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ON GENERAL HAMILTONIAN DYNAMICAL SYSTEMS 

IN DIFFERENTIAL SPACES 

The purpose of this paper is to show that a major part of 

the general formalism of the Poisson brackets, well known from 

the classical mechanics, can be formulated basing on a more 

general object than differentiable manifold. 

1. Introduction 

Let M be any set and C a family of real functions on M. By 

T c we denote the weakest topology on M in which all functions 

of C are continuous. By scC we denote the set of all functions 

on M of the form u<>(a . ..,an), where w e C°°(IRn) and n e N. 

Now, let A be a subset of M. By C A we denote the set of all 

functions g: A > IR such that for each point p e A there 

exist an open neighbourhood U of p and a function f e C such 

that g|U = f|U. 

If C = (scC)M then the set C of real functions on M is 

said to be a differential structure on M, and the pair (M,C) 

is called a differential space [1], [2]. If (M,C) is a 

differential space and A is a subset of M then (A,CA) is also 

a differential space and it is called a differential subspace 

of (M,C). 

A mapping F: M > N is said to be a smooth mapping of a 

differential space (M,C) into a differential space (N,D) if, 

for any f e D , f«F e C. If F is a smooth mapping of (M,C) into 

(N,D), we shall write F: (M,C) > (N,D). Moreover, for an 

arbitrary mapping F: M » N, by F*: D > C we denote the 
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* * 
mapping given by F a = F (a) := a°F, for any a e D. 

We define the notion of a tangent vector to a differential 
space (M,C) at a point p e M as a linear mapping v: C > IR 
satisfying the condition v(a-|3) = a(p) v(|3) + /3(p)-v(a), for 
any a, (3 e C. The set of all tangent vectors to (M,C) at a 
point p e M we denote by T^M and we call it the tangent space 
to (M,C) at the point p. 

If F: (M,C) • (N,D) is a smooth mapping then, for each 
point p € M, the mapping d F s F. : T M > T„ / v.N is defined P *P P F(P) * by (F. v) (/3) := v(F (3) , for any (3 e D and v e T M. P P Furthermore, by a smooth tangent vector field to (M,C) we 
mean an IR-linear mapping X: C » C such that 
X(oc-/3) = a-X(|3) + |3• X(a) , for any a, /9 e C. The set of all 
smooth tangent vector fields to (M,C) we denote by I(M). 

Now, let (M,C) be a differential space and let C Q be a 
subset of C, then C Q is said to be a set of generators of the 
differential structure C on M if C = (scCQ)M. 

Let (M,C) and (N,D) be differential spaces. By CxD we 
denote the differential structure on MxN generated by the set 

{a«prM: a e C} u {P»prN: £ e D}, 

where prM: MxN > M and prN: MxN » N are the canonical 
projections on M and N, respectively. The pair (MxC,CxD) is 
called the Cartesian product of differential spaces (M,C) and 
(N,D). 

Evidently, prM and prN are smooth mappings. Similarly, for 
any point q e N, the mapping M » MxN, given by 
¿g(p) := (p,q) for any p e M, as well as the mapping 
¿pi N > MxN for any p e M, given by ¿p(q) t= (pfq) for any 
q e N, are smooth. 

2. Almost Poisson and Poisson differential spaces 

Let (M,C) be a differential space. 
Definition 2.1 A skew-symmetric IR-2-linear mapping 

{•,•}: CxC » C is said to be an almost Poisson structure on 
(M,C) if 
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(2.1) {fg,h> = f-{g,h> + g-{f,h>, 

for any f,g,h e C. 
If {•,•} is an almost Poisson structure on (M,C) then the 

pair ((M,C),{•,•}) is called an almost Poisson differential 
space. In such a case, the differential space (M,C) is called 
the phase space of ((M,C),{•,•}) and {f,g> is called the 
Poisson bracket of functions f,g e C. 

From (2.1) it follows that the mapping 

(2.2) Xh = {•,h}: C » C, 

for any h 6 C, is a smooth vector field on (M,C). Evidently, 
for arbitrary f,h e C, we have 

(2.3) Xh(f) = -Xf(h). 

It is easy to observe that if {••"}1 and i','}2
 a r e almost 

Poisson structures on (M,C) and f e C then f'i-,-}^ as well as 
{-,->1 + {-,'}2 are almost Poisson structures on (M,C). Thus 
we have 

Proposition 2.1 The set of all almost Poisson structures 
on (M,C) constitutes a module over the ring C. 

Definition 2.2 An almost Poisson structure {•,•} on a 
differential space (M,C) is said to be a Poisson structure on 
(M,C) if, for any f,g,h e C, there is 

(2.4) {{f,g},h} + {{h,f},g} + {{g,h},f} = 0. 

If {•»•} is a Poisson structure on (M,C) then ((M,C),{•,•}) is 
called the Poisson differential space. 

Example 2.1 Let X ^ — , X n , Ylf...,Y be smooth vector 
fields on a differential space (M,C). Let us put 

n 
(2.5) {f,g}.=£ (X;(f)Y.(g) - X.(g)Y.(f)), 

i—1 x 

for any f,g e C. Evidently, the mapping {•,•}: CxC » C 
defined.by (2.5) is an almost Poisson structure on (M,C). 

Moreover, if we assume that 

[Xi,Xj] = [Xi,Yj] = [Yi,Yj] = 0, 

for any i,j = l,...,n, then by straightforward calculations we 
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can show that {•,•} is the Poisson structure on (M,C). 
It is not difficult to observe that, if •{ • , • > ̂  and {'»'}2 

are Poisson structures on (M,C) then {•,•>1 - {•,•>2 is a 
almost Poisson structure (but not necessarily a Poissi 
structure) on (M,C). 

Now we prove 
Lemma 2.2 Let {•,•} be an almost Poisson structure on 

(M,C). Then, for arbitrary f,g,h e C, the identity is 
satisfied 

{{f,g},h} + {{h,f>,g} + {{g,h},f} = 
(2.6) 

= ("X
{f,g> + [Xg,Xf])(h). 

Proof. For any f,g,h e C, we have the identities 

{{f,g},h} = - X { f g } ( h ) , {{h,f},g} = Xg(Xf(h)) 

and {{g,h},f} = -X (X (h)). 
Hence we get 

{{f,g},h} + {{h,f},g} + {{g,h>,f} = ( " X { f g } + [X ,Xf])(h). 

Corollary^2.3 Let {•,•} be an almost Poisson structure on 
(M,C). Then for any f,g,h e C we have 

{{f,g},h> + {{h,f},g} + {{g,h},f} = 0 

if and only if [Xf,Xg] = X { g f } . 

Lemma 2.4 Let ((M,C),{•,•}) be a Poisson differential 
space and CQ be a set of generators of the differential 
structure C on M. Then, [X_,X l = X. for any f e C, i a |a,r| 
a e CQ, implies [Xf,Xg] = X { g f } , for any f,g e C. 

Proof. Assume that [X_,X ] = X. for any f e C, 
i u 1«|I) 

a e CQ, and suppose that [Xf,Xg] * X^g for certain 
f,g e C. Then there exist (3 e CQ such that 
[Xf,Xg](/3) * X { g f}(/3). Hence we get 

Xf(Xg(/3)) - Xg(Xf(0)) * -X^({g,f}), 

or eqivalently 

-Xf(Xp(g)) - Xg({/9,f}) * -Xp(Xf(g)), 
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and consequently 
-Xg({P,f}) * [Xf,Xj3](g) 

or equivalently 
x{i}ff}(g) * [Xf,Xp](g). 

But the last inequality contradicts the assumption. Therefore 
the lemma is true. 

Similarly, we prove 
Lemma 2.5 Let ((M,C),{•,•}) be a Poisson differential 

space and CQ be a set of generators of the differential 
structure C on M. If. for any a,|3 e C,,, [X.X_] = X._ . then, u a p \p /<*/. 
for any f e C and (3 e Cn, X r o = [X_,X_] and, in the 

« iPfi; r P 
strength of Lemma 2.4, = [Xf,Xg], for any f,g e C. 

From the last lemma we obtain 
Corollary . Let ((M,C),{-,-}) be an almost Poisson 

differential space and CQ be a set of generators of the 
differential structure C on M. If, for any a,/3,r e CQ, 

{{<*,£}, 7} + {{*,<*},0} + {{/3,y},/3} = 0, 
then, for any f,g,h e C, 

{{f,g},h} + {{h,f},g} + {{g,h},f} = 0, 

and consequently ((M,C),{•,•}) is the Poisson differential 
space. 

Evidently, every Poisson differential space is an almost 
Poisson differential space; the inverse of this statement is 
not true. 

One can prove 
Lemma 2.7 Let (M,C) be a differential space, ifi: N > M 

be a mapping of a set N into a set M, and f,g e C. Then 
i/i f|A = t/i g|A, for some A c N, if and only if f||/»(A) = g|tf»(A). 

Let (M,C) be a differential sp&ce, N be a set and let 
N * M be a mapping. Let us put 5 = and 

f = w® (a^, — ' a
n)/ where «lf...,o e C and u € C°°(IRn) . Then 

i/I*f = |i*u« (a^,... ,«n) = u» .. . . 

Hence D = sc5. Now, let us put D = (D)N. Then D is a 
differential structure on N induced from (M,C) by i/i [12]. 
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Let now f e D. By definition of the differential 

structure, for any point p e N there exist an open 

neighbourhood A of p and a function g e i/i*C such that 

f|A = g|A = ^*ocjA, for some a e C. 

Similarly, as in the theory of differentiable manifolds, 

we prove 

Lemma 2.8 Let (M,C) be a differential space and f e C. If 

f |A = 0, for some A e T
c » then for any X € 3f(M) and p e A, 

X(f) (p) = X (p) (f I A) = 0, 

or eguivalently X|A(f|A) = 0. 

Hence we get 

Corollary 2.9 Let (M,C) be a differential space and let 

f,g e C. If f|A = g|A, for some A e r c , then for any X € I(M) 

and p c A 

X(f)(p) = X(g)(p), 

or equivalently X| A(f|A) = X| A(g|A). 

Now, we shall prove 

Lemma 2.10 Let ((M,C),{•,•}) be an almost Poisson 

differential space and let f , g e C . If f | A = g | A , for some 

A € z c , then {f,h}|A = {g,h}|A, for any h € C. 

Proof. {f,h}|A = X h(f)|A = X h| A(f|A) = X h| A(g|A) = 

= X h(g)|A = {g,h}|A. 

Let now ot,|3 e C. Then, for every point p e M, there exist 

A e r c , p e A and f,g e C, where C M = C, such that a|A = f|A 

as well as (3|A = g|A. Hence, by Lemma 2.10, 

{a,(3}|A = {f ,g} | A. 

Thus we get 

Corollary 2.11 The Poisson structure {•,•} on (M,C) is 

uniquely determined by its values {f,g} for f,g e C, where 
6 M = C-

Now, let ((M,C),{•,•}) be an almost Poisson differential 

space. Let N > M be a mapping such that $(N) is an open 

subset of M. By putting D = ($*C)M we get the differential 

space (N,D) with the induced differential structure D on N. 



Hamiltonian dynamical systems 545 

Now let us put 

(2.7) {«*f,**g}N = **{f,g}, 

for f,g € C. One can easily show that the formula (2.7) 
defines an almost Poisson structure on (N,D) (or Poisson 
structure, if ((M,C),{•,•}) is a Poisson differential space, 
respectively). 

Hence we get 
Corollary 2.12 Let ((M,C),{•,•}) be an almost Poisson 

differential space (Poisson differential space) and let A be 
an open subset of M. Then ((A,CA),{•,•>A) is an almost Poisson 
differential space (Poisson differential space), where {•,•>A 

is defined by 

(2.8) {L*a,L*p}h = ¿*{a,/3}, 

for any a,fi € C, where L is the natural imbedding of A into M. 
((A,C^),{•,•>A) is said to be an almost Poisson 

differential subspace (Poisson differential subspace) of 
((M,C),{•,}). 

Corollary 2.13 Let ((M,C),{•,•}) be an almost Poisson 
differential space (Poisson differential space) and A be an 
open subset of M. Then, for any f,g e C, 

{f,g}|A = {f|A,g|A> . 

Now, let ((M,C),{•,•}) be an almost Poisson differential 
space (Poisson differential space) and let M » N be a 
mapping of M onto N. Let D be the differential structure on N 
coinduced from (M,C) by Then (N,D) is a differential space. 
Let us put 

(2.9) {a,/3}No$ = {ot°$,/3o$}. 

We shall prove 
Proposition 2.14 The mapping {•, • >N: DxD > D, defined 

by (2.9), is an almost Poisson structure (a Poisson structure, 
respectively) on (N,D). 

Proof. IR-2-linearity and skew-symmetry of (•,•>N are 
evident immediately from (2.9). The Jacobi identity follows 
from the identities 
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{{a,0}N,r}N°* = {{a,/S>No$,r.i} = 
= {{a.«,*}.«},/»*} = 

where a = a«*, ¡3 = £<>* and y = 7®*. Evidently, a,/9,r € C, for 
a,0,r e D. Similarly, condition (2.1) follows from 

{«•0,r>N»* = {a-/3«*,r»*} = {(a«*)•(p»*),/•*} = {â-p,r>, 
for a,jS,7 € D. 

Corollary 2.15 Let {•»•} be an almost Poisson structure 
(a Poisson structure) on the Cartesian product (MxN,CxD) of 
differential spaces (M,C) and (N,D). Then the formulae 
(2.10) pr*{f,g}M = {pr*f,pr*g}, 
for any f,g « C, and 
(2.11) pr*{a,|S}N = {pr*a,pr*|3}, 
for any oc,|3 e D, define almost Poisson structures (Poisson 
structures) on (M,C) and (N,D), respectively. 

Now, we shall prove 
Proposition 2.16 Let ((M,C),{•,•}) be an almost Poisson 

differential space (Poisson differential space) and let CQ be 
a set of generators of the differential structure C on M. 
Then, for any f,g e C, the Poisson bracket {f,g} of f and g 
can be locally (in a neighbourhood Up of each point p e M) 
represented by a linear combination of the Poisson brackets of 
functions from C_ with the coefficients from C.. . 

P 
Proof. Let f,g e C and p e M. There exist an open 

neighbourhood Up of p and functions oc^,...,^, e CQ 
as well as e C°°(IRk) and u2 e C00(IR1) such that 
f lUp = ul° (0£1' '- * '"k* lUp a n d g|Up = «V«»l • Hence 
we get the following equalities 

{ f , g } | u p = { f | u p , g | u p > U p = x g | < f | u p ) = 

= Xglu (»l°(ai a k H U p ) = 

k p 
- ï / l l i - î « ! a k > I V X g l u («ilV = 
1=1 1 p 

= -X»i\i°<ai V i V V i u (giv = 
1=1 1 1 p 
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= j i j ^ K l i ' * « ! V U 2 | j ^ l * l » I V { a i ' * j > D p = 

k 1 .. 
= 1 1 , 

i=l j=l 

where, for i = l,...,k and j = we have put 

A 1 3 = ("iji" (<*]_, • • • r<*k) ' ^ j j
0 C3!' • • • '^i)) l u

p-

From Proposition 2.12 it follows 

Corollary 2.17 Let C Q be a set of generators of the 

differential structure C on M, and let i " / ' ^ and {•»•Jg b e 

almost Poisson structures on (M,C). Then, if for any 

a,<3 e C Q, {a,/3}1 = {a,/3>2 then {- , • > x = {•,->2. 

Proposition 2.18 Let ((M,C),{•,•>M) and ((N,D),{•,•>N) be 

almost Poisson differential spaces (Poisson differential 

spaces). Then the mapping 

{•,•}: (CxD)x(CxD) • CxD, 
defined by 

(2.12) {f,g}(x,y) = {f(-,y),g(-,y)}M(x) + {f(x,•),g(x,•)>N(y) 

for any f,g e CxD and (x,y) e MxN, is an almost Poisson 

structure (a Poisson structure, respectively) on the 

differential space (MxN,CxD). Moreover, {aoprM,|3oprN> = 0, for 

any a e C and (3 e D. 

Proof. From (2.12) it follows immediately that {•,•} is 

an R-2-linear and skew-symmetric mapping. It is easy to 

observe that {•,•}, defined by (2.12), satisfies condition 

(2.1). (In the case of Poisson differential spaces, by using 

Corollary 2.6, one can easily show that the Jacobi identity is 

satisfied.) 

Let ((M,C),{•,•}M) and ((N,D),{•,•>N) be almost Poisson 

differential spaces (Poisson differential spaces). 

Definition 2.3 A smooth mapping F: (M,C) » (N,D) is 

said to be a morphism of almost Poisson differential spaces 

(Poisson differential spaces) ((M,C),{•,•>M) and 

X(N,D),{•,-}N) if 

(2 <13) {F*f,F*g}M = F*{f,g)M, 
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for any f,g € D. 
Evidently, the composition of morphisms of almost Poisson 

differential spaces (Poisson differential spaces) is a 
morphism in the respective category. If F is a diffeomorphism 
of differential spaces satisfying condition (2.13), then F is 
called the isomorphism of almost Poisson differential spaces 
(Poisson differential spaces). 

Therefore the class of all almost Poisson differential 
spaces (Poisson differential spaces), together with the above 
morphisms, forms a category, called the category of almost 
Poisson differential spaces (Poisson differential spaces). 
Obviously, the category of Poisson differential spaces is a 
subcategory of almost Poisson differential spaces. 

Definition 2.4 Let ((M,C),{•,•}) be an almost Poisson 
differential space (Poisson differential space) and let 
f,g € C. A function f is said to be in involution with a 
function g if {f,g} = 0. 

Evidently, this relation is symmetric. 
Definition 2.5 A smooth function f on an almost Poisson 

differential space ((M,C),{•,•}) is called the Casimir 
function if {f,g} = 0 for any g e C. 

Let us observe that if f is a Casimir function on an 
almost Poisson differential space then the vector field 
Xf = {-,f> is the zero vector field. 

Let us denote by Cc the set of all Casimir functions on an 
almost Poisson differential space ((M,C),{•,•}). One can 
easily prove 

Proposition 2.19 The set Cc of all Casimir functions on 
((M,C),{•,•}) is 

(i) a differential substructure of the differential 
structure C on M, 

(ii) a module over C as well as a Lie subalgebra of the 
Lie algebra (C,{•,•}), if ((M,C),{•,•>) is a Poisson 
differential space. 

Now, let (M,C) be a differential space and let X be a 
smooth vector field on (M,C). Similarly as in the theory of 
differentiable manifolds, we accept 
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Definition 2.6 A function f e C is said to be a first 
integral of a smooth vector field X on (M,C) if X(f) = 0. 

Similarly, we also prove 
Proposition 2.20 If r: (-e,e) > M is an integral curve 

(a trajectory) of a smooth vector field X on (M,C) then any 
first integral f of X is a constant function along r; this 
means that f«y = const. 

Let us observe that in the case of differeptiable 
manifolds the assertion inverse to the Proposition 1.10 is 
satisfied. However, one can prove that, in general, such 
proposition is not true for differential spaces. 

One can easily prove 
Lemma 2.21 A smooth function f is a first integral of the 

vector field X h = {-,h}, if {f,h> = 0. 
Proposition 2.22 The set of all first integrals of a 

vector field X h on ((M,C),{•,•>) forms a differential 
substructure of the differential structure C on M as well as a 
Lie subalgebra of the Lie algebra (C,{•,•}), if ((M,C),{•,•}) 
is a Poisson differential space, where X^ = {-,h}. 

Now, we shall prove 
Proposition 2.23 Let F: M > N be an isomorphism of 

almost Poisson differential spaces ((M,C),{•,•}„) and 
((N,D),{•,•>N). For an arbitrary h e D, let us put Y^ = {-,h>N 

and X F* h = {•,F h>M. Then the following equation holds 
F*Vh = V 

Proof. Let f,h e D and let h be fixed. Then we have 

Yh(f) = {f,h}N = {f,h}NoFoF_1 = F*{f,h}NoF-1 = 

= {F*f,F*h}MoF-1 = XF*h(foF)oF-1 = 

= d F i X ^ f J o F " 1 = F*XF*h(f). 

3. General Hamiltonian dynamical systems on differential 
spaces 

Definition 3.1 A smooth vector field X on an almost 
Poisson differential space ((M,C),{•,•}) is said to be a 
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Hamiltonian vector field if there exists a function H e C such 

that 

(3.1) X = {•,H} e X H. 

The function H is called the Hamiltonian function of X or 

shortly the hamiltonian. The triple ((M,C),{•,•>,H) is called 

the Hamiltonian dynamical system on (M,C). 

Definition 3.2 A smooth vector field X on an almost 

Poisson differential space ((M,C),{•,•>) is said to be a 

locally Hamiltonian vector field if, for any point p e M, 

there exists a neighbourhood U of p such that is a 

Hamiltonian vector field on ((U,Cy),{•,•}y). 

The differential space (M,C) is called the phase space (or 

the space of states) of the dynamical system ((M,C),{*,*}, H)• 

The points of M are interpreted as different states of the 

system. In turn, the smooth functions of C are called the 

observables or the dynamical quantities. 

Let us denote by H(M) the set of all Hamiltonian vector 

fields on an almost Poisson differential space ((M,C),{•,•}). 

Proposition 3.1 The set X(M) has the natural structure of 

a module over the Casimir ring C c as well as the structure of 

a Lie subalgebra of the Lie algebra (í(M),[•,•]). 

Proof. Let Xy, X F € W(M) and f e C c. By definition we get 

X H + X p = {•,H} + {•,F} = {•,H+F} = X H + p . 

Similarly, 

f-X H(g) = f { g , H > = f•{g,H} + g-{f,H} = {g,fH} = X f H(g), 

for any g e C. Hence we get f-X H = X f H , for f e C c. 

Now, if we assume that ((M,C),{•,•}) is a Poisson 

differential space, we also have the equality 

(3.2) [* h/X f] = X{F,H>-

Hence, for any X H , X F e H(M), also [X H,X p] e H(M) . 

From Proposition 3.1, or more exactly from (3.2), it 

follows 

Corollary 3.2 For any Hamiltonian vector fields X„, X„ on n r 
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a Poisson differential space ((M,C),{•,•}), [XH,Xp] = 0 if and 
only if {F,H> € C c. 

Corollary 3.3 The mapping C a f i • X f € H(M) is a 
homomorphism of linear space C over IR onto the linear space 
H(M) over R. Moreover, if ((M,C),{•,•}) is a Poisson 
differential space, then this mapping is a homomorphism of the 
Lie algebra (C,{•,•}) into the Lie algebra (H(M),[•»•]). 

Now, we shall prove 
Proposition 3.4 Let H^ and H 2 be hamiltonians of the same 

Hamiltonian vector field X on an almost Poisson differential 
space ((M,C),{•,•}). Then H^- H 2 e C c. 

Proof. By the assumption, X = X u = X„ . Hence, for any 
H 1 2 

f e C, we have X„ (f) = X., (f) , or equivalently 
H 1 2 

{ f , H 2 } = 0. Thus Hj- H 2 e C c. 
It is well known that in the classical mechanics on a 

connected differentiable manifold, Ĥ ^ and H 2 are hamiltonians 
of the same Hamiltonian vector field X if and only if H^- H 2 

is a constant function. 
Now, we want to study the behaviour of an observable F 

along a phase curve (a history of a dynamical system) y of our 
Hamiltonian dynamical system. As it is well known, the 
behaviour of F along a phase curve r in (M,C) can be described 
by the function F: M » R, given by 

(3.3) F(r(t)) = et(Foy) =|_(F.r). 

But ^ ( F . r M t ) = (d(F»r)(et) = dF(dr(et)) = dF(xH(r(t)) = 

= xH(r(t))(F) = xH(F)(r(t)) = {F,H>(r(t)). 

Hence, by (2.3) we get 

(3.4) F = {F,H}. 

Equation (3.4) is called the equation of evolution or the 
equation of motion of the observable F. 

Let ((M,C),{•,•} m,H) and ((N,D),{•,•} ,F) be Hamiltonian 
dynamical systems, and let X„ and Y„ be Hamiltonian vector 

rl r 
fields associated with the hamiltonians H and F, respectively. 
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Let us put 
(3.5) Z(x,y) = ¿y*XH(x) +¿x^YF(y), 
for any (x,y) e MxN, where i and i are natural imbeddings of y * 
M and N into MxN. Evidently, formula (3.5) defines a smooth 
vector field on the differential space (MxN,CxD). By 
Proposition 2.14 we have the canonical almost Poisson 
structure (Poisson structure, if ((M,C),{•,•>M) and 
((N,D),{•,•>N) are Poisson differential spaces) on (MxN,CxD), 
defined by (2.12). We shall show that the vector field Z 
defined by (3.5) is a Hamiltonian vector field on 
((MxN,CxD),{•,•}) with the hamiltonian G = H°prM + F®prN and, 
consequently, ((MxN,CxD),{•,•},G) is a Hamiltonian dynamical 
system. Indeed, from (2.12) and (3.5) we get the equalities 

{f,H.prM + FoPrM>(x,y) = ZHoPrM+FoprN(x'y)(f) = 

= {f(-,y),(H°prM+ F«prN)(-,y)}M(x) + 

+ {f(x,•),(H.prM+ F»prN)(x,-)>N(y) = 

= {f.iy, (HoprM+ FoprN) «íy}M(x) + {f°ix, (H°prM+ F<»prN) °¿x}N(y)-

= xH(x)(fo¿y) + YF(y)(fo¿x) = ¿yjkxH(x)(f) + ¿x*YF(y)(f) = 

= (¿y*XH(x) + ¿x*YF(y))(f) = Z(x,y)(f), 

for an arbitrary f e CxD. 
Thus we get 
Proposition 3.5 Let ((M,C),{•,•>M,H) and ((N,D),{•,•>N,F) 

be Hamiltonian dynamical systems. Then 

((MxN,CxD),{•,•},HoprM+ FoprN) 
is a Hamiltonian dynamical system, where {-,•} is an almost 
Poisson structure (Poisson structure) on (MxN,CxD), defined by 
(2.12). 

Now, let a and 0 be observables of Hamiltonian dynamical 
systems ((M,C),{•,•>M,H) and ((N,D),{•,•>N#F), respectively. 
Of course, the function a«prM + p«prH is an observable of the 
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Hamiltonian dynamical system ((MxN,CxD),{•,•>,H«prM+ F«pr^). 

By putting E = a«prM + /3°prN and by using (3.4), we get 

E = {E,H°prM+ FoprN> = {a»prM+ 0<>prN,H<>prM+ F«prN> = 

= pr*(a,H}M + pr*{0,F}N = ¿.prM + hpr^. 

Now, let E be an arbitrary observable of the Hamiltonian 
dynamical system ((MxN, CxD) ,{•,•} ,H<>prM+ F«prN). Then of 
course, E„ := E»i and E„. := E°I are observables of W y N X 
( ( M , C ) , { - , - > M , H ) and ( ( N , D ) , { • , • } N , F ) , r e s p e c t i v e l y , f o r a n y 
(x,y) € MxN. One can show that in this case, for the equation 
of evolution, we obtain the following formula 

i = V P r M + V P r N ' 

Let ((M,C),{•,•},H) be a Hamiltonian dynamical system and 
let X„ be a corresponding Hamiltonian vector field, ri 

Definition 3.3 An automorphism f of an almost Poisson 
differential space ((M,C),{•,•}) is said to be a symmetry of 
the Hamiltonian system ((M,C),{•,•},H) if 

(3.6) f^XH = XH. 

From Proposition 3.4 and (3.6) it follows 
Corollary 3.6 If f is a symmetry of a Hamiltonian 

dynamical system ((M,C),{•,•},H) then f H = H + g, where g e C 
is a Casimir function of the system. 

It is easy to see that the set of all symmetries of a 
Hamiltonian dynamical system on a differential space is a 
group with respect to composition of mappings. However, in 
general, this group is not a Lie group. 

Now, let ((M,C),{•,•}) be an almost Poisson differential 
space and let ^»...»f e c be such that, for any p e M and 
i> j = 1/•••»n, 

(3.7) det({fi,fj}(p)) * 0. 

From (3.7) it follows that n = 2m, m e IN, as well as 



554 P. Multarzyrtski, Z. Zekanowski 

dpf^ * 0, or equivalently X f (p) * 0, for any p € M and 

i = 1,...,n. 

Let us put 

(3.8) {f,g}' = {f,g} - I A l j-{f,f.}-{f.,g}, 
ij J 

for any f,g e C, where A1-5 denotes the inverse matrix to the 

matrix ({f^,fj}). It is easy to observe that formula (3.8) 

defines an almost Poisson structure {•,•}' on (M,C). Moreover, 

one can easily show that, for any i = l,...,n, f^ is a Casimir 

function with respect to {-,•}'. 

Similarly as it is in the classical case, we accept 

Definition 3.4 A function <p e C is said to be i 

constraint in an almost Poisson differential space 

((M, C) ,{•,•}) if * 0 for any p e <p~ (0) . Then the equation 

4>( P) = 0, 

is called the constraint equation. 

Let us consider the set • • • } of constraints 

satisfying the condition 

(3.9) det({^ i,0 j}) (p) * 0, 

n _! 
for any p € W := |~| <f>. (0) c M, = l,...,n. Of course, 

i=l 

(W,C^.) is a differential subspace of (M,C) and the number of 

constraints must be even. 

Now, by using the functions := for i = l,...,n, 

we define an almost Poisson structure on (W,C^.) by the formula 
(3.10) {f,g}' = { f ^ } ^ -

for any f,g e C^.. Let us observe that, in this way, the 

constraints have been built into the almost Poisson structure 

{•,•}' on the differential space (^,0^). Consequently, the 

constraints do not enforce any restrictions on 

solutions of dynamical problems in almost Poisson differential 

space ( ( W , C W ) , { • , • } ' ) . 
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