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VECTORS AND VECTOR FIELDS OF K~TH ORDER ON DIFFERENTIAL SPACES

The purpose of this paper is to introduce the notions of
tanéent vectors and tangent vector fields of k-th order to a
differential space (M,C). In the paper we prove also the
fundamental properties of these notions.

1. Introduction

Let M be a set and C a family of real functions on M. By
To we denote the weakest topology on M such that all functions
of C are continuous. By scC we denote the set of all functions
on M which are of the form wo(al,...,an), where Oyroee 0l € C
and w € Cm(Rn), n € N. Now let A be a subset of M. By CA we
denote the set of all functions g: A ——» R such that, for
each point p € A, there exist an open neighbourhood U of p and

a function f e C such that g|U = f|U.

IfC= (scC)M, the set C is said to be a differential
structure on M, and the pair (M,C) is called the differential
space (d.s, for short) (1], [2]. If (M,C) is a d.s and A is a
subset of M then (A,CA) is also a d.s and it is called the
differential subspace of (M,C).

By a tangent vector to a differential space (M,C) at a
point p € M we mean a linear mapping v: C —— R satisfying
the Leibniz condition

(1.1) v(a-B) = a(p)v(B) + B(p)Vv(a),

for any «,B €.C. Next, by TPM we denote the tangent space to
(M,C) at the point p.
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One can prove that if f,qg € C and f|U = g|U, for some open
neighbourhood U of p then, for any Vv € TpM, v(f) = v(g). If
f|u = wo(al,...,an)]U, for some open neighbourhood U of p,
€ C and w € Cm(Rn), then

n

(1.2) VIE) = L wfj(ay(R) e ey (P)) Vi),
1=

where o.,...,a
1’ '“n

for any vV e TpM. Evidently, the formula (1.2) is a
generalization of the formula (1.1).

Next, by a tangent vector field to (M,C) we mean a

function X: M —— U T_M such that X(p) e TpM, for any p € M.
peM
A tangent vector field X to (M,C) is said to be smooth if the

function Xf, given by (Xf)(p) = X(p)(f), is smooth for any
f € C. Now, by ¥(M) we denote the C module of all smooth
tangent vector fields to (M,C).

A differential space (M,C) 1is said to be of constant
differential dimension n if, for any point p € M, there exist
an open set U in Te and CU-basis Xl""’xn € X(U) of
CU- module X(U) such that peU and
Lin(xl(q),...,xn(q)) = TqM, for any q € U.

A mapping F: M ——> N is said to be smooth mapping of a
differential space (M,C) into a differential space (N,D) if
foF € C, for any £ € D. If F is a smooth mapping of (M,C) into
(N,D) we shall write F: (M,C) —— (N,D). Now, the function
dF: UT M —— U T N, defined by the formula

peM P geN
(1.3) dF(v) (B) = V(B°F),

for any v € TpM and B € D, is called the differential of F, or
the tangent map of F.

The restriction of dF to the set T M, i.e. dF|TpM, is
called the differential of F at the point p and it is denoted
by dpF.

Now, let (M,C) be a differential space and 1let Co be a
subset of C, then Co is said to be a set of generators of the
'differential,struCture_c on M if C = (scCO)M.
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2. Vectors and vector fields of k-th order on differential
spaces
Let (M,C) be a d.s. Now we shall give another, but

equivalent, definition of a tangent vector to (M,C) at a point
P € M.

Definition 2,1 A linear mapping v: C—— R is said to be
a tangent vector to (M,C) at a point p e M, if the following
conditions are fulfilled

(2.1) v(f) = 0 if f is constant
and
(2.2) : vla? = o,

P

where ag := {(£-£(p))- (g-g(p)); £,9 € C}.

The equivalence of both definitions of a tangent vector to
(M,C) at p € M is evident from the identities

0= v[{(f-£(p)) " (9-g(P))] = v(f-g-f(p)g-g(p)f+f(pP)g(p)) =

= v(f-g)-£(p)v(9)-g(p) V(f).
Now, we accept
Definition 2.2 Let k e N. A linear mapping v(k): C ——> R
is said to be a k-th order tangent vector to (M,C) at a point
p € M if the following conditions are fulfilled

(2.3) vK)(£) = 0 if £ is constant
and
(2.4) v®) [gX*L =,
K+1 P
where ap = {(fl-fl(p))-...-(fk+1-fk+1(p)); fl”"’fk+1 € C}.

(We would obtain the same result if we used the 1linear space
Lin(a:) instead of a:.)

Let us observe that, for any k € N,

(2.5) ak+1 < ak

p p’
The set Ték)n of all k-th order tangent vectors to (M,C)
at a point p €e M, for k € N, has the natural structure of a

linear space, and it is called the k-th order tangent space to
(M,C) at p € M.
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Of course, the vector v(k) € Ték)M is called zero k-th
order vector if v(k)(f) = 0, for any f € C.

Lemma 2,1 Let (M,C) be a d.s and let a« € C be such that
ajU = 0, for some open neighbourhcod U of p e M. Then

v(k)(a) = 0, for arbitrary v(k) € Ték)M and k € N.

Proof. Since (M,C) is a C-regular topological space,
there exists a function B € C such that g|A = 1 for an open

neighborhood A of p, BIAO = 0 for an open set Ao such that

Ajv U=Mas well as p € A ¢ U. Consider now the function
¥ = 1-B. Evidently, 7v(p) = 0 and

a = a7 =a(r-r(p)) = (x-a(p)) (r-7 (o)) K.
Thus, by definition 2.2, we get
v (@) = v® ((ama(p)) (r-1 (01 *7 = 0,
for v(k) € Ték)M and k € N.
Corollary 2.2 Let f,g e C. If f|U = g|U, for an open
neighbourhood U of p € M, then v(k)(f) = v(k)(g), for any
v(k) € Ték)M and k € N.

Now we shall prove
Proposition 2.3 For an arbitrary v{k),...,vék) € Ték)M,
k € N, the following statements are equivalent:

1. the vectors v{k),...,vék) are linearly independent,
2. linear mapping L: ¢ —— R™ defined by

L(a) = (v{k)(a),...,vék)(a)) for « € C is onto Rm,
3. there exist functions al,...,am € C such that

vik)(aj) = 82, where 8% is the Kronecker delta,

4. there exist functions al,...,am € C such that the
determinant det(vik)(aj)) of the matrix (v{k)(aj)),
i,y =1,...,m, is different from zero.

Proof, Obviously L(C) is a 1linear subspace of R™.
Consequently, L(C) is a proper subset of R®™ if and only if
there exist real numbers al,...,am, |a1|+...+|am| > 0,
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and such that, for any a € C, E a v(k)(a) = 0, or equivalently

i=1
m
T a1 ik) = 0. But the last condition means that the vectors
i=1
v{k),...,v(k) are linearly dependent. It proves the

equivalence of assertions 1 and 2.
Evidently, condition 2 implies condition 3 and condition 3
implies condition 4. So, it suffices to show that assertion 4

implies assertion 2. Indeed, let [bl""’bm] be an arbitrary
vector in R™. From condition 4 it follows that there exist
real numbers al,...,am such that Z a v(k)(aj) = b In

j=1

consequence, L( Z a aJ) =(b bm), which proves condition 2.

j=1
Now, let (A, CA) be a differential subspace of (M,C) and
let p € A. Then, for any v(k) € Ték)A k € N, the formula

11

(2.6) X (@) = v®) (a|ay,

K) of k-th order

to (M,C) at the point p e M. Identifying the vector
v(K) ¢ Ték)A with the vector v(¥) Ték)M, defined by (2.6),
one can easily prove

for any a € C, defines the tangent vector ;(

Proposition 2.4 The tangent space T(k)A to a differential
subspace (A,C ) of (M,C) at p € A is a linear subspace of the
space Ték)n.

Moreover, if A is an open subset of M then, for any p € A,

(K)p = T(k)M k N
Tp A p , € N.

From definition 2.2 and (2.5) it follows the inclusion
Ték)M c Ték+1)M, for any p € M and k € N.

Now, we shall prove
Lemma 2.5 Let Ft: M —— N be a smooth mapping of (M,C)
into (N,D). Let v(k) € Ték)(M), where k € N. Then the formula

(2.7) wia) = v{K) (aoF),

for any « € D, defines a tangent vector of k~th order G(k) =w
to (N,D) at the point g = F(p) € N.

Proof. From (2.7) it follows that w = v\¥): ¢ — 5 R is a



562 P. Multarzynski, W. Sasin, 2. Zekanowski

linear mapping. To show that w = v(¥) ¢ Té?L)N it suffices to

observe that

wlagma (@)oo (g = ()] =
= v fagmag (@) g o (@) 0F) =
= vK) (@ =Gy (P)) * oo (g =Gy (P))] = 0,

for any al,...ak e D, where &i = aioF for i=1,2,...,k+1, and
q=F(p) .
Definition 2.3 A function which assigns to each tangent

vector of k-th order v(k) to (M,C) the tangent vector of k-th

+1

order w=v(X) to (N,D), defined by (2.7), is called the
differential of k-order of F and is denoted by d(k)F.

Hence by definition we have

d(k)F : U T(k)M ——s U T(k)N
peM geN
and

(2.8) aXpv Ky (a) = v*) (qoFy,
for an arbitrary v(k)e Ték)M, aeD, keN and peM.

The restriction of d(k)F to the set T(k)M, that is
d(k)F|Ték)M, is called the differential of k-th order of F at
the point peM, and it is denoted.by dék)F.

Thus
dék)F(v(k)) = d(k)F(v(k)),

(k) (k) : kK)p . p(k) (k)
for v € Tp M. Evidently dp F : Tp M — TF(p)N‘

It is easy to prove

Lemma 2.6 The differential of k~th order of F at a point
(k) N.
F(p)

Similarly as in the theory of manifolds we prove
Proposition 2.7 Let (M,C),(N,D) and (P,Q) be differential
spaces and let F: M — N as well as G: N—— P be smooth

Pe M is a linear mapping of Ték)M into T

mappings. Then, for ahy k € N,
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a®) (gery = a(Klg.q®¥F,

Thus, for any p € M, we have

() (gom = q(K) goq (k)
(2.9) dy! (GeF) = dpi} Ged 'F.

Now we shall generalize formula (1.2). Let v(k)eTék)M and
let £ be an arbitrary function from ¢C. By definition of a
differential structure, there exist an open neighborhood U of

p and functions Cyroes € C and w € Cm(mn) such that

n
£lU = wo(oty,evn,a )|V
Hence
(2.10) v(k)(f) = v(k)[wo(al,...,an)] = v(k)(woO),

where ¢ := (al,...,an): M —— R". From (2.10) by (2.8) and
(2.9) we get
v ey = v ey = al ey (v =

= 1afPev™) 1)

ivid:ntly, dék)é(v(k)) € Té?é)mn for any v(k) € Ték)n and
€ N.

Let us denote by aém) i where m=1,2,...k and
PREEE ™
1=i .,i_= n, the vectors of the partial derivations at the

b R m
point g=%(p) of rR". Obviously these vectors form a basis of

Ték)mn. Now, any vector dék)é(v(k)) € Ték)mn has the
decomposition with respect to this basis of the form

k i...i

(2.11) aFgw®)y = ¥y M At TR gm i
P m=1 15i1<...<imsn 1°°inld
where
il"’im (X) (K)\ =~ -
(2.12) A =d d(v (m .,...,m ),
p 11 n
and ﬁi = ni-ni(q) whereas Uy i=1,2,...,n, is the canonical
projection in R™ onto its i-th coordinate. On the other hand,
we have
(2.13) a®ew®y @, ..o m) = v @e(m,, ..., 0 ) =
p 1 m sl m
X) .~ ~
= v( )(ai EEENL ).
_ 1 m

where a; = ai-ai(p), for i=i,,.e0,40. From (2.11), (2.12) and
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(2.13) we get finally the formula

v(k)(f) = v(k)(wo(al,...a )) =

n
k
(*) = L @ (@R, (P)
m=1 1511<...<1m5n 1 m
o (K) _ e
vy oy @)ty ey @)])

It is easy to observe that by putting in (*) k=1 we get
the formula (1.2). Next, by putting k=2 in (*) we get

v(2) () = v(z)(wo(al,...,an)) =

. f (@ (P) s+ p0 (0))v ) (- (p)) +

s

1

(2)
+ T wi.s(a, ()., (P))V'T [ (a,=0.: (P)) " (asi=a:(P))]
1=i<j=n lij'™1 n 171 3 3

From (*) it follows:

Corollary 2.8 For any k € N, a tangent vector of k-th
order v(k)e Ték)M is uniquely determined by its values on all
products of the form: (al—al(p))-...-(am—am(p))} where

mn=1,2,...,k and «a L C.

1’°
Let now CO be a set of generators of differential
structure C on M. For any 1 € N and p € M, let us put:

ol
°p t= {(al-al(p))-...-(ai—ai(p)),al,...,aie Co}
One can easily prove
k .
Lemma 2.9 Let keN and let y : Ul — 5 R be a mapping
i=1
such that, for any Oypees 0 € Co and w € Cm(Rn), the equality
wo(al,...,an) =0
implies the equality
k
m
r ( . > . w(ll '_.i(al(P):---:an(p))'
m=1 1si,<...<i =n 1 m
‘W [(ay = a; (P))revo-(a; =~ a, (p))]) = O.
A T 17 % (P)])

Then there exists exactly one tangent vector of k-th order
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k .
v(k) € T(k)M such that v(k)l Ual= ¥ -
Now for ény peM we shall denote by A; the set of all
smooth functions feC for which there exist an open

neighborhood Uet, of p and functions f fne C, we Cm(Rn),

c 10

for some ne N, such that

(o]

1 £|U = wo(f £)]U

AR

o (k) -
k(fl(p)"“’fn(p)) =0,

2 [A .
I11...1

for any k=1,2,...,1 and k € N, peM. Moreover, it can easily be
seen that Al is a differential substructure of the

differential structure C. Consequently, Al is a linear

P
subspace of C and A§+1 < A;.

Definition 2.4 Let k € N. A subset ?(k) of C is said to
be a local basis of k-th order of differential structure C on
M at a point peM if, for any f € C, there is exactly one

decomposition of the form:

_ 51 m
£f =2 fl+...+A fm+ g,

where £ fm € 9(k), Al,...hm e R and g € Ag .

AR
One can prove

Proposition 2,10 Let (M,C) be a d.s. For any point p of M

there exists a local basis of k-th order 9(k) of differential
k

structure C at the point p such that F(k)c U

oi
Q ’
j=1 P

kelN.

Lemma 2,11, Let ?(k), kelN, be a local basis of k-th order
of differential structure C on M at a point peM. Then for
every function Yy F(k)———a R there exists exactly one tangent
vector of k-th order v(k)e Ték)M such that v(k)lg(k) = ¥-

Let us consider the quotient linear space C/A; and let
[f]; denotes the equivalence class of feC.

Lemma 2.12 Let (M,C) be a d.s, and 1let peM be an
arbitrary point. Then
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o 1 _
1 [wo(al,...,an)]p =
1
- (m)
= Z ( E W $ (a (P)ieee,a (P))'
m=1 1Sil<...<im5n ll1"'1m 1 n

Ly ca (P))-eeen (o '“im(pmtl’)'

n

2° If g,fe C and f|U = g|{U, for a neighborhood U of p,

then [f]; - [g]; )

Proof. ‘ad 1°. It is enough to show that
1

(m)
Wo (0, oee,0 ) = W, . (a yeee, .
( 1 n) mgl (lsil<.?.<imsn Ill"‘lm( l(p) n(p))
'(ail' ail(P))'-o-'(aim‘ aim(p))

belongs to A; .

Let 0 € Cm(R) be a function given by the formula

e(xl,...,xn) = w(xl,...,xn) -

(m)
- ( r W : (o (P)yeee,a (P))-
m=1 1=i <...<imsn |11"'lm 1 n

Xy = a. (P)) e (X, = s (P)),
HL o4 In  In

for any (xl,...xn) e R". Hence
e(al,...,an) = wo(al,...,an) -

1
(m)
- L w) . (a. (P)rece,a (P))
m=1 1sil<...<im5n Ill"'lm 1 n

'(ail' ail(P))'--o'(aim' aim(p))
and e(m)

1i...1 (%2 (P)oeeeian(P)) = 0

for any m =1,2,...,1 and 1511,...,im = n. Consequently

1

(m)
wo(ty,eee,a ) = L ( )X W . (o (D)., (D))"
1 Nt op=a 1si <...<i sn i ...ip ™1 n

'(ail' ail(p))'o-"(ai = aim(p))

m
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belongs to A;.

(o]

2° is obvious.

Let v(k) € Ték)M be a tangent vector of k-th

order. Evidently, v(k}Ak = 0 for any v(k) € Ték)M. Hence v(k)
p
induces a linear function 1 (X) € (C/Ag)* defined by
v
1 (k) .
2.14 1 f = f
(2.14) L0 ([F1p) = v,

for any f € C.
Lemma 2.13 The mapping I: Ték)M _ (C/A:)* defined by

I(v(k)) =1 ()’ for any v¥) Ték)M, is an isomporphism of
v

linear spaces.
Proof. The linearity of the mapping I is clear. Obviously
if 1 (k)= 0 for some v(k)epT(k)M, then v(k)= 0. Hence I is a
v
monomorphism. Now we shall show that I is an epimorphism. For

any le(C/Ag)*, let vii € — R be a mapping defined by

. k
vy (£) :=1((£1),

for fe C. It is easy to see that vleTék)M.
Corollary 2.14 Let (M,C) be a d.s and pe M. Then for any
keN
dim Ték)M=0 if and only if C=A§ .
Proposition 2,15 let (M,C) be a d.s and p e€ M. 1If

dim T M = 0 then for any ke N dim Ték)M = 0.

1Y
Proof. Let dim TpM = 0. Now we shall show that
dimTéz)M = 0. It is enough to verify that for any v(z)e Téz)M
(2) =
v I°2 =0.
P
Really, since dim TpM=0 therefore C=A;. For any oy ,0,eC

there egist an open neighborhood U of p and functions

n
£f,,...f € C, 08,,0, ¢®(R™) such that
° - o
1 o= al(p)IU = 91 (fl,...,fn)IU,
20

«, - az(p)IU = 92°(f1”"’fn)|U’
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30

[ 4
elli(fl(P):---:fn(P)) = 0, ezli(fl(P):---:fn(P))=°-
Now it is easy to check that

v (o o (£, f ) 0,0 (£, 0 E ) =

T el (t £ (p))v(®) (£, -£ +
=L 015 (£,(0) oo 1y v (2yo85 )

" 2
+ 1Si§j5n e|ij(f1(p)""’fn(p))v ((£,-£,(P)) (fj fj(P))]:
where 8:=6,-6,. Evidently,
811 (£1(R), .- £ (P)) =

= eili(fl(P):---fn(P))'Gz(fl(p),...fn(p)) +
+ 01 (£,(P),ve B (P)) 0y 4 (£1(P),-ve B (D)) = O,

for i=1,2,...,n. Hence one can easily prove that

j(fl(p)r"'fn(p)) = 0,

for i,j=1,2,...,n. Thus for any a, aye C
!

v ) [ (a0, (0)) - (a,=ay () = O

”
93

which gives dim Téz)M = 0.
Assume now that dim Ték)M = 0 for some keN. We will show

that dim Ték+l)M = 0. If dim Ték)M = 0 then from Corollary

k

2.14 it follows that C = Ap .

Let v(k+1)e Ték+1)M be an arbitrary tangent vector of
(k+1)-th order. We should show that v(k+1)|u;+1= 0.

Indeed, for any Cyrecely (€ C, there exist an open
neighborhood U of p and functions fl,...fne C, for some neN,
as well as functions 91""’9k+1e Cm(Rn) such that

1° a;=a; (P)|U = €;0(£,,...,£)]U,

for i=1,2,...,k+1.

2° e (1)

3 g1y Fa @ B0 (R)) = 0,
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for 1=1,2,...,k and 1s=i ..,i,sn. Of course,

b 1
85 (£1(P) s+ £, (P)) = O,

for j=1,2,...,k+1l. It is evident that
(ay= @y (P)) e (@ 0= 0 (P))|U = 8(fy,..., £)|U,

where 6 := 91-...-ek+1.

(1) =
One can see that 2] Iil...il(fl(p)""’fn(p)) 0 for
1=1,2,...k+1 and 1sil,...,115n .
Thus
k+1
v (- @ () e (o - @ (P))] =
+
= v eo(g,,...,£)) =
k+1 (m)
= ¥ , r ) e |1 i (fl(p)l"'lfn(p)).
m=1 1511<...<1 =n 1" ™m
m
(k+1) _
‘v [(£, - £. (P)) ... (f, - £. (P))]} = O.
i i, in i
Hence T(k+1)M = {0}. So, we have proved that if dim Ték)M =0

then dim Ték+1)M = 0. Consequently, we have proved, by
induction, that dim Ték)M = 0 for any keNlN.

Definition 2.5 A function x¥ew — ) T(k)n, where
peM
keN, is said to be a tangent vector field of k-th order to

(M,C) if x(k)(p) € Ték)M for any peM.

A tangent vector field of k-th order X(k) to (M,C) is said
to be a smooth if a function X(k)f, given by (x(k)f)(p) =
= x(k)(p)(f), is a smooth function on M for any feC.

Evidently the set I(k)(M) of all smooth tangent vector
fields of k-th order to (M,C) is a C-module, for any keNlN.

Now let (M,C) be a d.s and let ke N. A C-module 1(k)(M) is
said to be a differential module of dimension r if for any
peM, dim Ték)M = r as well as for any point peM there exist an
open neighborhood U of p and CU—basis xik),...,xék) such that

Lin (x{k)(q),...,xﬁk)(q)) = Ték)M for q € U.
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In the case k=1, we exchangeably say that (M,C) is a d.s
of constant differential dimension.

Let X be a smooth tangent vector field on (M,C). Now, by a
smooth tangent vector field X on (M,C) we mean the linear
mébping X : C —— C satisfying the condition

X(f-g9) = £(X)g + gX(f),
for any f,g € C.

One can easily prove

Lemma 2.16 Let X
Xlo...ox
(M,C) .

Lemma 2.17 Let XeX (M) and let v

1,...,Xk € X(M), where kelN. Then

" is a smooth tangent vector field of k-th order to

x) € Ték)M, where keN.

Then the mapping W:C —— R defined by W(f) = v(k)(X(f)), for
any fe C, is a tangent vector of (k+l1)-th order to (M,C) at
the point peM.

Proof. Evidently, W is a linear mapping. So it suffices to
show that W[(al- al(p))-...-(ak+2- ak+2(p))] =0 for any

Ogreeesly o € C. We have

W[(al- al(p))'°"'(ak+2_ ak+2(p))] =

v (X (ay= @y () e (e, o, (B))]) =
() k+2 -
VIR ey @) @ )
1=

""(a(k+2)- a(k+2)(p))x(ai— ai(p))°

Similarly we can prove
Lemma 2.18 Let xl""xk

(1) ox 0. .o (
k,leN. Then v XjoeeeoX, € Tp

€ X(M) and v(l)

€ T ( ) M where
P ’
k+1)M .

Lemma 2.19 Let X(k) € I(k)(M) and X(k)(p)*o for some peM.
Let Yreeor¥ € TpM. If the vectors Vieoor} are linearly

independent theanthé vectors Yox(k),...,ﬁox(k) are also
linearly indepg@ﬂbnt.

Proof. Let k=1. Assume that YieeotX € TPM are linearly
independent. Suppose that the vectors of 2-th order
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Y(2)= YoX,...,X(2)= %ox

are linearly dependent. Hence there exist Al,...,hm e R such
that Illl+...+lkml > 0 and hly(2)+...+km¥(2) = (o] or
equivalently
1.(2) m (2) _ ,,1 m -
A Y +...4A X = (A Y+...+h X)ox =0

Let us put W=Aly+...+a™y. Then W+#0 and WoX=0. Hence W(X(1))=0
for any AeC. Let A=f2, where fecC. Then we get
W(X(£2)) = W(2EX(£)) = 2W(f) -X(p)(f) = 0. Obviously, there
exists feC such that W(£)*0 and X(p) (£)20. So W(f) -X(p)(f)=0.
Thus we get the contradiction. Therefore, the Lemma is true
for k=1. In the case k>1, the proof runs in a similar way.

Proposition 2.20 Let X(M) be a differential module of
dimension n. Assume that, for any point peM, there exists a

vector basis X xneI(U) in an open neighborhood U of p

17
satisfying the condition

[Xi,xj] =0 for i, = 1,...,n.

Then I(k)(M) is a differential module of dimension

m =.§ (n+i-1)' for any keNlN.

=1

Proof. Let X(M) be a differential module of dimension n
satisfying the assumption of Proposition 2.20. Consider the
case k=2. It is easy to see that the vector fields

Xl,...,Xn, Xloxl, X, 0X

1°%g0 e X

1°%n0 XpoXo,ee XooX peee, X oX

form C(U)-basis of 1(2)(0). From Lemma 2.19 it follows
that, for any qeU, the vectors

xl(q)l"'lxn(q)l xloxl(q)l Xloxz(q)l'°'lxl°xn(q)l X2°X2(q),
""x2°xn(q)""’ xnoxn(q) form a basis of TéZ)M.

In the case k>2, one can prove this proposition in a
similar way.
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