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ON GENERAL HAMILTONIAN DYNAMICAL SYSTEMS
IN DIFFERENTIAL SPACES

The purpose of this paper is to show that a major part of
the general formalism of the Poisson brackets, well known from
the classical mechanics, can be formulated basing on a more
general object than differentiable manifold.

1. Introduction

Let M be any.set and C a family of real functions on M. By
To we denote the weakest topology on M in which all functions
of C are continuous. By scC we denote the set of all functions
on M of the form wo(al,...,an), where w € Cm(Rn) and n € N.
Now, let A be a subset of M. By CA we denote the set of all
functions g: A —— R such that for each point p € A there
exist an open neighbourhood U of p and a function f € C such

that g|U = f£|U.

If C
said to be a differential structure on M, and the pair (M,C)
is called a differential space [1], [2]. If (M,C) is a
differential space and A is a subset of M then (A,CA) is also

(scC)M then the set C of real functions on M is

a differential space and it is called a differential subspace
of (M,C).

A mapping F: M —— N is said to be a smooth mapping of a
differential space (M,C) into a differential space (N,D) if,
for any £ € D, foF € C. If F is a smooth mapping of (M,C) into
(N,D), we shall write F: (M,C) —— (N,D). Moreover, for an
arbitrary mapping F: M —— N, by F': D — C we denote the
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mapping given by F*a = F*(a) := qoF, for any a € D.

We define the notion of a tangent vector to a differential
space (M,C) at a point p e M as a linear mapping v: C —3 R
satisfying the condition v(a-B) = a(p)-v(B) + B(p) -Vv(a), for
any «, B € C. The set of all tangent vectors to (M,C) at a
point p € M we denote by TpM and we call it the tangent space
to (M,C) at the point p.

If F: (M,C) —— (N,D) is a smooth mapping then, for each

point p € M, the mapping dpF = F*p: TpM o TF(p)N is defined

by (F,pv) (8) := v(F*B), for any B € D and v e T M.
Furthermore, by a smooth tangent vector field to (M,C) we
mean an R-linear mapping X: ¢c— C such that
X(aB) = a-X(B) + B-X(x), for any ¢, B € C. The set of all
smooth tangent vector fields to (M,C) we denote by ¥(M).
Now, let (M,C) be a differential space and let C0 be a
subset of C, then C0

is said to be a set of generators of the
differential structure C on M if C = (scCO)M.

Let (M,C) and (N,D) be differential spaces. By CxD we
denote the differential structure on MxN generated by the set

{aoprM: a € C} v {BoprN: B € D},

where Pry: MxN —— M and pry: MxN —— N are the canonical
projections on M and N, respectively. The pair (MxC,CxD) is
called the Cartesian product of differential spaces (M,C) and
(N,D).

Evidently, Pry and pry are smooth mappings. Similarly, for
any point gq € N, the mapping Lq: M —— MxN, given by
Lq(p) t= (p,q) for any p e M, as well as the mapping
i : N——> MxN for any p € M, given by Lp(q) t= (p,q) for any

P
q € N, are smooth.

2. Almost Poisson and Poisson differential spaces

Let (M,C) be a differential space.

Definition 2.1 A skew-symmetric R-2-linear mapping
{*,-}: CxC —— C is said to be an almost Poisson structure on
(M,C) if
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(2.1) {f-g,h} = £-{g,h} + g-{£f,h},

for any f,g,h € C.

If {-,-} is an almost Poisson structure on (M,C) then the
pair ((M,C),{-,'}) is called an almost Poisson differential
space. In such a case, the differential space (M,C) is called
the phase space of ((M,C),{-,-}) and {f,g} is called the
Poisson bracket of functions f,g € C.

From (2.1) it follows that the mapping:

(2.2) X, = {-,h}: C — C,

for any h € C, is a smooth vector field on (M,C). Evidently,
for arbitrary f,h € C, we have

(2.3) X, (£) = =X (h).

It is easy to observe that if {-.-}1 and {-,-}2 are almost

Poisson structures on (M,C) and f ¢ C then f-{-,-}1 as well as
{-,—}1 + {-,~}2 are almost Poisson structures on (M,C). Thus
we have

Proposition 2.1 The set of all almost Poisson structiures
on (M,C) constitutes a module over the ring C.

Definition 2.2 An almost Poisson structure {-,:} on a
differential space (M,C) is said to be a Poisson structure on
(M,C) if, for any f,g,h € C, there is
(2.4) {{f,q9},h} + {{h,f},g} + {{g,h},f} = 0.

If {-,-} is a Poisson structure on (M,C) then ((M,C),{:,-}) is
called the Poisson differential space.

Example 2.1 Let xl,...,xn, Yl,...,Yn be smooth vector

fields on a differential space (M,C). Let us put

n
(2.5) (t9r.= 1 (X (DY¥;(9) - X; (¥ (£)),
for any f,g € C. Evidently, the mapping {:,:}: CxC —— C
defined.by (2.5) is an almost Poisson structure on (M,C).
Moreover, if we assume that
[Xilxj] = [Xi'Yj] = [Yilyj] =0,

for any i,j = 1,...,n, then by straightforward calculations we
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can show that {-,'} is the Poisson structure on (M,C).

It is not difficult to observe that, if {-,-}1 and {-,-}2
are Poisson structures on (M,C) then {~,*}1 - {-,-}2 is @&
almost Poisson structure (but not necessarily a Poissc
structure) on (M,C).

Now we prove

Lemma 2.2 Let {-,-} be an almost Poisson structure on
(M,C). Then, for arbitrary f,g,h € C, the identity is
satisfied

{{f,g},h} + {{h,f},9} + {{g,h},f} =

= (-x{f'g} + [xg,xf])(h).

(2.6)

Proof., For any f,g,h € C, we have the identities
{{f,9},h} = -X{f,g}(h), {{h,f},q} = Xg(xf(h))

and {{glh}lf} = _Xf(xg(h))’
Hence we get

{{£,9},h} + {{h,£},9} + {{g,/h}, £} = (X ¢ o + [X5 X)) (R).

Corollary~ 2.3 Let {-,~j be an almost Poisson structure on
(M,C). Then for any f,g,h € C we have

{{f,g9},b} + {{h,f},g} + {{g,h},f} =0
if and only if [xf,xg] = x{g,f}.
Lemma 2,4 Let ((M,C),{:,-}) be a Poisson differential

space and C0 be a set of generators of the differential

structure C on M. Then, [xf,xa] = for any f e€ C,

Xla, £}

aeC implies [xf,xg] = for any f,g € C.

X '
{g,f}
[xf'xa] = x{a,f}’

0’ and suppose that [xf,xg] # x{g,f}’

f,g € C. Then there exist B € C0 such that

[xf,Xg](B) # x{g,f}(B)' Hence we get

ol
Proof. Assume that for any f € C,

a € C for certain

Xg (X (B)) = X (X (B)) * -Xg({9,£}),
or egivalently

“Xe (Xg(9)) - XgUB/ £}) # —Xg(Xe(9)),



Hamiltonian dynamical systems 543

and consequently
'Xg({B,f}) * [Xf,XB](g)
or equivalently
X.g,£1(9) * [XpiXgl(9).
But the last inequality contradicts the assumption. Therefore
the lemma is true.
Similarly, we prove
Lemma 2.5 Let ((M,C),{:,}) be a Poisson differential
space and Co be a set of generators of the differential
0’ [Xa,XB] = X{B,al then,
0’ X{B,f} = [xf’XB] and, in the
X{g,f} = [Xf,Xg], for any f,g € C.

From the last lemma we obtain

structure C on M. If, for any «,B € C
for any f € C and B € C
strength of Lemma 2.4,

Corollary . Let ((M,C),{',-}) be an almost Poisson

differential space and C0 be a set of generators of the

differential structure C on M. If, for any «,8,7 € C

ol
{{x,B8},7} + {{¥v,«},B} + {{B,7},B} = O,
then, for any f,g,h € C,
{{f,9},h} + {{h,f},q9} + {{g,h},£f} = O,

and consequently ((M,C),{-,-}) is the Poisson differential
space.

Evidently, every Poisson differential space is an almost
Poisson differential space; the inverse of this statement is
not true.

One can prove

Lemma 2,7 Let (M,C) be a differential space, yYy: N —— M
be a mapping of a set N into a set M, and f,g € C. Then
v*£|a = y*g|a, for some A ¢ N, if and only if £|y(RA) = g|¥(A).

Let (M,C) be a differential space, N be a set and let
¥: N ——> M be a mapping. Let us put D=y 'C and
f = wo(al,...,an), where Oypene, @ € C and w € Cw(Rn). Then

* * * *

v £ =y wo(al,...,an) = wo (Y al,...,w an).
Hence D = scD. Now, let us put D = (B)N. Then D is a
differential structure on N induced from (M,C) by ¥ [12].
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Let now f e€ D. By definition of the = differential
structure, for any point p e N there exist an open
neighbourhood A of p and a function g e w*C such that
fla = g|A = w*a]A, for some a € C.

Similarly, as in the theory of differentiable manifolds,
we prove

Lemma 2.8 Let (M,C) be a differential space and f € C. If

f|A = 0, for some A € T then for any X € ¥(M) and p € A,

cl
X(f) (p) = X(p)(f|A) = O,

or equivalently XIA(fIA) = 0.
Hence we get
Corollary 2.9 Let (M,C) be a differential space and let

f,g € C. If f|A = g|A, for some A € T then for any X e X (M)

Cl
and p € A

X(£) (p) = X(9)(pP),

or equivalently X|A(f|A) = X|A(g|A).

Now, we shall prove

Lemma 2,10 Let ((M,C),{-,-}) be an almost Poisson
differential space and let f,g ¢ C. If f|A = g|A, for some

AeT then {f,h}|A = {g,h}|A, for any h € C.

c’
Proof. {f,h}|A = X (£)|A = X, [,(£|A) = X, |,(g|A) =

= X,(9) |A = {g,h}|A.
Let now «,8 € C. Then, for every point p € M, there exist
o M= C, such that o|A = f|A
as well as B|A = g|A. Hence, by Lemma 2.10,

Ae€etT. peAand f,g € C, where C

{a,B}|A = {£,g}|A.

Thus we get

Corollary 2.11 The Poisson structure {:-,:} on (M,C) is
uniquely determined by its values {f,g} for f,g € C, where
Cy = C.

Now, let ((M,C),{:,-}) be an almost Poisson differential
space. Let ¢: N —— M be a mapping such that $(N) is an open
subset of M. By putting D = (<I>*C)M we get the differential
space (N,D) with the induced differential structure D on N.
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Now let us put
* * *
(2.7) {87£,8 g}y = & {£,9),

for £f,9 € C. One can easily show that the formula (2.7)
defines an almost Poisson structure on (N,D) (or Poisson
structure, if ((M,C),{:,-}) is a Poisson differential space,
respectively).

Hence we get

Corollary 2.12 Let ((M,C),{:-,-}) be an almost Poisson
differential space (Poisson differential space) and let A be
an open subset of M. Then ((A,CA),{-,-}A) is an almost Poisson
differential space (Poisson differential space), where {-,-}A
is defined by

(2.8) ("a,i*8y, = i"(a,8},

for any a,B € C, where ¢ is the natural imbedding of A into M.
((A,CA),{-,-}A) is said to be an almost Poisson
differential subspace (Poisson differential subspace) of
(M,C),{-,"}).
Corollary 2.13 Let ((M,C),{',-}) be an almost Poisson
differential space (Poisson differential space) and A be an
open subset of M. Then, for any f,g € C,

{f.9}|A = {f]|A,g|A} .

Now, let ({(M,C),{',-}) be an almost Poisson differential
space (Poisson differential space) and let ¢&: M ——> N be a
mapping of M onto N. Let D be the differential structure on N
coinduced from (M,C) by ®. Then (N,D) is a differential space.
Let us put

(2.9) {arB}N”b = {acd,Bod}.

We shall prove

Proposition 2.14 The mapping {-, DxD —— D, defined

3
by (2.9), is an almost Poisson structurg (a Poisson structure,
respectively) on (N,D).

Proof. [R-2-linearity and skew-symmetry of (-,-}N are
evident immediately from (2.9). The Jacobi identity follows
from the identities
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{{alﬁ}le}N°Q = {{aIB}N°QI1°°} =
= {{ao®,Bo8)},7°3)} = {{«,B},7},

where @ = ae®, B = Bo® and 7 = yod. Evidently, «,8,7 € C, for
o,B8,y € D. Similarly, condition (2.1) follows from

{o-B, 7} o8 = {a-Bod,7°0} = {(xo®)(B8),7°8} = {x-B,7},

for ao,B,7 € D.

Corollary 2.15 Let {:,-} be an almost ‘Poisson structure
(a Poisson structure) on the Cartesian product (MxN,CxD) of
differential spaces (M,C) and (N,D). Then the formulae

* * *
(2.10) pry{f,gty = {pryf,prygl,

for any f,9 € C, and

* * *
(2.11) pry{a,B}y = {prya,PryBl,

for any a,8 € D, define almost Poisson structures (Poisson
structures) on (M,C) and (N,D), respectively.

Now, we shall prove

Proposition 2,16 Let ((M,C),{',*}) be an almost Poisson
differential space (Poisson differential space) and let Co be
a set of generators of the differential structure C on M.
Then, for any f,g € C, the Poisson bracket {f,g} of f and g
can be locally (in a neighbourhood Up of each point p e M)
represented by a linear combination of the Poisson brackets of

functions from C,. with the coefficients from C,, .

0 U

p
Proof. Let f,ge C and p € M. There exist an open
neighbourhood U_ of p and functions «.,...,0., B.,.-.+,B, € C
p © . k 1 - k1 1 1 0
as well: as w, € C (R™) and w, € C (R7) such that

flUp = wlo (al""'ak) lUp and gIUp = wze(Bl,...,Bl) |Up. Hence
we get the following equalities

{f,9}|U. = {£|U_,g|U =X U =
{f.9}|U, = {£]U,.9| P}Up gIUp(fI p)
= xg|Up(w1o(a1,...,ak)|UP) =

k
=i£ wi|i°(a1""’ak)|Up'XgIUp(ailUp) =

k
= - E wi|i°(a1""’ak)IUp'xailUp(glup) =
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k1
=i§1 jEI(“’1|i°‘°‘1'~-'°‘k>'“z|j<31'---r31’)|Up'{°‘irﬁj}"p =
k 1 ..
= ¢ Iadqa,B.3|U,
i=1 j=1 alit R

where, for i =1,...,k and j=1,...,1, we have put
ij = ’ ° YA °

A (wlli (0tgreeesay) U2|j (Bl,...,Bl))[Up.

From Proposition 2.12 it follows

Corollary 2.17 Let C0 be a set of generators of the
differential structure C on M, and let {-,-}1 and {-,-}2 be
almost Poisson structures on (M,C). Then, if for any
o,B € col {alﬂ}l = {alB}z then {I}l = {'l'}z'

Proposition 2.18 Let ((M,C),{-,-}M) and ((N,D),{-,-}N) be
almost Poisson differential spaces (Poisson differential
spaces). Then the mapping

{-,}: (CxD)x(CxD) —— CxD,
defined by

(2.12) {£,9}(x,¥) = {£0-,¥),9(,¥) by(x) + {£(x,-),9(x,) }y(¥)

for any f,g e CxD and (x,y) € MxN, is an almost Poisson
structure (é Poisson structure, respectively) on the
differential space (MxN,CxD). Moreover, {aoprM,BoprN} = 0, for
any a € C and B € D.

Proof. From (2.12) it follows immediately that {-,-} is
an R-2-linear and skew-symmetric mapping. It is easy to
observe that {-,-}, defined by (2.12), satisfies condition
(2.1). (In the case of Poisson differential spaces, by using
Corollary 2.6, one can easily show that the Jacobi identity is
satisfied.)

Let ((M,C),{-,-}M) and ((N,D),{-,-}N) be almost Poisson
differential spaces (Poisson differential spaces).

Definition 2.3 A smooth mapping F: (M,C) —— (N,D) is
said to be a morphism of almost Poisson differential spaces
(Poisson differential spaces) ((M,C),{-,-}M) and
((N,D), {-,}y) if

) * * *
(2:13) {F £,F g}y = F {£,9}y,
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for any f£,g9 € D.

Evidently, the composition of morphisms of almost Poisson
differential spaces (Poisson differential spaces) is a
morphism in the respective category. If F is a diffeomorphisn
of differential spaces satisfying condition (2.13), then F is
called the isomorphism of almost Poisson differential spaces
(Poisson differential spaces).

Therefore the class of all almost Poisson differential
spaces (Poisson differential spaces), together with the above
morphisms, forms a category, called the category of almost
Poisson differential spaces (Poisson differential spaces).
Obviously, the category of Poisson differential spaces is a
subcategory of almost Poisson differential spaces.

Definition 2.4 Let ((M,C),{:-,'}) be an almost Poisson
differential space (Poisson differential space) and let
f,9 € C. A function f is said to be in involution with a
function g if (f,g} = 0.

Evidently, this relation is symmetric.

Definition 2.5 A smooth function f on an almost Poisson
differential space ((M,C),{',-}) 1is called the Casimir
function if {f,g} = 0 for any g € C.

Let us observe that if £ is a Casimir function on an
almost Poisson differential space then the vector field
Xf = {-,f} is the zero vector field.

Let us denote by Cc the set of all Casimir functions on an
almost Poisson differential space ((M,C),{:,-}). One can
easily prove

Proposition 2.19 The set Ce of all} Casimir functions on
((M,C),{-,-}) is

(i) a differential substructure of the differential
structure C on M,

(ii) a module over C as well as a Lie subalgebra of the
Lie algebra (C,{-,-}), if ((M,C),{',"}) is a Poisson
differential space.

Now, let (ﬁ,C) be a differential space and let X be a
smooth vector field on (M,C). Similarly as in the theory of
differentiable manifolds, we accept
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Definition 2.6 A function f € C is said to be a first
integral of a smooth vector field X on (M,C) if X(f) = O.

Similarly, we also prove

Proposition 2.20 If 7: (-c€,€) —— M is an integral curve
(a trajectory) of a smooth vector field X on (M,C) then any
first integral £ of X is a constant function along ¥; this
means that f.y = const.

Let us observe that in the case of differentiable
manifolds the assertion inverse to the Proposition 1.10 is
satisfied. However, one can prove that, in general, such
proposition is not true for differential spaces.

One can easily prove

Lemma 2.21 A smooth function f is a first integral of the
vector field Xh = {-,h}, if {f,h} = 0.

Proposition 2,22 The set of all first integrals of a
h ©°n ((M,C),{-,-}) forms a differential
substructure of the differential structure C on M as well as a
Lie subalgebra of the Lie algebra (C,{‘,:}), if ((M,C),{:,*})
is a Poisson differential space, where Xh = {-,h}.

vector field X

Now, we shall prove

Proposition 2.23 ILet F: M —— N be an isomorphism of
almost Poisson differential spaces ((M,C),{-,-}M) and
((N,D),{-,-}N). For an arbitrary h € D, let us put Yh = {-,h}N

and XF*h = {',F*h}M. Then the following equation holds

F X *x =Y

*“F h h*

Proof., Let f,h € D and let h be fixed. Then we have

1 1

- * -
Y, (£) = {f,h}y = {f,h} eFeF = = F {f,h} oF = =

1 1

= Xp* (£oF)oF = =

= (F'f,F'h}, oF
e { ’ }M° F

-1
= dF (Xp*, (£) oF ~ = F X% (£).

3. General Hamiltonian dynamical systems on differential
spaces

Definition 3.1 A smooth vector field X on an almost

Poisson differential space ((M,C),{:,-}) 1is said to be a
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Hamiltonian vector field if there exists a function H ¢ C such
that

(3.1) X={-,H} = XH'

The function H is called the Hamiltonian function of X or
shortly the hamiltonian. The triple ((M,C),{:,'},H) is called
the Hamiltonian dynamical system on (M,C).

Definition 3.2 A smooth vector field X on an almost
Poisson differential space ((M,C),{:,:}) is said to be a
locally Hamiltonian vector field if, for any point p € M,
there exists a neighbourhood U of p such that X|U is a
Hamiltonian vector field on ((U,CU),{-,-}U).

The differential space (M,C) is called the phase space (or
the space of states) of the dynamical system ((M,C),{:,-},H).
The points of M are interpreted as different states of the
system. In turn, the smooth functions of C are called the
observables or the dynamical quantities.

Let us denote by ¥ (M) the set of all Hamiltonian vector
fields on an almost Poisson differential space ((M,C),{‘,-}).

Proposition 3.1 The set H(M) has the natural structure of
a module over the Casimir ring Cc as well as the structure of
a Lie subalgebra of the Lie algebra (XM ,1-,-1)-

Proof. Let Xy Xp € H(M) and f € C,. By definition we get

F C

Xg + Xp = {*,H} + {~,F} = {-,H+F} = Xy ..

Similarly,
f-Xy(9) = £-{g,H} = £-{qg,H} + g-{f,H} = {g,fH} = Xeu(9)

for any g € C. Hence we get f-X for f € Cc.

H = Xen
Now, if we assume that ((M,C),{','}) 1is a Poisson
differential space, we also have the equality

(3.2) [XgoXp) = Xp gy

Hence, for any XH'X € (M), also [XH,XF] € H(M).

F
From Proposition 3.1, or more exactly from (3.2), it
follows
Corollary 3.2 For any Hamiltonian vector fields XH, Xp on
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a Poisson differential space ((M,C),{-,-}), [xH'xF] = 0 if and
only if {F,H} € Cc. '

Corollary 3.3 The mapping C 3 f — Xe € H(M) is a
homomorphism of linear space C over R onto the 1linear space
#(M) over R. Moreover, if ((M,C),{-,-}) 1is a Poisson
differential space, then this mapping is a homomorphism of the
Lie algebra (C,{:,-}) into the Lie algebra (¥(M),[(',-]).

Now, we shall prove

Proposition 3.4 Let Hl and H2 be hamiltohians of the same
Hamiltonian vector field X on an almost Poisson differential
space ((M,C),{:,°}). Then H.- H,Z € C

1 2 c’
Proof. By the assumption, X = XH = XH . Hence, for any
1 2
f e C, we have X, (f) = X, (f), or equivalently
Hy Hy
{f,H - Hy} = 0. Thus H,- H, € C..

It is well known that in the classical mechanics on a
connected differentiable manifold, Hy and H, are hamiltonians
of the same Hamiltonian vector field X if and only if H,- H,
is a constant function. :

Now, we want to study the behaviour of an observable F
along a phase curve (a history of a dynamical system) 7 of our
Hamiltonian dynamical system. As it is well known, the
behaviour of F along a phase curve ¥ in (M,C) can be described

by the function F: M —— R, given by

(3.3) F(7(t)) = e (Fea) = Ge(Fer).

But Jp(Few) (£) = (d(Few) (e,) = dF(dy(e,)) = dF(Xy(7(t)) =
= X, (7(£)) (F) = X, (F) (v(t)) = {F,H}(¥(t)).

Hence, by (2.3) we get
(3.4) F = {F,H}.

Equation (3.4) is called the equation of evolution or the
equation of motion of the observable F.

Let ((Mlc)l{'l'}MlH) and ((NID)I{'I'}Nl
dynamical systems, and let Xy and Y be Hamiltonian vector

F) be Hamiltonian

fields associated with the hamiltonians H and F, respectively.
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Let us put

(3.5) Z(X,Y) = iy Xy (X) + L, Ye(Y),

for any (x,y) € MxN, where Ly and i, are natural imbeddings of
M and N into MxN. Evidently, formula (3.5) defines a smooth
vector field on the differential space (MxN,CxD) . By
Proposition 2.14 we have the canonical almost Poisson
structure (Poisson structure, if ((M,C),{-,-}M) and
((N,D),{-,-}N) are Poisson differential spaces) on (MxN,CxD),
defined by (2.12). We shall show that the vector field 2
defined by (3.5) is a Hamiltonian vector field on
((MxN,CxD),{‘,+}) with the hamiltonian G = HoprM
consequently, ((MxN,CxD),{-,:},G) is a Hamiltonian dynanmical

+ FoprN and,

system. Indeed, from (2.12) and (3.5) we get the equalities

{f,Hepry + Fepry}(x,y) = ZHoprM+F°prN(x,y)(f) =

= {£(,y), (Hepry+ Fopry) (-,¥) }y(x) +
+ {£(x,"), (Hepry+ Fepry) (X, ) }yu(y) =
={foLy,(HoprM+ FoprN)oLy}M(x) + {foLx,(HoprM+ FoprN)oLx}N(y)=
= XH(X)(f°iy) + Yp(y) (£ed)) = iy*XH(X)(f) + L .Yp(Y) (f) =

(¢

vy (X)L Yp(Y)) (£) = 2(x,y) (£),

for an arbitrary f e CxD.

Thus we get
Proposition 3.5 Let ((M,C),{-,-}M,
be Hamiltonian dynamical systems. Then

H) and ((N,D),{-, '}NIF)

((MxN,CxD),{-,},Hepry+ Fepry)
is a Hamiltonian dynamical system, where {:-,:-} is ‘an almost
Poisson structure (Poisson structure) on (MxN,CxD), defined by

(2.12).

Now, let a and 8 be observables of Hamiltonian dynamical
systems ((M,C),{-,-}M,H) and ((N,D),{-,-}N,F), respectively.
Of course, the function aopry + BoprN is an observable of the
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Hamiltonian dynamical system ((MxN,CxD),{-,-},HoprM+ FoprN).

By putting E = aoPpry + BoprN and by using (3.4), we get
E = {E,Hepry+ Fopry} = {acpry+ Bepry, Hepry+ Fepry} =
* * : . .
= pry(a,H}y + pry{B,F}y = aepry, + Bepry.

Now, let E be an arbitrary observable of the Hamiltonian
N). Then of
course, EM = EoLy and EN = Eoi,x are observables of
(M,C),{-, }M'H) and ((N,D),{-,- }Nl F), respectively, for any

dynamical system ((MxN,CxD),{-,-},HoprM+ Fopr

(x,Y) € MxN. One can show that in this case, for the equation
of evolution, we obtain the following formula

b ey -
E = EN pPry + EN pry.

Let ((M,C),{-,-},H) be a Hamiltonian dynamical system and
let Xy be a corresponding Hamiltonian vector field.

Definition 3.3 An automorphism f of an almost Poisson
differential space ((M,C),{:,'}) is said to be a symmetry of
the Hamiltonian system ((M,C),{:,:},H) if

(3.6) £,Xy = Xy

From Proposition 3.4 and (3.6) it follows

Corollary 3.6 If £f is a symmetry of a Hamiltonian
dynamical system ((M,C),{:, },H) then f*H = H + g, where g € C
is a casimir function of the system.

It is easy to see that the set of all symmetries of a
Hamiltonian dynamical system on a differential space is a
group with respect to composition of mappings. However, in
general, this group is not a Lie group.

Now, let ((M,C),{:,-}) be an almost Poisson differential

space and let f f € C be such that, for any p e M and

ARRIE
i, 3=1,...,n,

(3.7) det({fi,fj}(p)) z 0.

From (3.7) it follows that n=2m, me N, as well as
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dpfi # 0, or equivalently Xf.(p) # 0, for any p e M and
i

i=1,...,n.

Let us put

i3
(3.8) {£,9}" = (£,9} - L AV (£, £} (£5,9),

1)
for any f,g € C, where a') denotes the inverse matrix to the
matrix ({fi,fj}). It is easy to observe that formula (3.8)
defines an almost Poisson structure {:,:-}’ on (M,C). Moreover,
one can easily show that, for any i = 1,...,n, fi is a Casimir

function with respect to {-,-}’.

Similarly as it is in the classical case, we accept

Definition 3.4 A function ¢ € C is said to be A
constraint in an almost Poisson differential space
((M,C),{',-}) if dp¢ # 0 for any p € ¢-1(0). Then the equation

¢(p) = 0,
is called the constraint equation.
Let us consider the set {¢1,...,¢n} of constraints
satisfying the condition
(3.9) det((¢i,¢j})(p) =0,

.n
for any p € ¥ :=n ¢i1(0) cM, i,j=1,...,n. Of course,
i=1
(W,Cw) is a differential subspace of (M,C) and the number of

constraints must be even.
Now, by using the functions $i := ¢.|W, for i=1,...,n,
we define an almost Poisson structure on (W,CW) by the formula

(3.10) {£,9}" = {f,9}, - §j¢1’-{f,$i}w-{$j,g}w,

for any f,g € Cy- Let us observe that, in this way, the
constraints have been built into the almost Poisson structure
{-,*}’ on the differential space (W,CW). Consequently, the
constraints ¢1,...,¢n do not enforce any restrictions on
solutions of dynamical problems in almost Poisson differential

space ((W,Cp),{-,-}').
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