r+1(M)'

derivative of «class C (7] i.e. for any X,YeX
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r
VY € X5 (M)

3. Singularities of the fundamental differential space

Definition 3.1. A pair ((M,C) , (M,EM)) is said to be the
fundamental differential space (shortly F-d-space), if (M,C)
is a differential space and M a subset of M dense in (ﬁ,t_)

such that (M,EM) is an n-dimensional ¢® manifold.

The set M = M - M is called the boundary of the F-d-space
(M,8) , M,Ty).

1f ((4,C) , (M,EM)) and ((N,D) , (N,BN)) are fundamental
differential spaces, then

((MxN , CxD) , (MxN,(Exﬁ)MxN)) is a fundamental differential

space with the boundary 8(MxN) = 8MxN v MxaN.
Definition 3.2. A boundary point p € M is called regular

if there exists a neighbourhood Ue t_ of p such that the
C

differential subspace (U,C has constant differential

u’

dimension n. A boundary point p € M is called singular if p

is not regular. A boundary point p € dM is said to be of class

D, (shortly Do-point) if there exists a neighborhood U € T_ of
C

p such that (U,CU) is a differential space of class DO'

boundary point p € M is called a non—Do—point if p is not of

A

class Do.

Now we can present the following diagram:

p € 834 boundary point

P regular point P singular point
P p
Do—regular non-Do-regular Do—singular non-D_-singular
point peoint peoint point
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Example 3.1. Let M = {(x,y) € RZ :x =2 0 A y = 0} and

C = (ez)_ . The boundary points M = {(x,Y) € M: x=0v y=0}
M
are Do-regular.
Example 3.2, Let C be the differential structure on
M= R2 generated by the set {nl,nz,f}, where Ty R2 — R,

myt R? — R are the natural projections and f: R?Z — R is

the function defined by

f(x,y) = x2+y2 for (x,y) € RZ.

Let M := R2\{(0,0)}. It is easy to observe that ((ﬁ,&),(M,EM))
is a fundamental differential space and &8M = {(0,0)}. The
point (0,0) is a D,.-singular point. It is clear that

dim T (0,0) (M,C) =3 ando dim Tp(ﬁ,é) =2 for p=# (0,0).

Example 3.3. Let C be the differential structure on M = R2
generated by the set {nl,nz} v {fn: n € N}, where
fn: R2 —> R for n € N is the function given by

n
fn(x,y) = 3 ¥ y2 for (x,y) € Rz.

One can see that ((ﬁ,a),(M,EM)), where M = R2\{(0,0)} is a
fundamental differential space with the boundary 8M = {(0,0)}.
The point (0,0) is non-Do-singular.

Example 3.4. Let N = { % e R:nelN } v {0}. Let D be the
differential structure on N generated by the set
{idN} v {fn: n € N}, where fn: N —R for n € N, is defined by

n
fn(x,y) =3 x for x e N.

It is easy to see that dim TX(N,D) = 0 for x € N. Let us take

the Cartesian product (ﬁ,E) = (Nsz, Dxe and let

2)
M= { % e R: n e N} x R2. Evidently ((ﬁ,E),(M,EM)) is a
fundamental differential space. (M,C) is a differential space
of constant differential dimension 2. The boundary points are
non-Do-regular.

Definition 3.3. The pair ((M,C),(M,q)) is said to be the
cX aifferential space-time if ((ﬁ,E),(M,EM)) is a fundamental
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differential space and (M,g) is a dense n-dimensional Ck
Lorentz submanifold. The set 8M = M - M is called the boundary

of the Ck differential space-time. The Ck Lorentz metric g is

said to be extendible on the boundary dM if there exists a Ck

Lorentz metric g on (M,C) such that g = Lﬁa, where (,: M —> M

is the inclusion mapping.

Example 3.5. Let us consider the set M= {(x,y,z) € R>

X=0vy=0}. Let C be the differential structure on M

induced from the Euclidean differential space (R3, 83). Then

g = dni + dng - dni is an extension of the Lorentz metric from
the space-time (M,g), which is the disjoint union of
2-dimensional Minkovski space-times ({(x,y,z) € M:y = 0},
dng - dng) and ({(x,y,z) € M:x = 0}, dni - dng). The set of
all points of the axis 0Z is the boundary of the c*
differential space-time ((M,C) , (M,9)).

Definition 3.4. Let ((M,C),(M,g)) be a c®- Qqifferential

| 4

space-time. A boundary point p € M is said to be C -metric if

there exist a neighbourhood U € T_ of p and c¥ Lorentz metric
o

- - * -

g on (U,CU) such that LtunMd = Junm’ LunM

the inclusion mapping. A boundary point p € M is said to be

where :UnM — M is

Ck—metric D.-regular if p is D -regular and Ck-metric.

0 0
Now we can present the following classification of
Ck—metric boundary points.

P Ck-metric point
P Ck—metric regular point p Ck-metric singular point
P Ck—metric P Ck—metric P Ck-metric p Ck-metric
Do-regular non-D,-regular singular point non-D, sipgular
point point point

Proposition 3.1. Let ((H,5),(M,9)) be a c¥ differential

space-time. If a point p € M is Ck-metric and k z 2, then

there exist a neighbourhood V € T_ of p and the integer me N
C
such that

dim Tq(ﬁ,é) =m for qe V.



630 W. Sasin

Proof. From Corollary 2.4 it follows that there exist an

open neighbourhood V e T_ of P and a mapping
C

F: (V,Ev) — (Rm,em) such that Fug is injective for q € V.

Now it is evident that

dim Tq(ﬁ,E) = dim Tq(V,EV) =sm for any q e V.

Example 3.6, Let RN be the set of all real sequences.

Denote by Ty for i e N, the projection of RN  onto the i-th
coordinate given by

= _ N
ni(x) = Xg for x = (xi) €R .,

Let €n be the differential structure on R generated by
the set {m;: i e N} [15)]. Let us put

M, = {xeR:x, =0 for j=11}, i€ N.

Let M:= U M, and C := (ep)_ « M= M\{0}. It is easy to
ieN M

see that ((ﬁ,E),(M,EM)) is a fundamental differential space

such that dim Toﬁ = ®» and dim Txﬁ =1, for x * 0. There is no
non-degenerate 2~-form of class Ck (k 2 2) in a neighbourhood

of the singular point 0 = (0) € RV, because dim To(ﬁ,a) = .

Proposition 3.2. Let (M,C) and (N,D) be differential
spaces. If g: T2M —> R a Ck Lorentz metric on (M,C);
h: T2N — R is a Ck Riemiannian metric on (N,D) and

f: M — (0,+w) is a smooth function of class Ck on (N,D),

then the 2-form g: T2 (MxN) —> R defined by
(3.1) g(wy,w,) = (pry9) (w,,w,) + f(Prl("(Wl)) :
. 2
(przh)(wl,wz) for (wl,wz) € T (MxN),

is a Ck Lorentz metric on (MxN , CxD), where mn: T(MxN) — MxN
is the natural projection.

Proof. Let (p,g) € MxXN be an arbitrary point. Let

171 Vp € TpM be a vector basis of TpM such that

v
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1l

. (V]
(g(Vi,vj)) = [ . '1-l ] and let Ujreeo,u € TqN be a vector
1 0
basis of T _N such that (h(u,,u.)) = t. . It is easy to
q 1) 0 1
see that
wl = (Jq).pvll“'l wm = (Jq).pvmr
Ym+1 T (jp)'qul""’ Ymen - (Jp)-qun
is a vector basis of T (MxN) such that
(p,q)
(g(vilvj)) E 0
(g(wi,wj)) = T =
Y . f(p) (h(ui,uj))
1 0
= -1 .
£(p)
0 "
“f(p)

Now it is obvious that g is3"the_ Ck Lorentz metric on

(MxN , CxD). Analogously one can prove
Proposition 3.3, Let (M,C) and (N,D) be differential

2y — R is a Ck Riemannian metric on (M,C),

h: N — R is a cX Lorentz metric on (N,D) and

spaces. If g: T

f: M — (0,+w) is a smooth function of class Ck on (M,C) then

the 2-form g: T2 (MxN) — R defined by
(3.2)  §(wy,wy) = (Pr;9) (W ,w,) + £(pr,(m(w,))) (Pryh) (v ,w,)

for (wl,wz) € Tz(MxN), is a Ck Lorentz metric on (MxN , CxD).

Example 3.7. Let g = L;n be the metric on the submanifold
M from Example 3.1, where 7m 1is the Minkowski metric on

(Rz,cz). The metric g = ¢ 7 is an extension of g onto M. All
M
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points of the boundary 8M are D -Ck-metric regular.

0
Example 3.8, Let (M,C) = (NxIR2 , Dxez) be the differential
space from Example 3.4. Let 7 be the Minkowski metric on

(Rz,c It is easy to observe that g= pr;n is a Lorentz

2)°
metric on (M,C), where pr,: NxR2—> R? is the projection. Thus

the boundary point (0,0,0) is non-D Ck-metric regular.

0
Example 3.9. The points of the axis 0Z from Example 3.5

are DO-Ck-metric singular.
Example 3.10. Let (N,D) be the differential space from
Example 3.4 and (M,C) be the differential space from Example

2
2

metric on (MxN , CxD). The pair ((MxN , CxD) , (ﬁxNo,pr;g)) is

3.5. The then 2-form pria = pr;(dni + dm. - dng) is a Lorentz

a differential space-time, where No := {% e R: n e N}). All

points of the boundary are non-D -Ck-metric singular.

0
From Proposition 1.5 it follows
Corollary 3.4. Let ((M,C) , (M,EM)) and ((N,D) , (N,BN))

be fundamental differential spaces. Then a boundary point
(p,q) € 3(MxN) of the Cartesian product

((MxN , CxD) , (MxN , CxD is regular if and only if p and

MxN))
q are regular. A boundary point (p,q) € 8(MxN) is singular iff
p € 8M is singular or q € 8N is singular.

From Proposition 1.7 it follows
Corollary 3.5. Let ((M,C) , (M,EM)) and ((N,D) , (N,BN))

be fundamental differential spaces. Then a boundary point
(p,g) € 8(MxN) is a D
points.

point if and only if p and q are D

0 0
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