

Piotr Mularczyński, Wiesław Sasin, Zbigniew Zekanowski

VECTORS AND VECTOR FIELDS OF K-TH ORDER ON DIFFERENTIAL SPACES

The purpose of this paper is to introduce the notions of tangent vectors and tangent vector fields of k -th order to a differential space (M, C) . In the paper we prove also the fundamental properties of these notions.

1. Introduction

Let M be a set and C a family of real functions on M . By τ_C we denote the weakest topology on M such that all functions of C are continuous. By scc we denote the set of all functions on M which are of the form $\omega \circ (\alpha_1, \dots, \alpha_n)$, where $\alpha_1, \dots, \alpha_n \in C$ and $\omega \in C^\infty(\mathbb{R}^n)$, $n \in \mathbb{N}$. Now let A be a subset of M . By C_A we denote the set of all functions $g: A \rightarrow \mathbb{R}$ such that, for each point $p \in A$, there exist an open neighbourhood U of p and a function $f \in C$ such that $g|_U = f|_U$.

If $C = (scc)_M$, the set C is said to be a differential structure on M , and the pair (M, C) is called the differential space (d.s, for short) [1], [2]. If (M, C) is a d.s and A is a subset of M then (A, C_A) is also a d.s and it is called the differential subspace of (M, C) .

By a tangent vector to a differential space (M, C) at a point $p \in M$ we mean a linear mapping $v: C \rightarrow \mathbb{R}$ satisfying the Leibniz condition

$$(1.1) \quad v(\alpha \cdot \beta) = \alpha(p)v(\beta) + \beta(p)v(\alpha),$$

for any $\alpha, \beta \in C$. Next, by $T_p M$ we denote the tangent space to (M, C) at the point p .

One can prove that if $f, g \in C$ and $f|U = g|U$, for some open neighbourhood U of p then, for any $v \in T_p M$, $v(f) = v(g)$. If $f|U = \omega \circ (\alpha_1, \dots, \alpha_n)|U$, for some open neighbourhood U of p , where $\alpha_1, \dots, \alpha_n \in C$ and $\omega \in C^\infty(\mathbb{R}^n)$, then

$$(1.2) \quad v(f) = \sum_{i=1}^n \omega'_{|i}(\alpha_1(p), \dots, \alpha_n(p)) v(\alpha_i),$$

for any $v \in T_p M$. Evidently, the formula (1.2) is a generalization of the formula (1.1).

Next, by a tangent vector field to (M, C) we mean a function $X: M \rightarrow \bigcup_{p \in M} T_p M$ such that $X(p) \in T_p M$, for any $p \in M$. A tangent vector field X to (M, C) is said to be smooth if the function Xf , given by $(Xf)(p) = X(p)(f)$, is smooth for any $f \in C$. Now, by $\mathfrak{X}(M)$ we denote the C module of all smooth tangent vector fields to (M, C) .

A differential space (M, C) is said to be of constant differential dimension n if, for any point $p \in M$, there exist an open set U in τ_C and C_U -basis $x_1, \dots, x_n \in \mathfrak{X}(U)$ of C_U -module $\mathfrak{X}(U)$ such that $p \in U$ and $\text{Lin}(x_1(q), \dots, x_n(q)) = T_q M$, for any $q \in U$.

A mapping $F: M \rightarrow N$ is said to be smooth mapping of a differential space (M, C) into a differential space (N, D) if $f \circ F \in C$, for any $f \in D$. If F is a smooth mapping of (M, C) into (N, D) we shall write $F: (M, C) \rightarrow (N, D)$. Now, the function $dF: \bigcup_{p \in M} T_p M \rightarrow \bigcup_{q \in N} T_q N$, defined by the formula

$$(1.3) \quad dF(v)(\beta) = v(\beta \circ F),$$

for any $v \in T_p M$ and $\beta \in D$, is called the differential of F , or the tangent map of F .

The restriction of dF to the set $T_p M$, i.e. $dF|T_p M$, is called the differential of F at the point p and it is denoted by $d_p F$.

Now, let (M, C) be a differential space and let C_0 be a subset of C , then C_0 is said to be a set of generators of the differential structure C on M if $C = (\text{sc}C_0)_M$.

2. Vectors and vector fields of k-th order on differential spaces

Let (M, C) be a d.s. Now we shall give another, but equivalent, definition of a tangent vector to (M, C) at a point $p \in M$.

Definition 2.1 A linear mapping $v: C \rightarrow \mathbb{R}$ is said to be a tangent vector to (M, C) at a point $p \in M$, if the following conditions are fulfilled

$$(2.1) \quad v(f) = 0 \quad \text{if } f \text{ is constant}$$

and

$$(2.2) \quad v|_{a_p^2} = 0,$$

where $a_p^2 := \{(f-f(p)) \cdot (g-g(p)); f, g \in C\}$.

The equivalence of both definitions of a tangent vector to (M, C) at $p \in M$ is evident from the identities

$$\begin{aligned} 0 &= v[(f-f(p)) \cdot (g-g(p))] = v(f \cdot g - f(p)g - g(p)f + f(p)g(p)) = \\ &= v(f \cdot g) - f(p)v(g) - g(p)v(f). \end{aligned}$$

Now, we accept

Definition 2.2 Let $k \in \mathbb{N}$. A linear mapping $v^{(k)}: C \rightarrow \mathbb{R}$ is said to be a k -th order tangent vector to (M, C) at a point $p \in M$ if the following conditions are fulfilled

$$(2.3) \quad v^{(k)}(f) = 0 \quad \text{if } f \text{ is constant}$$

and

$$(2.4) \quad v^{(k)}|_{a_p^{k+1}} = 0,$$

where $a_p^{k+1} = \{(f_1 - f_1(p)) \cdot \dots \cdot (f_{k+1} - f_{k+1}(p)); f_1, \dots, f_{k+1} \in C\}$.

(We would obtain the same result if we used the linear space $\text{Lin}(a_p^k)$ instead of a_p^k .)

Let us observe that, for any $k \in \mathbb{N}$,

$$(2.5) \quad a_p^{k+1} \subset a_p^k.$$

The set $T_p^{(k)} M$ of all k -th order tangent vectors to (M, C) at a point $p \in M$, for $k \in \mathbb{N}$, has the natural structure of a linear space, and it is called the k -th order tangent space to (M, C) at $p \in M$.

Of course, the vector $v^{(k)} \in T_p^{(k)}M$ is called zero k -th order vector if $v^{(k)}(f) = 0$, for any $f \in C$.

Lemma 2.1 Let (M, C) be a d.s and let $\alpha \in C$ be such that $\alpha|U = 0$, for some open neighbourhood U of $p \in M$. Then $v^{(k)}(\alpha) = 0$, for arbitrary $v^{(k)} \in T_p^{(k)}M$ and $k \in \mathbb{N}$.

Proof. Since (M, C) is a C -regular topological space, there exists a function $\beta \in C$ such that $\beta|A = 1$ for an open neighborhood A of p , $\beta|A_0 = 0$ for an open set A_0 such that $A_0 \cup U = M$ as well as $p \in A \subset U$. Consider now the function $\gamma = 1 - \beta$. Evidently, $\gamma(p) = 0$ and

$$\alpha = \alpha \cdot \gamma = \alpha(\gamma - \gamma(p)) = (\alpha - \alpha(p))(\gamma - \gamma(p))^k.$$

Thus, by definition 2.2, we get

$$v^{(k)}(\alpha) = v^{(k)}[(\alpha - \alpha(p))(\gamma - \gamma(p))^k] = 0,$$

for $v^{(k)} \in T_p^{(k)}M$ and $k \in \mathbb{N}$.

Corollary 2.2 Let $f, g \in C$. If $f|U = g|U$, for an open neighbourhood U of $p \in M$, then $v^{(k)}(f) = v^{(k)}(g)$, for any $v^{(k)} \in T_p^{(k)}M$ and $k \in \mathbb{N}$.

Now we shall prove

Proposition 2.3 For an arbitrary $v_1^{(k)}, \dots, v_m^{(k)} \in T_p^{(k)}M$, $k \in \mathbb{N}$, the following statements are equivalent:

1. the vectors $v_1^{(k)}, \dots, v_m^{(k)}$ are linearly independent,
2. linear mapping $L: C \longrightarrow \mathbb{R}^m$ defined by $L(\alpha) = (v_1^{(k)}(\alpha), \dots, v_m^{(k)}(\alpha))$ for $\alpha \in C$ is onto \mathbb{R}^m ,
3. there exist functions $\alpha^1, \dots, \alpha^m \in C$ such that $v_i^{(k)}(\alpha^j) = \delta_i^j$, where δ_i^j is the Kronecker delta,
4. there exist functions $\alpha^1, \dots, \alpha^m \in C$ such that the determinant $\det(v_i^{(k)}(\alpha^j))$ of the matrix $(v_i^{(k)}(\alpha^j))$, $i, j = 1, \dots, m$, is different from zero.

Proof. Obviously $L(C)$ is a linear subspace of \mathbb{R}^m . Consequently, $L(C)$ is a proper subset of \mathbb{R}^m if and only if there exist real numbers a^1, \dots, a^m , $|a^1| + \dots + |a^m| > 0$,

and such that, for any $\alpha \in C$, $\sum_{i=1}^m a^i v_i^{(k)}(\alpha) = 0$, or equivalently $\sum_{i=1}^m a^i v_i^{(k)} = 0$. But the last condition means that the vectors $v_1^{(k)}, \dots, v_m^{(k)}$ are linearly dependent. It proves the equivalence of assertions 1 and 2.

Evidently, condition 2 implies condition 3 and condition 3 implies condition 4. So, it suffices to show that assertion 4 implies assertion 2. Indeed, let $[b_1, \dots, b_m]$ be an arbitrary vector in \mathbb{R}^m . From condition 4 it follows that there exist real numbers a^1, \dots, a^m such that $\sum_{j=1}^m a^j v_i^{(k)}(\alpha^j) = b_i$. In consequence, $L(\sum_{j=1}^m a^j \alpha^j) = (b_1, \dots, b_m)$, which proves condition 2.

Now, let (A, C_A) be a differential subspace of (M, C) and let $p \in A$. Then, for any $v^{(k)} \in T_p^{(k)} A$, $k \in \mathbb{N}$, the formula

$$(2.6) \quad \bar{v}^{(k)}(\alpha) = v^{(k)}(\alpha|A),$$

for any $\alpha \in C$, defines the tangent vector $\bar{v}^{(k)}$ of k-th order to (M, C) at the point $p \in M$. Identifying the vector $v^{(k)} \in T_p^{(k)} A$ with the vector $\bar{v}^{(k)} \in T_p^{(k)} M$, defined by (2.6), one can easily prove

Proposition 2.4 The tangent space $T_p^{(k)} A$ to a differential subspace (A, C_A) of (M, C) at $p \in A$ is a linear subspace of the space $T_p^{(k)} M$.

Moreover, if A is an open subset of M then, for any $p \in A$, $T_p^{(k)} A = T_p^{(k)} M$, $k \in \mathbb{N}$.

From definition 2.2 and (2.5) it follows the inclusion $T_p^{(k)} M \subset T_p^{(k+1)} M$, for any $p \in M$ and $k \in \mathbb{N}$.

Now, we shall prove

Lemma 2.5 Let $F: M \rightarrow N$ be a smooth mapping of (M, C) into (N, D) . Let $v^{(k)} \in T_p^{(k)} (M)$, where $k \in \mathbb{N}$. Then the formula

$$(2.7) \quad w(\alpha) = v^{(k)}(\alpha \circ F),$$

for any $\alpha \in D$, defines a tangent vector of k-th order $\bar{v}^{(k)} = w$ to (N, D) at the point $q = F(p) \in N$.

Proof. From (2.7) it follows that $w = \bar{v}^{(k)}: C \rightarrow \mathbb{R}$ is a

linear mapping. To show that $w = \bar{v}^{(k)} \in T_{F(p)}^{(k)} N$ it suffices to observe that

$$\begin{aligned} w[(\alpha_1 - \alpha_1(q)) \cdots (\alpha_{k+1} - \alpha_{k+1}(q))] &= \\ = v^{(k)}[(\alpha_1 - \alpha_1(q)) \cdots (\alpha_{k+1} - \alpha_{k+1}(q)) \circ F] &= \\ = v^{(k)}[(\tilde{\alpha}_1 - \tilde{\alpha}_1(p)) \cdots (\tilde{\alpha}_{k+1} - \tilde{\alpha}_{k+1}(p))] &= 0, \end{aligned}$$

for any $\alpha_1, \dots, \alpha_{k+1} \in D$, where $\tilde{\alpha}_i = \alpha_i \circ F$ for $i=1, 2, \dots, k+1$, and $q=F(p)$.

Definition 2.3 A function which assigns to each tangent vector of k -th order $v^{(k)}$ to (M, C) the tangent vector of k -th order $w = \bar{v}^{(k)}$ to (N, D) , defined by (2.7), is called the differential of k -order of F and is denoted by $d^{(k)}_F$.

Hence by definition we have

$$d^{(k)}_F : \bigcup_{p \in M} T_p^{(k)} M \longrightarrow \bigcup_{q \in N} T_q^{(k)} N$$

and

$$(2.8) \quad d^{(k)}_F(v^{(k)})(\alpha) = v^{(k)}(\alpha \circ F),$$

for an arbitrary $v^{(k)} \in T_p^{(k)} M$, $\alpha \in D$, $k \in N$ and $p \in M$.

The restriction of $d^{(k)}_F$ to the set $T_p^{(k)} M$, that is $d^{(k)}_F|_{T_p^{(k)} M}$, is called the differential of k -th order of F at the point $p \in M$, and it is denoted by $d_p^{(k)} F$.

Thus

$$d_p^{(k)} F(v^{(k)}) = d^{(k)}_F(v^{(k)}),$$

for $v^{(k)} \in T_p^{(k)} M$. Evidently $d_p^{(k)} F : T_p^{(k)} M \longrightarrow T_{F(p)}^{(k)} N$.

It is easy to prove

Lemma 2.6 The differential of k -th order of F at a point $p \in M$ is a linear mapping of $T_p^{(k)} M$ into $T_{F(p)}^{(k)} N$.

Similarly as in the theory of manifolds we prove

Proposition 2.7 Let (M, C) , (N, D) and (P, Q) be differential spaces and let $F: M \longrightarrow N$ as well as $G: N \longrightarrow P$ be smooth mappings. Then, for any $k \in N$,

$$d^{(k)}(G \circ F) = d^{(k)}_G \circ d^{(k)}_F.$$

Thus, for any $p \in M$, we have

$$(2.9) \quad d^{(k)}_p(G \circ F) = d^{(k)}_{F(p)} \circ d^{(k)}_p F.$$

Now we shall generalize formula (1.2). Let $v^{(k)} \in T_p^{(k)} M$ and let f be an arbitrary function from C . By definition of a differential structure, there exist an open neighborhood U of p and functions $\alpha_1, \dots, \alpha_n \in C$ and $\omega \in C^\infty(\mathbb{R}^n)$ such that

$$f|_U = \omega \circ (\alpha_1, \dots, \alpha_n)|_U$$

Hence

$$(2.10) \quad v^{(k)}(f) = v^{(k)}[\omega \circ (\alpha_1, \dots, \alpha_n)] = v^{(k)}(\omega \circ \Phi),$$

where $\Phi := (\alpha_1, \dots, \alpha_n): M \longrightarrow \mathbb{R}^n$. From (2.10) by (2.8) and (2.9) we get

$$\begin{aligned} v^{(k)}(f) &= v^{(k)}(\omega \circ \Phi) = d^{(k)}_p(\omega \circ \Phi)(v^{(k)}) = \\ &= [d^{(k)}_p \Phi(v^{(k)})](\omega). \end{aligned}$$

Evidently, $d^{(k)}_p \Phi(v^{(k)}) \in T_{\Phi(p)}^{(k)} \mathbb{R}^n$ for any $v^{(k)} \in T_p^{(k)} M$ and $k \in \mathbb{N}$.

Let us denote by $\partial_{i_1 \dots i_m}^{(m)}$, where $m = 1, 2, \dots, k$ and $1 \leq i_1, \dots, i_m \leq n$, the vectors of the partial derivations at the point $q = \Phi(p)$ of \mathbb{R}^n . Obviously these vectors form a basis of $T_q^{(k)} \mathbb{R}^n$. Now, any vector $d^{(k)}_p \Phi(v^{(k)}) \in T_{\Phi(p)}^{(k)} \mathbb{R}^n$ has the decomposition with respect to this basis of the form

$$(2.11) \quad d^{(k)}_p \Phi(v^{(k)}) = \sum_{m=1}^k \sum_{1 \leq i_1 < \dots < i_m \leq n} \lambda^{i_1 \dots i_m} \partial_{i_1 \dots i_m}^{(m)}|_q,$$

where

$$(2.12) \quad \lambda^{i_1 \dots i_m} = d^{(k)}_p \Phi(v^{(k)}) (\tilde{\pi}_{i_1}, \dots, \tilde{\pi}_{i_m}),$$

and $\tilde{\pi}_i = \pi_i - \pi_i(q)$ whereas π_i , $i = 1, 2, \dots, n$, is the canonical projection in \mathbb{R}^n onto its i -th coordinate. On the other hand, we have

$$\begin{aligned} (2.13) \quad d^{(k)}_p \Phi(v^{(k)}) (\tilde{\pi}_{i_1}, \dots, \tilde{\pi}_{i_m}) &= v^{(k)}(\Phi \circ (\tilde{\pi}_{i_1}, \dots, \tilde{\pi}_{i_m})) = \\ &= v^{(k)}(\tilde{\alpha}_{i_1}, \dots, \tilde{\alpha}_{i_m}). \end{aligned}$$

where $\tilde{\alpha}_i = \alpha_i - \alpha_i(p)$, for $i = i_1, \dots, i_m$. From (2.11), (2.12) and

(2.13) we get finally the formula :

$$v^{(k)}(f) = v^{(k)}(\omega \circ (\alpha_1, \dots, \alpha_n)) =$$

$$(*) \quad \sum_{m=1}^k \left(\sum_{1 \leq i_1 < \dots < i_m \leq n} \omega_{|i_1 \dots i_m}^{(m)}(\alpha_1(p), \dots, \alpha_n(p)) \cdot \right. \\ \left. \cdot v^{(k)}[(\alpha_{i_1} - \alpha_{i_1}(p)) \cdot \dots \cdot (\alpha_{i_m} - \alpha_{i_m}(p))] \right),$$

It is easy to observe that by putting in (*) $k=1$ we get the formula (1.2). Next, by putting $k=2$ in (*) we get

$$v^{(2)}(f) = v^{(2)}(\omega \circ (\alpha_1, \dots, \alpha_n)) =$$

$$= \sum_{i=1}^n \omega'_{|i}(\alpha_1(p), \dots, \alpha_n(p)) v^{(2)}(\alpha_i - \alpha_i(p)) +$$

$$+ \sum_{1 \leq i < j \leq n} \omega''_{|ij}(\alpha_1(p), \dots, \alpha_n(p)) v^{(2)}[(\alpha_i - \alpha_i(p)) \cdot (\alpha_j - \alpha_j(p))]$$

From (*) it follows:

Corollary 2.8 For any $k \in \mathbb{N}$, a tangent vector of k -th order $v^{(k)} \in T_p^{(k)}M$ is uniquely determined by its values on all products of the form: $(\alpha_1 - \alpha_1(p)) \cdot \dots \cdot (\alpha_m - \alpha_m(p))$, where $m=1, 2, \dots, k$ and $\alpha_1, \dots, \alpha_m \in C$.

Let now C_0 be a set of generators of differential structure C on M . For any $l \in \mathbb{N}$ and $p \in M$, let us put:

$$\dot{\alpha}_p^i := \{(\alpha_1 - \alpha_1(p)) \cdot \dots \cdot (\alpha_i - \alpha_i(p)), \alpha_1, \dots, \alpha_i \in C_0\}$$

One can easily prove

Lemma 2.9 Let $k \in \mathbb{N}$ and let $\gamma : \bigcup_{i=1}^k \dot{\alpha}_p^i \rightarrow \mathbb{R}$ be a mapping such that, for any $\alpha_1, \dots, \alpha_n \in C_0$ and $\omega \in C^\infty(\mathbb{R}^n)$, the equality

$$\omega \circ (\alpha_1, \dots, \alpha_n) = 0$$

implies the equality

$$\sum_{m=1}^k \left(\sum_{1 \leq i_1 < \dots < i_m \leq n} \omega_{|i_1 \dots i_m}^{(m)}(\alpha_1(p), \dots, \alpha_n(p)) \cdot \right. \\ \left. \cdot \gamma[(\alpha_{i_1} - \alpha_{i_1}(p)) \cdot \dots \cdot (\alpha_{i_m} - \alpha_{i_m}(p))] \right) = 0.$$

Then there exists exactly one tangent vector of k -th order

$v^{(k)} \in T_p^{(k)} M$ such that $v^{(k)}| \bigcup_{i=1}^k \dot{a}_p^i = w$.

Now for any $p \in M$ we shall denote by A_p^1 the set of all smooth functions $f \in C$ for which there exist an open neighborhood $U \in \tau_C$ of p and functions $f_1, \dots, f_n \in C$, $w \in C^\infty(\mathbb{R}^n)$, for some $n \in \mathbb{N}$, such that

$$1^o \quad f|_U = w \circ (f_1, \dots, f_n)|_U$$

$$2^o \quad w|_{i_1 \dots i_k}^{(k)} (f_1(p), \dots, f_n(p)) = 0,$$

for any $k=1, 2, \dots, l$ and $k \in \mathbb{N}$, $p \in M$. Moreover, it can easily be seen that A_p^1 is a differential substructure of the differential structure C . Consequently, A_p^1 is a linear subspace of C and $A_p^{k+1} \subset A_p^k$.

Definition 2.4 Let $k \in \mathbb{N}$. A subset $\mathcal{F}^{(k)}$ of C is said to be a local basis of k -th order of differential structure C on M at a point $p \in M$ if, for any $f \in C$, there is exactly one decomposition of the form:

$$f = \lambda^1 f_1 + \dots + \lambda^m f_m + g,$$

where $f_1, \dots, f_m \in \mathcal{F}^{(k)}$, $\lambda^1, \dots, \lambda^m \in \mathbb{R}$ and $g \in A_p^k$.

One can prove

Proposition 2.10 Let (M, C) be a d.s. For any point p of M there exists a local basis of k -th order $\mathcal{F}^{(k)}$ of differential structure C at the point p such that $\mathcal{F}^{(k)} \subset \bigcup_{i=1}^k \dot{a}_p^i$, $k \in \mathbb{N}$.

Lemma 2.11. Let $\mathcal{F}^{(k)}$, $k \in \mathbb{N}$, be a local basis of k -th order of differential structure C on M at a point $p \in M$. Then for every function $w : \mathcal{F}^{(k)} \rightarrow \mathbb{R}$ there exists exactly one tangent vector of k -th order $v^{(k)} \in T_p^{(k)} M$ such that $v^{(k)}|_{\mathcal{F}^{(k)}} = w$.

Let us consider the quotient linear space C/A_p^1 and let $[f]_p^1$ denotes the equivalence class of $f \in C$.

Lemma 2.12 Let (M, C) be a d.s., and let $p \in M$ be an arbitrary point. Then

$$\begin{aligned}
 1^o \quad & [\omega \circ (\alpha_1, \dots, \alpha_n)]_p^1 = \\
 & = \sum_{m=1}^1 \left(\sum_{1 \leq i_1 < \dots < i_m \leq n} \omega_{|i_1 \dots i_m}^{(m)} (\alpha_1(p), \dots, \alpha_n(p)) \cdot \right. \\
 & \quad \left. \cdot [(\alpha_{i_1} - \alpha_{i_1}(p)) \dots (\alpha_{i_m} - \alpha_{i_m}(p))]_p^1 \right).
 \end{aligned}$$

2^o If $g, f \in C$ and $f|U = g|U$, for a neighborhood U of p , then $[f]_p^1 = [g]_p^1$.

Proof. ad 1^o. It is enough to show that

$$\begin{aligned}
 \omega \circ (\alpha_1, \dots, \alpha_n) - \sum_{m=1}^1 \left(\sum_{1 \leq i_1 < \dots < i_m \leq n} \omega_{|i_1 \dots i_m}^{(m)} (\alpha_1(p), \dots, \alpha_n(p)) \cdot \right. \\
 \left. \cdot (\alpha_{i_1} - \alpha_{i_1}(p)) \dots (\alpha_{i_m} - \alpha_{i_m}(p)) \right)
 \end{aligned}$$

belongs to A_p^1 .

Let $\theta \in C^\infty(\mathbb{R})$ be a function given by the formula

$$\begin{aligned}
 \theta(x_1, \dots, x_n) = \omega(x_1, \dots, x_n) - \\
 - \sum_{m=1}^1 \left(\sum_{1 \leq i_1 < \dots < i_m \leq n} \omega_{|i_1 \dots i_m}^{(m)} (\alpha_1(p), \dots, \alpha_n(p)) \cdot \right. \\
 \left. \cdot (x_{i_1} - \alpha_{i_1}(p)) \dots (x_{i_m} - \alpha_{i_m}(p)) \right),
 \end{aligned}$$

for any $(x_1, \dots, x_n) \in \mathbb{R}^n$. Hence

$$\begin{aligned}
 \theta(\alpha_1, \dots, \alpha_n) = \omega \circ (\alpha_1, \dots, \alpha_n) - \\
 - \sum_{m=1}^1 \left(\sum_{1 \leq i_1 < \dots < i_m \leq n} \omega_{|i_1 \dots i_m}^{(m)} (\alpha_1(p), \dots, \alpha_n(p)) \cdot \right. \\
 \left. \cdot (\alpha_{i_1} - \alpha_{i_1}(p)) \dots (\alpha_{i_m} - \alpha_{i_m}(p)) \right)
 \end{aligned}$$

and

$$\theta_{|i_1 \dots i_m}^{(m)} (\alpha_1(p), \dots, \alpha_n(p)) = 0$$

for any $m = 1, 2, \dots, 1$ and $1 \leq i_1, \dots, i_m \leq n$. Consequently

$$\begin{aligned}
 \omega \circ (\alpha_1, \dots, \alpha_n) - \sum_{m=1}^1 \left(\sum_{1 \leq i_1 < \dots < i_m \leq n} \omega_{|i_1 \dots i_m}^{(m)} (\alpha_1(p), \dots, \alpha_n(p)) \cdot \right. \\
 \left. \cdot (\alpha_{i_1} - \alpha_{i_1}(p)) \dots (\alpha_{i_m} - \alpha_{i_m}(p)) \right)
 \end{aligned}$$

belongs to A_p^1 .

2° is obvious.

Let $v^{(k)} \in T_p^{(k)}M$ be a tangent vector of k-th order. Evidently, $v^{(k)}|_{A_p^k} = 0$ for any $v^{(k)} \in T_p^{(k)}M$. Hence $v^{(k)}$ induces a linear function $l_{v^{(k)}} \in (C/A_p^k)^*$ defined by

$$(2.14) \quad l_{v^{(k)}}([f]_p^1) = v^{(k)}(f),$$

for any $f \in C$.

Lemma 2.13 The mapping $I: T_p^{(k)}M \longrightarrow (C/A_p^k)^*$ defined by $I(v^{(k)}) = l_{v^{(k)}}$, for any $v^{(k)} \in T_p^{(k)}M$, is an isomorphism of linear spaces.

Proof. The linearity of the mapping I is clear. Obviously if $l_{v^{(k)}} = 0$ for some $v^{(k)} \in T_p^{(k)}M$, then $v^{(k)} = 0$. Hence I is a monomorphism. Now we shall show that I is an epimorphism. For any $l \in (C/A_p^k)^*$, let $v_1: C \longrightarrow \mathbb{R}$ be a mapping defined by

$$v_1(f) := l([f]_p^k),$$

for $f \in C$. It is easy to see that $v_1 \in T_p^{(k)}M$.

Corollary 2.14 Let (M, C) be a d.s and $p \in M$. Then for any $k \in \mathbb{N}$

$$\dim T_p^{(k)}M = 0 \text{ if and only if } C = A_p^k.$$

Proposition 2.15 Let (M, C) be a d.s and $p \in M$. If $\dim T_pM = 0$ then for any $k \in \mathbb{N}$ $\dim T_p^{(k)}M = 0$.

Proof. Let $\dim T_pM = 0$. Now we shall show that $\dim T_p^{(2)}M = 0$. It is enough to verify that for any $v^{(2)} \in T_p^{(2)}M$ $v^{(2)}|_{A_p^2} = 0$.

Really, since $\dim T_pM = 0$ therefore $C = A_p^1$. For any $\alpha_1, \alpha_2 \in C$ there exist an open neighborhood U of p and functions $f_1, \dots, f_n \in C$, $\theta_1, \theta_2 \in C^\infty(\mathbb{R}^n)$ such that

$$1^\circ \quad \alpha_1 - \alpha_1(p)|_U = \theta_1 \circ (f_1, \dots, f_n)|_U,$$

$$2^\circ \quad \alpha_2 - \alpha_2(p)|_U = \theta_2 \circ (f_1, \dots, f_n)|_U,$$

$$3^o \quad \theta'_{1|i}(f_1(p), \dots, f_n(p)) = 0, \quad \theta'_{2|i}(f_1(p), \dots, f_n(p)) = 0.$$

Now it is easy to check that

$$\begin{aligned} v^{(2)}(\theta_1 \circ (f_1, \dots, f_n) \cdot \theta_2 \circ (f_1, \dots, f_n)) &= \\ &= \sum_{i=1}^n \theta'_{1|i}(f_1(p), \dots, f_n(p)) v^{(2)}(f_i - f_i(p)) + \\ &+ \sum_{1 \leq i < j \leq n} \theta''_{|ij}(f_1(p), \dots, f_n(p)) v^2[(f_i - f_i(p)) \cdot (f_j - f_j(p))], \end{aligned}$$

where $\theta := \theta_1 \cdot \theta_2$. Evidently,

$$\begin{aligned} \theta'_{1|i}(f_1(p), \dots, f_n(p)) &= \\ &= \theta'_{1|i}(f_1(p), \dots, f_n(p)) \cdot \theta_2(f_1(p), \dots, f_n(p)) + \\ &+ \theta_1(f_1(p), \dots, f_n(p)) \cdot \theta'_{2|i}(f_1(p), \dots, f_n(p)) = 0, \end{aligned}$$

for $i=1, 2, \dots, n$. Hence one can easily prove that

$$\theta''_{|ij}(f_1(p), \dots, f_n(p)) = 0,$$

for $i, j=1, 2, \dots, n$. Thus for any $\alpha_1, \alpha_2 \in C$

$$v^{(2)}[(\alpha_1 - \alpha_1(p)) \cdot (\alpha_2 - \alpha_2(p))] = 0$$

which gives $\dim T_p^{(2)}M = 0$.

Assume now that $\dim T_p^{(k)}M = 0$ for some $k \in \mathbb{N}$. We will show that $\dim T_p^{(k+1)}M = 0$. If $\dim T_p^{(k)}M = 0$ then from Corollary 2.14 it follows that $C = A_p^k$.

Let $v^{(k+1)} \in T_p^{(k+1)}M$ be an arbitrary tangent vector of $(k+1)$ -th order. We should show that $v^{(k+1)}|_{A_p^{k+1}} = 0$.

Indeed, for any $\alpha_1, \dots, \alpha_{k+1} \in C$, there exist an open neighborhood U of p and functions $f_1, \dots, f_n \in C$, for some $n \in \mathbb{N}$, as well as functions $\theta_1, \dots, \theta_{k+1} \in C^\infty(\mathbb{R}^n)$ such that

$$1^o \quad \alpha_i - \alpha_i(p)|_U = \theta_i \circ (f_1, \dots, f_n)|_U,$$

for $i=1, 2, \dots, k+1$.

$$2^o \quad \theta_j^{(1)}|_{i_1 \dots i_1}(f_1(p), \dots, f_n(p)) = 0,$$

for $l=1, 2, \dots, k$ and $1 \leq i_1, \dots, i_l \leq n$. Of course,

$$\theta_j(f_1(p), \dots, f_n(p)) = 0,$$

for $j=1, 2, \dots, k+1$. It is evident that

$$(\alpha_1 - \alpha_1(p)) \cdot \dots \cdot (\alpha_{k+1} - \alpha_{k+1}(p))|_U = \theta \circ (f_1, \dots, f_n)|_U,$$

where $\theta := \theta_1 \cdot \dots \cdot \theta_{k+1}$.

One can see that $\theta^{(1)}|_{i_1 \dots i_1} (f_1(p), \dots, f_n(p)) = 0$ for $l=1, 2, \dots, k+1$ and $1 \leq i_1, \dots, i_l \leq n$.

Thus

$$\begin{aligned} v^{(k+1)} [(\alpha_1 - \alpha_1(p)) \cdot \dots \cdot (\alpha_{k+1} - \alpha_{k+1}(p))] &= \\ &= v^{(k+1)} (\theta \circ (f_1, \dots, f_n)) = \\ &= \sum_{m=1}^{k+1} \left(\sum_{1 \leq i_1 < \dots < i_m \leq n} \theta^{(m)}|_{i_1 \dots i_m} (f_1(p), \dots, f_n(p)) \cdot \right. \\ &\quad \left. \cdot v^{(k+1)} [(f_{i_1} - f_{i_1}(p)) \cdot \dots \cdot (f_{i_m} - f_{i_m}(p))] = 0. \right) \end{aligned}$$

Hence $T_p^{(k+1)}M = \{0\}$. So, we have proved that if $\dim T_p^{(k)}M = 0$ then $\dim T_p^{(k+1)}M = 0$. Consequently, we have proved, by induction, that $\dim T_p^{(k)}M = 0$ for any $k \in \mathbb{N}$.

Definition 2.5 A function $x^{(k)}: M \longrightarrow \bigcup_{p \in M} T_p^{(k)}M$, where $k \in \mathbb{N}$, is said to be a tangent vector field of k-th order to (M, C) if $x^{(k)}(p) \in T_p^{(k)}M$ for any $p \in M$.

A tangent vector field of k-th order $x^{(k)}$ to (M, C) is said to be a smooth if a function $x^{(k)}f$, given by $(x^{(k)}f)(p) = x^{(k)}(p)f$, is a smooth function on M for any $f \in C$.

Evidently the set $x^{(k)}(M)$ of all smooth tangent vector fields of k-th order to (M, C) is a C -module, for any $k \in \mathbb{N}$.

Now let (M, C) be a d.s and let $k \in \mathbb{N}$. A C -module $x^{(k)}(M)$ is said to be a differential module of dimension r if for any $p \in M$, $\dim T_p^{(k)}M = r$ as well as for any point $p \in M$ there exist an open neighborhood U of p and C_U -basis $x_1^{(k)}, \dots, x_r^{(k)}$ such that $\text{Lin} (x_1^{(k)}(q), \dots, x_r^{(k)}(q)) = T_p^{(k)}M$ for $q \in U$.

In the case $k=1$, we exchangeably say that (M, C) is a d.s of constant differential dimension.

Let X be a smooth tangent vector field on (M, C) . Now, by a smooth tangent vector field X on (M, C) we mean the linear mapping $X : C \rightarrow C$ satisfying the condition

$$X(f \cdot g) = f(X)g + gX(f),$$

for any $f, g \in C$.

One can easily prove

Lemma 2.16 Let $x_1, \dots, x_k \in \mathcal{X}(M)$, where $k \in \mathbb{N}$. Then $x_1 \circ \dots \circ x_k$ is a smooth tangent vector field of k -th order to (M, C) .

Lemma 2.17 Let $X \in \mathcal{X}(M)$ and let $v^{(k)} \in T_p^{(k)}M$, where $k \in \mathbb{N}$.

Then the mapping $W : C \rightarrow \mathbb{R}$ defined by $W(f) = v^{(k)}(X(f))$, for any $f \in C$, is a tangent vector of $(k+1)$ -th order to (M, C) at the point $p \in M$.

Proof. Evidently, W is a linear mapping. So it suffices to show that $W[(\alpha_1 - \alpha_1(p)) \dots (\alpha_{k+2} - \alpha_{k+2}(p))] = 0$ for any $\alpha_1, \dots, \alpha_{k+2} \in C$. We have

$$\begin{aligned} W[(\alpha_1 - \alpha_1(p)) \dots (\alpha_{k+2} - \alpha_{k+2}(p))] &= \\ v^{(k)}(X[(\alpha_1 - \alpha_1(p)) \dots (\alpha_{k+2} - \alpha_{k+2}(p))]) &= \\ v^{(k)} \left[\sum_{i=1}^{k+2} (\alpha_1 - \alpha_1(p)) \dots (\hat{\alpha_i} - \hat{\alpha_i}(p)) \dots \right. \\ \left. \dots (\alpha_{(k+2)} - \alpha_{(k+2)}(p)) X(\alpha_i - \alpha_i(p)) \right]. \end{aligned}$$

Similarly we can prove

Lemma 2.18 Let $x_1, \dots, x_k \in \mathcal{X}(M)$ and $v^{(1)} \in T_p^{(1)}M$, where $k, l \in \mathbb{N}$. Then $v^{(1)} \circ x_1 \circ \dots \circ x_k \in T_p^{(k+1)}M$.

Lemma 2.19 Let $x^{(k)} \in \mathcal{X}^{(k)}(M)$ and $x^{(k)}(p) \neq 0$ for some $p \in M$. Let $y_1, \dots, y_m \in T_p M$. If the vectors y_1, \dots, y_m are linearly independent then the vectors $y_1 \circ x^{(k)}, \dots, y_m \circ x^{(k)}$ are also linearly independent.

Proof. Let $k=1$. Assume that $y_1, \dots, y_m \in T_p M$ are linearly independent. Suppose that the vectors of 2-th order

$$Y^{(2)} = y_1 \circ X, \dots, y_m \circ X$$

are linearly dependent. Hence there exist $\lambda^1, \dots, \lambda^m \in \mathbb{R}$ such that $|\lambda^1| + \dots + |\lambda^m| > 0$ and $\lambda^1 y_1^{(2)} + \dots + \lambda^m y_m^{(2)} = 0$ or equivalently

$$\lambda^1 y_1^{(2)} + \dots + \lambda^m y_m^{(2)} = (\lambda^1 y_1 + \dots + \lambda^m y_m) \circ X = 0$$

Let us put $W = \lambda^1 y_1 + \dots + \lambda^m y_m$. Then $W \neq 0$ and $W \circ X = 0$. Hence $W(X(\lambda)) = 0$ for any $\lambda \in \mathbb{C}$. Let $\lambda = f^2$, where $f \in \mathbb{C}$. Then we get $W(X(f^2)) = W(2fX(f)) = 2W(f) \cdot X(p)(f) = 0$. Obviously, there exists $f \in \mathbb{C}$ such that $W(f) \neq 0$ and $X(p)(f) \neq 0$. So $W(f) \cdot X(p)(f) \neq 0$. Thus we get the contradiction. Therefore, the Lemma is true for $k=1$. In the case $k>1$, the proof runs in a similar way.

Proposition 2.20 Let $\mathcal{X}(M)$ be a differential module of dimension n . Assume that, for any point $p \in M$, there exists a vector basis $X_1, \dots, X_n \in \mathcal{X}(U)$ in an open neighborhood U of p satisfying the condition

$$[X_i, X_j] = 0 \text{ for } i, j = 1, \dots, n.$$

Then $\mathcal{X}^{(k)}(M)$ is a differential module of dimension $m = \sum_{i=1}^k \binom{n+i-1}{i}$, for any $k \in \mathbb{N}$.

Proof. Let $\mathcal{X}(M)$ be a differential module of dimension n satisfying the assumption of Proposition 2.20. Consider the case $k=2$. It is easy to see that the vector fields

$$X_1, \dots, X_n, X_1 \circ X_1, X_1 \circ X_2, \dots, X_1 \circ X_n, X_2 \circ X_2, \dots, X_2 \circ X_n, \dots, X_n \circ X_n$$

form $C(U)$ -basis of $\mathcal{X}^{(2)}(U)$. From Lemma 2.19 it follows that, for any $q \in U$, the vectors

$$X_1(q), \dots, X_n(q), X_1 \circ X_1(q), X_1 \circ X_2(q), \dots, X_1 \circ X_n(q), X_2 \circ X_2(q), \dots, X_2 \circ X_n(q), \dots, X_n \circ X_n(q) \text{ form a basis of } T_q^{(2)} M.$$

In the case $k>2$, one can prove this proposition in a similar way.

REFERENCES

- [1] P. Multarzyński, W. Sasin: On the dimension of differential spaces, *Demonstratio Math.* 23 (1990), 405-415.
- [2] R. Sikorski: Abstract covariant derivative, *Colloq. Math.* 18 (1967), 251-272.
- [3] W.F. Warner: Foundations of differentiable manifolds and Lie groups, Springer-Verlag, New York, Berlin 1983.

INSTITUTE OF MATHEMATICS, WARSAW UNIVERSITY OF TECHNOLOGY,
00-661 WARSZAWA, PLAC POLITECHNIKI 1, POLAND.

Received May 9, 1991.