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PRODUCT FINAL DIFFERENTIAL STRUCTURES ON THE PLANE 

In this paper we define two final differential structures 
on the Cartesian product of differential spaces (Section 1) . 
The first (second) structure is defined with respect to 
arbitrary (continuous) real functions on such a product. These 
structures were introduced by Buchner [1]. If M and N are 
differential spaces, then by M x^ N and M x^ N we denote the 
Cartesian product M x N regarded as a differential space under 
the first and the second final differential structure, 
respectively. In the general case, we shall only give an 
estimation from below of the dimension of tangent space of 
M x̂ . N at a point, where k = 1,2 (Proposition 1.2) . 

Let IR be the set of reals regarded as a differential space 
under the natural structure C°°(IR). This paper is devoted to 
the study of some properties of the differential spaces IR x^ IR 
and IR x 2 IR from the point of view of differential geometry. 
These spaces have many common properties (Sections 3 and 4) 
and they can frequently be considered simultaneously. However, 
in general, the investigation of IR x 2 IR is more complicated 
than that of IR x^ IR (Section 2) . 

The way of generalizing methods applied to the study of 
IR x^ IR to those proper for the study of M x^ N in the 
general case is not clear. Therefore, by analogy, we pose 
several open questions for M x^ N and related objects 
(Section 5) . 
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1. Preliminaries 

By a differential space we shall mean a differential space 

in the sense of Sikorski [6]. If M is such a space, then E(M) 

will denote the family of all real smooth functions on M. 

Every differential space M will be regarded as a topological 

space under the 6(M)-topology which is defined to be the 

weakest topology on M such that all functions from 6(M) are 

continuous. 

Let N be a non-empty set. Consider a collection £ of maps 

f: M^ —» N, where M^ is a differential space for each f e C. 

Let F(N) denote the family of all real functions on N. The 

F-final differential structure on N induced by £ is defined to 

be the strongest differential structure Ft?(N,£) on N for which 

all maps from C are smooth (compare [2]). This means that 

Ft?(N,G) = {a e F(N) : a.f e 6(Mf) V f e g>. 

The structure Ft?(N,£) is also called the differential 

structure on N coinduced by (T (compare [8]). It is easy to 

verify that Ft?(N,£) is a differential structure on N. Suppose 

further that N is a topological space and every map from C is 

continuous. Let C(N) denote the family of all real continuous 

functions on N. We define the C-final differential structure 

on N induced by C to be the family Ct?(N,C) = C(N) n Fe(N,C) . 

One can see that C6(N,C) is also a differential structure on 

N. Moreover, we have 

Ct?(N,G) = {a e C(N) : a»f e S(Mf) V f g . 

By a pointed differential space (M,x) we shall mean a 

differential space M together with a base point x e M. We say 

that f: (M,x) —> (N,y) is a smooth map of pointed differential 

spaces if f: M — > N is a smooth map of differential spaces and 

f (x) = y. The tangent vector space of (M,x) is defined to be 

the tangent vector space T(M,x) of M at x. If 

f: (M,x) —» (N,y) is a smooth map of pointed differential 

spaces, then we define the linear map Tf: T(M,x) —» T(N,y) in 

a usual manner. Let T be the assignment which sends every 

pointed differential space (M,x) to the vector space T(M,x) 
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and every smooth map f of pointed differential spaces to the 
linear map Tf. It is easy to verify 

Lemma l.l. The assignment T is a covariant functor from 
the category of pointed differential spaces to the category of 
vector spaces. 

Let M and N be differential spaces. For any x e M and 
y e N, define the maps r x: N —» M x N and ly: M —¥ M x N by 

rx(s) = (x,s) and lY(t) = (t,y). 
Let us consider the set C = C(M,N) = {rx,ly: x e M, y e N> = 
{rx: x € M} u {ly: y e N}. The product F-final differential 
structure on M x N is defined to be the structure 
y1 (M X N) = FS{M x N, 1) . We shall regard M x N as a 
topological space under the product topology. One can see 
that, in general, the family V1 (M x N) may contain functions 
which are discontinuous on M x N in this topology; however, 
all maps from 6 are always continuous. Therefore, we define 
the product C-final differential structure on M x N to be the 
structure y2(M x N) = CS(M x N, G) . Denote by G(M x N) the 
family of all real smooth functions on the product M x N of 
differential spaces. It is seen that 6(M x N) c 
c y2(M X N) c C(M X N) . This implies that the 
2 

f (M x N)-topology on M x N is the product one. We shall 
denote by M x^H the differential space (M x N, y*(M x N)) 
where k = 1,2. By applying Lemma 1.1 it is easy to prove 

Proposition 1.2. If M and N are differential spaces, then, 
for any x e M and y e N, ve have 

dim T(M x̂ . N, (x,y)) a dim T(M,x) + dim T(N,y) . 
We shall regard the set IR of reals as a differential space 

under the natural structure C°°(R) of all real smooth functions 
on IR, i.e. we accept that t?(!R) = C°°(IR) . Let us set 
y* = x IR) for k = 1,2. Throughout this paper, all 
considerations concerning IR x^ IR or y* will be carried out for 
an arbitrary but fixed k. 

Let £ = £(IR,IR) = {rx,ly: x,y e IR}. For any x,y e IR we set 
R X = rX(IR) , L y = 1Y(IR) and K X = R X u L X. 
1 2 Denote by J (?) the family of all arbitrary (continuous) 
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2 

real functions on R » R x R. It is easy to verify 
Proposition 1.3. If a e then the following conditions 

are equivalent: 
(a) a € 
(b) a|Rx e C°°(RX) and a|Ly e Cœ(Ly) for any x,y e R, 
(c) a|Kx e ^(K*) for each x e R. 2 /t If A is a subset of IR , then by ¡f (A) we shall denote the 

differential structure on A induced from R x. R. Moreover, it 
l 2 

will be convenient to denote by ? (A) (A)) the family of 
all arbitrary (continuous) real functions on A. Let us set 
RQ = R 2 \ {o} and K = K° = {(x,y) e R2: xy = 0}, where o = 
(0,0). One can see that Proposition 1.3 implies 

Corollary 1.4. Let a e . Then a e y* if and only if 
a|R2 e and a|K e C°°(K) . 

Note that, in the general case, the differential spaces 
M ! N and M x^ N may be identical. In particular, this is 
satisfied if M or N is discrete, i.e. 6(M) = ̂ (M) or 
tS(N) = F(N), respectively. The following example shows that 
the differential spaces R x^ R and R x 2 R are different. In 
fact, these spaces are non-diffeomorphic (Corollary 4.5). 2 

Example 1.5. Let <p: R —» R be the function defined as 
follows: xy for fv.vï «= IR2 

0(x,y) = 2 2 f° r ( X' y ) € Ro' x + y 
0 for (x,y) = o. 

is seen that <p e If1 \ !fZ. 
2 In this paper, by the topology on R we mean the Euclidean 

2 one, unless otherwise stated. Moreover, R will be regarded as 
a real normed (vector) space under the coordinatewise 

2 2 1/2 
operations and the norm defined by lipII = (x +y ) ' for 
P = (x,Y)• 

2. Tangent vector space 
Observe that if e C*(R), then the assignment 

(x,y) h-> (<p(x),ili(y)) defines a smooth map <p x \ji from R x^ R to 
itself. We have 
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Lemma 2.1. If $ and $ are smooth diffeomorphisms of R, 
then f x f is a diffeomorphism of IR x^ IR. 

2 From this lemma it follows that any translation of R is a 
2 2 diffeomorphism of R x. IR. Denote by IR the set R regarded as 

. 2 a group under the coordinatewise addition. If v e R , we 
2 . denote by t the translation of R via v, i.e. *V(P) = p + v. 

2 
Let 1 be the group of all translations of R which is 

2 
isomorphic to R + via the isomorphism v 

2 For each p e R , denote by T (IR x. IR) the tangent vector P K 

space of R x^ R at p, where we can assume that 

Tp(R R) n Tg(IR x^ R) = o 

2 for distinct points p,g e R . Let us set T(R x. R) = 2 = U {T (R x. R) : p € R }. Denote by ir: T(R x. R) —> R x. R the P K - K tr 
projection defined by TI~ (p) = Tp(R x^ R) . For each a e ¡r , we 
define the differential da: T(R x^ R) —» R in a usual manner. 
Let yy* be the weakest differential structure on T(R x. R) k such that n and any differential da (a e y ) are smooth 
(see [3]). We define the tangent space of R x. R to be the 

k 
differential space (T(R R) , yy ) which will be denoted by 
T(R x. R), as well. 2 

If f is a diffeomorphism of R x^ R, and p e R , then by 
f we denote the differential of f at p, that is, the linear 
isomorphism f : Tp(R x^ R) —> Tf(p) xk defined by fr 
f„p(v) (a) = v(a®f) , where a ranges over y . Thus f defines a 
diffeomorphism fm of T(R R) such that f̂  |Tp(R x^ R) = f . 

By the definition of y*, any function a e y* has 
derivatives which are real functions on R2, may be not 

belonging to y*. Therefore the assignments a h-> 4^(p) and 
dec d d ^^ a >-> gy(P) define vectors | e Tp(R xk R) . A vector 

fl fl 
v e T (IR x. R) is called standard if v = a -s-l for p K dx1 p oy1 p 
some a,b e R. Denote by T (R x. R) the vector subspace of P K 

Tp(R xk R) consisting of all standard vectors at p. Since the 
d B vectors and ¿Jylp a r e linearly independent and span 
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T*(R x. IR) , we get P K 

(2.1) dim T (IR x. IR) 2 dim T (IR x. IR) = 2 P ft p K 
2 . + for each p € IR (compare, Proposition 1.2). Adopt T (IR x IR) = 

+ 2 
= U {Tp(IR x IR) : p e IR }. This set will be regarded as a 
differential subspace of the tangent space T(IR x^ IR) . We shall 
prove that T+(IR x^ IR) = T(IR xk IR) (Theorem 2.10) . 

We need the well-known 
Lemma 2.2. For each a e C°°(IR) , there is a unique 

a# e C°°(IR) such that 
a(t) = a(0) + ta, (t) 

where a.(0) = ||(0). 

If a e V , then, for any x,y e IR, we define the functions 
a x,a y e C°°(IR) by aX(y) = a(x,y) and ay(x) =a(x,y). Applying 
Lemma 2.2, we have defined the functions (ax)^,(ay)# e C°°(R). 
Let us set a#1(x,y) = (a ) ,(x) , a>2(x,y) = (ax).(y) and note 
that we have the identities: 

a(x,y) = a(0,y) +xa # 1(x,y), 
{ 2' 2 ) a(x,y) = a(x,0) + ya (x,y). * 2 Unfortunately, it turns out that there are functions a e ¡f 
such that a ^ and a < 2 do not belong to if1. For example, such a 
function can be of the form: 

a(x,y) = 

2 2 
X I + for (x,y) e IR2, 
xz + Y 

0 for (x,y) = o. 

We shall consider the families C°°(IR2) and y* to be real 
algebras under the pointwise operations. Let us set 

£ 
= {a e ¥ : a(o) = 0}, 

- {a e a(o) = ||(o) = §^(o) = 0} 
fr and note that are ideals of ¡f such that 

(2.3) m^ c m^' c m^. 
oo 2 k Obviously, C (IR ) is a subalgebra of ¡f and the sets 

m = m k n C°°(IR2) , m" = m^' n C°°(IR2) 
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oo 2 are ideals of C (IR ) which do not depend on k. Moreover, these 
co 2 

ideals can be defined directly with respect to C (R ). Well 
known is the following 

2 
Lemma 2.3. tn" = nt 
We will show that this lemma has analogies for y* which 

will be proved by using different methods for k = 1 and k = 2. 2 Proposition 2.4. m^' = m^. 
2 2 Proof. Let IR = IR \ {o}. Consider the sets o 
E = {(x,y) e IR2. |x| s J |y| }, 

F = { (x,y) e IR2: I y I * \ |x|}. 

Since E and F are disjoint closed subsets of the paracompact 
2 oo 2 manifold IR , there is a function u e C (IR ) such that o o o 

E £ m " 1 ^ ) and F £ • 
2 We may extend |i to a real function u on IR by putting 

. 2 H(o) = 0. By (2.3), it remains to prove that m^' c m^. Indeed, 
given a e m̂ ', note that we have a decomposition 

a = /3 + r, 
where & = tia and r = (l-u)a. Observe that e m^', and 
|3|E = 0, y|F = 0. Hence and from (2.2) it follows that 
(2.4) (3 (x,y) =x-0tl(x,y) and y(x,y) =yr. 2(x,y), 

where (3-(0,y) = 0 and 7 _(x,0) = 0. It is easy to see 
. 2 € mi' which, by (2.4), implies £,r e m^. 

a = & + r, we conclude that a e m 2, q.e.d. 
The method used in the proof of Proposition 2.4 cannot be 

applied to prove a version of this proposition for k = 2. The 
following example shows that there is a function a e m^ such 
that, for each decomposition a = 0 + r of the type described 
in this proof, at least one function or r.2 does not 
belong to m^. 

2 
Example 2.5. Consider the sequence {pn> of points of IR , 

where p = (4~n,4~n) for n = 1,2,... . Let us set 
U n = {p € IR : Hp - Pnll < 4~ } and note that, for every 
natural n, we can choose a function a n e C°°(IR2) such that 
a (P ) = 2~n, 0 a a (p) s 2~" and supp a c U . It is seen 

that 

that 
Since 
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that {U } is a discrete family of open subsets of R q, i.e. for 
each p e R^, there is an open neighbourhood V of p in R^ such 
that V has a non-empty intersection with at most one Thus, 

2 00 the real function a is well-defined on IR by a(p) = Z a (p) . 
1 . . 2 ."=1 

Observe that a e if and it is smooth on IR and continuous at 
° 2 

o, which, by Corollary 1.4, implies that a e if . Let ,t, 
b e t h e functions defined with respect to a 

analogously as in the proof of Proposition 2.4. First, note 
that if is unbounded, then the functions fi and r may be 
discontinuous. But we can additionally assume that 

0 * WD(x,y) s i, 
2 

which implies that (3,y e y . Unfortunately, this additional 
assumption is not sufficient to avoid a contradiction. 
Indeed, if we suppose that both the functions b e l o n 9 
to m 2 , then T. 2

 e m 2 ' B u t ' o n the other hand, from (2.4) 
we have <*.!+ *. 2)(p n) = 4 n0(p n) + 4 ny(p n) = = 4 na(p n)n(p n) + 4 na(p n)(l - H(P n)) = 2 n, 

which means that continuous at 0. 
Applying Corollary 1.4 it is easy to prove 
Lemma 2.6. If a e if and there are a neighbourhood U of o 
2 2 in IR and a constant c > 0 such that la(p) I s cllpll for each 

2 p e U, then a e m.. 
. 2 One can prove that if a e m " = tn (Lemma 2.3), then, for 

2 each compact neighbourhood U o f o i n R , i.e. o e int U, there 
2 

is a constant Cy > 0 such that la(p) I s Cyllpll for p e U. 
Observe that, for the function a constructed in Example 2.5, 
there is no such neighbourhood U of o. Indeed, suppose to the 2 
contrary that there is a neighbourhood U of o in IR such that 

2 
|a(p) I s cllpll for p e U and some constant c > 0. Since the 
sequence P n = (4 n,4 n ) converges to o, there is m e IN such 
that p e U for n a m . Thus, if n a m , then 2 = 
= la(pn) I s cllpnll = 2c-4 n, which is impossible. 

2 2 Denote by si the family of all real functions a on R such 
2 2 2 that a l R
n
 e ? C O an<* a i s bounded in some neighbourhood 
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2 of o. Note that A is a real algebra under the pointwise 
2 

operations, such that f is its subalgebra. Let us put 
m^(K) = {o e f*: alK = 0} and note that this set is an ideal 
of the algebra y*. It is seen that from Corollary 1.4 we get 2 Lemma 2.7. tn2(K) is an ideal of A . In particular, ve have 
d2m.(K) c tit (K) . 

. . . 2 From Proposition 2.4 it follows that m^ (K) c m^ and a 
similar result for k = 2 gives us 

2 
Lemma 2.8. m^(K) c m^. 
Proof. Let us take a e m2(K). Consider the following sets 

E = {p e IR2: |a(p) I s llpll2} and F = {p e IR2: |a(p) I * 2llpll2}. 
Obviously, E * e but F may be empty. If F = a, 2 2 2 then I a (p) I s 2 llpll for each p e OR , and so, a e m^ by 
Lemma 2.6. Therefore, in the sequel, we can suppose that 
F * 0 . Since E and F are disjoint non-empty closed subsets of 

2 oo 2 the paracompact manifold there is a function (iQ e C ( R
0) 

such that E c ii"1 (0) , F c n " 1 ^ ) and 0 s HQ(x,y) s 1. Let fi be 
the extension of mq to a real function v on IR2 by putting 
H(o) = 0 . We thus have a decomposition 
(2.5) a = J3 + y, 
where f3 = jia and y = (l-ii)a. Moreover, from Lemma 2.7 it 
follows that e m (K) . Note that lr(p)l * 2llpll2 for each 

2 2 p e IR , and so, Lemma 2.6 implies r e m . Thus, by (2.5), it 
2 

remains to prove that g e m^. 
For any n e Z, let us set 

(2.6) U n = {p e IR2: 8 n _ 1 < llpll < 8 n + 1 } 
2 2 

and note that {Un: n e 1} is an open covering of IR . Since IR 
is a paracompact manifold, there is a smooth partition of 
unity, subordinated to the covering {Un>n e We may extend 
every Xn to a smooth function on IR2, also denoted as \ n, by 
putting *n(o) = 0. This means that {*n> is a family of smooth 
functions on IR2 satisfying the following conditions: 

(a) supp An c Un, 
(b) 0 a An(p) s l, 
(c) £ X = 

neZ 
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2 2 
where x is the characteristic function on IR of the set R q and 
the series is locally finite at each point of IR2. Observe that 
if In - m| s 2, then = 0- Hence, by squaring both sides 
of equality (c), we get 
(2.7) Z A 2 + 2 \ X n X n + l = X ' 

nez neZ 
It is clear that, for each n e Z, we can choose a function 

u) e C°° (IR) such that n x ' 
(d) wn(t) = t 1 / 3 for |t| a 8 n _ I , 
(e) l(Jn(t)| a |t| 1 / 3 for |t| < 8 n _ 1 . 

If L,k e Z, k * 2 and Q s I < k, we set 

Zi:/fc= {n e Z: n - i (mod k) >. 

For i = 0,1, consider the functions t^ia defined on IRA by 

(2.8) \ = n l z i : 2 W « > . 2 v e v a » 2 -

Obviously, these functions are well-defined because the 
2 series are locally finite on IRo> Moreover, it is seen that 

(2.9) T . , U . | I R 2 e Y2(!R2) c C(IR2). 1 7 /.'t o v o' v o' 
Let us take 0 < c < 1. Consider the set 

W = {p e IR2: |a(p) | 1 / 3 < e} 

and note that it is an open neighborhood of o because 
2 2 

a e y c C(IR ). Observe that (2.8) and conditions (b)-(e) 
imply that, for each p € W, we have 

|Ti(P> 1 s S L-2 V P ) " '"„(«(P)) I 5 l«(P) l 1 / 3 < e, 

\v (p)I a E A (p)•Iw (a(p))|2 s |a(p)|2/3 < e 2 < e, 
neZ*"z n n 

which means that x^ and v^ are continuous at o. Hence and from 
(2.9) we conclude that t^ia e C(IR2) = . Moreover, note that 
t J K = u j K = 0, and so, from Corollary 1.4 it follows that 

(2.10) e m 2(K) c m 2 . 

Next, for i = 0,1,2, consider the functions defined 
2 i i on IR by 

(2.11) * = Z A w (a) , * = S X •(«» (a))2 

* neZ* n n * neZ* n 1 " 
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and, similarly as for t ^ i a , note that 

(2.12) * € m2(K) c m 2. 

; • 2 

Observe now that, for each n e Z " (i = 0,1), we have 

(2.13) xj- (un(a))3ii = XjJ-an. 

2 
Indeed, if p e E u (IR \ Un) then both sides of this equality 
assume 0 at p. Otherwise, if p e U n \ E, then, from (2.6) and 
the definition of E, one has |a(p)| > llpll > 8nl; thus, by 
(d) , un (a) (p) = (a(p))1/f3, which implies (2.13) at p. Observe that from (2.8) we get 
(2.14) V . = * , s 2 * J - < V « > ) 3 

neZ 
I • 2 because A X = 0 for distinct n,m e T. ' . Thus, from (2.13), n m 

(2.14) and the definition of /3 it follows that 

(2.15) x v u = 2 A2-/3 (i= 0,1) 
nel*"' n 

¿'3 
Analogously, one can observe that, for each n e Z 

(i = 0,1,2), we have 
= V n + l a i l 

Moreover, (2.11) implies 

V n + 2 - i V « » 3 ' 
and so, in a way similar as for x^v^, we get 

(2.16) V W * w = 0,1,2). 

Now, from (2.15),(2.16) and (2.7) it follows that 
1 2 2 (2.17) t £ o W + 2 £ 0 0 = ( Z Xn + 2 Z X nX n + 1)P - X p - f i . 

neZ neZ 
Finally, note that Lemma 2.7 implies that all t̂ /n and 
belong to m (K) because u.,^. € m_(K) and u e A2. Thus, from 
(2.10),(2.12) and (2.17) we conclude that 0 € m^, q.e.d. 

fe 
For any a e y we set a+(x,y) = a(x,0) + a(0,y) - a(0,0) 

and a_ = a - a +, that is, we have a decomposition 
a = a + + a_, 
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where a + e C°°(IR2) , a +|K = a|K and a_ e tn^(K) . 
From (2.3), Lemmas 2.3 and 2.8 and this decomposition it 

follows 
2 Proposition 2.9. m " = m . 

+ 
Theorem 2.10. T(IR x^ IR) = T (IR x̂ , R) . 
Proof. Clearly, it suffices to show that the following 

condition holds: 
( + ) dim T (IR x. IR) = 2 for any p e IR . P K £ 
Indeed, for any a e !f we can define the functions a' (x,y) = 
= a(o) + x - ^ ( o ) + y--|y(o) and a" = a - a' e m^'. Obviously, we 
have a decomposition 

a = a' + a", 
which proves that dim (m^/m^) = 2 , i.e. the congruent classes 

Hence dim (rn^/m2) 
2 of x and y form a base of m./m'J. Hence dim (nt./m.) = 2 because; 

m„ = m^' by Propositions 2.4 and 2.9. Since the vector space 2 

T q ( R x^ IR) is isomorphic to the dual space of m^/m^, it 
follows that dim T (IR x. IR) = 2 . This implies that condition O K 2 
(+) is fulfilled because, by Lemma 2.1, any translation of IR 
is a diffeomorphism of IR x^ [R, q.e.d. 

3. Vector fields 

In the sequel, the families ? = 5 1 and fk (k = 1,2) will 
be regarded as rings (real algebras) under the pointwise 
operations. Denote by X(IR x^ IR) the module over 9 of all 
vector fields on IR IR, that is, X e £(IR x^ IR) if 
X: IR x. IR - -> T(IR x. IR) is a map such that X = 

2 P = X(p) e T (IR x. IR) for each p e IR or, equivalently, if P K 
t 

X: y —» 3 is a linear map such that X(a/3) = X(a)|3 + aX((3) . 
2 

Denote by V (k) the group of all diffeomorphisms of 
IR x^ IR. If f e V2 (k) and X e X(IR x^ IR) , we define the vector 
field f#(X) on IR x^ IR by (f#(X)) = f» p(X p) • Obviously, the 
assignment f h-> f^ defines an isomorphism from D 2 (k) into the 
group of all automorphisms of the module X(IR x^ IR) . We say 
that X e DC (IR xk IR) is invariant if = X for each t e l . If v e T (IR x. IR) , we define the vector field X v on IR x. IR by 
v 2 X = t ^(v), where t is a unique translation of IR mapping 
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o to p. It is seen that X is invariant iff X = Xv for v = X . 
a a ° Denote by ^ and the vector fields on IR x^ IR defined by 

the assignments p i-» and p h-» It is clear that they 
are invariant. Moreover, note that from Theorem 2.10 it 
follows that every invariant vector field on IR x. R is of the 

a a form a + b for some constants a,b e IR. A vector field 
X e X(IR x^ IR) is called standard if 

d d X = a + p for some a,/3 e 
From Theorem 2.10 we get 
Corollary 3.1. Every vector field on IR x^ IR is standard. 
Call a vector field X e X(IR x^ IR) smooth if X(y*) c y*. 

Obviously, the zero vector field on IR x^ IR is smooth. 
Theorem 3.2. There is no non-zero smooth vector field on 

IR x. IR. k 
Proof. Suppose to the contrary that there is a non-zero 

smooth vector field X on IR x^ IR. From Corollary 3.1 we get 
(3.1) X = + 

£ where a, (3 e Moreover, observe that oc,£? e y because X is 
2 

smooth and a = X^n^) , /3 = X(tt2) , where n^: IR —> IR is the 
projection onto the i-th axis (i = 1,2). Since the vector 
field X is non-zero, we may assume without loss of generality 2 that there is p e IR such that a(p) > 0. Let us take a(p) > £ c > 0 and consider the y -open neighbourhood U of p defined by 

U = {(x,y) e IR2: a(x,y) > e}. 
L e t b e a real smooth function on IR such that A(t) > 0 

for each t e IR, and X(t) = t for t ^ c. Define the function 

« (X/Y) = — — ; n 

and note that o^ e y*. Thus, for each <p e y2 c y*, from (3.1) 
we get 

Hence 
J*IU- («.*<•) - «.0 §|)iu 

because oĉ alU = 1|U , which implies that e y1 (U) provided 
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that € y1 (U) . But there is a function <p e f2, namely, 

*(x,y) = 

2 
2 X y 2 f ° r <*'*> e Ro' x + y 

0 for (x,y) = o, 

such that, for any neighbourhood V of o, we have 4^1 V e ¡f1 (V) 
QJ. J "Y 

but * ¡f (V) , which gives a contradiction for p = o. This ox 
leads to a contradiction in the general case for any p since, 

2 
by Lemma 2.1, the translation of R via any vector is a 
diffeomorphism of R x^ R, q.e.d. 

It is known that if G is a differential group (see [4])', 
then each vector v e T e(G) determines a unique left invariant 
vector field on G such that Xv(e) = v, where e denotes the 
identity of G, and any such field is smooth (see [5]). Thus, 
if dim Tfi(G) > 0 , then there are non-zero smooth vector fields 
on G. Of course, IR x^ IR is a group under the coordinatewise 
addition and dim Tq(IR x^ IR) = 2 by Theorem 2.10. Hence and 
from Theorem 3.2 we obtain 

Corollary 3.3. The group R x^ R is non-differential. 
In particular, IR x^ IR is not a differential vector space 

under the coordinatewise operations because these operations, 
namely coordinatewise subtraction and multiplication by 
scalars, are non-smooth. Moreover, the multiplication of 
v € R x^ R by scalars, i.e. the function t i-» tv, is smooth if 
and only if v is horizontal or vertical (see Theorem 4.1). 

A triple £ = (E,ir,M) is said to be a differential bundle 
if tt: E —> M is a smooth surjection of differential spaces 
and, for each p e M, the fibre E^ = n ^(p) has a given vector 
structure such that E^ is a differential vector space, where 
the differential structure on E is induced from E. We shall P 
denote by T(£) the l?(M)-module of all smooth cross-sections of 

It is known that with every differential space M we can 
associate the differential tangent bundle TB(M) = (T(M),ttM,M) 
as follows. T(M) is the differential tangent space of M 
(see [3]) and n : T(M) — > M is the canonical surjection. 

. -1 
Moreover, every fibre T^(M) = ttm (p) is a differential vector 
space under the canonical vector structure and the 
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differential structure induced from T(M). The <?(M)-module of 
all smooth vector fields on M is defined to be the module 
DC (M) = r (TB (M)) . 

Consider the differential tangent bundle TB(R x^ R) = 
(T(IR x k R) ,71̂ ,0* x ^ R) , where n k = t t r x r . By Theorem 2.10, 

-1 * + for each p e R x^ R, we have n k (p) = T p(R x^R) = T p(R x^ R) . 
Moreover, the differential vector space TpC* 
isomorphic to the differential space R 2 with structure 
t?(R ) = C (R ), via the isomorphism x k : T p(R x^ R) —* R 
defined by xfc#p(a f ^ + b f ^ ) = (a,b) . 

Corollary 3.4. The differential space R x. R is not 
2 diffeomorphic to the differential space R . 

Proof. The assertion follows from the fact that X(R x„ R) 
2 

is the zero module by Theorem 3.2, but 3C(R ) is not, g.e.d. 
In the next section, we shall prove that the differential 

spaces R x^ R and R x^ R are non-diffeomorphic. 
Following Trafny [7], we can define the category of 

differential bundles with morphisms given by smooth bundle 
maps. Recall that a differential bundle £ = (E,tt,M) is locally 
trivial at a point p e M if there is a neighbourhood U of p 
such that the differential bundle £|U is isomorphic to a 
trivial differential bundle. We say that £ is locally 
non-trivial at p if it is not locally trivial at p. A 
differential bundle £ = (E,tt,M) is said to be locally 
non-trivial if it is locally non-trivial at each point p e M. 
It is easy to prove 

Lemma 3.5. If a differential bundle £ = (E,tt,M) is locally 
trivial at p e M, then, for every v e Ep, there is <r e 
such that <r(p) = v. 

From Theorem 2.10, Theorem 3.2 and Lemma 3.5 we get 
Corollary 3.6. The differential tangent bundle TB(R R) 

is locally non-trivial. 2 Let tk: R x^ R —» R be the identity map regarded as a 
smooth map of differential spaces. For any p e R x„ R and 

2 
v e Tp(R xk R) , we define T(t/t)p: T p(R x^ R) — T p ( R ) by 
(T(l*) (v) (a) = v(a<>Lk) , where a ranges over C 0 0^ 2) . Next, the 
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map T(tfc) : T(IR x^ R) T ( I R 2 ) is defined by T ( L & ) ( V ) = 

for v € Tp(IR x^ R) and called the differential of 
uk. Note that T(L/t) is a smooth map of differential spaces. 
Moreover, it is seen that the pair (ck,T(Lk)) defines a smooth 
bundle map from (T(R x^ R) , nk, R x^ R) onto 
which means that the following diagram 
differential spaces is commutative: 

T(Lfc) 

(T(R2),nR2,R2), 
of smooth maps of 

T (R xk R) 

Tik 

T(R2) 

V 
ik 

R x. R k R 

T (R2) is an 
,2 

where T(L/t)p: Tp(R R) 
differential vector spaces for each p e R 

Let M and N be differential spaces, 
g: T(M) —> T(N) is a fibre diffeomorphism 
diffeomorphism of differential spaces and, 
there is a unique q e N such that 

isomorphism of 

We say that 
if g is a 

for each p e M, 
In g(Tp(M)) = T g(N) 

addition, if g is an isomorphism of differential vector spaces 
from Tp(M) onto T q(N) for p and q as above, then g is called a 
bundle diffeomorphism. The tangent differential spaces T(M) 
and T(N) are called fibre (bundle) diffeomorphic if there is a 
fibre (bundle) diffeomorphism g: T(M) —» T(N) . Note that if 
g: T(M) —> T(N) is a fibre (bundle) diffeomorphism, then so is 
the inverse map g : T(N) —> T(M). It is easy to verify 

Lemma 3.7. Let M and N be differential spaces. If 
g: T(M) —* T(N) is a fibre diffeomorphism, then there is a 
unique diffeomorphism f: M —> N such that the following 
diagram of smooth maps of differential spaces is commutative: 

g 
T(M) 

Ti, M 

T (N) 

N 

M N 

This lemma immediately implies 
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Proposition 3.8. Let M and N be differential spaces. Then 
the following conditions are equivalent: 

(a) M and N are diffeomorphic, 
(b) T(M) and T(N) are bundle diffeomorphic, 
(c) T(M) and T(N) are fibre diffeomorphic. 
From this proposition and Corollary 3.4 we get 
Corollary 3.9. The tangent differential spaces T(R x. R) 

2 K 
and T(R ) are not fibre diffeomorphic. In particular, the 

2 
smooth map T(ck): T(R x^ R) —> T(R ) is not a diffeomorphism. 

Note that this corollary gives no answer to the question: 
2 

Are the differential spaces T(R x^ R) and T(R ) diffeomorphic 
(see Question 5.4)? 

4. Regular curves and diffeomorphisms 

Let c: I —» R R be a smooth curve, that is, c is a 
smooth map of differential spaces, where I is an open 
(non-empty) interval of R, regarded as a differential space 
under the structure C°°(I) of all real smooth functions on I. 
Note that the map c determines the differential 
c^ = T(c) : T(I) —» T(R * k R) . Let 3 g = be the standard 
tangent vector of I at s. We say that c is regular at s e I 
provided that c 3 is a non-zero vector of T , . (R x. R) . By a * S C(S) K 
regular curve in R x^ R we mean a smooth curve c: I —• R x^ R 
which is regular at each s e I. 

2 . A line in R is called vertical (horizontal) if it is of 
the form {a} x R (R x {b}). By a principal line we mean a line 

2 
in R which is vertical or horizontal. We have 

Theorem 4.1. Every regular curve in R R is contained in 
a principal line. 

Proof. Let us take an arbitrary regular curve 
c: I —> R x. R. Obviously, c is a regular smooth curve in the oo 2 k 

classical sense because C (R ) c if . Let <p = tt^oc and 0 = 
= n2oc, i.e. c(t) = (tf(t),tfr(t)) for tel. First, we prove that 
the following condition is satisfied: 

(A) for each s e I, the non-zero vector c 8 = • s Q 
+ âyIc(s) is PrinciPal> i«(s)/3(s) = 0 9 • 
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where a = fg , p = and | ^ | c ( s ) , | y l c ( s ) are the standard 

tangent vectors of IR x^ R at c(s) . 

Indeed, suppose to the contrary that there is s e I such 

that the vector c.3 s = a (s) f^l c ( g ) + p (s) c ( g ) is not 

principal or, equivalently, a(s)/3(s) * 0. Without loss of 

generality we may assume that s — 0. Since, by Lemma 2*1, the 

translation of IR2 via the vector p3 is a diffeomorphism of 

IR x^ IR ,. we may further assume that p = o. 

Observe that the map c is a local C00 dif feomorphism at 0 

because c^flg * 0. Therefore there is c > 0 such that c| [-c,c] 

is a C°° dif feomorphism onto its image in IR2. Moreover, since 

a(0)/3(0) * 0 and a,/3 e C°°(IR) , we can choose e so small that 
2 

C n K = {o} where C = c([-e,e]) and K = {(x,y) e R : xy = 0>. 

Consider the function m: t i-» |t| for -c s t s c and note 

that there is a unique real function n on C such that u«c = m. 

Accept the following notations: C Q = C \ {o}, K q = K \ {o} and 
F = C u K . Define the real function y on F as follows: o o o 

( u(p) for p € C , 
M 0(P) = 

I 0 for p e K 

V ^ O 

and note that n Q e C°°(F) . 

Since F is a closed subset of IR2, sup {Imq(P) I : p e F> = = c, and IR2 is a paracompact manifold, therefore we conclude 
® — oo 2 

that there is an extension u € C (IRo) of n Q such that 

sup {ljl(p) I: p e IR2} s 2c. It is seen that the function 

A: IR2 —> IR defined by 

M x , y ) = 
xn(x,y) for (x,y) e IR2, 

0 for (x,y) = o 

2 1 . is continuous on IR and A e f by Corollary 1.4, which implies 
2 2 It that X e y . Since c: I —> R x^ R is a smooth map and y c y , 

it follows that A»c e C°°(I) . Hence we get 

(4.1) Ao C| [-e,e] = <p-m \ [-e,e] e C^a-e.e]) . 

On the other hand, (A»c) (t) = <p(t) |t| for -e s t s e, and 

so, the second derivative of this function satisfies the 
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equalities: 

(Aoc)" (t) = a' (t)t + 2a (t) for 0 < t s c, 

(A.c)" (t) = -a' (t)t - 2a(t) for -c s t < 0. 

Hence we get 

lim (X»c)'' (t) = 2a(0) * lim (¡V°c)" (t) = -2a(0) 
t-»0+ t-»0-

because a(0) * 0, which contradicts (4.1). This completes the 

proof of condition (A). 

Finally, note that condition (A) is satisfied for all 

regular smooth parametrizations of c. In particular, we can 

consider the natural parametrization of c with respect to the 

arc parameter s. Then a = 1, /3 = 0 or a = 0, & = 1, which 

for each s e l , g.e.d. 

This theorem immediately implies 

Corollary 4.2. If f is a diffeomorphism of IR x^ 1R, then f 

maps every principal line onto a principal line. 

The following example shows that a non-regular smooth 

curve in IR x^ IR need not be contained in a principal line. 

Example 4.3. Let c: IR —> R x, K be a curve defined by • 

Note that c is smooth and regular except for t = 0. Moreover, 

observe that the image of c is contained in the set 

(IR x {0}) u ({0} x IR) , but it is not contained in IR x {0} or 

{0} x IR separately. 

principal line into a principal line. We say that f is 

0-principal (1-principal) provided that f maps every vertical 

line into a vertical (horizontal) line and every horizontal 

line into a horizontal (vertical) line. It is seen that f may 

be 0-principal and 1-principal simultaneously. We say that f 

is exactly 0-principal (1-principal) if it is 0-principal 

(1-principal) but not 1-principal (0-principal). In this case, 

we write x(f) = 0 (x(f) = 1) and say that f is of P-type 

implies that c,3 s = f ^ l ^ g . 

c(t) = • (0,0) 

(exp(l/t),0) for t < 0, 

(0,0) for t = 0, 

(0,exp(-l/t)) for t > 0. 

2 2 A map f : IR —» IR is said to be principal if it maps every 
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t = T(f)„ If f is exactly r-principal for some x e {0,1"}, then 

f is said to be of definite P-type. For example, if s is a 
. . . 2 . bijection of IR defined by (x,y) h-» (y,x) , then s is of P-type 

1. Furthermore, if $ and \jt are bijections of IR, then the map 
2 

<p x ty defined by (x,y) t—> (#(x),0( y)) is a bijection of ¡R and 

it is of P-type 0. Note that s is a diffeomorphism of IR x^ IR, 

and so is the map <p x \ji provided that <p and are smooth 

diffeomorphisms of IR. 

A map f: M —> N of differential spaces is said to be a 

smooth embedding if f regarded as a map from M onto the 

differential subspace f (M) of N is a dif feomorphism. We have 

Theorem 4.4. Let f be a smooth bijective map from IR x^ IR 

to IR x^ IR, vhere k,l € {1,2}, such that f restricted to every 

prncipal line is a smooth embedding. Then k = I and f is of 

the form <p x 0 or of the form so (<j> x iji) , vhere <p and \p are 

smooth dif feomorphisms of IR. In particular, f is a 

dif feomorphism of IR x̂ . IR. 

Proof. For any x,y e IR, let us set R x = {x> x IR, L y = 

= IR x {y} and define the maps r x : IR —> IR2, l y: IR —> IR2 by 

r x(s) = (x,s) and l y(t) = (t,y) . We can regard the sets R x , L y 

as differential subspaces of IR x^ IR or IR x^ IR and the maps 

r x , as smooth curves in IR x^ IR. Let us set c x = f<>rx and 

d y = f<>ly. It is seen that c x, d y are smooth curves in IR x^ IR. 

Step 1. Consider now the curve d = d°: IR —> IR xf IR. Since 

f maps the line L° diffeomorphically onto its image in IR x^ IR, 

there is a function a e j/(f(L0)) such that oc°f = n |L°. Then, I for any t e IR, there are an ¡f -open neighbourhood U of f(t,0) 
t 0 in IR x^ R and a function (3 e ¡f , such that (3|U n f(L ) = 

=a|U n f(L°) . Obviously, tt1»1° = id R and note that we have the 

following equalities: ^ = = flt(a®d) = 

= at(aofoi°) = at(7r1oi°) = a t(id K) = 1. Hence it follows that 
d « a t * 0 a n y e s o t h e c u r v e d regular. 

Analogously as for d, one can prove that all curves c x and 

d y are regular. Hence and from Theorem 4.1 it follows that 

each image cx(IR) = f(Rx) is contained in a principal line and 

so is each dy(IR) = f(Ly). Suppose first that the image of d is 
0 e contained in a horizontal line, that is, d((R) = f(L ) c L for 
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some e « IR. We shall prove that, in this »case, f is 
0-principa.l, i.e. f maps every vertical line into« *a vertical 
line and every horizontal line into a horizontal line. 

• x Indeed, consider first the image f(R ) of a vertical line 
x • . . . . x 0 R . Since f is bijective and R A L = {(x,0)>, we get 

(4.2) f(Rx) n f(L°) = {f(x,0)>. 

Thus f (x, 0) e f (Rx) A Le, and if f (Rx) were contained in a 
x e x horizontal line, then f(R ) c L . In this case, f(R ) and 

0 e f(L ) are connected open subsets of L . Note that the 
x 0 functions p = rc^ofor and A = rr^ofol are smooth embeddings 

from R to R, which implies that p(R) and X(IR) are open 
intervals of R. Since the set 

p(R) A A(R) = Tr1(f(RX)) N 7r1(f(L0)) = n1(f(RX) A f(L°)) 

is non-empty by (4.2), we conclude that p(R) A A.(R) is an open 
interval of R, too. On the other hand, TT̂  defines a bijection 
from f(Rx) A f(L°) onto p(R) A X(R), so the set f(Rx) A f(L°) 
would be infinite, which contradicts (4.2). Consequently, we 
have proved that, for each x e R, there is a unique 0(x) such 
that f(Rx) c R^ ( x ). Since (x,0) e R x A L°, it follows that 

f(x,0) e f(Rx) A f(L°) c R^ ( x ) A Le, 

whence f(x,0) = (0(x),e). This implies that <p = n ^ f * ! 0 is a 
smooth embedding from R to R. More precisely, observe that # 
is a smooth diffeomorphism of R. Indeed, it remains to show 

x 2 that <p is a surjection on R. Since U {R : x e R} = R and f is 
. . . 2 a bijection of R , we get 

R 2 = U {f (RX) : x e R> c U {R^(X) : x e R}, 

which implies that 0(R) = R. Note that f(Rx) = for each 
'' 2 x e R, or else f could not be a bijection of R . 

Step 2. Consider now the map 9 = sofo$. it is seen that g 
put instead of f also satisfies the assumptions of our 
theorem. Moreover, note that 9(L°) = (s«f) (R°) = , and 
so, we can apply to 9 the results of Step 1. Therefore we 
conclude that there is a smooth diffeomorphism 0 of R such 
that 9(RY) = R ^ y ) for each y e R. This and the fact that 
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f = «ogos imply f(Ly) = (sog) (Ry) = L^(y) . to sum up, we have 
proved that there are smooth diffeomorphisms <p and ^ of R such 
that f(Rx) = R ^ ( x ) and f(LY) = for any x,y € IR. This 

2 
yields f(x,y) = (0(x),^( y)) for (x,y) € IR because {f(x,y)> = 
= f(RX n L y) = f(RX) n f(Ly) = R* ( X ) n L 0 ( y ) = { (0 (x) , * (y) ) } , 
so f = ^ X 0. 

0 e Step 3. Suppose next that f(L ) c R for some e e IR. It is 
seen that the map f) = s»f put instead of f also satisfies the 

0 e 
assumptions of our theorem. Moreover, we have b(L ) c L , and 
so, the results of Steps 1 and 2 can be applied to i). Thus 
there are smooth dif feomorphisms <p and ^ of IR such that 
f) = <p x ip, whence f = s»f) = s« (<p x >¡1) . 

Finally, to show that k = I, note first that from the form 
of f it follows that the inverse map f can be regarded as a 
diffeomorphism of IR x^ IR. Therefore the map = 

defines a diffeomorphism from IR x^ IR onto IR xf IR. But this is 
possible only in case k = I (Example 1.5). Clearly, f is a 
diffeomorphism of IR x^ IR and IR x^ IR simultaneously, g.e.d. 

This theorem immediately implies 
Corollary 4.5. The differential spaces IR x^ IR and IR x^ IR 

are non-diffeomorphic. 
Note that from Theorem 4.4 it follows that every 

diffeomorphism of IR x^ IR is of definite P-type. Of course, if 
f and 9 are dif feomorphisms of IR x^ IR, then 

t(f9) = ^(f) + T(a) (mod 2) . 
Let r xi R —* R x2 R k e t h e identity m a P regarded as 

a smooth map of differential spaces. Then the following 
diagram of smooth maps of differential spaces is commutative: 

T ( L12> T(IR x2 IR) — > T(IR x 2 IR) 

ni n2 

C12 IR Xj IR » IR x 2 IR 

where T(l12) denotes the differential of l J 2 and rc^ji^ denote 
the corresponding canonical projections. Of course, the map 
T(L 1 2) p defined to be the restriction of T(l 2 2) to Tp(IR x2 IR) 
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is an isomorphism of differential vector spaces from 
Tp(IR x2 IR) onto Tp(R x

2
 R) • From Corollary 4.5 and 

Proposition 3.8 we get 
Corollary 4.6. The tangent differential spaces T(IR x^ IR) 

and T(IR x2 IR) are not fibre diffeomorphic. In particular, the 
smooth map *s not a 

Applying a method similar to that used in the proof of 
Theorem 4.4, one has 

Proposition 4.7. Every principal smooth diffeomorphism of 
2 

IR is of the form <p x ip or of the form s° (<t> x ifr) , where <p and 
ifi are smooth diffeomorphisms of IR. 

From Theorem 4.4 and Proposition 4.7 we get 
Corollary 4.8. Every diffeomorphism of IR x. IR is a 2 principal smooth diffeomorphism of IR . Conversely, every 

2 
principal smooth diffeomorphism of IR is a diffeomorphism of 
IR x^ IR. This correspondence defines an isomorphism between the 
corresponding groups of diffeomorphisms. 2 If r € Z , we denote by V {r> the collection of all 

. 2 2 l—principal smooth diffeomorphisms of IR . Let us set Z> {#} = 
= D2{0} \j £2{1}. Obviously, ©2{#> can be regarded as the group 

2 of all principal smooth diffeomorphisms of IR . Denote by a 
2 s the inner automorphism of V {#} determined by s, i.e. a (f) = 

- 1 2 9 
= sofos . Let z: V {#} —> Z2 be the map defined by the 
assignment f i—> x (f) . It is easy to verify 

2 Proposition 4.9. The map z: T> {#} —> 2 is an epimorphism 
2 - 1 2 of groups such that T> {r} = t (r) . In particular, T> {0} is a 

normal divisor of C2{#} and the factor group C2{#}/I)2{0} is 
isomorphic to Z . Moreover, s<>E2{0} = E2{0}«s = Z>2{1} and the 

2 2 
cosets T> {0}, E {1} are invariant under ag, i.e. 
s«Z)2{r}os"1 = I)2{r}. 2 2 Since the group D {#) is isomorphic to the group V (k) by 
Corollary 4.8, it follows that this proposition can be 
reformulated for T>2 (k) . 

Give attention to the fact that there is another 
2 

epimorphism 5: D {#} —» Z2 of groups defined as follows: 
5(f) = 0 (6(f) =1) if f preserves (changes) an orientation of 
IR2. Obviously, Z)2{#} = 5-1(0) * Z>2{0}. Observe that the 
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collection E 2{0} = A 2)2{0} is a subgroup of D 2{#}. 

Moreover, note that Z>2{0} is a normal divisor of Z)2{#}, C 2{0} 
2 . and E {#}. This follows from the fact that the assignment 

2 
f i-» (5(f),x(f)) defines an epimorphism of groups from T) {#} 
onto Z x Z_. 2 

It is known that every isometry f of IR is a linear 
isomorphism and we have a unique decomposition 
(.) f - o(3).r(*).t(v), 
where t(v), r(tf) and o(S) are special isometries which are the 
translation via the vector v, the rotation via the angle t> and 
the orientation map via the parameter 5 € z ("(0) = i d ^ , 2, IK o(l) = s) , respectively. By Theorem 4.4, o(5) and t(v) are 
always diffeomorphisms of R x. R but r(i>) is such a 

1 diffeomorphism only in the case when tf is a multiple of ? n. 
1 ^ Let us set e = id.,2 and r = r ^ n) . We have 

IK 2, 
Corollary 4.10. There are eight diffeomorphisms of R x. R 

2 vhich are isometries of R preserving o, namely, 
2 3 2 3 e,r, r ,r , s, sr, sr , sr . 
Proof. The assertion follows from («) and the observation 

that, for such a diffeomorphism f of R x. R, we have 
1 S e {0,1}, v = [0,0] and i> = ] ^ n , where lei. Therefore 

o(5) = s5, t(v) = e and r(tf) = r(l'| 7r) = r1' , where 1' is the 
remainder of 1 mod 4. Thus the list of all such 
diffeomorphisms is full, q.e.d. 

5. Final remarks and open questions 

Consider the set R n for a finite n t 2. Let us set [n] = 
= {l,...,n} and suppose that i e [n]. Let <r. be the 
permutation of R n defined as follows: 

cr̂  (x^,..., ,t) = (x^,..., , t, x ̂ ,..., ) • 

If x € R n we define the linear injection 1*: R —» R n by 

l*(t) = o~i (x,t) . 

Let us set <T = {1*: x e R n _ 1 , i e [n]}. Consider the final 
k n differential structures f (R ) for k = 1,2, defined on R n as 
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follows: 

y*(Rn) = 
Fe(Rn,en) for k — l, 

ce(Rn,<r ) for k = 2. n 

Denote by Rn(k) the differential space (Rn,y*(Rn)). In 
2 

particular, for n = 2, we have R (k) = R x^ R. 
One may expect that to all the properties which are proved 

in this paper for R x^ R there correspond generalized ones for 
all Rn(k) where n * 2 is finite. It seems that these 
generalized properties can be obtained by means of techniques 
being a combinatorial n-variant of those used here for n = 2. 
Obviously, for the differential spaces Rn(/fc), we shall have 
new properties. For example, one can prove that, for any 
finite n,m * 2, the differential space Rn(fc) x^ Rm(k) is 
diffeomorphic to the differential space Rn+m(/fc). 

Let (M,x) and (N,y) be pointed differential spaces. 
Consider the smooth maps r x: (N,y) —> (M x^ N, (x,y)) and 
1^: (M,x) —> (M N, (x,y)) defined in Section 1. Applying 
the functor T (Lemma 1.1) to these maps we get the linear maps 

T(rx)y: T(N,y) —» T (M x^ N, (x,y) ) , 
T(ly)x: T(M,x) T(M xk N, (x,y) ) , 

which are monomorphisms. Moreover, one can prove that 
Im T(rx)y n Im T(l y) x = 0. It is seen that from Theorem 2.10 
it follows that if M = N = R, then 

Im T(r x) y + Im T(l y) x = T (R R, (x,y)) . 

So, we may pose 

Question 5.1. Let (M,x) and (N,y) be pointed differential 
spaces. Do the following conditions hold: 

(a) Im T(r x) y + Im T(ly)x = T(M N, (x,y)), 
(b) dim T (M, x) + dim T(N,y) = dim T (M x^ N, (x,y) ) . 

Obviously, they are equivalent provided that dim T(M,x) and 
dim T(N,y) are finite. 

Let M and N be differential spaces. Denote by X(M) (ïm(M)) 
and 3C(M x^ N) (ïœ(M N) ) the corresponding modules of 
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arbitrary (smooth) vector fields which can be regarded as real 
vector spaces, as well. If X e X(M) , then there is a unique 
X^ € X(M x^ N) such that, for any p = (x,y) e M x N , we have 

X„ = (Tly) (X ) . Obviously, the assignment X X„ defines a *P x N 
linear monomorphism 1^: X(M) —> X(M x^ N) of vector spaces. We 
say that lj? is X00-invariant if 1*?(X°°(M)) c X°°(M x. N) . Note 

* . N that, in the general case, the monomorphism need not be 
X°°-invariant. For example, if M = N = IR, then from Theorem 3.2 

IR IR and since is a monomorphism, it follows that cannot be 
X^-invariant. On the other hand, if N is discrete, i.e. 
E(N) = F(N) , then M x 2 N = M x 2 N = M x N where M x N denote 
the usual product of differential spaces. In this case, one 

N oo can see that 1„ is X -invariant. These considerations and w 
Theorem 3.2 lead to the following questions: 

Question 5.2. Let M be a differential space. For what 
differential space N is the monomorphism X^-invariant? 

Question 5.3. Let M be a differential space. For vhat 
differential space N is X ^ M x^ N) = O? 

Note that if, for a differential space N, we have that 
X°°(M x^N) = 0 and is Xc0-invariant, then X°°(M) = O. 
Conversely, if X°°(M) = 0, then is always X^-invariant. 

If differential spaces M and N are diffeomorphic, then, 
clearly (Proposition 3.8), the tangent differential spaces 
T(M) and T(N) are diffeomorphic, too. It is of interest to 
know an answer to the following 

Question 5.4. Let M and N be differential spaces. Is it 
true that if T(M) and T(N) are diffeomorphic, then the 
differential spaces M and N are diffeomorphic, too? 

Note that if we get an affirmative answer to this 
question, then from Corollaries 3.4 and 4.5 it follows that 2 
the tangent differential spaces T(IR x^ IR) , T(IR x^ IR) and T(IR ) 
are non-diffeomorphic. 

Now, let us come back to the differential spaces R x. R 2 
(A = 1,2). In Section 1 we observed that the f -topology on 
IR x IR is the original one but the ¡f1 -topology is essentially 
stronger (see Example 1.5). It would be interesting to know an 
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answer to the following 
Question 5.5. What is the kind of the ¡f1-topology? In 

particular, is the ¡f -topology locally non-compact? 
Finally, consider the family G = 6(R,R) « 
x v 1 = {r ,1. x,y e R}. Let t denote the strongest topology on 

IR x IR for which all maps rx,l^: (R —> IR x IR are continuous. It 
is seen that the yJ-topology on IR x IR is weaker than x1. 

Question 5.6. Is the ¡f -topology on IR x IR essentially 
weaker than t3? 

REFERENCES 

[1] K. Buchner: Communication at the Mathematical Conference 
at Pasierbiec in 1988. 

[2] A. Frolicher, A. Kriegl: Linear spaces and differentiation 
theory, J. Wiley and Sons, Chichester (1988). 

[3] A. Kowalczyk: Tangent differential spaces and smooth 
forms, Demonstratio Math., 13 (1980), 893-905. 

[4] Z. Pasternak-Winiarski: Differential groups o f class ® o 
and standard charts, Demonstratio Math., 16 (1983), 
503-517. 

[5] W. Sasin: Infinite Cartesian product of differential 
groups, Math. Nachr, (1990), 61-70. 

[6] R. Sikorski: Abstract covariant derivative, Colloq. Math., 
24 (1971), 45-79. 

[7] A. Trafny: Bundles, linear bundles and principle bundles 
in the category of differential spaces, Demonstratio Math, 
(to appear). 

[8] W. Waliszewski: Regular and coregular mappings of 
differential spaces, Ann. Polon. Math. 30 (1975), 263-281. 

INSTITUTE OF MATHEMATICS, LÓDZ UNIVERSITY, 
90-238 LÓDZ, POLAND. 

Received May 9, 1991. 




