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DIFFERENTIAL GROUPS AND THEIR LIE ALGEBRAS

1. Introduction

A differential group is an object which is
a differential space and a group with the group
its inverse which are smooth with respect
that this

Lie

differential structure. It is clear

generalization of the concept of a group
definition of differential group depends on the
differential space. The first generalization of
been considered in [14] for differential spaces
of Spallek. The concept of a differential group

Sikorski theory of differential spaces has been

simultaneously
operation and
to
notion
and that the
of

this type has

a given

is a
definition
in the sense
based
introduced and

on the

investigated in [6]. Independently it has also appeared in
[5]. Main results of [6] are given (without proofs) in [8] and
(7]. the

majority of results has not been published as The main

some of them are closely examined 1in However,
yet.
purpose of this paper is to present the further part of these
results. Here we restrict our interest only to the basic
definitions, examples and some elementary facts concerning the

theory of differential groups and their Lie algebras. The more

advanced problems concerning this theory will be presented in
subsequent papers.
The work is divided into five sections. In Section 2 we

recall definitions and facts from the theory of differential
The of

and

spaces which are used in the next sections. notion

differential group, differential subgroup, direct

skew-symmetric products of differential groups, and Hausdorff



516 P. Multarzynski, Z. Pasternak-Winiarski

differential group associated with a given differential group
are introduced in Section 3. Here we give also several
examples. Section 4 is devoted to the investigation of the
tangent space and the Lie algebra of all left~invariant vector
fields on a differential group. In Section S it is shown that
for any differential group there exists exactly one covariant
derivative with respect to which all 1left-invariant vector
fields are parallel.

For all basic definitions and more detailed considerations
concerning the topics of the study we refer to [5], (6], [12],
[13] and also to other papers contained in this volume.

2. Preliminaries

We shall use the following notation. If ¥ is a non-empty

family of real functions on a set M then < denotes the

¥
weakest topology on M in which all functions of the family &

A is the set of all

real functions B on A such that, for any point p € A, there

are continuous. For any subset A ¢ M, ¥

exist an open neighborhood U € t, of p and a function o € ¥

¥

such that BlAnU = By sc¥ we denote the family of all

o .
real functions on Mlsggch are of the form wo(al,...,an), where
newN, a,...,0, ¢ ¥ and w € Cm(Rn). A family C of real
functions on M is said to be a differential structure on M if
(scC)M = C (see [11] ([12] or [13]). It is easy to see that,
for any ¥ ¢ RM, the family sc?M is a differential structure on
M (see [12], [13]). It 1is <called a differential structure
generated by %. .

If C is a differential structure on M then the pair (M, C)
is called a differential space (d-space, for short). A smooth
map f on a d-space (M, C) into a d-space (M, D) is denoted by

f: (M, C) — (N, D),

(for the definition of smooth maps and diffeomorphisms see
[12] or [13)]).

Let (N, D) be a d-space and f: M —— N. Then the
differential structure C generated by the family
f*D := {aef: o € D} on M is called a differential structure



Differential groups 517

induced from D by f£. In t&is case C = (f*D)M' Moreover, if f
maps M onto N, then C = £ D. A map g: X — M is smooth, with
respect to a differential structure % on X, iff
fog : (X, ¥) —— (N, D) (see [6], and [15]).

Let (M, C) be a d-space. For an arbitrary mapping
1(C) of real
functions defined on N. In [15]) it was shown that D is a

f: M —— N, we may consider a family D := (f*)_

differential structure on N. This is the greatest differential
structure on N with respect to which f is a smooth mapping. A
mapping g: N —— X is smooth with respect to a differential
structure ¥ on X iff gef: (M, C) —— (X, ¥). A function
a: N—— R is an element of D iff f*(a) = aof € C. The
differential structure (f*)-l(C) is called the differential
structure coinduced from C by f.

If (M, C) is a d-space and A ¢ M, A # ¢, then CA is a
differential structure on A and a d-space (A, CA) is called a
differential subspace of (M, C). We have CA = (i*C)A, where i

is the inclusion mapping of A in M.
Let {(My, Cy)}jer
the differential structure X C; generated on the Cartesian

be an indexed family of d-spaces. Then

iel
product i:IMi by the family {fiopri: ielI, fi € Ci} (prj is
the natural projection of X M. onto Mj) is called the
ieI

differential structure of the Cartesian product of d-spaces

{(M.,, C.)} . The d-space ( X M,, X C,) is said to be the
i i . i’ ., i

ieI lel

Cartesian product of the family {(Mi, Ci)}

ieI

ieI”
For a finite set of indices I = {il,...,ik}, we write
C; X...x C; instead of X C,. It is easy to verify that the
1 k iel

topology T coincides with the standard topology of the

X C,
jer
Cartesian product of topological spaces. A function f on X M,
iel
is an element of 'x Ci iff, for any p = (pi)ieI € .x Mi’ there
lel lel
exist a finite subset Io = {11,...,1k} c I, sets Uij € tci ’

for j = 1,...,k, and functions aj € Cj' W € Cm(Rk) such that

£ = Wo (&, °Pr; ,...,0a, °pr. ) , where U= X U, and U, = M.,
|u 1 i, k i |U jer & 3j 3
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for j e I\ Io.

Let p be an equivalence relation on M, where (M, C) 1is .a
d-space. By M/p we denote the quotient set of all equivalence
classes [p]p, for p € M, and by np - the canonical projection
M>p — [p]p € M/p. The differential structure coinduced
from C on M/p by np will be denoted by Clp. A pair (M/p, Clp)
will be called the quotient differential space with respect to
the equivalence relation p (see [9) or [15]). ;

Let = be a relation on M given as follows:

n
]

q iff, for any f € C, f(p) £f(q).

It is easy to see that = is an equivalence relation. It can

for any p, g € M, p

also be proved that the topology tCIE is the standard quotient
space topology on M/= (with respect to the topology Te on M,
see [9] Th.1.1) and that it 1is a Hausdorff topology (see
(13]). We call (M/=, Cl=) a Hausdorff differential space
associated with (M, C).

By a tangent vector to a d-space (M, C) at a point p e M
we mean any linear mapping v: ¢ — R satisfying the so-called

Leibniz condition (chain rule)

v(a-8) = a(p)v(B) + v(x)B(p),
for a, B € C.

It can be easily seen (see [13)])) that the set TpM of all
tangent vectors to a d-space (M, C) at p € M is, in a natural
way, a linear space over the field of real numbers R. The
linear space TpM is called the tangent space to a d-space
(M, ¢) at a point p e M. For any a« € C, we define the
differential of « at p e M as a linear mapping TpM —> R given
by the formula dpa(v) := v(a), where v ¢ TpM.

Let us denote by TM the disjoint sum of all tangent spaces

to (M, C), i.e.
™ :=U T M.
peM p

We define the tangent mapping or the differential of a smooth
function a« € ¢ as a mapping da: TM — R satisfying the
IT M= dpa. By TC we denote the differential

p
structure on TM defined as

condition da
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TC := sc({aem: a € C} v {da: a € C})my.

where n: TM — M 1is the natural projection, satisfying
n(v) = p, for any v € TpM. The pair (TM, TC) is called the
tangent space to (M, C). The triple ((TM, TC), @m, (M, C)) is
called the tangent bundle of a d-space (M, C).

By a tangent vector field on a d-space (M, C) we mean any
mapping V which associates with every point p e M a tangent
vector V(p) € TpM. A tangent vector field V on (M, C) is said
to be smooth iff V: (M, C) —— (TM, TC). We can also say that
a (smooth) vector field is a (smooth) section of the tangent
bundle. In -other words (global interpretation), a smooth
tangent vector field on (M, C) 1is any linear mapping
V: ¢ — C, satisfying the Leibniz condition
V(a-B) = aV(B) + V(x)B. The correspondence between 1local and
global interpretation of smooth vector fields is clear from
the formula (V(a)) (p) := V(p) (a).

A d-space (M, C) is said to be of constant differential
dimension iff

(i) dim TpM = dim TqM, for any p, 9 € M,

(ii) for every tangent vector v € TM, there exists a smooth
tangent vector field Von (M, C) such that v = V(p),
where p = (V).

Remark. The corresponding definition formulated in the
original monograph (see [13]) slightly differs from the above
one. Namely, in the condition (i) Sikorski additionally

assumes that dim TpM =n < o, for p € M.
For any mapping f: (M, C) — (N, D) one defines its
tangent mappin or differential d f: TM — T N at
g pping ( ial) P P £(p) !

p € M, which is given by the formula

(A f(V)1(B) == v(Bef),

for B € D. By df we denote the mapping TM — TN, defined as

deT M dpf, and we call it the tangent mapping (or

differential) to the mapping f.

A mapping f: (M, C) — (N, D) is said to be an immersion
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if, for any p € M, the differential dpf is a monomorphism, and
we call f an imbedding if £ is an injective immersion.

The pair ((M, C), £f) is said to be an f-differential
subspace of a d-space (N, D) (f-d-subspace, for short) if
(M, C) is a d-space and f: (M, C) — (N, D) is an imbedding.
Then, in the image f£f(M) ¢ N, one can define a differential
structure ¥ coinduced from C by f, the so-called image
structure. Then £f: M — f(M) is a diffeomorphism. One can
easily see that the image structure ¥ can, in general, be
£(M) induced on f (M)
= ¥, f-d-subspace will

stronger than the differential structure D

Df(M) c ¥. If Df(M)

be called the regular f-d-subspace.
Notice that, if A <M and f = iA

inclusion mapping, the image structure ¥ coincides with Car

from (N, D); i.e.
t A — M is the

i.e. (A, CA) is the regular iA-d-subspace of (M, C).

Let us denote by ¥(M) the linear C-module of all smooth
vector fields on (M, C). The module ¥(M) can be considered as
the Lie algebra with the natural commutator

(2.1) [V, W] := VoW - WoV,

for V, W e X(M).
For a diffeomorphism f: (M, C) —— (N, D) one defines the
mapping f_: ¥(M) —— ¥(N) by the formula

-1
£,(V) := dfeVef °,

for Vv e ¥(M).

From the above definitions we see that the tangent mapping
df is well defined for any smooth mapping f but df induces the
mapping £, of vector fields only in the case when f is a
diffeomorphism.

One can prove that, for any diffeomorphism
f: (M, ¢) —— (N, D), the mapping f,: ¥(M) —— X¥(N) is an
isomorphism of the Lie algebras. In addition, for a vector
field V € ¥(M) and a function a € C we have

(2.2) £,(av) = (aof 1)£ V.

Indeed, R-linearity, inverseability of f, and formula (2.2)
follow simply from definition (2.1).



Differential groups 521

Let us check only that
(2.3) £,[V, W] = [£,V, £.W],
for any V, W e ¥(M).
[(£,V)81(Q) = [(AfeVof 1)B)(Q) = [AfoVof *(q)18 =
= ag(V(£ 1 (q)))8 = V(£ H(q)) (Be£) = [V(B-£)1 (£ H(q)) =
= (V(Be£) o£71) (q),

qgqeN, i.e.

(2.4) £,V(B) = V(Be£)o£ T,

for any B € D. From formula (2.4) we obtain a

£,[V, WI(B) = [V, W](Bef)of L =

= V(W(Bo£))of T - W(V(Bef))of L =

1 1

of)of © =

V(W(Bof)of Lof)et™l = W(V(BoE)of™

(£, V£ W) (B) - (EWEV)(B) = [£,V, £,W]1(B),

which ends the proof of (2.3).
Let f: (M, C) —— (M, C) be a diffeomorphism. A vector
field V € ¥(M) is said to be f-invariant if

(2.5) £,V = V.

From the above statements it follows that all f-invariant
vector fields V € ¥(M) form a subalgebra of the Lie algebra
X(M).

By a smooth curve in a d-space (M, C) one means any smooth
mapping
(2.6) 7: (I, 8;) — (M, C),

where (I, 81) is a d-subspace of the Euclidean manifold (R, &)
such that I my be one of the intervals (a, b), (a, b}, [a, b),
(a, b], for a, b € [-», ®].

For the case of a differential manifeld (M, C), we Kknow
that, for any field V € I(M) and p € M, there exists an open
neighborhood U of p, an open interval (-g, €) ¢ R and a smooth
mapping

(2.7) ¥: (-¢, €) x U —— M,
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such that, for any q € U, the curve

(2.8) Ty (-e, €) 3 t —— 7q(t) = 7(t, q) e M,

is the unique integral curve for the field V defined on
(-€, €£€) and satisfying the initial condition

(2.9) 1q(0) = q.

Unfortunately, the analogous fact is no longer valid for
the general case of differential spaces. For example, it fails
to be true if we consider the differential space (also

d-group) (@, &.), where Q@ denotes the set of all rational

)
numbers. One cgn easily see that in this ease no non-constant
smooth curve can exist because there is no non-constant
continuous mapping from R into @. The wunique character of
integral curves, which existed for vector fields on
differentiable manifolds, is often lost in the general case of
differential spaces. In general, more than one integral curve
for a vector field on a differential space is possible.
However, for the case of locally finitely generated
differential spaces (manifolds, in particular), there is

always no more than one integral curve of every vector field .

3. Differential groups

Definition 3.1 A pair (G, §) is said to be a differential
group iff
¢ G is a group;
° (iGl, §) is a d-space, where |G| denotes the set of
elements of G;

3 a map o: (GxG, $x%¥) —— (G, %), defined by the formula

(3.1) o(g, h) := gn”},

is a smooth map.

It is evident that a differential group is automatically a
topological group (with the topology Tg in G) because the
smoothness of the mapping ¢ implies its continuity (see ([5],
(6] or [7]). In [7] it is proved that the group multiplication
and the inverse mapping in G are smooth.
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Example 3.1 Let G be an arbitrary group. If 90 denotes
the differential structure of all constant functions on G then
(G, 90) is a differential group. Similarly, if RG is the
differential structure of all real-valued functions on G then
(G, RG) is also a differential group. In the 1last case the
topology tRG is the discrete topology on G.

Proposition 3.1 Let H be a group, (G, §) - a differential
group and ¢ - (an algebraic) homomorphism on H into G. Then

(H, ¢*(§)H) is a differential group and
é: (H, ¢*(§)H) —— (G, §) is a smooth map.

Proof. The smoothness of ¢ follows directly from the
definition of the differential structure ¢*(§)H (see Section
2). This implies that the map

HxH > (g, h) — 7(g, h) := ¢(g)é(h) L e G

is smooth with respect to the differential structures
¢*(§)H x ¢*(‘§)H and §¥, respectively.

Let us consider the map

HxH 3 (g, h) — o (g, h) := gh™! ¢ H.

Since ¢o¢H = m is smooth  on GxG, oy is also smooth (see
Section 2, for the properties of the differential structure
induced from ¥ by ¢).

Example 3.2 If H is a Lie group then (H, C°(H)) is a
differential group. If G is an arbitrary subgroup of H, ¢ is

the natural embedding of G into H and
*
g = ¢ ((C°°(H))G = C°°(H)G then (G, §) is a differential group.

Example 3.3 Let 8: G —— Gl(n, R) be an n-dimensional
matrix representation of a group G, n € N. By Proposition 3.1
the pair (G, e*(cm(Gl(n, R)))G) is a differential group. It
can be easily seen that the differential structure

* : .
8 (C (GY(n, IR)))G is generated by the family {eij}lsi,jsn of
all matrix elements of the representation 6.
Example 3.4 Let G be a 1locally compact, connected

topological group. Let U be an arbitrary neighborhood of the
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identity element of G. Then there exists a normal subgroup N
of G such that N ¢ U and G/N is a Lie group (see [2], 1II,
§10). '

Denote by ¢ the canonical map on G onto G/N. From
Proposition 3.1 it follows that (G, ¢*(Cm(G/N))G) is a
differential group.

Theorem 3.1 Let ¥ be a family of real-valued functions
defined on a group G. Let ¥ := sc?FG be a differential
structure generated by ¥ on G. The pair (G, §) is a

differential group iff the following condition is satisfied

(GS) for any £ € ¥ and any (g, h) € G x G, there exist a

neighborhood U € T, of g, a neighborhood V e Ty of h,

¥ r+s)

mappings a € ?r, B € #° and a function w e Cm(R
such that for each (g’, h’) e U x V

1) = w(a(g’), B(h")).

Proof. Suppose that (G, ¥) is a differential group. Since

f(g'h’”

the map o is smooth (see (3.1)) we obtain that, for any
fe ¥ c¥%, the map fo0 € § x §, and the condition (GS) follows
directly from the definition of ¥ and ¥ x § (see Sec. 2).

Suppose now that ¥ satisfies the condition (GS). Since any
function of G is locally a function from sc¥, we obtain that §
also fulfills (GS). Hence ¢ is a smooth map, and (G, §) is a
differential group.

Example 3.5 Let G = Diff(M)p be a group of all smooth
diffeomorphisms of some differentiable manifold M which leave
a point pe M fixed. Let ¢ = (¢1,...,¢n): U —> R" be a
smooth chart defined on a neighborhood U of p such that

¢(p) = 0. For any multiindex (i .,in) € Nn, we define a

17°°

function f? i P U—R in the following way '
1 n ik
£% (9) "9 (o)
. : g = ’
13°+°1n ax*1...9x'n

where i =i, + ... + in and gk = ¢kogo¢-1. Denote by & the

1
differential structure on G generated by the family of
. o k . : . n
functions 9¢ = {fil"'in :t 1 =Xk =n, (11,...,1n) €e N'}. By
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the differentiation rule of superposition of maps and
differentiation of the inverse map, it follows that the family
$¢ satisfies the condition (GS) from Theorem 3.1 (in this case
U=V =G and w is a rational function). Then (G, §) is a
differential group. It is easy to see that the differential
structure ¥ does not depend on the choice of the chart ¢.

Analogously, we can define the differential group
structure on the group of germs of diffeomorphisms preserving
the point p, on the group of analytic diffeomorphisms or on
the group of all germs of local analytic diffeomorphisms. In
the last two cases the topology Te ON G 1is the Hausdorff
topology.

Example 3.6 Let fn' 9p R —— R be given by

= sin ¥ = X
fn(x) = sin &, gn(x) cos - nelN, xeR.
We have
£.(xy) = £ ()9, (v) - £ (¥)g, (%)},

g, (x-y) = g (X)g (¥) + £ ()£ _(¥),

where x, y € R. Let § be a differential structure generated on
R by the family ¥ := {fn, Intnen: BY Theorem 3.1 ((R, +), 5}
is a differential group. It can be proved (see [3] or ([6])
that the topological group ((R, +), tg) is not complete.

Let (G, §) be a differential group and H be any subgroup
of G. It is an immediate corollary from Theorem 3.1 that the
differential structure ¥ satisfies the condition (GS). This
implies that the family ¥ := {fIH: f € 5} also satisfies (GS)
and consequently the group H with the differential structure
K = $H generated by ¥ on H is a differential group. It is
called a differential subgroup of the differential group
(G, ¥). Let us notice that ¥ = ¢*(§)G, where ¢ is the natural
embedding of H into G (see Prop. 3.1 and Ex. 3.2). Thus, the
category of differential groups turns out to be closed with
respectlto the operation of taking a subgroup, which is not
true in the category of Lie groups.

Suppose now that {(Gi, ?i)} is a family of differential

ieX
groups, where I is an arbitrary set of indices. Let, for any
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j eI, pr.: X G, — Gj be the natural projection of the

» i
Carteéian pr;Z£ct X G, onto G.. Since, for any Jj € I, gj
satisfies (GS), thzeiamily ¥ = {fjoprj : fj € §j, j e I} of
fun. tions on the product X G, satisfies the condition (GS).
Since ¥ generates, the dif%ggential structure ing' on ixIGi,

, € €

(X6, X5, is é_fﬂifferential group. It is called the
iel ieI :
of differential

direct product of the family {(G g.)}

i’ "i’7ieX
groups.

Example 3.7 Let G be a group and {el}ieI be an arbitrary

family of matrix representations of G. For any i € I, the map

el: ¢ — Gl(ni, R) is a homomorphism of groups. Define the

map 86 : G — X Gl(ni, R) in the following way
iel
i
6(g) := (67(9)) gy € ¥ Gl(n;, R), g € G.
1€l
It is obvious that 8 is a homomorphism of G into the direct

product X Gl(ni, R). By Proposition 3.1 the pair (G, ¥),
€l

where § := 9*[ X Cm(Gl(ni, R))]G, is a differential group. It
iel
is also easy to see that the differential structure ¥ is

(S8

generated by the family of all matrix

i

{ek,l}ieI,lsk,lsni

elements of all representations el, ie I.
Especialiy interesting is the case when G is a compact

topological group and IC is the family of all irreducible

lel
representations of G. From the Weyl approximation theorem (see
[4] IV, 884) it follows that any continuous function f on G is
a Jlimit of an uniformly convergent sequence of linear

. . . . 1
combinations of functions of the family {ek,l}ieI,lsk,lsni'

Now,&by the Urysohn lemma it follows that the topology Te
coincides with the initial topology.

Proposition 3.2 Let (G, ¥) and (H, ¥) be differential
groups and denote by Aut(H) the set of all smooth
automorphisms of the group H. Let w : G > g —> wg € Aut(H)
be such a homomorphism of groups that the mapping
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Q : GxH » (g, h) —— Q(g, h) := wg(h) € H,

is smooth. In G x H we define the group multiplication in’ the
following way

(g, h)e(g’, h') := (99’, hu (h’)).

The triple (GxH, o, §xX) is a differential group, called
Q-skew-product of G and H. ‘
Proof. We shall show the smoothness of the mapping

o: (GxH)x(GxH) —— GxH,
-1
where o((g,h),(g’,h")}:=(g,h)e(g’
We see that

o((g,h),(g',h")) = (99" Lhw (0 _ (nTh)) =

1

yw _.(h'T)).
g’ !

9
1 -1
= (g9 o _,(h ).
g9’
It is enough to show the smoothness of the components o, O,

of o = (01, 02). Indeed, these components are smooth since
they are composed out of smooth mappings

‘ a.l = 0.G° (n1°prll n1°pr2)l

o, = Hy° ["2°pr1' Qo(oGo(nloprl, "1°pr2)' 1anon2opr2),

where My is the (smooth) multiplication in H and the mappings
n,, ®,, Pr,, pr, are the natural projections.

Notice that the concept of a direct product of two groups
is evidently a special case of the concept of a skew-product
defined above.

Let e be the identity element of the topological group G.
Denote by N the closure of the set {e}. It is known (see [1],
ITI, §2) that N is a normal subgroup of G and that the
quotient topology on G/N is the Hausdorff topology. In the
theory of topological groups the quotient group G/N is called
the Hausdorff topological group associated with G. We are
going to introduce an analogous notion for differential
groups.
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Proposition 3.3 If (G, ¥) is a differential group and N
is the closure of {e}, where e is the neutral element of G,
then
(3.2) gN = {X € G: VfeG f(x) = f(qg)},

for any geG.
Proof. Let N, :=q £71({f(e)}). Since, for any fe¥, the
fes

set f-l({f(g)}) is closed in G, we obtain that Nl is closed,

and consequently N c¢ Nl'

Suppose now that there exists g e Nl\N' Since G\N € Tg
there exist k e N, a € ?k and an open non-empty set D ¢ Rk
such that g € a_l(D) ¢ G\N. On the other hand, g € Nl, which
implies a(e)=a(g)eD. Then e € a_l(D) c G\{e} which 1is an
evident contradiction. Consequently, Nl\N =@, and (3.2) is
proved for g = e. ,

If g is an arbitrary element of G, then x € gN iff

1

g "X € N. By the -first part of the proof, this is equivalent

[ ]
to the following condition: if £ € § then
-1
f(x) = (f-L_)(g "x} = (f-L_)(e) = £(g),
. g g

where L_ denotes the left translation in G (by Proposition 4.1
L_ is a diffeomorphism on G onto G). This completes the proof.

Corollary 3.1 If "=" is the equivalence relation on the
group G, defined in Sec. 2, then G/N = G/=.

Theorem 3.2 Let (G, §) be a differential group. Then
(G/=, §l=), where §|= is defined in Sec. 2, is a differential
group.

Proof. Denote by ¢ the canonical map on G onto G/= and
choose the map R: G/= —— G satisfying the following
condition ¢°R = idG/E. By the definition of $|=, any function
f € ¥ is of the form £ = fo¢, where T ¢ §|=.

Since the family {f Y(0)=¢"Y (¥ 1(6)cG: @ is an open
interval in R} forms a subbasis of the topology Tg, any U e T
has the following property: if g € U then gN ¢ U, where N is
the closure of {e}. Hence, for any U e Tes R(¢(U)) < U.

Suppose now that f € §|= and put f := f-¢. By Theorem 3.1,
for any x, y € G/= there exist neighborhoods U and V of R(x)
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and R(y), respectively, mappings a € ?r, B e % and a function
w e cm(Rr+s) such that, for any (g’, h'’) e UxV,

1) = w(a(g’), B(h")).

Then, for each (x’', y’') € ¢(U) x ¢(V),

Yy = BeR(x' ) @Ry )Y = F(R()IR(Y)
= £(R(X')R(Y’) 1) = we («(R(x')), B(R(Y'))).

Since a = a-¢ and B = Bo¢, where «u € (?ls)r and 8 = (§|E)s, we

obtain

f(g'h’”

F(x'y’” Ly =

Tx'y' ™) = w@x’), B(y)).
Consequently $|l= satisfies the condition (GS), which implies
that (G/=, ¥l=) is a differential group.

Obviously, the topology T is the Hausdorff topology. We

gl=
shall call (G/=, §|=) a Hausdorff differential group

associated with (G, ¥).

4. The tangent space and the Lie algebra of a differential

rou

For any g € G, by the symbols Lg and Rg we shall denote
the so-called left and right translations in the group G,
which are defined as mappings G —— G such that

Ly(h) := gh,

Rg(h) := hg,
and the automorphism adg(h) := ghg-l. It is obvious that
ad_ = L _oR .
-1
g9 g g

Proposition 4.1 If (G, §) is a differential group then,
for any g € G, the translations Lg, Rg and the automorphism
adg are diffeomorphisms.

The proof can be found in [7].

From this we have the following
Corollary 4.1 Let (G, ¥) be a differential group. Then,
for any g € G,
dlngG = dlmTeG,
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where e is the neutral element of G.

Proof. Since Lg and Rg are diffeomprphisms, the tangent
mapping (differential) deLg:‘TeG ———».TgG proves to be an
isomorphism of linear spaces.

Lemma 4.1 For any 1 € TeG and &« € §, the function
f: G —— R, given by the formula

f(g) := [deLg(ﬂ)](d) = n(a°Lg),

is a smooth function, i.e. f € ¥.

Before we prove this lemma let us make one point clear.

Remark. This lemma does not seem to be obvious because it
does not follow from the assumption that «a e § and L iss a
diffeomorphism G —— G. Indeed, if we consider a differential
space (R, C), with the differential structure C generated by
the set C, := {fa: R — R, a € R}, where f_(x) := |x-al, we
see that L,: R — R, defined as Lx(y) 1= X+y, is a
diffeomorphism in (R, C). Nonetheless, if we take a non-zero
tangent vector 7 € T,R, we see that the function f defined as
f(x) := n(faoLx) is not a smooth function. The translations Lx
and R, are diffeomorphisms if the mapping_(3.1) is smooth with
respect to each of its arguments separately. However it is not
enough for f to be smooth.

By Theorem 3.1, for any o € §,

*
o0 = wo(alonl, a2°"2)'

for some w € Cm(Rzn), oy, &, € §n, n € N. Let jG: G — GXxG,
jg(h) := (g, h). It is well known that, for any g € G, jg is a
smooth mapping ([13). The translation Lg can be written in the

form

L = 0ej o0 .

g 19°%
From the smoothness of Lg we see that, for any a € §,
(4.1) aoLg = aooojgooe € 5.

Let 7 € TeG, and f(g) := n(aoLg). We shall show that
f e §. From (4.1) we have
aoLg = aooojgoae = wo(alonlazonz)ojgoo

If we denote ug = (alonl, azonz) °jg°0e, we can write f

e
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in the form
£ = oL, = ° .
(9) n(a g) n(w ug)
Therefore

f(g) = wi(ug(e))-n(a1°n1°jgove) + wé(ug(e))-n(a2°n2°jg°ve) =
= wé(ug(e))-n(a2°oe)-

Since w € Cm(Rzn), we obtain that also wé € Cm(Rzn)

Therefore
£(9) = n(aeo w) (o, (g),a,(e)),

*
or f = n(aooe)wéo(al,az(e)).
Let us denote by Q the smooth mapping R —— R, defined as

Q(x) = w (x,x (e)).
Thus, *
f = a-Qoal,
where a := n(doae) eR, Qe Cm(Rn), a, e . This ends the
proof of smoothness of the function f.
From the above lemma we have the following
Corollary 4.2 For any 7 € TG, the tangent vector field

v given by

n'
(4.2) V(g) := deLg(n),
is a smooth tangent vector field.

Proof. 1Indeed, for any «o € &, (Vna)(g) = Vn(g)a = f(qg),
where f is a function from the proof of Lemma 4.1. Hence
Vna € §, which means that V is smooth.

As a consequence of the above statements, we obtain the
following important

Theorem 4.1 Every differential group is of constant
differential dimension.

Proposition 4,2 For any 7 € TeG, the (smooth) ‘tangent
vector field Vn' given by (4.2) is left-invariant, i.e. it is
invariant with respect to all left translations L., for g € G,

L .V =V_.
g*'mn N

The proof of this fact is simple.
On the strength of formula (2.5), the module of all left
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invariant vector fields is a subalgebra of the Lie algebra
M.
Now, we are ready to formulate the following

Definition 4.1 Let (G, §¥) be a differential group. The
vector space £(G), over R, of all left-invariant and smooth
vector fields on G, together with the Lie multiplication [-, -]
defined by (2.3), is said to be the Lie algebra of a
differential group (G, §); i.e. the Lie algebra of (G, %) is
the pair (£(G). [*,-1).

Proposition 4.3 For any differential group (G, ¥), the
linear spaces TeG and £(G) are isomorphic.

Proof, By Corollary 4.1, the map

;G: TeG 3N — Vn € £(G), where Vn(g) = deLg(n), for 7 € TeG'
g € G, is an isomorphism of these linear spaces.

Proposition 4.4 Let (G, ¥) and (H, X) be d-groups. For
any smooth homomorphism f: G —— H (f is said to be a
homomorphism of d-groups), the mapping £(f): £(G) —— £(H),
defined by

m i Wit
(4.3) £(£) == dyed feds,
is a homomorphism of Lie algebras. Moreover, for any smooth

homomorphisms £f: G —— H and g: H —— 2,

£(g-f) = £(g)-£(f)

£(id

(4.4)
G) = 1d2(G).
Proof. The linearity of £(f) is obvious. We shall show
only that
(4.5) L(£) [V, W] = [2(f)V, £(f)W],
for V, W e £(G).

For any element z € G, we see that

LyefeLg(z) = Ljef(gz) = h(gz) = he(q)£(z) =

- H _ g
- th(g)f(Z) = (th(g) f) (z)l

which means that
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(4.6) Lﬁf(g)of - LgefoLg.

on the other hand, we see that for any X € £(G), g € G and
B € X

G

He _
gX(e)BeLyof =

X(BeLpof) (9) = X(g)BoLpef = d L

- x(@) [Be1p-£e1§) = x(o) (Be15e g ot -

= H o = =
= a0t gy o O1X(@ )& = (£ (mE(a)) |8
= [tenxig)me(@) = (nnerie) @),
and consequently
H H
(4.7) x(geLlef) = [[2(f)X]B)oLhof.
In turn, for h €e H and X € £(G), we obtain

(4.8) (£(£)X) (h) = d_Ly(d_f X(e)) = d_(Lpef)X(e),

(see (4.3)), where e € G and € = f(e) € H are neutral elements

in G and H.

By replacing X with [V, W] in formula (4.8) and taking
into account formulae (4.6) and (4.7), we obtain

(2er v, wg)my = (e v, wrm]e -

= (aeafienr v, wicen)e = v, wice) (Boret) =

- V(e)[W<BoL§of>] W(e)[V(B°L§°f)] =

= V(e)[[f(f)WJBoLgof] W(e)[[f(f)V]BoLgof] =

= [a.ahenvie ] teerns [de(Lgof)W(e)][z(f)V1ﬁ =

= [[f(f)V](k)][f(f)W]B [[r(f)WJ(k)][z(f)VJB =

= [[f(f)V]°[2(f)W]B](h) [[f(f)W]°[2(f)V]B](h) =
- [[£<f)Vo2(f)w - f(f)W°2(f)V]B](h) -

= [[g(f)v, ﬁe(f)W]B] (h),
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which ends the proof of formula (4.8).
Now, let f: G—— H and g: H——> 12 be smooth
homomorphisms.

. =1 . =1
2(gef) = Jgedg(gef)edg™ = Jyo{dp(oy9 ° dofledg” =
= ) o ° .-10 j o ° .-1 = ©
= JZ df(e)g JH JH def JG Z(g) 2(f) °

And finally we prove that

. . R R T RN R
£(idg) = J4odgldgedg Ig 1dTeG Je Jg° g 1dy ) -

As an immediate consequence of the above proposition we
have the following

Corollary 4.3 £ is a covariant functor from the category
of differential groups into the category of Lie algebras. With
every d-group G the functor ¢ associates its Lie algebra £(G),
and with every homomorphism f: G ——> H of d-groups the
functor ¢ associates the homomorphism £(f): £(G) —— £(H) of
Lie algebras.

Let H be a d-subgroup of a d-group G. On the strength of
the above statements we can identify the Lie algebra £(H) with
the subalgebra of £(G); the identification is done with the

help of the monomorphism £(LH), where i H —— G denotes the

inclusion mapping. .

Comment, For a Lie group G and X € X(G), exactly one
(maximal) integral curve of X can be drawn through a chosen
point g € G, i.e. the equation gf ¢ = X(¢(t) has exactly one
solution satisfying the condition ¢(0) = g. This unique
solution is denoted by Qx,g and it is defined on an interval
(-e, €), where € depends on g. If X is a smooth left-invariant
field, the integral curve ¢X,g is well defined on the entire
line R. The corresponding statements are, in general, no
longer valid for differential groups since it can occure that
there is no non-constant and smooth curve y: I —— G.

Example., Let us consider the d-group (0, &,.), where @ is

)
Q
the set of rational numbers. It is very well known that there
is no continuous and non-constant mapping R — 0. Since

every smooth mapping is continuous, there is no smooth and
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non-constant curve in Q.

For Lie groups the exponential mapping is defined with the
help of the so-called one parameter group ¢X,e: R —> G. The
formal translation of the definition, in general case of
d-groups, is impossible. Therefore a suitable definition for
the case of d-groups must have quite a different form.

Lie groups are locally diffeomorphic to their Lie algebras
while this is, in general, not true for d-groups.

5. The natural covariant derivative in a differential

rou

Before we prove the main statement of this section we
remind the following

Lemma 5.1 Let (M, C) be a d-space of constant
differential dimension and W a differential C-module [12]. Let
V1""'Vm be a vector basis on M, wl,...,wn a C-basis of the
C-module ¥, and Ptj € C smooth functions on M. Then there
exists exactly cne covariant derivative Vv in W, such that 'th
are its coordinates with respect to the basis Vire-=eVy and
wl""'wn’ i.e.

(5.1) V. W. = I'S.w, .
V. ' J ij k

For the proof see book [13].

Oon the strength of this lemma one can prove the following

Proposition 5.1 For any differential group (G, ¥) of
finite dimension, dimTeG < o, there exists exactly one
covariant derivative V on G, such that

(5.2) Vg(m =0,
for any v € TG and 7 € TeG.

Proof. Let Ee = {nt}teT be a linear basis of the tangent
space TeG' Since, for any g € G, the translation Lg: G — G
is a diffeomorphism, the set Bg = Lg*(ﬂe) = {Lq*nt: t e T}
forms a linear basis for the tangent space TgG. Hence the
vector fields Wt, t € T, given by

(5.3) Wy () = Lo,
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g € G, form a vector basis on the d-space (G, §). From the
above lemma we learn that there exists exactly one covariant
derivative V on G, the coordinates of which (the so-called
Christoffel symbols) with respect to the vector basis MWeteer
on G are equal to zero.

This unique covariant derivative defined by (5.2) is said
to be the natural covariant derivative on a differential group
(G, §).
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