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DIFFERENTIAL GROUPS AND THEIR LIE ALGEBRAS 

1. Introduction 
A differential group is an object which is simultaneously 

a differential space and a group with the group operation and 
its inverse which are smooth with respect to a given 
differential structure. It is clear that this notion is a 
generalization of the concept of a Lie group and that the 
definition of differential group depends on the definition of 
differential space. The first generalization of this type has 
been considered in [14] for differential spaces in the Sense 
of Spallek. The concept of a differential group based on the 
Sikorski theory of differential spaces has been introduced and 
investigated in [6]. Independently it has also appeared in 
[5]. Main results of [6] are given (without proofs) in [8] and 
some of them are closely examined in [7]. However, the 
majority of results has not been published as yet. The main 
purpose of this paper is to present the further part of these 
results. Here we restrict our interest only to the basic 
definitions, examples and some elementary facts concerning the 
theory of differential groups and their Lie algebras. The more 
advanced problems concerning this theory will be presented in 
subsequent papers. 

The work is divided into five sections. In Section 2 we 
recall definitions and facts from the theory of differential 
spaces which are used in the next sections. The notion of 
differential group, differential subgroup, direct and 
skew-symmetric products of differential groups, and Hausdorff 
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differential group associated with a given differential group 
are introduced in Section 3. Here we give also several 
examples. Section 4 is devoted to the investigation of the 
tangent space and the Lie algebra of all left-invariant vector 
fields on a differential group. In Section 5 it is shown that 
for any differential group there exists exactly one covariant 
derivative with respect to which all left-invariant vector 
fields are parallel. 

For all basic definitions and more detailed considerations 
concerning the topics of the study we refer to [5], [6], [12], 
[13] and also to other papers contained in this volume. 

2. Preliminaries 
We shall use the following notation. If ? is a non-empty 

family of real functions on a set M then z^ denotes the 
weakest topology on M in which all functions of the family 9 
are continuous. For any subset A c M, 9 is the set of all 
real functions (3 on A such that, for any point p «= A, there 
exist an open neighborhood U s of p and a function a € y 
such that /3jAriU = a|AnU" w e the family of all 
real functions on M which are of the form u»(a ,...,«n), where 
n e IN, alf...,a e 9 and u) e C°°(IRn) . A family C of real 
functions on M is said to be a differential structure on M if 
(scC)M = C (see [11] [12] or [13]). It is easy to see that, 
for any ? c R , the family sc?M is a differential structure on 
M (see [12], [13]). It is called a differential structure 
generated by 9. 

If C is a differential structure on M then the pair (M, C) 
is called a differential space (d-space, for short). A smooth 
map f on a d-space (M, C) into a d-space (M, D) is denoted by 

f: (M, C) » (N, D), 
(for the definition of smooth maps and diffeomorphisms see 
[12] or [13]). 

Let (N, D) be a d-space and f: M • N. Then the 
differential structure C generated by the family * 
f D := {a«f: a e D} on M is called a differential structure 
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induced from D by f. In this case C = (f*D)„. Moreover, if f 
* 

maps M onto N, then C = f D. A map g: X » M is smooth, with 

respect to a differential structure . 9 on X, iff 

f»g : (X, 9) • (N, D) (see [6], and [15]). 

Let (M, C) be a d-space. For an arbitrary mapping 

f: M • N, we may consider a family D := (f*) ^"(C) of real 

functions defined on N. In [15] it was shown that D is a 

differential structure on N. This is the greatest differential 

structure on N with respect to which f is a smooth mapping. A 

mapping g: N » X is smooth with respect to a differential 

structure ? on X iff g«f: (M, C) > (X, 9). A function it 

a: N » IR is an element of D iff f (a) = a»f € C. The 

differential structure (f*)-1(C) is called the differential 

structure coinduced from C by f. 

If (M, C) is a d-space and A c M, A * 0, then C A is a 

differential structure on A and a d-space (A, C a) is called a 

differential subspace of (M, C). We have = (i C) A, where i 

is the inclusion mapping of A in M. 

Let {(M^, c i ) } i e I
 b e a n indexed family of d-spaces. Then 

the differential structure X C. generated on the Cartesian iel 
product X M. by the family {f.opr.: i e I, f. e C.} (pr. is 

iel 1 1 1 1 1 3 
the natural projection of X M. onto M.) is called the 

iel 1 ] 

differential structure of the Cartesian product of d-spaces 

{(M., C.)}. . The d-space ( X M., X C.) is said to be the 
iel iel 

Cartesian product of the family {(M^, ci)>ieI' 

For a finite set of indices I = { i ^ . . . , ^ } , we write 

C. x...x C. instead of X C.. It is easy to verify that the 
k iel 1 

topology x x c coincides with the standard topology of the 

iel x 

Cartesian product of topological spaces. A function f on X M. 
iel 1 

is an element of X C. iff, for any p = (p.). e X M., there 
iel 1 1 1 6 1 iel x 

exist a finite subset I Q = {i1,...,iJc} c I, sets ^ e t c , 

ha1 
f. = wo(a .pr. ,...,a.opr. ). , where U = X U. and U. = M., 
• l * k lu isT 1 J J 

co 1c for j = l,...,k, and functions a j e C j, (j e C (IR ) such that 
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for j e I \ I . o 
Let p be an equivalence relation on M, where (H, C) is a 

d-space. By M/p we denote the quotient set of all equivalence 

classes [p] , for p e M, and by n - the canonical projection 

M a p * [Pip 6 M/P- T h e differential structure coinduced 

from C on M/p by n p will be denoted by C|p. A pair (M/p, C|p) 

will be called the quotient differential space with respect to 

the equivalence relation p (see [9] or [15]). 

Let s be a relation on M given as follows: 

for any p, q e M, p = q iff, for any f e C, f(p) = f(q). 

It is easy to see that = is an equivalence relation. It can 

also be proved that the topology t C | = is the standard quotient 

space topology on M/s (with respect to the topology z^ on M, 

see [9] Th.1.1) and that it is a Hausdorff topology (see 

[13]). We call (M/=, CI=) a Hausdorff differential space 

associated with (M, C). 

By a tangent vector to a d-space (M, C) at a point p e M 

we mean any linear mapping v: C > IR satisfying the so-called 

Leibniz condition (chain rule) 

v ( a £ ) = a(p)v(0) + v(a)0(p), 

for a, (3 e C. 

It can be easily seen (see [13]) that the set TpM of all 

tangent vectors to a d-space (M, C) at p e M is, in a natural 

way, a linear space over the field of real numbers R. The 

linear space TpM is called the tangent space to a d-space 

(M, C) at a point p e M. For any a e C, we define the 

differential of a at p e M as a linear mapping TpM > IR given 

by the formula dpOt(v) := v(a) , where v e T pM. 

Let us denote by TM the disjoint sum of all tangent spaces 

to (M, C), i.e. 
TM := U T M. 

peM P 

We define the tangent mapping or the differential of a smooth 

function a € C as a mapping da: TM > R satisfying the 

condition d a l m „ = d a . By TC we denote the differential I T p M p 

structure on TM defined as 
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TC := sc({a«7r: a e C> u {da: a e C})™,, 
in 

where n: TM • M is the natural projection, satisfying 
n(v) = p, for any v e TpM. The pair (TM, TC) is called the 
tangent space to (M, C) . The triple ((TM, TC), n, (M, C)) is 
called the tangent bundle of a d-space (M, C). 

By a tangent vector field on a d-space (M, C) we mean any 
mapping V which associates with every point p e M a tangent 
vector V(p) € TpM. A tangent vector field V on (M, C) is said 
to be smooth iff V: (M, C) » (TM, TC). We can also say that 
a (smooth) vector field is a (smooth) section of the tangent 
bundle. In other words (global interpretation), a smooth 
tangent vector field on (M, C) is any linear mapping 
V: C » C, satisfying the Leibniz condition 
V(a /3) = aV(£) + V(a)j3. The correspondence between local and 
global interpretation of smooth vector fields is clear from 
the formula (V(a))(p) := V(p)(a). 

A d-space (M, C) is said to be of constant differential 
dimension iff 
(i) dim TpM = dim T^M, for any p, q e M, 

(ii) for every tangent vector v e TM, there exists a smooth 
tangent vector field V on (M, C) such that v = V(p), 
where p = tt(v) . 

Remark. The corresponding definition formulated in the 
original monograph (see [13]) slightly differs from the above 
one. Namely, in the condition (i) Sikorski additionally 
assumes that dim T M = n < oo. for p e M. P 

For any mapping f: (M, C) » (N, D) one defines its 
tangent mapping (or differential) d f: T M > T_, .N, at P P f (P) 
p e M, which is given by the formula 

[dpf(v) ] (/3) s=v(/3.f), 

for 0 e D. By df we denote the mapping TM » TN, defined as 
df| T JJ = d f, and we call it the tangent mapping (or 

P differential) to the mapping f. 
A mapping f: (M, C) > (N, D) is said to be an immersion 
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if, for any p e M, the differential d^f is a monomorphism, and 
we call f an imbedding if f is an injective immersion. 

The pair ((M, C), f) is said to be an f-differential 
subspace of a d-space (N, D) (f-d-subspace, for short) if 
(M, C) is a d-space and f: (M, C) » (N, D) is an imbedding. 
Then, in the image f(M) c N, one can define a differential 
structure ? coinduced from C by f, the so-called image 
structure. Then f: M > f(M) is a diffeomorphism. One can 
easily see that the image structure 7 can, in general, be 
stronger than the differential structure induced on f(M) 
from (N, D); i.e. c °f(M) = ^' f " d _ s u b s P a c e will 
be called the regular f-d-subspace. 

Notice that, if A c M and f = i.: A * M is the ' A 
inclusion mapping, the image structure 9 coincides with CA, 
i.e. (A, C^) is the regular iA~d-subspace of (M, C). 

Let us denote by £(M) the linear C-module of all smooth 
vector fields on (M, C). The module i(M) can be considered as 
the Lie algebra with the natural commutator 
(2.1) [V, W] := V°W - WoV, 

for V, W e I(M). 
For a diffeomorphism f: (M, C) > (N, D) one defines the 

mapping I(M) > i(N) by the formula 

f^(V) := dfoVof-1, 
for V e 3f(M) . 

From the above definitions we see that the tangent mapping 
df is well defined for any smooth mapping f but df induces the 
mapping f^ of vector fields only in the case when f is a 
diffeomorphism. 

One can prove that, for any diffeomorphism 
f: (M, C) > (N, D) , the mapping X(M) » I(N) is an 
isomorphism of the Lie algebras. In addition, for a vector 
field V e X (M) and a function a s C we have 

(2.2) f*(<*V) = (a»f"1)f^V. 

Indeed, IR-linearity, inverseability of f^ and formula (2.2) 
follow simply from definition (2.1). 
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Let us check only that 

(2.3) f,[V, W] = [f*V, f*W], 

for any V, W e 3f(M) . 

[(f*V)p](q) = [-Cdf.V.f^JPKq) = [dfoVof_1(q)]/3 = 

= df(V(f_1(q)))/3 = V(f"1(q)) (|3of) = [V(0.f) ] (f"1 (q) ) = 

= (V(p.f).f_1)(q)f 

q e N, i.e. 

(2.4) f* v(0) = V((5.f) of"1, 

for any /3 e D. From formula (2.4) we obtain a 

f*[V, W](/3) = [V, W] (p.f).f"1 = 

= V(W(|3of) ) of - 1 - W(V(/3°f) ) of"1 = 

= V(W(Pof) of_1of) of - 1 - W(V(|3of) of _ 1of) of - 1 = 

= (f^Vof^W)(0) - (f*Wof^V)(0) = [f^V, f*W](0), 

which ends the proof of (2.3). 

Let f: (M, C) » (M, C) be a diffeomorphism. A vector 

field V e i(M) is said to be f-invariant if 

(2.5) f^V = V. 

From the above statements it follows that all f-invariant 

vector fields V s l(M) form a subalgebra of the Lie algebra 

*(M). 

By a smooth curve in a d-space (M, C) one means any smooth 

mapping 

(2.6) r: (I, ©j) > (M, C), 

where (I, S^.) is a d-subspace of the Euclidean manifold (IR, S) 

such that I my be one of the intervals (a, b) , (a, £>], [a, Jb), 

[a, Jb], for a, b e [-co, oo]. 

For the case of a differential manifold (M, C), we know 

that, for any field V e I(M) and p e M, there exists an open 

neighborhood U of p, an open interval (-e, c) c R and a smooth 

mapping 

(2.7) r : (-c, c) x U > M, 
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such that, for any q e U, the curve 

(2.8) r q : (~e, e) 9 t » r q(t) := r(t, q) € M, 

is the unique integral curve for the field V defined on 

(-e, c) and satisfying the initial condition 

(2.9) r g(0) = q. 

Unfortunately, the analogous fact is no longer valid for 

the general case of differential spaces. For example, it fails 

to be true if we consider the differential space (also 

d-group) (Q, i?0), where Q denotes the set of all rational 

numbers. One can easily see that in this case no non-constant 

smooth curve can exist because there is no non-constant 

continuous mapping from IR into Q. The unique character of 

integral curves, which existed for vector fields on 

differentiable manifolds, is often lost in the general case of 

differential spaces. In general, more than one integral curve 

for a vector field on a differential space is possible. 

However, for the case of locally finitely generated 

differential spaces (manifolds, in particular), there is 

always no more than one integral curve of every vector field . 

3. Differential groups 

Definition 3.1 A pair (G, 5) is said to be a differential 

group iff 

1° G is a group; 

2° (jGI, 5) is a d-space, where |G| denotes the set of 

elements of G; 

3° a map a: (GxG, » (G, £) , defined by the formula 

(3.1) <x(g, h) := gh" 1, 

is a smooth map. 

It is evident that a differential group is automatically a 

topological group (with the topology T^ in G) because the 

smoothness of the mapping cr implies its continuity (see [5], 

[6] or [7]). In [7] it is proved that the group multiplication 

and the inverse mapping in G are smooth. 
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Example 3.1 Let G be an arbitrary group. If denotes 
the differential structure of all constant functions on G then g 
(G, & ) is a differential group. Similarly, if R is the 
differential structure of all real-valued functions on G then 
(G, R ) is also a differential group. In the last case the 
topology x G is the discrete topology on G. 

R 
Proposition 3.1 Let H be a group, (G, 5) - a differential 

group and 0 - (an algebraic) homomorphism on H into G. Then 
(H, is a differential group and 

<p: (H, • (G, S) is a smooth map. 

Proof. The smoothness of <p follows directly from the 
definition of the differential structure (see Section n 
2). This implies that the map 

HxH a (g, h) » n(g, h) := 0(g)0(h)-1 e G 

is smooth with respect to the differential structures 
x and respectively. 

Let us consider the map 

HxH s (g, h) » <r„(g, h) := gh - 1 e H. 
n 

Since 0°<r„ = y is smooth on GxG, is also smooth (see II H 
Section 2, for the properties of the differential structure 
induced from § by <p) . 

Example 3.2 If H is a Lie group then (H, C°°(H)) is a 
differential group. If G is an arbitrary subgroup of H, <p is 
the natural embedding of G into H and 
S := ^*((C°°(H))G = C^iHJg then (G, S) is a differential group. 

Example 3.3 Let 0: G » Gl(n, IR) be an n-dimensional 
matrix representation of a group G, n € IN. By Proposition 3.1 
the pair (G, Q (C®(Gl(n, R)))G) is a differential group. It 
can be easily seen that the differential structure 
9 (C°(Gl(n, R)))Q is generated by the family {©^^^isi jsn o f 

all matrix elements of the representation 0. 
Example 3.4 Let G be a locally compact, connected 

topological group. Let U be an arbitrary neighborhood of the 
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identity element of G. Then there exists a normal subgroup N 
of G such that N c U and G/N is a Lie group (see [2], II, 
§10). 

Denote by ^ the canonical map on G onto G/N. From 
Proposition 3.1 it follows that (G, 0*(C°°(G/N))G) is a 
differential group. 

Theorem 3.1 Let 9 be a family of real-valued functions 
defined on a group G. Let § := sc?_ be a differential 
structure generated by 9 on G. The pair (G, 5) is a 
differential group iff the following condition is satisfied 

(GS) for any f e 9 and any (g, h) e G x G, there exist a 
neighborhood U e x^ of g, a neighborhood V e x^ of h, 
mappings a e 9 r, /3 e 9s and a function <0 e C°°(IRr+s) 
such that for each (g', h') e U x V 

f(g'h'_1) = u(a(g') , /3(h')). 

Proof. Suppose that (G, S) is a differential group. Since 
the map <r is smooth (see (3.1)) we obtain that, for any 
f « 9 c the map f®<r e & x S, and the condition (GS) follows 
directly from the definition of 5 and 5 x § (see Sec. 2). 

Suppose now that 9 satisfies the condition (GS). Since any 
function of G is locally a function from scf, we obtain that § 
also fulfills (GS). Hence a is a smooth map, and (G, &) is a 
differential group. 

Example 3.5 Let G = Diff(M)^ be a group of all smooth 
diffeomorphisms of some differentiable manifold M which leave 
a point p e M fixed. Let <p = (tp1,. .. ,<pn) : U » IRn be a 
smooth chart defined on a neighborhood U of p such that 
0(p) = 0. For any multiindex (i ,...,i ) e INn, we define a v i n 
function f. . : U » IR in the following way ' 

i n , 
k 3 g 
f* i (g) :< 1 3—(0) , x l ' " 1 n 3x1... 9x n 

k k -1 
where 1 = 1 ^ + ... + i n and g = <p «g°<p . Denote by 9 the 
differential structure on G generated by the family of 
functions 9. := {f1? . : l s k s n, (i, ,...,i ) € INn}. By 

9 1' n 
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the differentiation rule of superposition of maps and 
differentiation of the inverse map, it follows that the family 

satisfies the condition (GS) from Theorem 3.1 (in this case 
U = V = G and u is a rational function). Then (G, S) is a 
differential group. It is easy to see that the differential 
structure & does not depend on the choice of the chart 

Analogously, we can define the differential group 
structure on the group of germs of diffeomorphisms preserving 
the point p, on the group of analytic diffeomorphisms or on 
the group of all germs of local analytic diffeomorphisms. In 
the last two cases the topology x^ on G is the Hausdorff 
topology. 

Example 3.6 Let fn, g n : IR » IR be given by 
fn(x) = sin jj , gn(x) = cos ^ , n e IN, x e IR. 

We have 
fn(x-y) = fn(x)gn(y) - fn(y)gn(x), 

gn(x-y) = gn(x)gn(y) + fn(x)fn(y), 
where x, y e IR. Let § be a differential structure generated on 
IR by the family * := {fn, gn>n€|fr By Theorem 3.1 ((IR, +) , <S) 
is a differential group. It can be proved (see [3] or [6]) 
that the topological group ((IR, +) , x^) is not complete. 

Let (G, be a differential group and H be any subgroup 
of G. It is an immediate corollary from Theorem 3.1 that the 
differential structure & satisfies the condition (GS). This 
implies that the family 9 := {f|H: f e *§} also satisfies (GS) 
and consequently the group H with the differential structure 
H = generated by ? on H is a differential group. It is 
called a differential subgroup of the differential group 
(G, S) . Let us notice that H = </>*(§) G, where <p is the natural 
embedding of H into G (see Prop. 3.1 and Ex. 3.2). Thus, the 
category of differential groups turns out to be closed with 
respect to the operation of taking a subgroup, which is not 
true in the category of Lie groups. 

Suppose now that {(G^, i s a family of differential 
groups, where I is an arbitrary set of indices. Let, for any 
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j € I, pr.: X G. > G. be the natural projection of the 
] iel 3 

Cartesian product X G. onto G.. Since, for any j e I, S. 
iel ] 3 

satisfies (GS), the family ? = {f^opr^ : fj e Sj, j e 1} of 

f u m tions on the product X G. satisfies the condition (GS). 
iel 1 

Since £ generates,the differential structure X on X G., 
iel 1 iel 

( X G., X §.) is a differential group. It is called the 
iel iel 

direct product of the family {(G^, ^¿JJ^gj o f differential 

groups. 

Example 3.7 Let G be a group and *>e a n arbitrary 

family of matrix representations of G. For any i e l , the map 

e 1: G > Gl(n^, IR) is a homomorphism of groups. Define the 

map 0 : G » X Gl(n., IR) in the following way 
iel 

6(g) := (e 1(g)) i e T s X Gl(n., IR), g e G. 
iel 

It is obvious that d is a homomorphism of G into the direct 

product X G1 (n., IR) . By Proposition 3.1 the pair (G, §), 
iel 

it QO 
where 5 := 0 [ X C (Gl(n., IR))]„, is a differential group. It 

iel 1 G 

is also easy to see that the differential structure § is 
generated by the family ,}. . , of all matrix 

f j. ^ ± — f X—n^ 

elements of all representations e 1, i e I. 

Especially interesting is the case when G is a compact 

topological group and is t h e family of all irreducible 

representations of G. From the Weyl approximation theorem (see 

[4] IV, 884) it follows that any continuous function f on G is 

a J.imit of an uniformly convergent sequence of linear 

combinations of functions of the family {0^ ,}. . . , JCf X X€X ̂  X'Ky x^n^ 

Now, by the Urysohn lemma it follows that the topology x^ 

coincides with the initial topology. 

Proposition 3.2 Let (G, 5) and (H, H) be differential 

groups and denote by Aut(H) the set of all smooth 
automorphisms of the group H. Let w : G a g i > e Aut(H) 

be Such a homomorphism of groups that the mapping 
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il : GxH a (g, h) i > C2(g, h) := u g(h) e H, 

is smooth. In G x H we define the group multiplication in the 

following way 

(g, h)»(g', h') := (gg', hu g(h')). 

The triple (GxH, • , SxH) is a differential group, called 

Cl-skev-product of G and H. 

Proof. We shall show the smoothness of the mapping 

<r: (GxH) X (GxH) > GxH, 

where <r((g,h),(g',h')):=(g,h).(g'_1,u (h'"1)). 
g' 1 

We see that 

c( (g,h) , (g' ,h')) = ( g g ' ^ h u (<j .(h' - 1))) = 
g 9' 

= (gg ,hu _ (h )) . 
gg' 

It is enough to show the smoothness of the components cr^, <r2 
of <r = ' I n (* e e d' these components are smooth since 

they are composed out of smooth mappings 

, ^ = crGo(7r1oPr1, rr1opr2), 

°2 = WH° [ T r2° p ri' n° (trG° (7r
1°P

ri' " j / P * ^ ' i n VH° T r2 < > P r2 ) ' 

where u„ is the (smooth) multiplication in H and the mappings n 
n2' p r l ' p r 2 a r e t h e n a t u r a l projections. 

Notice that the concept of a direct product of two groups 

is evidently a special case of the concept of a skew-product 

defined above. 

Let e be the identity element of the topological group G. 

Denote by N the closure of the set {e}. It is known (see [1], 

III, §2) that N is a normal subgroup of G and that the 

quotient topology on G/N is the Hausdorff topology. In the 

theory of topological groups the quotient group G/N is called 

the Hausdorff topological group associated with G. We are 

going to introduce an analogous notion for differential 

groups. 
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Proposition 3.3 If (G, is a differential group and N 
is the closure of {e>, where e is the neutral element of G, 
then 
(3.2) gN = {x e G: VfeG f(x) = f(g)}, 
for any geG. 

Proof. Let N := f| f_1({f(e)>). Since, for any feS, the 
-1 . f e 5 . set f ({f(g)}) is closed in G, we obtain that N^ is closed, 

and consequently N c N^. 
Suppose now that there exists g e N^N. Since G\N e 

k k there exist k € IN, a e 5 and an open non-empty set D c R 
such that g e a ^(D) c G\N. On the other hand, g e N., which 

-1 . implies a (e) =a (g) &D. Then e e a (D) c G\{e> which is an 
evident contradiction. Consequently, N ^ N = 0, and (3.2) is 
proved for g = e. , 

If g is an arbitrary element of G, then x e gN iff 
g € N. By the-first part of the proof, this is equivalent 

% to the following condition: if f e 5 then 
f(x) = (foLg)(g-1x) = (foLg)(e) = f(g), 

where L g denotes the left translation in G (by Proposition 4.1 
Lg is a diffeomorphism on G onto G). This completes the proof. 

Corollary 3.1 If "=" is the equivalence relation on the 
group G, defined in Sec. 2, then G/N = G/=. 

Theorem 3.2 Let (G, &) be a differential group. Then 
(G/=, where is defined in Sec. 2, is a differential 
group. 

Proof. Denote by tp the canonical map on G onto G/ = and 
choose the map R: G/ = » G satisfying the following 
condition <p°R = idG^=. By the definition of any function 
f e & is of the form f = f w h e r e f e 

Since the family { f _ 1 ( 0 ) ( f - 1 ( 6 ) c G : © is an open 
interval in R} forms a subbasis of the topology any U € x^ 
has the following property: if g e U then gN c U, where N is 
the closure of {e}. Hence, for any U e R(^(U)) c U. 

Suppose now that f e g|s and put f := f°<p. By Theorem 3.1, 
for any x, y e G/ = there exist neighborhoods U and V of R(x) 



Differential groups 529 

IT S 
and R(y), respectively, mappings a e 5 , (3 e 5 and a function 
u € C^fR*"1"®) such that, for any (g', h') e UxV, 

f (g'h'"1) = u(a(g') , f3(h')) . 

Then, for each (x', y') e 0(U) x <f>(V) , 

f(x'y'_1) = f(*(R(x'))*(R(y'))_1) = f (*(R(x')R(y')-1)) = 

= f (R(x')R(y')"1) - u.(«(R(x'))f (S (R(y'))) • 
Since a = a*4> and (3 = p»<t>, where a e (&|=)r and ¡3 = (S|=)s, we 
obtain 

f(x'y'_1) = w(a(x'), £(y')). 

Consequently = satisfies the condition (GS), which implies 
that (G/*, is a differential group. 

Obviously, the topology is the Hausdorff topology. We 
shall call (G/s, a Hausdorff differential group 
associated with (G, S). 

4. The tangent space and the Lie algebra of a differential 
group 

For any g e G, by the symbols L g and R g we shall denote 
the so-called left and right translations in the group G, 
which are defined as mappings G > G such that 

Lg(h) := gh, 

Rg(h) := hg, 

and the automorphism adg(h) := ghg 1. It is obvious that 

ad s L„»R . 
g g g-1 

Proposition 4.1 If (G, is a differential group then, 
for any g e G, the translations L g, R g and the automorphism 
adg are diffeomorphisms. 

The proof can be found in [7]. 

From this we have the following 
Corollary 4.1 Let (G, be a differential group. Then, 

for any g e G, 
dimT G = dimT G, g e 
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where e is the neutral element of G. 
Proof. Since L^ and R^ are. diffeomorphisms, the tangent 

mapping (differential) T
e
G * Tg G proves to be an 

isomorphism of linear spaces. 
Lemma 4.1 For any y e T&G and a e the function 

f: G • R, given by the formula 

f(9) := [deLg(T))](°0 =Tj(cc.Lg), 
is a smooth function, i.e. f € 

Before we prove this lemma let us make one point clear. 
Remark. This lemma does not seem to be obvious because it 

does not follow from the assumption that a e § and L is- a g 
diffeomorphism G • G. Indeed, if we consider a differential 
space (R, C), with the differential structure C generated by 
the set CQ := {fa: R » R, a e R}, where fa(x) := |x-a|, we 
see that Lx: R » R, defined as : = a 

diffeomorphism in (R, C). Nonetheless, if we take a non-zero 
tangent vector r) € TQR, we see that the function f defined as 
f(x) := Tj(f ®L ) is not a smooth function. The translations L a X X 
and R x are diffeomorphisms if the mapping (3.1.) is smooth with 
respect to each of its arguments separately. However it is not 
enough for f to be smooth. 

By Theorem 3.1, for any a e 
* 

a«cr = (jofo^oT^, a2»u2) , 

for some u e C°°(R2n) , a., a_ e n e IN. Let j_: G > GxG, 1 £ u 
jg(h) := (g, h). It is well known that, for any g e G, is a 
smooth mapping [13]. The translation can be written in the 
form L = cr®j °<r . g g e 
From the smoothness of we see that, for any a e 

(4.1) o«L = aocroj ocr g g g e 
Let 7) € T G, and f (g) := i)(a«L ) . We shall show that y 

f e 5. From (4.1) we have 

a»L = a«(roj o<7 = (jo (a on « on ) o j o<r . 
g g e l l 2 2 g e 

If we denote := (0^07^, ' °^gocre' w e c a n wr:'-te f 
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in the form 

Therefore 
f (g) = 7) (a»Lg) = T}((j«ug) . 

f(g) = ( ^ g ( e ) ) •TJ(a1»n1<' jgOOg) + "2(|Llg(e))'1,(a2<,ir2<,:'g<,0'e) = 

= «¿(ng(e))-T,(«2.<re). 

Since U) e C°°(IR2n) , we obtain that also e C°°(IR2n) 
Therefore 

f(g) = y ( a o c r e ) u ^ ( a 1 ( g ) , a 2 ( e ) ) , 

or f = v(a»o-e)u^o ( a 1 , a 2 ( e ) ) . 

Let us denote by £2 the smooth mapping IR » IR, defined as 
fi(x) := u' (x,a (e)) . 

Thus, ^ 
f = a-Qoa^, 

where a := tj(d<>cre) e IR, fi e C™(Rn) , a^ e S. This ends the 
proof of smoothness of the function f. 

From the above lemma we have the following 
Corollary 4.2 For any tj € TgG, the tangent vector field 

V , given by 
(4.2) V(g) :=deLg(Tj), 
is a smooth tangent vector field. 

Proof. Indeed, for any a € S, (V^a) (g) = V^fgja = f ( g ) , 

where f is a function from the proof of Lemma 4.1. Hence 
V a e which means that V is smooth. 

V 
As a consequence of the above statements, we obtain tha 

following important 
Theorem 4.1 Every differential group is of constant 

differential dimension. 
Proposition 4.2 For any tj e TgG, the (smooth) tangent 

vector field v , given by (4.2) is left-invariant» i.e. it is 
invariant with respect to all left translations L^, for g e G, 

L . V = V . 
g* v v 

The proof of this fact is simple. On the strength of formula (2.5), the module of all left 
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invariant vector fields is a subalgebra of the Lie algebra 
I(M). 

Now, we are ready to formulate the following 

Definition 4.1 Let (G, 5) be a differential group. The 
vector space 2(G), over IR, of all left-invariant and smooth 
vector fields on G, together with the Lie multiplication [•,•] 
defined by (2.3), is said to be the Lie algebra of a 
differential group (G, &); i.e. the Lie algebra of (G, &) is 
the pair (2 (G) . [•,•]). 

Proposition 4.3 For any differential group (G, 9), the 
linear spaces T gG and 2(G) are isomorphic. 

Proof. By Corollary 4.1, the map 

TfiG 9 n h—• V^ e 2(G), where V ^ g ) = d eL g(n) , for tj e TeG, 

g e G, is an isomorphism of these linear spaces. 
Proposition 4.4 Let (G, '§) and (H, H) be d-groups. For 

any smooth homomorphism f: G » H (f is said to be a 
homomorphism of d-groups), the mapping 2(f): 2(G) > 2(H), 
defined by 

(4.3) 2(f) := Vdgfo^- 1, 

is a homomorphism of Lie algebras. Moreover, for any smooth 
homomorphisms f: G > H and g: H > Z, 

2(g°f) = 2(g).2(f) 
(4.4) 

2(idG) = id^ ( G ). 
Proof. The linearity of 2(f) is obvious. We shall show 

only that 

(4.5) 2(f)[V, W] = [2(f)V, 2(f)W], 

for V, W e 2(G). 
For any element z e G, we see that 

L£ofoL°(z) = L^® f(gz) = hf(gz) = hf(g)f(z) = 

^ ( g ) ^ 2 * = ( LEf(g)° fH z)' 
which means that 
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(4.6) 4 ( 9 ) " = 

On the other hand, we see that for any X e £(G), g € G and 

<3 e H 

X(0.Ljof) (g) = X(g)/S.l£of = d eLSc(e)0.l£.f = 

= X(e)(p.I».f.L°) = X(e)(p.I« f ( g )of) = 

= [ d e ( L h f ( g ) , f ) x ( e ) ) i S = (hf(g))]p = 

= [[Jt(f)X]/sj (hf(g)) = [(Jt(f)X)p.Lj.f) (g) , 

and consequently 

(4.7) X(0.l£o f ) = [[¿?(f)X]e]oi£of. 

In turn, for h e H and X € 2(G), we obtain 

(4.8) (2(f)X)(h) = dcLjJ(def X(e)) = de(LjJ.f)X(e) , 

(see (4.3)), where e e G and e = f(e) € H are neutral elements 

in G and H. 

By replacing X with [V, W] in formula (4.8) and taking 

into account formulae (4.6) and (4.7), we obtain 

(*(f)[V, W]|3](h) = ({2(f) [V, W]}(h))p = 

= (de(l{J.f) ([V, W](e))j(3 = [V, W] (e){(3oLjJ.f} = 

= V(e) (w(p.Lj.f) j - w(e) (v(/3oLjcf)] = 

= V(e) ([*(f)W]0.l£.f) - W(e) [[«(f)V]/5.Lj.f) = 

= ( d e ( L h ° f ) V ( e ) ) t*(f)W](5 - (de(Lj[.f)W(e)) [JE(f)V]0 = 

= ([*(f)V] (k) j [Jf(f)W]/3 - [[«(f)W] (k)j [*(f)V]/3 = 

= ([JS(f)V].[je(f)w]p] (h) - ([«(f)w].[i(f)v]ia) (h) = 

= ([2(f)v«2(f)w - ie(f)w«2(f)v]/3j (h) = 

= ([J£(f)V, *(f)W]/s) (h) , 
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which ends the proof of formula (4.8). 

Now, let f: G * H and g: H > Z be smooth 

homomorphisms. 

2(g.f) = j z.d e(g.f)oj"
1 = j z « { d f ( e ) g • d e f } . j ^ = 

= i z ^ f i e j ' - ^ ' W ^ G 1 = 

And finally we prove that 

*(idG) = j g ' d ^ d g O j " 1 = V i d ^ o j - 1 = j Goj"
1 = i d i ( G ) . 

As an immediate consequence of the above proposition we 

have the following 

Corollary 4.3 2 is a covariant functor from the category 

of differential groups into the category of Lie algebras. With 

every d-group G the functor 2 associates its Lie algebra 2(G), 

and with every homomorphism f: G > H of d-groups the 

functor £ associates the homomorphism £ ( f ) : 2(G) » 2(H) of 

Lie algebras. 

Let H be a d-subgroup of a d-group G. On the strength of 

the above statements we can identify the Lie algebra 2(H) with 

the subalgebra of 2(G); the identification is done with the 

help of the monomorphism £(L„) , where ¿„: H > G denotes the n n 
inclusion mapping. 

Comment. For a Lie group G and X e. i(G), exactly one 

(maximal) integral curve of X can be drawn through a chosen 

point g e G, i.e. the equation ^ <p = X(#(t) has exactly one 

solution satisfying the condition 0(0) = g. This unique 

solution is denoted by and it is defined on an interval X,g 
(-e, c), where c depends on g. If X is a smooth left-invariant 

field, the integral curve <p is well defined on the entire 
A , g 

line IR. The corresponding statements are, in general, no 

longer valid for differential groups since it can occure that 

there is no non-constant and smooth curve y: I » G. 

Example. Let us consider the d-group (Q, S Q), where 0 is 

the set of rational numbers. It is very well known that there 

is no continuous and non-constant mapping IR > 0. Since 

every smooth mapping is continuous, there is no smooth and 
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non-constant curve in 0. 
For Lie groups the exponential mapping is defined with the 

help of the so-called one parameter group <t>v : IR • G. The A f © 
formal translation of the definition, in general case of 
d-groups, is impossible. Therefore a suitable definition for 
the case of d-groups must have quite a different form. 

Lie groups are locally diffeomorphic to their Lie algebras 
while this is, in general, not true for d-groups. 

5. The natural covariant derivative in a differential 
group 

Before we prove the main statement of this section we 
remind the following 

Lemma 5.1 Let (M, C) be a d-space of constant 
differential dimension and W a differential C-module [12]. Let 
V^,...,V^ be a vector basis on M, W ,...,W a C-basis of the 
C-module Vf, and r^. e C smooth functions on M. Then there ^ v exists exactly one covariant derivative V in W, such that j 
are its coordinates with respect to the basis vi'*--'vm a n d 

W f•••fW^f 1*6« 

(5.1) v„ w. = vi j 13 k 
For the proof see book [13]. 
On the strength of this lemma one can prove the following 
Proposition 5.1 For any differential group (G, 5) of 

finite dimension, dimTgG < co, there exists exactly one 
covariant derivative V on G, such that 
(5.2) Vvj6(n) = 0, 
for any v E TG and T J e TeG. 

Proof. Let S g := {Tit}t6T b e a linear basis of the tangent 
space T G. Since, for any g e G, the translation L : G > G e g 
is a diffeomorphism, the set B := L . (S ) = {L .TJ. : t e T} g g* e g* t 
forms a linear basis for the tangent space TgG. Hence the 
vector fields Wfc, t e T, given by 
(5-3) Wt(g) := Lg,T)t, 
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g e G, form a vector basis on the d-space (G, . From the 
above lemma we learn that there exists exactly one covariant 
derivative V on G, the coordinates of which (the so-called 
Christoffel symbols) with respect to the vector basis { wt^teT 
on G are equal to zero. 

This unique covariant derivative defined by (5.2) is said 
to be the natural covariant derivative on a differential group 
(G, §). 
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