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PRODUCT FINAL DIFFERENTIAL STRUCTURES ON THE PLANE

In this paper we define two final differential structures
on the Cartesian product of differential spaces (Section 1).
The first (second) structure is defined with respect to
arbitrary (continuous) real functions on such a product. These
structures were introduced by Buchner [1]. If M and N are
differential spaces, then by M X4 N and M X5 N we denote the
Cartesian product M x N regarded as a differential space under
the first and the second final differential structure,
respectively. In the general case, we shall only give an
estimation from below of the dimension of tangent space of

Mx, N at a point, where & = 1,2 (Proposition 1.2).

Let R be the set of reals regarded as a differential space
under the natural structure Cw(m). This paper is devoted to
the study of some properties of the differential spaces R x, R

and R x, R from the point of view of differential geomet;y.
These spaces have many common properties (Sections 3 and 4)
and they can frequently be considered simultaneously. However,
in general, the investigation of R x, R is more complicated

2
than that of R x; R (Section 2).

The way of generalizing methods applied to the study of

R x, R to those proper for the study of Mx, N in the

k
general case is not clear. Therefore, by analogy, we pose
several open questions for M x, N and related objects

(Section 5).
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1. Preliminaries

By a differential space we shall mean a differential space
in the sense of Sikorski [6]. If M is such a space, then &(M)
will denote the family of all real smooth functions on M.
Every differential space M will be regarded as a topological
space under the € (M)-topology which 1is defined to be the
weakest topology on M such that all functions from &(M) are
continuous.

Let N be a non-empty set. Consider a collection € of maps
f: Mf — N, where M. is a differential space for each f e €.
Let F(N) denote the family of all real functions on N. The
F-final differential structure on N induced by € is defined to
be the strongest differential structure F6(N,€) on N for which
all maps from € are smooth (compare [2]). This means that

FE(N,€) = {x € F(N): acf € B(M) Vo _ ¢}

The structure F&(N,f) 1is also called the differential
structure on N coinduced by € (compare [8}). It 1is easy to
verify that F6(N,€) is a differential structure on N. Suppose
further that N is a topological space and every map from € is
continuous. Let C(N) denote the family of all real continuous
functions on N. We define the C-final differential structure
on N induced by € to be the family C6(N,E) = C(N) n FE(N,E).
One can see that CG6(N,€) is also a differential structure on
N. Moreover, we have

CE(N,E) = {a € C(N): acf € E(M.) Vo _ ¢}

By a pointed differential space (M,x) we shall mean a
differential space M together with a base point x € M. We say
that f: (M,x) — (N,y) is a smooth map of pointed differential
spaces if f: M — N is a smooth map of differential spaces and
f(x) = y. The tangent vector space of (M,x) is defined to be
the tangent vector space T (M, x) of M at X. If
f: (M,x) — (N,y) is a smooth map of pointed differential
spaces, then we define the linear map Tf: T(M,x) — T(N,y) in
a usual manner. Let T be the assignment which sends every
pointed differential space (M,x) to the vector space T(M,x)
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and every smooth map f of pointed differential spaces to the
linear map Tf. It is easy to verify .

Lemma 1.1, The assignment T is a covariant functor from
the category of pointed differential spaces to the category of
vector spaces. '

Let M and N be differential spaces. For any x e M and
y € N, define the maps r®: N> MxNand 1¥Y: M > M x N by

(t,y).
Let us consider the set € = €¢(M,N) {rx,ly: X €M, yeN} =
{rx: X € M} v {lyz y € N}. The product F-final differential
structure on M x N is defined to be the structure
9’1 (M x N) =F6E(Mx N, €). We shall regard M x N as a

topological space under the product topology. One can see

[}

r*(s) = (x,s) and 1Y(t)

that, in general, the family ?l(M x N) may contain functions
which are discontinuous on M x N in this topology; however,
all maps from € are always continuous. Therefore, we define
the product C-final differential structure on M x N to be the
structure ?Z(M x N) = C6(M x N, €), Denote by &(M x N) the
family of all real smooth functions on the product M x N of
differential spaces. It is seen that 6(M x N) ¢
< .9’2(M x N) ¢ C(M x N). This implies that the
92 (M x N)-topology on M x N is the product one. We shall
denote by M X N the differential space (M x N, S’k(M x N))
where £ = 1,2. By applying Lemma 1.1 it is easy to prove

Proposition 1.2, If M and N are differential spaces, then,
for any x e M and y € N, we have

dim T(M X N, (x,Y)) =z dim T(M,x) + dim T(N,y).

We shall regard the set R of reals as a differential space
under the natural structure C°°(|R) of all real smooth functions
on R, i.e. we accept that &(R) = C°(R). Let us set
?k = .?k(R x R) for & =1,2. Throughout this paper, all
considerations concerning R x, R or ok will be carried out for
an arbitrary but fixed k.

Let ¢ = C(R,R) = {rx,lY: X,y € R}. For any x,y € R we set

R* = ¥®(Rr), LY = 1¥Y(R) and k¥ = R® v LX.

Denote by 5'1 (9‘2) the family of all arbitrary (continuous)
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real functions on R2 =R x R. It is easy to verify

Proposition 1.3, If a € 9*, then the following conditions
are equivalent:

(a) a € ?k,

(b) ale € cm(Rx) and alLy € Cm(Ly) for any x,Y € R,

(c) ale € CQ(Kx) for each x € R.

If A is a subset of Rz, then by Yk(A) we shall denote the
differential structure on A induced from R Xp R. Moreover, it
will be convenient to denote by ?I(A) (?Z(A)) the family of
all arbitrary (continuous) real functions on A. Let us set
Rg = R2 \ {o} and K = Ko = {(x,y) € RZ: xy = 0}, where o=
(0,0). One can see that Proposition 1.3 implies

Corollary 1.4. Let a € 9*. Then o € ?k if and only if
alR2 e #(R%) and alk € c®(K).

Note that, in the geheral case, the differential spaces
Mixl N and M x, N may be identical. In particular, this is

satisfied if M or N 1is discrete, i.e. 6G(M) = F(M) or
€(N) = F(N), respectively. The following example shows that
the differential spaces R x; R and R x, R are different. In
fact, these spaces are non~-diffeomorphic (Corollary 4.5).

Example 1.5, Let ¢: R® S R be the function defined as
follows:

—3—5X—5 for (x,y) € Ri,
$(x,y) =4 x* +y

(¥ for (x,y) = o.

It is seen that ¢ e ¥1 \ #2.

In this paper, by the topology on RZ we mean the Euclidean
one, unless otherwise stated. Moreover, mz will be regarded as
a real normed (vector) space under the coordinatewise
1/2

operations and the norm defined by Ilpl = (x2+y2) for
P = (X,5).

2. Tangent vector space

Observe that if o,V € Cm(m), then the assignment

(x,Y) — (¢(x),¥(y)) defines a smooth map ¢ x ¥ from R Xp R to
itself. We have
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Lemma 2.1. If ¢ and ¥ are smooth diffeomorphismé of R,
then ¢ x ¥y is a diffeomorphism of R Xp R. i

From this lemma it follows that any translation of R® is a

diffeomorphism of R Xp R. Denote by IRi the set IR2 regarded as
a group under the coordinatewise addition. If v e Ri, we
denote by t  the translation of R? via v, i.e. t,(p) =p+ v.

2

Let ¥ be the group of all translations of R which is

isomorphic to Ri via the isomorphism v — t,.

For each p € IR2, denote by Tp(IR Xg R) the tangent vector
space of R Xp R at p, where we can assume that

Tp(IR Xp R) n Tq(IR Xp R) = @

for distinct points p,q e R>. Let us set T(R x, R) =

{T (R Xp R): p e IR2} Denote by mn: T(R Xp R) - R kuR the
pro_;ect1on deflned by n (p) = T (R Xg R) . For each «a € .Vk ve
define the differential doa: T(R x R) — R in a usual manner.
Let .‘Wk be the weakest d1fferent1a1 structure on T(R Xg R)
such that nw and any differential da (a e 3’k) are smooth
(see [3]). We define the tangent space of R Xp R to be the
differential space (T(R Xg R), ?Ty’k) which will be denoted by
T(R Xg R), as well.

If f is a diffeomorphism of R X, R, and pe le, then by
f‘p we denote the differential of f at p, that is, the linear
isomorphism f-p: Tp(IR X, R} — Tf(p) (R x; R) defined by
f'p(v) (a) = v(aef), where a ranges over H’k. Thus f defines a
diffeomorphism f, of T(R xg R) such that f’ITp(IR Xg R) =f .

*p
By the definition of ?k, any function o€ Yk has
derivatives g_:!:' g—; which are real functions on IR2, may be not

belonging to Yk Therefore the assignments a — —(p) and

da . a3 9
o - —(p) define vectors _axlp’ _aylp € Tp(IR xg R). A vector
. Y 3
Ve T (R x R) is called standard if v=a 3_§|p + b a_ylp for

some a b € R. Denote by T (R Xg R) the vector subspace of
T (R Xy R) consisting of all standard vectors at p. Since the

vectors a_ and

axlp are linearly independent and span

3
5?'9
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+
Tp(R Xg R), we get
. . + _
(2.1) dim Tp(R Xg R) = dim Tp(R Xg R) =2

for each p € r> (compare, Proposition 1.2). Adopt T+(R x R) =
=U {T;(R x R): p € Rz}. This set will be regarded as a
differential subspace of the tangent space T (R Xp R) . We shall
prove that T' (R x, R) = T(R x, R) (Theorem 2.10).

We need the well-known

Lemma 2.2. For each a € cm(m), there is a unique
a, € Cm(R) such that

a(t) = a(0) + ta, (t)

where o (0) = g%(O).

If o € fk, then, for any x,y € R, we define the functions
ax,ay € Cm(R) by ax(y) = a(x,y) and ay(x) = a(x,Y). Applying
Lemma 2.2, we have defined the functions (ax).,(ay). € cm(R).
Let us set a.l(x,y) = (ay).(x), a.z(x,y) = (ax).(y) and note
that we have the identities:

a(x,y) = a(0,y) + xa_, (X,¥),
a(x,y) = a(x,0) + ya.z(x,y).
Unfortunately, it turns out that there are functions «a € Yz
such that « , 2
function can be of the form:

2 2
§_§_i_§%_ for (x,y) e Rg,
a(x,y) = X +y

0] for (x,y) = o.

(2.2)

and a,, do not belong to ?1. For example, such a

We shall consider the families Cm(mz) and Yk to be real
algebras under the pointwise operations. Let us set

wm, = {a € Yk: a(o) = 0},
" . _ dua _ da _
my = {a € 9k. a(o) = 5§(o) = 5;(0) = 0}
and note that mk,mx are ideals of 9k such that
(2.3) mi c mx cmg.
Obviously, CQ(RZ) is a subalgebra of ?k and the sets

m =m, n c”(R%), m” = my n C”(R)
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are ideals of Cm(Rz) which do not depend on k. Moreover, these
ideals can be defined directly with respect to Cm(Rz). Well
known is the following

Lemma 2.3, wm'’' = mz.

We will show that this lemma has analogies for Yk which
will be proved by using different methods for £ =1 and & = 2.
Proposition 2.4, mY = m2

1 1°
Proof. Let Rg = R2 \ {o}. Consider the sets
2 1
E={(x,¥y) e Rj: Ix] =35 Iyl},
_ 2, .1
F={(x,y) e Rj: Iyl =35 IxI}.

Since E and F are disjoint closed subsets of the paracompact
manifold Rg, there is a function H, € Cm(mg) such that

1

Es u;1(0) and F < u_'(1).
2

We may extend Ho to a real function u on R by putting
p(o) = 0. By (2.3), it remains to prove that mg c mf. Indeed,
given a € m’/, note that we have a decomposition

a=8+yv,
where 8 = pa and ¥ = (1-u)a. Observe that B,y € m’/, and that
BIE =0, 7|F = 0. Hence and from (2.2) it follows that

(2.4) B(x,¥) =x:B ,(x,y) and 7(x,¥) =y'7 ,(xX,Y),

where B.l(o,y) = 0 and 1.2(x,0) = 0. It is easy to see that
3.1,1.2 €m,, which, by (2.4), implies B,7 € mi. Since
a =8+ 7, we conclude that «a € mi,

The method used in the proof of Proposition 2.4 cannot be
applied to prove a version of this proposition for £ = 2. The
following example shows that there is a function « € mg such
that, for each decomposition o« =8 + ¥ of the type described
in this proof, at least one function B.l or 7v,, does not

belong tom

g.e.d.

2

Example 2.5. Consider the sequence {pn} of points of Rz,
where p_ = (471,477 for n=1,2,... . Let us set
U ={pe R2: Ip - p Il < 4”71} and note that, for every

natural n, we can choose a function o, € Cm(Rz) such that

a (p) = 2", o= a (p) = 2" and supp @, cU. It is seen
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that {Un} is a discrete family of open subsets of Rg, i.e. for
each p € Rg, there is an open neighbourhood V of p in Rg such
that V has a non-empty intersection with at most one U,- Thus,

@
the real function a is well-defined on R> by a(p) =X an(p).
n=1

Observe that « € ! and it is smooth on Rg and continuous at
o, which, by Corollary 1.4, implies that a € yz. Let uo,u,B,r,
B.y:7,, be the functions defined with respect to «
analogously as in the proof of Proposition 2.4. First, note
that if My is unbounded, then the functions 8 and ¥ may be
discontinuous. But we can additionally assume that

0 =upu (x,y) =1,

which implies that 8,7 € 9. Unfortunately, this additional
assumption is not sufficient to avoid a contradicfion.
Indeed, if we suppose that both the functions B.1,1.2 belong
But, on the other hand, from (2.4)

tom then B-1+ 1.2 €em

2' 2°

we have
(B * 7.,)(py) = 4"B(p) + 4 7 (p) =
= 4%a(p )u(p) + 4"x(p) (1 - u(p)) = 2",

which means that g _,+ 7 , is not continuous at 0.

Applying Corollary 1.4 it is easy to prove

Lemma 2.6. If a € fk and there are a neighbourhood U of o
in R® and a constant ¢ > 0 such that la(p) | = cIIpII2 for each
p e U, then a € mi.
2 (Lemma 2.3), then, for
each compact neighbourhood U of o in Rz, i.e. o € int U, there
> 0 such that |a(p)!| = cUIIpII2 for p e U.

One can prove that if a e m” =m

is a constant Sy

Observe that, for the function « constructed in Example 2.5,
there is no such neighbourhcod U of o. Indeed, suppose to the
contrary that there is a neighbourhood U of o in R2 such that

la(p) | = cllpll2 for p € U and some constant ¢ > 0. Since the

n ,-n .
,4 ) converges to o, there 1is me N such

that p eU for n=m. Thus, if n=zm, then 271 =

2n

sequence p_ = (4~
= la(pn)l = cllpnu2 = 2c-4 “", which is impossible.

2

Denote by #£4° the family of all real functions a on R such

that aIRg € ?Z(Ri) and «a is bounded in some neighbourhood
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2

of o. Note that 4 is a real algebra under the pointwise
2

operations, such that ¢ is its subalgebra. Let us put
mk(K) = {a € Yk: alK = 0} and note that this set is an ideal
of the algebra ?k. It is seen that from Corollary 1.4 we get

Lemma 2.7. mz(K) is an ideal of 42. In particular, we have
JZmZ(K)c m_ (K).

From Proposition 2.4 it follows that m, (K) < mi and a
similar result for k£ = 2 gives us
2

Proof. Let us take « € mz(K). Consider the following sets
E={pe Rg: la(p) | = Npuz} and F={pe Rg: la(p) | =z 2"p"2}.
Obviously, E=o but F may be empty. If F=o2o,
then|a(p) | = 2Np"2 for each pe Rz, and so, o € mg by
Lemma 2.6. Therefore, in the sequel, we can suppose that

Lemma 2.8. mz(K) cm

F # @, Since E and F are disjoint non-empty closed subsets of
the paracompact manifold Rg
such that E ¢ u;I(O), Fc ugl(l) and 0 = p_(x,y) s 1. Let u be

the extension of Ko to a real function u on R> by putting

, there is a function Mg € Cm(Rg)

p(o) = 0. We thus have a decomposition

(2.5) a=8+17,

where 8 = uax and 7 = (1-yu)a. Moreover, from Lemma 2.7 it
follows that B,7 € mz(K). Note that |¥(p)!| = 2||p||2 for each
p € Rz, and so, Lemma 2.6 implies 7 € m;. Thus, by (2.5), it
remains to prove that B e m2

2°
For any n € Z, let us set
(2.6) u, = {p e R: 8" 1 <upi < 8™y

and note that {Un: n e Z} is an open covering of Ri. Since Ri

is a paracompact manifold, there is a smooth partition {An} of

unity, subordinated to the covering {U,} . We may extend

nel
every ln to a smooth function on.Rz, also denoted as An' by
putting An(o) = 0. This means that {An} is a family of smooth

functions on RZ satisfying the following conditions:

(a) supp An < Un’
(b) 052 (p) =1,

(c) Z A =%
nel n '
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where x is the characteristic function on IR2 of the set R(z) and
the series is locally finite at each poini: of IR(ZD. Observe that
if In - mj =2 2, then An-xm = 0. Hence, by squaring both sides
of equality (c), we get

2
(2.7) Al +23TAA .. =2,
nez nez © 0*l

It is clear that, for each n € Z, we can choose a function
Ww_ € C°°([R) such that

n
£1/3 1

for 1t} = 8774,

(d) w_(t) =
n 1/3

(e) Iwn(t)l = |t} 1

for |t| < 8™ 1.

If i,keZ, k22 and 0 =i < k, we set

"k— {ne€Z: n=4{ (mod k)}.

For { = 0,1, consider the functions TV, defined on R® by

(2.8) T, = Z A cw (o) , v, = Z (w (a))
i nel" t2'n n i neZ" :2 n
Obviously, these functions are well-defined because the

series are locally finite on IRi. Moreover, it is seen that
2 2,2 2
(2.9) tL'Ui,“Ro 4 ([Ro) C C(IRO) .

Let us take 0 < € < 1. Consider the set

1/3

w={pelR2: ta(p) | < e}

and note that it is an open neighborhood of o because
2 ¢ c(R%). observe that (2.8) and conditions (b)-(e)
imply that, for each p € W, we have

aey

1/3

It (p) | = nElez Ap(P) - lwp(a(p)) | = la(p) | <eg,
lu (Pl = Z .., A (p) 1w (a())1? = lap)1?/3 < e? <,

neZ
which means that T, and v, are contlnuous at o. Hence and from

(2.9) we conclude that Ty, € C(IR ) = ff' . Moreover, note that
LIK vl.'lK = 0, and so, from Corollary 1.4 it follows that

(2.10) ) TV, € mZ(K) cm,.
Next, for j = 0,1,2, consider the functions ¢’.,w4. defined
on IR2- by

(2:11) ¢, = T gapen@ ¥ B (@)
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and, similarly as for Tir U note that

(2.12) 4’::""4' € mz(K) com,.
Observe now that, for each n e Z":z (i =0,1), we 4have
2 3.2
(2.13) ‘ An (@ () =2 -op.

Indeed, if pe Ev (IR2 \ Un) then both sides of this equality
assume 0 at p. Otherwise, if p e Un \ E, then, from (2.6) and
the definition of E, one has |a(p)l > Ipl > 8*1; thus, by

(Q), wn(a) (p) = (a(p))1/3, which implies (2.13) at p.
Observe that from (2.8) we get

(2.14) TV, = nEZL 5 n (w (cx))

because Anlm = 0 for distinct n,m e 2“2. Thus, from (2.13),
(2.14) and the definition of B it follows that

(2.15) TUH = x i:2 n B ({=0,1)
neZ

Analogously, one can observe that, for each ne Z*:3
(4=0,1,2), we have
3, -
AAneg (W (@) 7w = AL 1OH
Moreover, (2.11) implies

3
QY.= X . . A c(w_(a))
PAP? neZ"3 n n+l n

and so, in a way similar as for TV, We get

(2.16) dYyu= I A ‘B (4=0,1,2).
AP nel’ 3 'n n+1

Now, from (2.15),(2.16) and (2.7) it follows that
1 2 2
(2.17) Ztvu+2 ¢Wu-(27« +227\A )B = xB =
n+1
neZz neZ

Finally, note that Lemma 2.7 implies that all Uu and ¥.u
belong to mz(K) because Ui’w;‘ € mZ(K) and u € 42. Thus, from

(2.10),(2.12) and (2.17) we conclude that B8 € mg, g.e.d.
For any a € .9’k we set a+(x,y) = a(x,0) + 2(0,y) - a(0,0)
and a_ = a - o, that is, we have a decomposition

x=oa, +o_,
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2
where a e Cm(R ). a+IK = «alK and a_ € mk(K).

From (2.3), Lemmas 2.3 and 2.8 and this decomposition it
follows

Proposition 2.9. mg =m,,

Theorem 2.10. T(R x, R) = T (R x, R).

Proof. Clearly, it suffices to show that the following

NN

condition holds:
(+) dim Tp(R X R) =2 for any pe R .

Indeed, for any « € 9k'we can define the functions «’ (x,y) =
= -a_a ._a_a L~ - ¢ “ 2
= a(o) + x ax(o) +y 8y(°) and o o - o € m. Obviously, we

have a decomposition
o=ao + ',

which proves that dim (mk/m 'y = 2, i.e. the congruent classes
of x and y form a base of mk/mk. Hence dim (mk/mi) = 2 becaus«
mi = mz by Propositions 2.4 and 2.9. Since the vector space
TO(R xg R) is isomorphic to the dual space of mk/mi, it
follows that dim TO(R X, R) = 2. This implies that condition
(+) is fulfilled because, by Lemma 2.1, any translation of R2

is a diffeomorphism of R %, R, q.e.d.

3. Vector fields

Tana ¢ (k=1,2) will

be regarded as rings (real algebras) under the pointwise
operations. Denote by X (R Xg R) the module over ¥ of all
R, that is, X € X(R Xg R) if

In the sequel, the families ¥ = &

vector fields on R x

&
X: R x; R-> T(R Xy R) is a map such that Xp =
= X(p) € Tp(R Xg R) for each p e R2 or, equivalently, if

X: Yk — ¥ is a linear map such that X(af) = X(«)B + aX{(B).

Denote by Dz(k) the group of all diffeomorphisms of
R x, R. If f € D°(k) and X € X(R x, R), we define the vector
field f#(X) on R x, R by (f (X)) &p(xp) Obviously, the
assignment f P)f# defines an 1somorphlsm from D (k) into the
group of all automorphisms of the module X(R Xg R). We say
that X € (R X R) is invariant if t (X) =X for each tel.
If v e TO(R X R), we define the vector field XY on R x, R by

k

v 2 .
= t
Xp top#(V), where op is a unique translation of R mapping
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o to p. It is seen that X is invariant iff X = xV for v = xo.

Denote by g; and g; the vector fields on R X, R defined by
s a 8 .
the assignments p — xip and p — yip’ It is clear that they

are invariant. Moreover, note that from Theorem 2.10 it
follows that every invariant vector field on R Xk R is of the

form a g; + b g? for some constants a,b e R. A vector field
X € X(R x, R) is called standard if
Y 3
X=a % + B E for some «,B € ¥F.

From Theorem 2.10 we get

Corollary 3.1. Every vector field on R Xg R is standard.

Call a vector field X e X(R x, R) smooth if X(Yk) < 9k.
Obviously, the zero vector field on R Xg R is smooth.

Theorem 3.2, There is no non-zero smooth vector field on
[kalR.

Proof. Suppose to the contrary that there 1is a non-zero

smooth vector field X on R Xg R. From Corollary 3.1 we get

(3.1) x=ag—x+gg_y,

where «o,B8 € ¥. Moreover, observe that «,B € ?k because X is
smooth and o = X(nl), B = X(nz), where mLe Rz — R 1is the
projection onto the i-th axis (i =1,2). Since the vector

field X is non-zero, we may assume without loss of generality
that there is p € R2 such that a(p) > 0. Let us take a(p) >
€ > 0 and consider the Yk-open neighbourhood U of p defined by

U= {(x,y) € R%: a(x,y) > €}.

Let-x be a real smooth function on R such that a(t) >0
for each t € R, and A(t) =t for t =2z £¢. Define the function

1
*, (%Y) = S3aE )

and note that «, e #%. Thus, for each ¢« 2 ¢ #¥, from (3.1)

we get
= a¢
a'X(¢) =a o ==+ af = .
Hence

21v= (@x@ - a8 v

because « iU = 1]U , which implies that g%IU € ?l(U) provided
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that g%IU € YI(U). But there is a function ¢ € 92, namely,

2
_5§X—_5 for (x,y) e Rg,
o(x,y) =14 x" + Yy

0 for (x,y) = o,

such that, for any neighbourhood V of o, we have %%IV € 91(V)
but g%lv ¢ YI(V), which gives a contradiction for p = o. This
leads to a contradiction in the general case for any p since,
by Lemma 2.1, the translation of R® via any vector is a
diffeomorphism of R X, R, q.e.d.

It is Known that if G is a differential group (see [4]),
then each vector v e Te(G) determines a unique left invariant
vector field Xv on G such that Xv(e) = v, where e denotes the
identity of G, and any such field is smooth (see [5]). Thus,
if dim Te(G) > 0, then there are non-zero smooth vector fields
on G. Of course, R x; R is a group under the coordinatewise
addition and dim TO(R Xg R) = 2 by Theorem 2.10. Hence and
from Theorem 3.2 we obtain

Corollary 3.3. The group R Xg R is non-differential.

In particular, R X, R is not a differential vector space
under the coordinatewise operations because these operations,
namely coordinatewise subtraction and multiplication by
scalars, are non-smooth. Moreover, the multiplication of
veRx R by scalars, i.e. the function t - tv, is smooth if
and only if v is horizontal or vertical (see Theorem 4.1).

A triple € = (E,n,M) is said to be a differential bundle
if m: E— M is a smooth surjection of differential spaces
and, for each p e M, the fibre Ep = n-l(p) has a given vector
structure such that Ep is a differential vector space, where
the differential structure on Ep is induced from E. We shall
denote by I'(£) the €&(M)-module of all smooth cross-sections of
€. It is known that with every differential space M we can
associate the differential tangent bundlé TB (M) = (T(M),nM,M)
as follows. T(M) 1is the differential tangent space of M
(see [3]) and My: T(M) — M 1is the canonical surjection.
Moreover, every fibre Tp(M) = nil(p) is a differential vector
space under the canonical vector structure and the
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differential structure induced from T(M). The &(M)-module of
all smooth vector fields on M is defined to be the module
T (M) = T(TB(M)).

Consider the differential tangent bundle TB(R Xg R) =

(T(R Xg R),nk,R X R), where n, = R ° By Theorem 2.10,

n

Ika
-1 _ _ mt

for each p € R Xg R, we have LY (p) = Tp(m ka) = Tp(R Xp R) .

Moreover, the differential vector space Tp(R Xg R) is

isomorphic to the differential space R? with structure

8(R2) = Cm(mz), via the isomorphism T p: Tp(R Xz R) — r?
. a 3 _ '

defined by rk,p(a Eilp + b 5§|p) = (a,b).
Corollary 3.4. The differential space R Xg R is not

diffeomorphic to the differential space Rz.

Proof. The assertion follows from the fact that X(R Xg R)
is the zero module by Theorem 3.2, but X(Rz) is not, g.e.d.

In the next section, we shall prove that the differential

spaces R x, R and R x_, R are non-diffeomorphic.

Followﬁng Trafny2 [7), we can define the category of
differential bundles with morphisms given by smooth bundle
maps. Recall that a differential bundle € = (E,n,M) is locally
trivial at a point p e M if there is a neighbourhood U of p
such that the differential bundle §£|U is isomorphic to a
trivial differential bundle. We say that £ is locally
non-trivial at p if it is not 1locally trivial at p. A
differential bundle £ = (E,n,M) is said to be locally
non-trivial if it is locally non-trivial at each point p € M.
It is easy to prove

Lemma 3.5, If a differential bundle € = (E,n,M) is 1locally
trivial at p e M, then, for every vV e Ep, there is o € I'(£)
such that o(p) = v.

From Theorem 2.10, Theorem 3.2 and Lemma 3.5 we get

Corollary 3.6. The differential tangent bundle TB(R Xp R)
is locally non-trivial.

Let tk: R X R — R2 be the identity map regarded as a
smooth map of differential spaces. For any p e€R xg R and
VeT,(Rx R), we define T(tk) i T (R x,R) — Tp(le) by
(T(Lk)p(v)(a) = v(aotk), where a ranges over Cw(Rz). Next, the



588 B. Przybylski

map T(tk): T(R X R) — T(Rz) is defined by T(tk)(v) = =
T(Lk)p(v) for v e Tp(R % R) and called the differential of
tk. Note that T(Lk) is a smooth map of differential spaces.
Moreover, it is seen that the pair (i&,T(tk)) defines a smooth
bundle map from (T(R Xp R), nk, R Xg R) onto (T(Rz),nRz,Rz),
which means that the following diagram of smooth maps of
differential spaces is commutative:

T(Lk) 2
T(R x, R) —————— T(R)

Jnk JHRZ
mka—w———amz
where T(Lk) : T (R Xg R) — T (R ) is an isomorphism of
d1fferent1al vector spaces for each p € R
ILet M and N be differential spaces. We say that
g: T(M) — T(N) 1is a fibre diffeomorphism if g is a
diffeomorphism of differential spaces and, for each p e M,
there is a unique gq e N such that g(Tp(M)) = Tq(N). In
addition, if g is an isomorphism of differential vector spaces
from Tp(M) onto Tq(N) for p and g as above, then g is called a
bundle diffeomorphism. The tangent differential spaces T(M)
and T(N) are called fibre (bundle) diffeomorphic if there is a
fibre (bundle) diffeomorphism g: T(M) — T(N). Note that if
g: T(M) — T(N) is a fibre (bundle) diffeomorphism, then so is
the inverse map g l: T(N) — T(M). It is easy to verify
Lemma 3.7. Let M and N be differential spaces. If
g: T(M) — T(N) is a fibre diffeomorphism, then there 1is a
unique diffeomorphism f: M — N such that the following

diagram of smooth maps of differential spaces is commutative:
g
T(M) ———— T(N)

Ty ™

f
M —— N

This lemma immediately implies
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Proposition 3.8, Let M and N be differential spaces. Then
the following conditions are equivalent:

(a) M and N are diffeomorphic,

(b) T(M) and T(N) are bundle diffeomorphic,

(c) T(M) and T(N) are fibre diffeomorphic.

From this proposition and Corollary 3.4 we get

Corollary 3.9. The tangent differential spaces T(R Xp R)
and T(Rz) are not fibre diffeomorphic. In particular, the
smooth map T(tk): T(R Xg R) — T(Rz) is not a diffeomorphism.

Note that this corollary gives no answer to the question:
Are the differential spaces T(R X, R) and T(Rz) diffeomorphic
(see Question 5.4)7?

4. Regular curves and diffeomorphisms

Let c: I 5 R Xp R be a smooth curve, that is, c¢ is a
smooth map of differential spaces, where I 1is an open
(non-empty) interval of R, regarded as a differential space
under the structure Cm(I) of all real smooth functions on I.

Note that the map c determines the differential
= . =9
¢, =T(c): T(I) > T(R x; R). Let 3= atls be the standard

tangent vector of I at s. We say that ¢ is regular at s el
provided that c‘as is a non-zero vector of Tc(s)(R Xp R). By a
regular curve in R Xp R we mean a smooth curve <c¢: I — R Xg R

which is regular at each s € I.

A line in R? is called vertical (horizontal) if it 1is of
the form {a} x R (R x {b}). By a principal line we mean a line
in R2 which is vertical or horizontal. We have

Theorem 4.1. Every regular curve in R x; R is contained in
a principal line.

Proof. Let us take an arbitrary regular curve
c: I >R Xp R. Obviously, ¢ is a regular smooth curve in the

classical sense -because Cm(Rz) c Yk. Let ¢ =m

1°€ and y =
= m,ec, i.e. c(t) = (¢(t),¥(t)) for teI. First, we prove that
the following condition is satisfied:

(A) for each selI, the non-zero vector c‘as =

= a(s) gilc(s) + B(s) g?'c(s) is principal, i.e. «a(s)B(s) =0,.
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=9 =% a_ a_
vhere « = ¢ , = 3t and axlc(s)’ aylc(s)

tangent vectors of R Xg R at c(s).

are the standard

Indeed, suppose to the contrary that there is s e I such

a
c(s) * B8) aylo(s)
principal or, equivalently, a(s)B(s) # 0. Without loss of

that the vector c,d_ = a(s) 5| is  not
generality we may assume that s = 0. Since, by Lemma 2.1, the
translation of R% via the vector 53 is a diffeomorphism of
R Xg R ,. wve may further assume that p = o.

Observe that the map c is a local ¢® diffeomorphism at 0
because c‘a0 # 0. Therefore there is £ > 0 such that cl(-€,€]
is a ¢® diffeomorphism onto its image in R>. Moreover, since
a(0)B(0) # 0 and «a,B € c”(m), we can choose € so small that
Cn K= {o}) where C = c([-c,€]) and K= {(x,y) € RZ: xy = 0}.

Consider the function m: t — |It|] for -e = t =€ and note
that there is a unique real function u on C such that uec = m.
Accept the following notations: Co =C\ {o}, Ko =K\ {o} and

F = Co V] Ko. Define the real function H, on F as follows:

u(p) for p e C_,
Ko (P) =
0 for p € Ko

and note that K, € Cm(F).

Since F is a closed subset of Rg, sup {luo(p)l: p € F} =
= ¢, and Rg is a paracompact manifold, therefore we conclude
that there is an extension o e c”(mi) of u, such that
sup {Ie(p)Il: p € Ri} = 2¢. It 1is seen that the function
A: R® > R defined by

- 2
Xu(x,y) for (x,y) e IROI
Alx,y) =
for (x,y) = o
is continuous on R® and A e ¢! by Corollary 1.4, which implies

that A € ?2. Since c: I — R Xg R is a smooth map and 92 C fk,

it follows that Aec € c¥(I). Hence we get
(4.1) Aecl[-€,e] = ¢-ml[-c,e] € C”([-¢€,€]).

Oon the other hand, (Aec)(t) =¢(t)!Itl for -e£ =t =g¢e, and
so, the second derivative of this function satisfies the
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equalities:
(Aec)’’ (t) = o (£)t + 2x(t) for 0 < t s ¢,
(Aec)’’ (t) = =’ ()t - 2a(t) for -e s £ < 0.

Hence we get

lim (Aec)’’ (t) = 2a(0) = 1lim (Aec)’’ (t) = -2a(0)

t->0+ t->0-
because a(0) # 0, which contradicts (4.1). This completes the
proof of condition (A).

Finally, note that condition (A) 1is satisfied for all
regular smooth parametrizations of c. In particular, we can
consider the natural parametrization of ¢ with respect to the
arc parameter s. Then a=1, f=0 or a=0, B=1, which
implies that c_d

=2
s S ax'c(s)
for each s € I, gq.e.d.

for each seI or ¢ 3 = %?Ic(s)
This theorem immediately implies
Corollary 4.2, If f is a diffeomorphism of R Xg R, then f
maps every principal line onto a principal line.
The following example shows that a non-regular smooth
curve in R X R need not be contained in a principal line.
Example 4.3, Let c: R — R Xg R be a curve defined by -

(exp(1/t),0) for t < O,
c(t) = (0,0) for t = 0,
(0,exp(-1/t)) for t > 0.

Note that c is smooth and regular except for t = 0. Moreover,
observe that the image of ¢ is contained in the set
(R x {0}) v ({0} x R), but it is not contained in R x {0} or
{0} x R separately.

A map f: R2 - R2 is said to be principal if it maps every
principal line into a principal 1line. We say that f |is
O-principal (l-principal) provided that f maps every vertical
line into a vertical (horizontal) line and every horizontal
line into a horizontal (vertical) line. It is seen that f may
be O-principal and 1-principal simultaneously. We say that f
is exactly O-principal ‘(l-principal) 1if it 1is O-principal
(1-principal) but not 1l-principal (0O-principal). In this case,
we write T(f) =0 (Tt(f) = 1) and say that f is of 'P-type
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T=1(f). If f is exactly t-principal for some T ¢ {0,1}, then
f is said to be of definite P-type. For example, if s is a
bijection of R? defined by (x,y) ~ (y,x), then s is of P-type
1. Furthermore, if ¢ and ¥ are bijections of R, then the map
¢ x ¢ defined by (X,y) — (¢(x),¥(y)) is a bijection of iR2

it is of P-type 0. Note that s is a diffeomorphism of R x

and
x R
and so is the map ¢ x ¥ provided that ¢ and ¥ are smooth
diffeomorphisms of R.

A map f: M — N of differential spaces is said to be a
smooth embedding if f regarded as a map from M onto the
differential subspace f(M) of N is a diffeomorphism. We have

Theorem 4.4, Let f be a smooth bijective map from R Xg R
to R X, R, where k,L € {1,2}, such that f restricted to every
prncipal line is a smooth embedding. Then k=¢ and f is of
the form ¢ x Yy or of the form so(¢ x Y), where ¢ and Y are
smooth diffeomorphisms of R. 1In particular, f is a
diffeomorphism of R Xg R.

Proof. For any x,y €e R, let us set R* = {x} x R, Y =
= R x {y} and define the maps rX: R — IRZ, 1Y: R — IR2 by
rx(s) = (x,s) and ly(t) = (t,y). We can regard the sets Rx, LY
as differential subspaces of R g R or R x, R and the maps
rx, 1Y as smooth curves in R Xp R. Let us set c* X
d¥ = f.1¥. It is seen that cx, d¥ are smooth curves in R X, R.

Step 1. Consider now the curve 4 = % R > R %, R. Since
e R
there is a function «a € ?e(f(Lo)) such that «aof = n1|L0. Then,

= for and

f maps the line ° diffeomorphically onto its image in R x

for any t € R, there are an ye—open neighbourhood U of f(t,0)
in Rx,R and a function B e ¢, such that Bg|Un (L0 =
=a|U n f(Lo) . Obviously, nlolo = ile and note that we have the
following equalities: (d*at) (B) = at(Bod) = at(aod) =
= 8, (aefe1%) = o _(n 1% = 8, (idp) = 1. Hence it follows that
d‘at # 0 for any t € R, so the curve d is regular.

Analogously as for d, one can prove that all curves c* ana
d¥ are regular. Hence and from Theorem 4.1 it follows that
each image cx(IR) = f(Rx) is contained in a principal line and
so is each dy(lR) = f(Ly). Suppose first that the image of d is
contained in a horizontal line, that is, d(R) = f(Lo) c L% for
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some e € R. We shall prove that, in this .case, f is
O-principal, i.e. f maps every vertical line into«¢a vertical
line and every horizontal line into a horizontal line.

Indeed, consider first the image f(Rx) of a vertical 1line

0

RX. since f is bijective and R*n1’ = {(x,0)}, we get

(4.2) £(RY) n £(L%) = ¢£(x,0)}.

Thus f(x,0) € f(Rx) n Le, and if f(Rx) were contained in a
horizontal line, then f(Rx) < L%, In this case, f(Rx) and
f(Lo) are connected open subsets of L®. Note that the
functions p = nloforx and A = nlofolo are smooth embeddings
from R to R, which implies that p(R) and A(R) are open
intervals of R. Since the set

P(R) n A(R) = m (F(R¥)) n m (£(L0)) = m (£(®) n £(10))

is non-empty by (4.2), we conclude that p(R) n A(R) is an open
interval of R, too. On the other hang, U defines a bijection
from £(R*) n £(L%) onto p(R) n A(R), so the set f(R¥) n £(L°)
would be infinite, which contradicts (4.2). Consequently, we
have proved that, for each x € R, there is a unique ¢(x) such

that f(Rx) c R¢(x). Since (x,0) e R% n LO, it follows that

f(x,0) e f(Rx) n f(Lo) < R¢(x) n Le,

whence f(x,0) = (¢(x),e). This implies that ¢ = nlofolo is a
smooth embedding from R to R. More precisely, observe that ¢
is a smooth diffeomorphism of R. Indeed, it remains to show
that ¢ is a surjection on R. Since U {Rx: X e R} = R® and f is

a bijection of Rz, we get
R% = U {ngx): x € R} ¢ U {R¢(x): X € R},

which implies that ¢(R) = R. Note that f(R¥) = R?*) for each

x € R, or else f couldfnot be a bijection of RZ.

Step 2. Consider now the map g = sofes., It is seen that g
put instead of f also satisfies the assumptions of our
theorem. Moreover, note that g(LO) = (sof)(Ro) = L¢(°), and
SO, we can applyfto g the results of Step 1. Therefore we
conclude that there is a smooth diffeomorphism ¥ of R such
that g(RY) = RYY) for each y € R. This and the fact that
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f = soges imply f(Ly) = (sog)(RY) = LW(Y). To sum up, we have
proved that there are smooth diffeomorphisms ¢ and ¥ of R such
that f(Rx) = R¢(x) and f(Ly) = LW(Y) for any x,y € R. This
yields f(x,y) = (¢(x),¥(y)) for (x,y) e Rz because {f(x,y)} =
= (R*n 1Y) = (RS nrY) = 2 A YY) o e,
so f=¢ x y.

Step 3. Suppose next that f(Lo) c R® for some e € R. It is
seen that the map h = sof put instead of f also satisfies the
assumptions of our theorem. Moreover, we have b(LO) c Le, and
so, the results of Steps 1 and 2 can be applied to bh. Thus
there are smooth diffeomorphisms ¢ and ¥ of R such that
h=¢ x ¢, whence f = soh = s0 (¢ x ¥).

Finally, to show that & = £, note first that from the form
of f it follows that the inverse map f‘l can be regarded as a
diffeomorphism of R X, R. Therefore the map idmz =" 1lof
x R onto R x, R. But this is
possible only in case £ =¢! (Example 1.5). Clearly, f 1is a

defines a diffeomorphism from R x

diffeomorphism of R X R and R xZIR simultaneously, q.e.d.

This theorem immediately implies

Corollary 4.5. The differential spaces R X4 R and R Xy R
are non-diffeomorphic.

Note that from Theorem 4.4 it follows that every
diffeomorphism of R X, R is of definite P-type. Of course, if
f and g are diffeomorphisms of R % R, then

T(fg) = T(f) + T(g) (mod 2).

Let L5t R, R—R x, R be the identity map regarded as

a smooth map of differential spaces. Then the following

diagram of smooth maps of differential spaces is commutative:

T(R x, R) T2
;R —22 5 R x,

I

L
R x; R 12 > R x. R

where T(le) denotes the differential of Lo and T, denote
the corresponding canonical projections. Of course, the map

T(L defined to be the restriction of T(le) to Tp(R xq R)

R)

12)p
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is an isomorphism of differential vector spaces from
Tp(R Xy R) onto Tp(R X5 R) . From Corollary 4.5 and
Proposition 3.8 we get

Corollary 4.6. The tangent differential spaces T(R Xy R)
and T(R X5 R) are not fibre diffeomorphic. In particular, the
smooth map T(le) is not a diffeomorphism.

Applying a method similar to that used in the proof of
Theorem 4.4, one has

Proposition 4.7. Every principal smooth diffeomorphism of
Rz is of the form ¢ x Yy or of the form so(¢ x y), where ¢ and
Y are smooth diffeomorphisms of R.

From Theorem 4.4 and Proposition 4.7 we get

Corollary 4.8. Every diffeomorphism of R Xg R is a
principal smooth diffeomorphism of RZ. Conversely, every
principal smooth diffeomorphism of RZ is a diffeomorphism of
R Xg R. This correspondence defines an isomorphism between the
corresponding groups of diffeomorphisms.

If r e 12, we denote by Dz{r} the collection of all
r-principal smooth diffeomorphisms of R%. Let us set Dz{#} =
= Dz{O} v Dz{l}. Obviously, ﬁz{#} can be regarded as the group
of all principal smooth diffeomorphisms of R?. Denote by a,
the inner automorphism of Dz{#} determined by s, 1i.e. asU) =
= sofos 1. Let t: Dz{#} —Z, be the map defined by the
assignment f — t(f). It is easy to verify

Proposition 4.9. The map t: Dz{#} — 22 is an epimorphism
of groups such that Dz{r} = t-l(r). In particular, DZ{O} is a
normal divisor of Dz{#} and the factor group Dz{#}/Dz{O} is
2 Moreover, SoDZ{O} = Dz{O}os = Dz{l} and the
cosets DZ{O}, Dz{l} are invariant under a,, i.e.
soDz{r}os-l = Dz{r}.

Since the group Dz{#} is isomorphic to the group Dz(k) by

isomorphic to Z

Corollary 4.8, it follows that this proposition can be
reformulated for Dz(k).

Give attention to the fact that there is another
epimorphism &: Dz{#} — 1z, of groups defined as follows:
8(f) =0 (8(f) = 1) if f preserves (changes) an orientation of
R?. obviously, D2(#} =8 1(0) » D?{0}. Observe that the
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collection Di{O} = ﬂi{#} n DZ{O} is a subgroup of Dz{#}.

Moreover, note that Di{O} is a normal divisor of Di{#}, D2{0}
and Dz{#}. This follows from the fact that the assignment
f > (8§(f),T(f)) defines an epimorphism of groups fronm Dz{#}
onto 12 X 12. ‘
It is known that every isometry f of R2 is a 1linear
isomorphism and we have a unique decomposition
(*) f = 0(8)or(8)ot(v),
where t(v), r(9) and o(8) are special isometries which are the
translation via the vector v, the rotation via the angle ¢ and
the orientation map via the parameter § ¢ z, (0(0) = idmz ’
0(1) = s8), respectively. By Theorem 4.4, o(8) and t(v) are
always diffeomorphisms of R xg R but  r(9) is such a
diffeomorphism only in the case when ¢ is a multiple of % M.
Let us set ¢ = idRZ and r = r(% ). We have
Corollary 4.10. There are eight diffeomorphisms of R Xg R

. . . 2 .
which are isometries of R preserving o, namely,

2 3 2 3
e,r,vro,v7,8,8r, sr-,sr-,

Proof, The assertion follows from (*) and the observation

that, for such a diffeomorphism f of R Xg R, we have
éd € {0,1}, v=1{0,0] and ¢ =1 % n, where 1 e€ Z. Therefore

o(8) =%, t(v) =e and r(9) =r('3m =rl

remainder of 1 mod 4. Thus the list of all such

, where 1’ is the

diffeomorphisms is full, g.e.d.

5. Final remarks and open questions

Consider the set R” for a finite n = 2. Let us set [n] =

= {1,...,n} and suppose that i € [n]. Let o, be the

permutaiion of R" defined as follows:

oi(xl,...,xn_l,t) = (xl""'xi—l’t’xi""’xn—l)‘

If x € Rn_l, we define the linear injection 1?: R — R" by
1%(t) = 0. (x,t)
i (%%

Let us set € = {1?: x e R" !, i e (n]}. Consider the final

differential structures ¢ (Rn) for £ =1,2, defined on R" as
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follows:

F@(R",@n) for k = 1,

& rY) =

ce(mn,cn) for k = 2.

Denote by R"(k) the differential space (R™,#8(R%)). In

particular, for n = 2, we have Rz(k) =R x; R.

One may expect that to all the properties which are proved
in this paper for R x, R there correspond generalized ones for
all Rn(k) where nz 2 1is finite. It seems that these
generalized properties can be obtained by means of techniques
being a combinatorial n-variant of those used here for n = 2.
Obviously, for the differential spaces Rn(k), we shall have
new properties. For example, one can prove that, for any
finite n,m =z 2, the differential space Rn(k) Xg Rm(k) is
n+m(k).

Let (M,x) and (N,y) e pointed differential spaces.

diffeomorphic to the differential space R

Consider the smooth maps r*: (N,y) —» (M Xg N, (x,Y)) ané
1Y: M,x) — (M ¥o Ny (%,¥)) defined in Section 1. Applying
the functor T (Lemma 1.1) to these maps we get the linear maps
X
T(r7)y,: T(N,Y) — T(M xp N, (x,¥)),
T(1Y) . T(M,x) — T(M x, N, (x,¥)),
which are monomorphisms. Moreover, one can prove that
Im T(rx)y n Im T(ly)x = 0. It is seen that from Theorem 2.10
it follows that if M= N = R, then
% .
In T(r¥), + Im T(ly)x = T(R x, R, (X,y)).
So, we may pose
Question 5.1, Let (M,x) and (N,y) be pointed differential
spaces. Do the following conditions hold:
(a) Im 'r(r")y + Im T(ly)x =T(M x, N, (x,¥)),
(b) dim T(M,x) + dim T(N,y) = dim T(M X N, (%,¥)).
ObViousiy, they are equivalent provided that dim T(M,x) and
dim T(N,y) are finite.

Let M and N be differential spaces. Denote by X (M) (Im(M))
and I(M Xg N) (Im(M Xg N))} the corresponding modules of
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arbitrary (smooth) vector fields which can be regarded as real
vector spaces, as well. If X € X(M), then there is a unique
x# € I(Mﬁx N) such that, for any p= (x,yY) e M x N, we have

#p (Tl )(X ). Obviously, the assignment X +— X# defines a
linear monomorphlsm l#: X(M) — X (M Xk N) of vector spaces. We
say that 1# is ¥®-invariant if l (I (M)) c 1 (M Xp N). Note
that, in the general case, the monomorphlsm l# need not be
¥®-invariant. For example, if M =N =R, then from Theorem 3.2
and since l; is a monomorphism, it follows that lz cannot be
¥®-invariant. On the other hand, if N 1is discrete, i.e.
E(N) = F(N), then M X4 N=M X5 N= MxN where M x N denote
the usual product of differential spaces. In this case, one
can see that 1; is %®-invariant. These considerations and
Theorem 3.2 lead to the following questions:

Question 5.2, Let M be a differential space. For what
differential space N is the monomorphism l; ¥®-invariant?

Question 5.3. Let M be a differential space. For what
differential space N is xw(u Xg N) = 0?

Note that if, for a differential space N, we have that
@ (M X N) = 0 and 1; is ¥®-invariant, then My =
Conversely, if 1®(M) = 0, then lz is always X¥®-invariant.

If differential spaces M and N are diffeomorphic, then,
clearly (Proposition 3.8), the tangent differential spaces
T(M) and T(N) are diffeomorphic, too. It 1is of interest to
know an answer to the following

Question 5.4, Let M and N be differential spaces. Is it
true that if T(M) and T(N) are diffeomorphic, then the
differential spaces M and N are diffeomorphic, too?

Note that if we get an affirmative answer to this
question, then from Corollaries 3.4 and 4.5 it follows that
the tangent differential spaces T(R x4 R), T(R X, R) and T(Rz)
are non-diffeomorphic.

Now, let us come back to the differential spaces R Xp R
(k=1,2). In Section 1 we observed that the Yz-topology on
R x R is the original one but the 9l-topology is essentially
stronger (see Example 1.5). It would be interesting to know an
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answer to the following

Question 5.5. What is the kind of the 91-topology? In
particular, is the 91-topology locally non-compact?

Finally, consider the family € =€¢(R,R) =
= {rx,lyz X,y € R}. Let tl
R x R for which all maps rx,ly: R — R x R are continuous. It

is seen that the 91-topology on R x R is weaker than tl.

denote the strongest topology on

Question 5.6. Is the fl-topology on R xR essentially

weaker than tl?
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