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VECTORS AND VECTOR FIELDS OF K-TH ORDER ON DIFFERENTIAL SPACES 

The purpose of this paper is to introduce the notions of 
tangent vectors and tangent vector fields of k-th order to a 
differential space (M,C). In the paper we prove also the 
fundamental properties of these notions. 

1. Introduction 
Let M be a set and C a family of real functions on M. By 

xc we denote the weakest topology on M such that all functions 
of C are continuous. By scC we denote the set of all functions 
on M which are of the form u»(a^,...,a ), where alf...,a e C 
and u e C00^11) , n e IN. Now let A be a subset of M. By CA we 
denote the set of all functions g: A > IR such that, for 
each point p e A, there exist an open neighbourhood U of p and 
a function f e C such that g|U = f|U. 

If C = (scC)M, the set C is said to be a differential 
structure on M, and the pair (M,C) is called the differential 
space (d.s, for short) [1], [2]. If (M,C) is a d.s and A is a 
subset of M then (A,CA) is also a d.s and it is called the 
differential subspace of (M,C). 

By a tangent vector to a differential space (M,C) at a 
point p € M we mean a linear mapping v: C > IR satisfying 
the Leibniz condition 

(1.1) v(a-|3) = a(p)v(fJ) +(S(p)v(o), 
for any a,|3 €.C. Next, by TpM we denote the tangent space to 
(M,C) at the point p. 
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One can prove that if f,g e C and f|U = g|U, for some open 
neighbourhood U of p then, for any v e TpM, v(f) = v(g). If 
f|U = w®(a^,...,a )|U, for some open neighbourhood U of p, 
where « ,...,a e C and w e (̂ (IR ), then 

n 
(1.2) v(f) = Iiw'ji(a1(p)<.../an(p))v(ai), 

for any v e T^M. Evidently, the formula (1.2) is a 
generalization of the formula (1.1). 

Next, by a tangent vector field to (M,C) we mean a 
function X: M > U T M such that X(p) e T M, for any p e M. 

p €M p p 

A tangent vector field X to (M,C) is said to be smooth if the 
function Xf, given by (Xf)(p) = X(p)(f), is smooth for any 
f e C. Now, by i(M) we denote the C module of all smooth 
tangent vector fields to (M,C). 

A differential space (M,C) is said to be of constant 
differential dimension n if, for any point p e M, there exist 
an open set U in x^ and C^-basis X^,...,X e I(U) of 
CJJ- module *(U) such that p e U and 
Lin(X1(q),...,Xn(q)) = TgM, for any q e U. 

A mapping F: M » N is said to be smooth mapping of a 
differential space (M,C) into a differential space (N,D) if 
f°F e C, for any f e D. If F is a smooth mapping of (M,C) into 
(N,D) we shall write F: (M,C) > (N,D). Now, the function 
dF: U T M >- U T N, defined by the formula 

peM P qeN q 

( 1 . 3 ) d F ( v ) (/3) = V(/3O F) , 

for any v e TpM and /3 e D, is called the differential of F, or the tangent map of F. 
The restriction of dF to the set T M, i.e. dF|T M, is 

P 1 P 
called the differential of F at the point p and it is denoted 
by d F. P 

Now, let (M,C) be a differential space and let C Q be a 
subset of C, then C Q is said to be a set of generators of the 
differential structure C on M if c = (scCn)M. 
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2. Vectors and vector fields of k-th order on differential 
spaces 

Let (H,C) be a d.s. Now we shall give another, but 
equivalent, definition of a tangent vector to (M,C) at a point 
p e M. 

Definition 2.1 A linear mapping v: C > R is said to be 
a tangent vector to (M,C) at a point p e M, if the following 
conditions are fulfilled 

(2.1) v(f) = 0 if f is constant 
and 
(2.2) v|a£ = o, 

where aJ := {(f-f(p))•(g-g(p)); f,g e C}. 

The equivalence of both definitions of a tangent vector to 
(M,C) at p e M is evident from the identities 

0 = V[(f-f(p)) • (g-g(p)H = v(f-g-f(p)g-g(p) f+f (p)g(p)) = 

= v(f-g)-f(p)v(g)-g(p)v(f). 
Now, we accept 

Definition 2.2 Let k e IN. A linear mapping v ^ : C —;—» R 
is said to be a k-th order tangent vector to (M,C) at a point 
p € M if the following conditions are fulfilled 

(2.3) v ( k )(f) = 0 if f is constant 
and 
(2.4) v W | a £ + 1 = 0, 

k+1 where a p = { ( f ^ ^ (p) )•...• (f k + 1-f k + 1 (P)) /' f i ' " " f k + l € c>-

(We would obtain the same result if we used the linear space 
k k Lin(a ) instead of a . ) P P Let us observe that, for any k e IN, 

,, Kv k+1 k (2.5) a c a . P P 
The set of all k-th order tangent vectors to (M,C) 

at a point p € M, for k € IN, has the natural structure of a 
linear space, and it is called the k-th order tangent space to 
(M,C) at p e M. 
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Of course, the vector v^ ^ e T^ ^M is called zero k-th P 
ikl order vector if vx '(f) = 0, for any f e C. 

Lemma 2.1 Let (M,C) be a d.s and let a e C be such that 
a|U = 0, for some open neighbourhood U of. p e M. Then 
v(k* (a) = 0, for arbitrary v ( k ) 6 T^k)M and k e IN. 

Proof. Since (M,C) is a C-regular topological space, 
there exists a function |3 e C such that /31A = 1 for an open 
neighborhood A of p, /S |AQ = 0 for an open set A Q such that 
Aqu U = M as well as p e A c U. Consider now the function 
r = 1—(3. Evidently, r(p) = 0 and 

a = a • r = a(r-y(p)) = (<*-<* (p)) (r-r (p)) • 
Thus, by definition 2.2, we get 

v(k)(oc) = v ( k ) [(a-a(p)) (r-r(p))k] = 0, 
for v ( k ) e T ( k )M and k € IN. P 

Corollary 2.2 Let f,g e C. If f|U = g|U, for an open 
neighbourhood U of p € M, then v ^ (f) = v ^ (g) , for any 
v ( k ) e T ( k )M and k e IN. P 

Now we shall prove 
fk) (jo fk) Proposition 2.3 For an arbitrary v^ v^ ' e T^ 'M, 

k e IN, the following statements are equivalent: 
1. the vectors , . . . , a r e linearly independent, 
2. linear mapping L: C > R m defined by 

L(a) = (v*k) ( a ) , . . . ( a ) ) for a € C is onto IRm, 
3. there exist functions a1,...,«111 e C such that 

vfk^ (a-*) = where is the Kronecker delta, 
4. there exist functions a1,...,a10 e C such that the 

determinant det(vik*(a3)) of the matrix (vik'(a])), 
i,j = l,...,m, is different from zero. 

Proof. Obviously L(C) is a linear subspace of Rm. 
Consequently, L(C) is a proper subset of R m if and only if 
there exist real numbers a1,...^1", | a11+. .. +1 am| > 0, 
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m i m 
and such that, for any a € C, £ a v> '(a) = 0 , or equivalently 

i=l 
m i fkl 
£ a v; ' = 0 . But the last condition means that the vectors 
i=l x 

, . . . , a r e linearly dependent. It proves the 
equivalence of assertions 1 and 2. 

Evidently, condition 2 implies condition 3 and condition 3 
implies condition 4. So, it suffices to show that assertion 4 
implies assertion 2. Indeed, let [b ,...,b ] be an arbitrary 
vector in R m. From condition 4 it follows that there exist 
real numbers a^,,...#a,n such that J (a ) = b. . In 

m . 3 = 1 

consequence, L( J] a]a-') = (b , .. . ,b ) , which proves condition 2. 
j=l 

Now, let (A,Ca) be a differential subspace of (M,C) and 
let p e A. Then, for any v ^ e k € IN, the formula 

(2.6) v ( k )(a) = v ( k )(a|A) , 

for any a e C, defines the tangent vector v ^ of k-th order 
to (M,C) at the point p e M. Identifying the vector 
v<*> e A with the vector e defined by (2.6), 
one can easily prove 

Proposition 2.4 The tangent space T^k^A to a differential 
subspace (A,CA) of (M,C) at p e A is a linear subspace of the 
space Tpk^M. 

Moreover, if A is an open subset of M then, for any p e A, 
T ( k ) A = T ( k )M, k e IN. P P 

From definition 2.2 and (2.5) it follows the inclusion 
T ( k*M c Tl k + 1 )M, for any p e M and k e IN. P P 

Now, we shall prove 
Lemma 2.5 Let F: M > N be a smooth mapping of (M,C) 

into (N,D). Let V W e T^ k ) (M) , where k e IN. Then the formula 

(2.7) w(a) = v(k)(aoF), 

for any a e D, defines a tangent vector of k-th order = w 
to (N,D) at the point q = F(p) e N. 

Proof. From (2.7) it follows that w = : C • R is a 
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linear mapping. To show that w = v ^ e it suffices to 
observe that 

w[ l<*1-a1 (q) )•...• (a k + 1-a k + 1 (<I)) ] = 

= v ( k ) [(a^aj^iq) )•...• (ak+1-ak+1(q))oF] = 

= v(k)[(S1-S1(p))-... (Sk+1-SJc+1(p))] = 0, 

for any ot1»-'«a]C+1
6 D/ where a^ = for i=l,2,... ,k+l, and 

q=F(p). 
Definition 2.3 A function which assigns to each tangent 

fk) vector of k-th order vv ' to (M,C) the tangent vector of k-th 

order w = v ^ to (N,D) , defined by (2.7), is called the 
differential of k-order of F and is denoted by d ^ F . 

Hence by definition we have 

d ( k )F : U T<k)M » U T< k )N 
peM P qeN q 

and 

(2.8) d ( k )F(v ( k ))(a) =v ( k )(aoF), 

for an arbitrary v*k^€ T ^ M , aeD, ke(N and peM. 

The restriction of d ^ F to the set T ^ M , that is 
d(k)F.T(k)M i s c a l l e d t h e differential of k-th order of F at 

p m 
the point peM, and it is denoted by d^ 'F. 
Thus 

d W F ( v ( k ) ) = d<k>F(v<k>), 
for v ( k ) 6 Tlk)M. Evidently d ( k )F : T ( k )M > Ti,k\N. P P P F(P) 

It is easy to prove 
Lemma 2.6 The differential of k-th order of F at a point 

pe M is a linear mapping of T ^ M into tI^.N. P F(P) 
Similarly as in the theory of manifolds we prove 
Proposition 2.7 Let (M,C),(N,D) and (P,Q) be differential 

spaces and let F: M — N as well as G: N » P be smooth 
mappings. Then, for any k e IN, 
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p a n d f u n c t i o n s a ^ , . . . « * e C a n d u> € C^f lR 1 1 ) s u c h t h a t 

d < k > ( G o F ) = d ^ G c d ^ F . 

T h u s , f o r a n y p e M, w e h a v e 

( 2 . 9 ) d W ( G . F ) = d W ) G o d ^ F . 

i k ) i k ) 

Now w e s h a l l g e n e r a l i z e f o r m u l a ( 1 . 2 ) . L e t v v ' M a n d 

l e t f b e a n a r b i t r a r y f u n c t i o n f r o m C . B y d e f i n i t i o n o f a 

d i f f e r e n t i a l s t r u c t u r e , t h e r e e x i s t a n o p e n n e i g h b o r h o o d U o f 
, . a e C a n d u e C^f lR 1 1 ) 

n 

f | U = u . ( a l f . . . f a n ) | U 

H e n c e 

( 2 . 1 0 ) ( f ) = v ( k ) [wo ( a . . . , a n ) ] = v ( k * ( ( j o $ ) , 

w h e r e $ : = ( o ^ , . . . , a n ) : M • IRn . F r o m ( 2 . 1 0 ) b y ( 2 . 8 ) a n d 

( 2 . 9 ) w e g e t 

v ( k ) ( f ) = v ( k ) ( u o $ ) = d ^ k ) ( u o $ ) ( V ( k ) ) = 

= [ d £ k ) » ( v ( k ) ) ] ( u ) . 

E v i d e n t l y , d ^ k ) » ( v ( k ) ) e f o r a n y v ( k ) e T ^ k ) M a n d 

k e IN. 

L e t u s d e n o t e b y . , w h e r e m = l , 2 , . . . k a n d 

l s i l f . . . , i m s n , t h e v e c t o r s o f t h e p a r t i a l d e r i v a t i o n s a t t h e 

p o i n t q = $ ( p ) o f IRn . O b v i o u s l y t h e s e v e c t o r s f o r m a b a s i s o f 

T ( k ) I R n . Now, a n y v e c t o r d ( k ) $ ( v ( k ) ) e T ( k ) ( R n h a s t h e q ' J p q 

d e c o m p o s i t i o n w i t h r e s p e c t t o t h i s b a s i s o f t h e f o r m 

( 2 . 1 1 ) d f » t ( v ' k ) ) = £ I X l l ' " X n 8 i » > . | o 
p m=l l s i . < . . . < i < n 1 " ' m 

w h e r e 1 m 

( 2 . 1 2 ) X » = d < k ) $ ( v ( k ) ) ( n . ) , 

1 m 

a n d n ^ = J r ^ - r r ^ ( q ) w h e r e a s n ^ , i = l , 2 , . . . , n , i s t h e c a n o n i c a l 

p r o j e c t i 

w e h a v e 

p r o j e c t i o n i n IRn o n t o i t s i - t h c o o r d i n a t e . On t h e o t h e r h a n d , 

( 2 . 1 3 ) d l " ' » ^ ' ) ^ . . . . ^ ) = v ( k ) ( » . ( £ , , . . . , 5 . ) ) = 
p 1 m A 1 i m 

= v ( k ) ( 5 . , . . . , 5 . ) . 
1 m 

w h e r e o ^ = o ^ - a ^ p ) , f o r i = i l f . . . , i . F r o m ( 2 . 1 1 ) , ( 2 . 1 2 ) a n d 
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(2.13) we ge t f i n a l l y the formula : 

v ( k ) ( f ) = v ( k ) ( u . ( « l f . . . a n ) ) = 

(*) = E ( E (u i ? } i (oc1(p) , . . -oc_(p) ) • 
m=l l s i < . . . < i s n 1*' m 1 n 

l in 

• v ( k ) [ ( a . - a . ( p ) ) - . . . - ( « . - a . ( p ) ] ) , 
1 1 m m 

I t i s easy to observe tha t by pu t t ing in (*) k=l we ge t 
the formula ( 1 . 2 ) . Next, by put t ing k=2 in (*) we ge t 

v ( 2 ) ( f ) = v ( 2 ) ( u o ( a i , . . . , a n ) ) = 

= . ? 1 ( J i i ( a l ( p ) a n ( P ) ) v ( 2 ) ( a . -oc^p) ) + 

+ I « » . . ( a ( p ) , . . . , a ( p ) ) v ( 2 ) [ ( a . - a i ( p ) ) - ( a . - a . ( p ) ) ] 

From (*) i t fo l lows : 
Coro l l a ry 2 .8 For any k e IN, a tangent vector of k - t h 

fk) fk) 
order vv ' e Tp 'M i s uniquely determined by i t s v a l u e s on a l l 
products of the form: (P) ) • • • • • ( o ^ - a ^ p ) ) , where 
m = l , 2 , . . . , k and a ^ , . . . « e C. 

Let now CQ be a s e t of genera tors of d i f f e r e n t i a l 
s t r u c tu r e C on M. For any 1 e (N and p e M, l e t us put : 

¿p := { ( ^ - ^ ( p ) ) • . . . • (ofj-o^ip)) ,ot1# . . . ,0^6 CQ} 

One can e a s i l y prove k . 
Lemma 2 .9 Let keIN and l e t g : U a^ IR be a mapping 

such t h a t , for any a 1 , . . . , a n e CQ and u e (^(IR11) , the e q u a l i t y 

(jo (0^ , . . . ,<xn) = 0 

impl i es the e q u a l i t y 
k 
E ( E <» l i i i t t i f p ) « (p ) ) -

m=l l s i < . . . <i s n 1 1""-Lm n 
1 m 

•g [ ( « i - a i ( p ) ) - . . . - ( a i - a L ( p ) ) ] ) = 0. 
1 1 m m 

Then there e x i s t s e x a c t l y one tangent vector of k - t h order 
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y(k) e T ( k ) M s u c h t h a t y(k) j y ¿j. = 

P i=l P 5 

Now for any peM we shall denote by A^J the set of all 

smooth functions feC for which there exist an open 

neighborhood U e r c of p and functions f , ...,f € C, u> e C^flR11) , 

for some ne IN, such that 

1° f|U = «.(f 1 #...,f n)|U 

2 ° fn<P>> = 

for any k=l,2,...,l and k e IN, peM. Moreover, it can easily be 

seen that Â " is a differential substructure of the 
p 1 differential structure C. Consequently, A is a linear 

k+1 k P 
subspace of C and A c A . 

^ P P 

Definition 2.4 Let k e IN. A subset of C is said to 

be a local basis of k-th order of differential structure C on 

M at a point peM if, for any f e C, there is exactly one 

decomposition of the form: 

f = A 1f 1+...+A
mf + g , 1 m ^ ' 

where f f e , A 1, . . . A m e IR and g e A k . 
1 m P 

One can prove 

Proposition 2.10 Let (M,C) be a d.s. For any point p of M 

there exists a local basis of k-th order of differential 

structure C at the point p such that F ^ c U a 1, kelN. 
i=l p 

fki 

Lemma 2.11. Let ' , kelN, be a local basis of k-th order 

of differential structure C on M at a point peM. Then for 

every function g : > IR there exists exactly one tangent 

vector of k-th order v ^ e T ^ M such that = g. 
Let us consider the quotient linear space C/A 1 and let 

1 P [f]p denotes the equivalence class of feC. 

Lemma 2.12 Let (M,C) be a d.s, and let peM be an 

arbitrary point. Then 
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1° [u«(ax,...,an)]p = 

= E ( I ufy i (<MP),...,«n(P))-m=l lsi,<...<i sn 1"" m 1 n 
l in 

•[(a. -a. (p))•...•(a. -a. (p))]*). 
1 1 n m p 

2° If g,f€ C and f|U = glU, for a neighborhood U of p, 

then [f]£ = [g]p . 

Proof, ad 1°. It is enough to show that 

(jo (a , ...,a) - I ( E wi^ i (a (p),... ,a (p)) • 1 n m=l lsi,<...<i sn 1" * m 1 n 1 in 
•(a. - a. (p))-..-•(a. - a. (p)) 

1 1 m m 
belongs to Ap . 

Let 0 e C®(IR) be a function given by the formula 
0(x1#...,xn) = w(x1,...,xn) -

" E ( E wf?* i («,(?),...,«„(?))• m=l lsi,<...<i sn 1 1" m l m 
• (x, - a. (p))•...•(x. - a. (p)) , 

1 1 m m 
for any (x1,...xn) e IRn. Hence 

©(a1,...,an) = w(a1#...fan) -

" E ( E "¡5° i («,(?),...,«_(?))• 
m=l lsi,<...<i sn 1'" m 1 n 

1 m 
•(a. - a. (p))•...•(a. - a. (p)) 

1 1 m m 
and . . 

® i ...i (al(p) «„<*>> = 0 x m 
for any m = 1,2,...,1 and lsi1#...,i s n. Consequently 

«•(a ,...fo ) - Z ( E ufj) i (^(P) «.(P))' 1 n m=l lsi,,<...<i sn
 |1l"-1m 1 n 

l m 
•(a. - a. (p))•...•(a. - a. (p)) 

1 1 m m 
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belongs to A1. P 
2° is obvious. 

Let v<k> e T*k*M be a tangent vector of k-th P 
order. Evidently, v*kjAk = 0 for any e T ^ M . Hence 

P k * 
induces a linear function 1 ,, . e (C/A ) defined by 

v(k) p' 

(2.14) 1 (k)([f]p) = v(k)(f), 

for any f € C. Lemma 2.13 The mapping I: T ^ M » (C/Ak) * defined by 
I(v ( k )) = 1 ... , for any v ^ c tJ^M, is an isomporphism of 

v' ' " 
linear spaces. 

Proof. The linearity of the mapping I is clear. Obviously 
if 1 ,v.= 0 for some v ^ e T ^ M , then v ^ = 0. Hence I is a 

v* ' p 

monomorphism. Now we shall show that I is an epimorphism. For 
k * any le(C/Ap) , let v^: C > IR be a mapping defined by 

v1(f) :=l([f]k), 

for fe C. It is easy to see that v, e T ^ M . 1 p 
Corollary 2.14 Let (M,C) be a d.s and pe M. Then for any 

k e W fkl k dim T**'M=0 if and only if C=A* . P P 
Proposition 2.15 Let (M,C) be a d.s and p e M. If 

dim T M = 0 then for any ke IN dim T ^ M = 0. P P 
Proof. Let dim T M = 0. Now we shall show that 
(2\ P (?) f?\ dimT£ 'M = 0. It is enough to verify that for any vv 'e T^ 'M 

,(2) P 

la P 
Really, since dim TpM=0 therefore C=A*. For any a^o^eC 

there exist an open neighborhood U of p and functions 
C , C ° ° ( I R n ) such that 

1° ax- ax(p)|U = •••«*„)IU, 

2° o^- a2(p)|U = e2.(flf...,fn)IU, 
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3 ° e i | i ( f i ( P ) ' - " ' f n ( P ) ) = o, e ^ i i ^ i p i ^ . - . ^ i p i i - o . 

Now it is easy to check that 

v( 2) (e 1o(f 1,...f n).e 2o(f 1,...f n) ) = 

= . ? 1
0 ! i ( f l ( p ) " - " f n ( p ) ) v ( 2 ) ( f i " f i ( p ) ) + 

+ Z 0| ,
n(f 1(P),...,f n(P))v

2[(f.-f i(p))-(f.-f.(p))], 
lsi<jsn 1 J J J 

where Evidently, 

ej i(f 1(P),...f n(P)) = 

= e^ ( i(f 1(p),...f n(p))-e 2(f 1(p),...f n(p)) + 

+ 0 1 ( f 1 ( P ) , . . . , f n ( P ) ) - © 2 | i (
f i ( P ) " - " f n ( p ) ) = 

for i=l,2,...,n. Hence one can easily prove that 

0 | ' i j ( f l ( p ) ' " - f n ( p ) ) = 

for i,j=l,2,... ,n. Thus for any a a e C 

1, £ 

v ( 2 ) [(c^-a^p)) • (a 2-a 2(p)) = 0 

(2) which gives dim T* 'M = 0. P fki Assume now that dim T_ 'M = 0 for some kelN. We will show 
P 
c 

k 

that dim = 0. If dim T ^ M = o then from Corollary p p 
2.14 it follows that C = A 

P 

Let be an arbitrary tangent vector of 

(k+1)-th order. We should show that v ( k + 1 ) I a k + 1 = 0. 
P 

Indeed, for any a , C , there exist an open 

neighborhood U of p and functions f , ...f e C, for some neIN, 

as well as functions ' '' ,eyi+le c°°(,Rn) s u c h that 

1° a i-a i(p)|U = e i.(f 1,...,f n)|U, 

for i=l,2,...,k+l. 

2 ° 0 j 1 | i 1 . . . i 1 (
f l ( p ) fn< p>> = 
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for 1=1,2,...,k and lsi ,...,i^sn. Of course, 

^ ( ^ ( P ) f n(P)) = 0, 

for j=l, 2,...,k+l. It is evident that 

( - «!(?))•...•(o k + 1- « k + 1 ( P ) ) | U = eo(f l f...,f n)|u , 

where 0 := • • • 

One can see that j i (f, (P) , • • • / f„(P)) =0 for 

1 • • • -L n 

l=l,2,...k+l and lsi^,...,i^sn . 

Thus 

v ( k + 1 ) [ (o^- oc1(p)) • . . . - (o£k+1- a k + 1 ( P ) ) ] = 

= v ( k + 1 )(0o(f 1,...,f n)) = = I ( l e [ m i i (f,(P) f
n (

p ) ) ' 
m=l lsi,<...<! sn 1 1"" m l m 
, v ( k + l ) [ ( f _ f ( p ))..... (f - f (p))] = o. 

1 1 m m 

Hence = {0}. So, we have proved that if dim t J ^ M = 0 
P P 

then dim = 0. Consequently, we have proved, by 

induction, that dim = 0 for apy kelN. 

Definition 2.5 A function X ^ : M > U where p € M
 p 

keIN, is said to be a tangent vector field of k-th order to 

(M,C) if (p) e Tp k^M for any peM. 

A tangent vector field of k-th order X ^ to (M,C) is said 

to be a smooth if a function X ^ f , given by (X^k^f)(p) = 
(k) = X ' (p)(f), is a smooth function on M for any feC. 

(k) 

Evidently the set X v ' (M) of all smooth tangent vector 

fields of k-th order to (M,C) is a C-module, for any keIN. 
Now let (M,C) be a d.s and let ke IN. A C-module (M) is 

said to be a differential module of dimension r if for any 
f k) 

peM, dim Tp ' M = r as well as for any point peM there exist an 

open neighborhood U of p and Cy-basis , . . . s u c h that 
Lin (X< k )(g),...,X^ k )(q)) = T < k ) M for q € U. 
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In the case k=l, we exchangeably say that fM,C) is a d.s 
of constant differential dimension. 

Let X be a smooth tangent vector field on (M,C). Now, by a 
smooth tangent vector field X on (M,C) we mean the linear 
mapping X : C • C satisfying the condition 

X(f-g) = f(X)g + gX(f), 
for any f,g € c. 

One can easily prove 
Lemma 2.16 Let Xlf...,X^ e X(M) , where kelN. Then 

XJ^o-.-oXJ^ is a smooth tangent vector field of k-th order to 
(M,C). 

Lemma 2.17 Let X€X(M) and let v ^ e T ^ M , where kelN. 

Then the mapping W:C > IR defined by W(f) = v^k^(X(f)), for 
any fe C, is a tangent vector of (k+l)-th order to (M,C) at 
the point peM. 

Proof. Evidently, W is a linear mapping. So it suffices to 
show that Wtfc^- c^ (p))-...- (<*k+2- <*k+2 (P)) ] = 0 for any 
o^, — ,a k + 2 e C. We have 

W [ ( a ^ ^ ( p ) ) - . . . - « , ^ - a k + 2(p))] = 

v ( k )(X[( a i- o^ (p)) • . .. •(ak+2- ak+2(p))]) = 

m k + 2 
[ E (a - a (p))-...(a.- a.(p))•... 

i=l i 

••••(a(k+2)" a(k+2) ( p ) ) X ( ai- ai(P))' 

Similarly we can prove 
Lemma 2.18 Let X1,...XJce X(M) and v ^ e T ^ M , where 

k, lelN. Then v'^.X^...»!^ e T^ k + 1 )M . 

Lemma 2.19 Let X ( k ) e X ( k )(M) and X ( k )(p)*0 for some peM. 
Let Y'*'*'m e Tp M" I f t h e vectors v , . . . a r e linearly 

independent then the vectors , . . . a r e also 
linearly independent. 

Proof. Let k=l. Assume that v , . . . e T pM are linearly 
independent. Suppose that the vectors of 2-th order 
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Y ( 2 ) = Y O X X ( 2 ) = 

are linearly dependent. Hence there exist A1,...,*111 e R such 

that I A 1|+.. . + 1 A m| > 0 and a M 2 ) +.. .+A my ( 2 ) 0 or i m 
equivalently 

X 1y ( 2 )+...+X , DJ i
( 2 ) = ( a V ^ . + a ^ J o x = 0 

Let us put W=A 1y+. . ,+Amj[. Then W*0 and W»X=0. Hence W(X(A))=0 

for any AeC. Let A=f 2, where feC. Then we get 

W(X(f 2)) = W(2fX(f)) = 2W(f) X(p)(f) = 0. Obviously, there 

exists feC such that W(f)*0 and X(p)(f)*0. So W(f)•X(p)(f)*0. 

Thus we get the contradiction. Therefore, the Lemma is true 

for k=l. In the case k>l, the proof runs in a similar way. 

Proposition 2.20 Let X(M) be a differential module of 

dimension n. Assume that, for any point peM, there exists a 

vector basis X^,...,Xn€X(U) in an open neighborhood U of p 

satisfying the condition 

[X^X-j] = 0 for i, j = 1, . . . ,n. 

/ir \ 
Then X v ' (M) is a differential module of dimension 

k . 
m = E ( t f o r a n y kelN-

i=l 

Proof. Let X(M) be a differential module of dimension n 

satisfying the assumption of Proposition 2.20. Consider the 

case k=2. It is easy to see that the vector fields 

x 1,...,x n, x 1cx 1, x 1»x 2,...,x 1«x n, x 2»x 2 x 2°x n,..., x n » x n 

form C(U) -basis of (U) . From Lemma 2.19 it follows 

that, for any qeU, the vectors 

X 1(q),...,X n(q), X 1.X 1(q), X ^ X ^ q ) , . . . . X ^ X ^ q ) , X 2oX 2(q), 

... ,X_»X iq) , ..., X ®X (q) form a basis of T ^ M . 2 n n n q 

In the case k>2, one can prove this proposition in a 

similar way. 
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