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WHITNEY TOPOLOGY AND STRUCTURAL STABILITY 
OF SMOOTH MAPPINGS IN DIFFERENTIAL SPACES 

The main part of this work is devoted to defining the 
differential structure on the space of k-jets in the category 
of differential spaces in the sense of Sikorski [21]. The 
proof of the consistency of the differential structure 
introduced here with the Ehresmann differential structure [4], 
in the case when all differential spaces are differentiable 
manifolds, is given. Then, with the help of the 
differential structure on the space of jets, the Whitney 
topology is defined on the set of smooth maps. The paper ends 
with a discussion of the structural stability of smooth 
mappings. 

1. Introduction and notation 
The notion of differential space as a natural 

generalization of the smooth manifold concept appeared 
independently in works of several authors, and the necessity 
of this generalization has become evident in many mathematical 
problems [1], [2], [3], [5], [9], [10], [20] - [27]. Some 
physical applications of this generalization are presented in 
[6], [7], [8], [11], [12], [17]. 

R. Sikorski introduced his concept of differential spaces 
in [21] and [22], and subsequently gave a beautiful exposition 
of modern differential geometry in book [23]. This approach 
has allowed him to substantially generalize many geometric 
problems so far reserved only for smooth manifolds. 
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Let M be any set, and C a set of real functions defined on 

M. The weakest topology on M, in which all functions of the 

family C are continuous, will be denoted by z c . For any subset 

A c M, let C A denote the set of all real functions (3 on A such 

that, for any p e A, there exist an open neighbourhood U e t c 

of p and a function a e C satisfying the condition 

|31 AnU = alAnU. By scC we shall denote the family of all real 

functions on M which may be presented as u<>(a . ..,a ), where 

u e C°°(IR ), a 1 ( . . . ,a e C, n e IN. A family C is called the 

differential structure (in the sense of Sikorski, d-structure, 

for short) on M if C = C^ = scC, and its elements are called 

smooth functions on M [23]. The pair (M, C) is said to be a 

differential space (d-space, for short). For an arbitrary set 

C of real functions on M, the set (scC ),, is the smallest o ' v o'M 
differential structure on M containing C Q. A differential 

structure C on M is said to be generated by C Q iff 

C = (scC q) m. We shall use also the following shorter notation: 

(1-1) gen(CQ) = (scC o) M, 

if M is well known from the context. 

By ^(M) we will denote a differential structure on a set M 

in the sense of Sikorski, i.e. ^(M) is a set of all real 

functions on M which are assumed to be smooth. So, ?(M) will 

always denote a chosen differential structure, the definition 

of which will be given explicitly or will be assumed clear 

from the context. For a differentiable manifold the 

differential structure is (traditionally) determined by its 

atlas. 

All differentiable manifolds in this work are assumed to 

be smooth, i.e. of class C00, and by a smooth mapping of two 

manifolds we understand a map which is differentiable of class 
00 C . 

Let (M, ?(M)) and (N, ?(N)) be two differentiable 

manifolds, and Cro(M, N) be the set of all smooth mappings from 

M to N. For any integer k * 0, one defines an equivalence 

relation in (^"(M, N), the so called k-jet relation at p e M; 
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for any f, g e C^M, N) , f g iff f(p) = g(p) and there 
exist charts (U, <p) and (V, on M and N, respectively, such 
that 
(1.2) Da(^of.0"1) (0(P)) = (*(p)) , 

where p e U, f(p) e V, Da := ^»...«a™, 
a := (a,,...,a ) e IN10, IN := {0, l. 2, ...}, and m = dim M, \ i' ' m' o o 
n = dim N. 

For future convenience, let us associate with the 
multiindex a the following two integers |a| := a + ... + a 
and a! := a,!•...-a !. 1 m 

For a smooth mapping f: M > N, the equivalence class of v f with respect to the relation s is said to be the k-jet of f 
v at a point p e M and denoted by jpf» i.e. 

(1.3) jjff := [ f . 
P 

So, the set of all k-jets of smooth mappings from M to N is 
the quotient set 
(1.4) J*(M, N) := cC0(M' N)/=k . 

P ~P 
The set of all k-jets of smooth mappings from C°°(M, N) is 

given as the disjoint sum 

(1.5) Jk(M, N) := U J*(M, N). 
peM P 

For the set J (M, N), one defines the following two mappings 
a: Jk(M, N) 9 jkf i > p e M, 

(1'6) k k A: J (M, N) 3 j£f i > f(p) e N, hr 

which are known as source and target mappings. 
Following C. Ehresmann [4], one defines an atlas on the 

set J (M, N) of k-jets which contains all charts 

(1-7) (a, &)_1(UxV) > Ek
n, 
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defined by 
(1.8) <0,0>(jpf) [¿(p), (Da((i/jofci>-1) (0(p)) ; |a|sk, j*n)j, 

where (U, <p) , (V, (¡i) are charts on M and N, respectively, 
m = dim M, n = dim N, and 

(1.9) E k
p := {((x1 xm), I a I ̂ k, j*n)); x1, xj € r| 

is the Euclidean + n- j-dimensional space, i.e. 

Ek = IRL, where L = im + n- [ m + k 
mn ' ^ [ m 

For future convenience, let us denote by p the projection 
of the space Ek onto its subspace Rm, i.e. mn 

p: E * ^ x = ((x1, . . . ,xItl) , (x^: |a|sk, j^n) ) . > 
(1.10) , 1 m. _m i » (x , . . . , x ) e [R 

-1 k Let «p,iji>: (a, &) (UxV) > E m n be the Ehresmann chart 
determined by charts (U, <p) , (V, ip) of the manifolds M and N, 
respectively. One can easily see that if 

6 := «p, |//>-1(x) e Jk(M, N) , 
for some x e E , then mn' 
(1.11) a(B) = i-1»p(x) = ...,xm). 

The problem arises: how to choose a suitable mapping 
representing the k-jet 9 in a simple way? Let us denote by 
(1.12) ej: tf(U) » R, 
the real functions given by 

xj 

(1.13) ejte1 Cm) := E Z (? - X)a, 

I a I sk 

j = 1,...,n, where (£- x)a := (S1 - x1) ...-(?- xm) m, and 

(1.14) e x := * 
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It turns out that the mapping ip is a suitable (and 

simple enough) local representative of the k-jet 0, i.e. 

(1.15) 0 = <*,<fr>-1(x) = j k _ 1 W°ex°<p). 
<p op(x) 

The proof is reduced to a simple algebraic manipulations. 

The mapping iji is actually defined on the open 

subset U c M and formally, according to the definition assumed 

k -l here, should not appear in the form j «0 °<t>) . However, we 
P * 

can always replace # by a (globally defined) mapping 

f Q: M > N, such that both mappings iji °<p and f a have the 0 X C7 
same germ at p and, of course, the resulting k-jet is 

independent of the chosen representative of the germ. 

(Equivalently, one might base one's considerations on local 

smooth mappings from M to N and define k-jets by the 

corresponding equivalence relation in the set of all such 

local smooth mappings.) So, we should not fix up any global 

representative of tp 

2. The differential space of k-jets 

It is evident that to define k-jets for smooth mappings of 

differential spaces there is no possibility, in general, to 

use charts, simply because charts may not be available (such a 

case is common for differential spaces). 

The concept of a k-jet of smooth mappings in the case of 

differential spaces was originally introduced in [29] and then 

in [11]. The definitions presented in [29] and [11] are 

formally different and the corresponding concepts of k-jets 

slightly differ when tangent vectors to a d-space M have no 

smooth prolongations. The definition introduced in [11] and 

presented in this work is formulated entirely in terms of the 

two d-spaces M and N in question, which seems to be simpler 

and more natural. Let us remind this definition in a concise 

way. 

For any two differential spaces (M, ?(M)) and (N, ?(N)), 

let us denote by C(M, N) the set of all smooth mappings from M 
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to N. Then, we define the k-jet equivalence relation at p e M 
in the set C(M, N), namely 

Definition 2.1 For any f, g e C(M, N) , we assume 

(2.1) f s k g iff d kf = dkg, v ' p ^ P P 
where the symbol d f stands for the k-th differential of the P 
mapping f at the point p e M (for the definition see 
Appendix I). So, by the k-jet of a mapping f e C(M, N) at 
p e M we shall understand the equivalence class 

(2.2) jjf := {g 6 C(M, N): d kg = dkf}. 

We shall denote (as it is the use in the case of 
differentiable manifolds) 

(2.3) J k(M, N) := {jkf: f € C(M, N)} = C ( M ' N ) / 3 k , 
v v P 

(2.4) Jk(M, N) := U Jk(M, N). 
peM P 

On the set of k-jets Jk(M, N) we define the differential 
structure (in the sense of Sikorski) 

?(Jk(M, N) ) := gen |{a»a: a e ?(M)> u {/3°&: /3 e ?(N)} u 
(2.5) 

u {r*: X 6 Xk(M), /9 6 ?(N)}j, 

where X (M) denotes the 9(M)-module of all smooth k-vector 
fields defined on (M, ?(M)) (see Appendix I and also [11] or 
[15]), and 

(2.6) r£(3pf) :-X(p)«3.f) = [dkf(X(p))] (|3) . 

Definition 2.2 The pair (Jk(M, N), ?(Jk(M, N))) will be 
called the differential space of k-jets of smooth mappings 
from M to N. 

Further we can define fiber bundles of k-jets (a suitable 
concept of the fiber bundle in the category of d-spaces was 
introduced and investigated in [28])as, for example, 
(Jk(M, N), a, M), (Jk(M, N), N), (Jk(M, N), (a, &) , MxN). 

v 
Of course, the differential structure ^(J (M, N)) is 

required to coincide with the Ehresmann structure for 
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differentiable manifolds. This is actually stated by the 
following 

Proposition 2.3 Let (M, ?(M)) and (N, ?(N)) be 
differentiable manifolds. Then the differential structure v (M, N)), defined by (2.5), coincides with the Ehresmann v differential structure on J (M, N). 

Proof. Starting from Ehresmann differential structure on 
v J (M, N), determined by charts (1.7), for the case when M and 

N are differentiable manifolds, we shall show the smoothness 
v 

of the functions generating the d-structure ^(J (M, N)), 
defined by (2.5), which is enough for the proof of the 
smoothness of all functions of 9(J (M, N)). 

For any a e ?(M), we obtain 

a°a°«p,\/i> 1(x) = aoaijk ({¡/«e = a°<p 1<>p(x) . 
I i" .p(x) X > 

The function a°<p 1 is differentiable because a e ^(M) and 
(U, <p) is a chart on M. The projection p is also 
differentiable. This means the differentiability of 
a ° a o « p 1 and proves the smoothness of a°a (locally, but it 
is enough). 

In turn, for any |9 e ?(N), we get 

/3°&o <0,tff>-1(x) = (3°&| jk_ (i/i°e = ao^_1o0(^_1op(x)) = 
I <p °p (x) x > 

= /S^-1»ex°p(x) . 

Let us notice that (0 ) . is a smooth family of mappings 
xeE mn 

(see Appendix II for the definition and properties of smooth 
families). Indeed, the mapping 

¥ 0: 0 ( U ) x E ^ (£, x) , > x) := 0x(£) € R n' 

defined as the composition of polynomials 

*e(?, X) := x) s • ex(C), 

where 
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x) := 5 _ x)«f 
lalsk 

03 — 1 
is differentiable of class C . Obviously, ( 3 i s 
differentiable of class C°° since /3 e and (V, \jt) is a 
chart on N. Thus, as it follows from Proposition A.II.l(ii), 
(j3«0 ) v is a smooth family and the mapping x xeEK _i m n 

x i > °9x°p(x) is smooth (see Proposition A.II.2(i)). 
(The smoothness of |9o& may be also demonstrated in a shorter 
way. Namely, one can easily see that the function ^ 
is a constant function.) 

In the proof of smoothness of functions for X e a* (M) P 
and 0 € ?(N), we shall denote by the same symbol X the 
restriction of the global k-field X to the open subspace 
U c M, where U is the domain of the chart <p. We obtain 

rgO<^,^>~1(x) = r^(jk_1 Woe •*)) = 
0 °p (x) 

= X(0_1op(x)) (/3o^-1osxo0) = [dk0(X(0"1op(X)))](/3o^"1oex) = 

= [[(^)*x](p(x))]Oo^"1.ex) = [[(^)kx](/3o0"1o0x)]op(x). 
v 

Obviously, the k-field (<t>) ** is smooth, and therefore 
k -1 ([ (<P) °e

x)) v is a smooth family. From Appendix II xeE mn 
X —1 

it follows that r̂ «f>,\l)> is a differentiable function, which 
x means that r_ is smooth. p Now, let us assume the smoothness of all functions of the v family ?(J (M, N)). We have to show the smoothness of all v 

functions X on J (M, N) for which the composition 
A^ := is differentiable, i.e. A^ is a (local) 
C^-differentiable function on Ek

n> The differentiability of A^ 
means that A = A^°«t>,ijj> is smooth (* denotes the local 
equality on the domain of «p, tp>) provided the components of 
«p,*l» are smooth with respect to the differential structure 
?(Jk(M, N)). Let 9 € Jk(M, N), then 
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<«,*>(©) =(*(a(6)), ( D a ( 0 j . f ( * ( a ( 0 ) ) ) ; lotlsk, jsn)). 

The components = 4>x°a are smooth since they are 
v 

generators of the differential structure 7(J (H, N)). 
For I a I = 0 we get the components 

= ^j«f0(a(0)) = tfrj.A(6), i.e. = 

j = l,...,n, which are smooth since they are also generators 
of yfJ^iM, N)). For the case when I a I * l we obtain 

«P,<l»i(e) = D a « i r j . f ( * ( a ( 0 ) ) ) = 

= [ d V ^ D ^ H I S l D K ^ f g ) = [[dV1«Dao0](a(0))](^j.f0) -

k 1 * [((*)*d ) ( « ( e m i ^ f - ) = r . a(0), 

j = l,...,n, which generate (locally on the domains of charts) 
k the structure (M, N)) and therefore they are smooth. 

This ends the proof of the compatibility of the if 
differential structure (M, N)) with the Ehresmann 
structure in the case of differentiable manifolds. 

Let us end this section with stating one more fact. 
Proposition 2.4 For any f e C(M, N), the mapping 

(2.7) jkf: M > Jk(M, N), 
,k k defined by ] f(p) := p e M, is smooth. 

Proof. We shall show that K°jkf e ?(M), for any 
k k 6 ?(J (M, N)). Of course, it is enough to take elements k 

if 
from the set of generators of ?(J (M, N)). So, if k = a«a, 
a € ?(M), we get 

a«aojkf(p) = a»a(jkf) = ot(p) , 
k 

i.e. a»a«] f = a e ?(M) . Next, for <c = /3®4, £ e 5(N), we 
obtain 
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/3oA.jkf(p) = 0.4(j£f) = 0(f(p)) = pof(p), 
k X i.e. /SoAoj f s (3<>f e y(M) because f is smooth. For k = ro, p 

X e X^(M), 0 e ^(N), we have 

r^j kf(p) = r£(jpf) = X(p)(/3.f) = (X(f?.f))(p), 
X k 

i.e. r^o] f = X(i?®f) e which is the consequence of the 
facts £of e ?(M) and X e ¡^(M). This ends the proof of this 
fact. k 

The mappings j f, introduced above, will play an essential 
role in the next section. 

3. Whitney C°°-topology on the set C(M, N) 
]r The differential structure 9(J (M, N)), introduced in the 
k previous section, endows the set J (M, N) with the topology v •c_./Tk/m. „. . ; this is the weakest topology on J (M, N) in y(J (M, N)) 

k which all functions of 9(J (M, N)) are continuous. 
For any set B e T ^ j k ^ Nj j ' w e define the set 

G B C C(M, N) by the formula 

(3.1) G b := {f e C(M, N): jkf(M) c B}. 

Obviously, for any B, B' € x ^ j k ^ ^ , 

(3.2) G s n Gs, = G S n B,. 

Thus, the family {Gg : B e n))^ f o r m s a base of 
some topology on the set C(M, N); we shall denote it by 
xk(C(M, N)). This topology, for the differentiable manifolds, 
is known as the strong Whitney c* -topology. 

Definition 3.1 By Whitney Ca-topology on C(M, N) we shall 
understand, in analogy with the manifold case, the topology 

00 
determined by the base U x, (C(M, N)); i.e. the sum 

k=0 K 

00 

U "^(CiMf N)) is the base of the Whitney C°°-topology 
k=0 K 

introduced here for the case of differential spaces. 
Remark. Having the C°°-topology we may consider every 

differential structure, every family of smooth 
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(pseudo)Riemannian metrics, the space of smooth k-fields or 
smooth forms, etc., defined in the category of d-spaces, as 
some topological spaces, In particular, this enables • us to 
consider the continuity of (almost) Poisson structures in 
d-spaces [17]. 

4. Structural stability of smooth mappings 

Let M, N be any differential spaces, and f ^ f 2 : M » N 
smooth mappings. We shall introduce the concept of the 
structural stability of smooth mappings of d-spaces in full 
analogy with the standard case of differentiable manifolds. 
However, this construction would not be possible without 
having the differential structure on J (M, N) which enabled us 
to define the Whitney C°°-topology on C(M, N) . As practice 
shows, this topology is the best one for thè stability 
consideration purposes. 

Definition 4.1 We shall say that f , f 2 e C(M,' N) are 
C^-equivalent iff there exist diffeomorphisms <p: M • M and 

N * N, such that the diagram 
f. 

commutes, i.e. f 2 = 0 »f^» 

Remark. Following the classical approach, we shall assume 
that 0 and ^ preserve any additional structures on M or N, 
e.g. a linear or partial ordering. If, for example, N = R, we 
assume that ^ preserves the natural linear ordering of the 
real line IR. 

Definition 4.2 A mapping f e C(M, N) is said to be 
structurally stable iff the equivalence class [f] of f, with 
respect to the C°°-equivalence relation, is an open set in the 
Whitney G^-topology on the set C(M, N). 

Definition 4.3 A subset G c C(M, N) will be called the 
generic subset iff G is open and dense in the Whitney 
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Cro-topology. 
If a generic set G c C(M, N) is the collection of all 

elements which possess some property P, determining G 
uniquely, we shall speak of 9 as a generic property of all 
elements of the set G. 

Generic properties of objects are of primary importance 
from the stability theory point of view. As an example of an 
advantage we may have from these concepts, let us notice that 
any property of elements of the completion of some generic set 
never refers to structurally stable elements because such a 
completion does not contain any open set. 

5. Final remarks 

It remains an open question concerning a natural 
differential structure on the topological space C(M, N) with 
the Whitney C^-topology. My suggestion would be to call the 
admissible differential structure each of the differential 
structures on C(M, N) that determines (not merely agrees with) 
the Whitney C°°-topology on C(M, N) . This is not obvious fpr me 
whether such admissible d-structures always exists, and - if 
they exist - which of them should be chosen as the most 
natural one. 

There is one differential structure.on the set C(M, N), 
suggested to me by Professor A. Frolicher, which is also 
natural in a certain sense. Namely, let us denote by DS the 
category of differential spaces. Then, let M, N e DS be 

d-spaces. It is a well known fact that the sets (N11) and N X X M 

are of the same cardinality, for any d-space X € DS. Indeed, 
the mapping x 

(n«) 9 f , > $ ( f ) g N
X x M , 

defined by the formula 

$(f)(x,p) := (f(x))(p), 

is a bijection. If X, M and N are d-spaces, the bijection * 
allows us to select all mappings f: X > C(M, N) such that 
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$(f): XxM > N is smooth; let us denote by C Q(X, C(M, N)) 

the set of all such mappings f. Then, on the set C(M, N) we 

may define the differential structure 5 $(C(M, N)) coinduced by 

all mappings from the sets C Q(X, C(M, N)), X e DS [30], i.e. 

the strongest differential structure on C(M, N) with respect 

to which all mappings f e C Q(X, C(M, N)) are smooth, for any 

X e DS. 

As it seems, the d-structure defined above, should hardly 

be expected to agree with the Whitney topology on C(M, N). 

There is also one more interesting and open question 

closely related to the above definition of 5j(C(M, N)). 

Namely, one may be interested whether the category of 

differential spaces is Cartesian closed or not [5]. Let us 

remind that the category of differential spaces would (by 

definition) be Cartesian closed iff, for any smooth mapping 

h: (X, ?(X)) > (C(M, N) , ? $(C(M, N))), the mapping $(h) is 

also smooth, for all differential spaces X, M, N e DS. 

Let us end this section with the proposal of the partial 

differential equation concept in the category of differential 

spaces. Namely, by a partial differential equation of order k 

in the category of differential spaces we may understand a 

subbundle 

((S, ?(J k(M, N) s), a ( s , (M, ?(M))) 

of the bundle 

((Jk(M, N), ?(J k(M, N)), a, (M, ?(M))). 
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Appendix 

I. For all definitions mentioned here, see [11] and [15]. 

Let (M, ^(M)) be a d-space. By ap, p € M, we denote the 
linear subspace of 7(M) defined as 
(A i.l) ftp := {f - f(p): f € ?(M)} 

k 
Next, let dp denote the linear subspace of ?(M) spanned by 

all products of k functions of i.e. 
(A 1.2) a^ = spanio^-... a k: a1,...,«k € ap>. 

By the k-th tangent vector to (M, ?(M)) at p e M, where 
k £ 1 is an integer, we understand any linear mapping 
v: ?(M) » R, such that 

(i) v(k) = 0, for any constant function k e ^(M), 

(ii) v. k s 0. 
P 

One can find an analogous definition, for the manifold case, 
in [31]. Obviously, this is a generalization of the usual 
concept of tangent vector specified with the help of the well 
known Leibniz rule; we get the standard case when k = 1. 

Since, for any k a 1, a k + 1 c ak, we get T ( k ) M c T ( k + 1 ) , 
fk( P P P P 

where Tl 'M denotes the set of all k-th tangent vectors to M p k 
at p. This means that, for any k a 1, T ^ = U , which P — P 
allows for the following definition of the set of all tangent 
vectors of any order 

T(°>) = U T<n> . p n=l p 

Remark. Of course, T^00^ = U T ^ , for any i = 1, 2,... . 
p n=l p 

fk) 
Naturally, T^ 'M turns out to form a linear space, for any 
k = 1,2,... ,oo. 

For any smooth mapping f: (M, ?(M)) > (N, ?(N)), we 
define the so-called k-th differential of f, as the linear 
mapping 
(A 1.3) dkf: T ^ M • T k

( p )N, 
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given by the formula 

(A 1.4) [d£f(v)](|S) :=v(f?of), 

for any v € T^k*M, K = 1, 2,..., CD, and /9 e d°f := f(p) . 
v In turn, by d f we denote the mapping 

(A 1.5) dkf: T ( k )M * U T ( k )M » T ( k )N = U T ( k )N, P q e r e ^ 

such that dkf|(r(k)„ s dkf, k = 1, 2,..., co; d kf is said to be 
' p P 

the k-th differential of the mapping f or the k-th tangent 
mapping to f. Directly from the definition, we get the rule 

(A 1.6) dk(g«f) = dkgodkf, 

for any smooth mappings f: (M, ?(M)) > (N, ?(N)) and 
g: (N, ?(N)) • (P, ?(P)). (The chain rule for k-th vectors 
can be found in [11].) 

By the k-th rector field on (M, ?(M)) (k-th field, 
shortly) we mean any mapping V: M • T ^ M , such that 

(k) 
V(p) e Tp 'M, k = 1,..., oo, p € M. V is said to be a smooth 
k-th field if, for any f € ?(M), the function 
M a p i • V(p)f e IR is smooth. Equivalently, we can 
understand the concept of a smooth k-th field as the smooth 
mapping V: (M, ?(M)) > (T(k)M, ?(T(k)M)), where by ?(T ( k )M) 
we mean the weakest differential structure on T ^ M with 
respect to which the mappings a°n: T ^ M » IR and k fkl k d a: Tv 'M » R are smooth, for any a e ?(M), where 
rr: t'Si » M is the natural projection, i.e. 7r(T^k^M) = {p} 

k P 
[11]. For the set IR we assume the natural (Euclidean) 
differential structure generated by the projections 
Pi'*"' pk* T h e p a i r ( T M' ?(T ( k )M)) is called the tangent 
space of k-th order to (M, 5(M)). Obviously, ti is smooth. We 
denote 
(A 1.7) T ( k )(M, ?(M)) := (T(k)M, ?(T ( k )M)). 

The triple ((T(k)M, ?(T(k)M)), n, (M, ?(M))) is said to be 
the tangent bundle of k-th order. 
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II. The main reference concerning the topic considered 
here is [19]. 

Let (M, y(M)) and (N, ?(N)) be d-spaces. 
Definition II.1 (i) A family ( aq)q eN o f smooth 

functions a e £(M), indexed by points of N, is said to be a 
. (Y smooth family of functions if the function * : MxN • IR, 

defined by ¥a(p, q) := o£g(p), for (p, q) e MxN, is smooth, 
i.e. e y(MxN) = ?(M)x£(N). 

(ii) Analogously, a family smooth mappings 
M > L, where M, N, L are d-spaces, is said to be a 

smooth family of mappings if the mapping 
i*2: MxN s (p,q) i * e L is smooth. 
(iii) Next (in analogy with Ref.[19]), the family (Xq) q e N of 
smooth k-fields on M, indexed by points of N, is said to be a 
smooth family of k-th fields if the mapping 

* X: MxN 9 (p, q) i » * X(p, q) := Xg(p) e T ( k ) M , 

is smooth. 
We shall prove some useful properties of smooth families. 
Proposition II. 1 Let (Mg)ggN, Ji : M > L, be a smooth 

family. Moreover, let P » M, i): L » Q, R > N be 
smooth mappings, where M, N, P, Q and R are considered to be 
d-spaces. Then the following families are smooth: 

(i> ( rq>q 6N' W h e r e rq 
( i i ) <sq>qSN' W h e r e Sq 
( i i i ) ( tZ )Z€R' W h e r e fcz 

= P > L, 

= y°Uq: M > Q, 

= ^ ( z ) : M » L ' 

Proof. (i) The smoothness of (^qiqgjj requires the 

mapping i*1: MxN a (p, q) i > q) := Mg(p) e L to be 
smooth. To prove the smoothness of (r ) „ w e have to check q'qeN 
the smoothness of the mapping 

¥ r: PxN a (m, q) i > ¥r(m, q) := r (m) = uq(?(m)) = 

= (Mq«C) (») 3 q) € L. 
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Let us denote by prp and prN the projections of the 
Cartesian product PxN on its axes, of course both these 

. » . • r • projections are smooth mappings. Hence, the mapping ¥ is 
smooth as the composition of smooth mappings, 

= (£.prp, prN). 

(ii) For (sg)q€N» w e focus on the mapping 

MxN 9 (p,q) i » * S ( P , q ) := sg(p) s 
E VHq(p) = ^.«^(p^) e Q. 

S 11 s Hence, * = t/«* which proves the smoothness of i and, 
consequently, it means that (sg)g6N is smooth. 

(iii) For (tz)zeR, we have 
MxR a (p,z) i » ifc(p,z) := tz(p) s M^(z)(p) e L. 

However, u i ( z )(p) = *M(p, C(z)) = ¥u<> (prM, C°prR) (p, z) , where 
prM and prR are the natural projections of MxR onto the axes M 
and R, respectively. The smoothness of i®* (and consequently of 
(tz)zeR) follows from the formula = i*1® (prM, i°prR) . 

Proposition II.2 Let (Hg)g6N be a smooth family of smooth 
mappings u : M > L, and let p: N > M, X: M > N be 
smooth mappings. Then the following two mappings are smooth:* 

(i) Fp: N 9 q i > Fp(q) := Hg(p(q)) € L, 

(ii) F^: M a p i > Fx(p) := n x ( p )(p) € L. 
Proof, (i) Fp(q) = (ig (p (q) ) = * U (p (q) ,q) = (p,idN)(q) , 

i.e. F p = i^o(p,idN), which is evidently a smooth mapping. 
(ii) Fx(p) = H x ( p )(P) = *U(P, A(P)) = ^»(idjj, A)(p), hence 
F^ = »^«(idjj, A), which ends the proof. 

Proposition II.3 Let (aq)qeN be a smooth family of real 
functions on M, aq e ?(M), and let X be a smooth k-field on M. 
Then the family (*q)q€N» where := Xag, is smooth. 

Proof. Let iq: M > MxN be the inclusion mapping, which 
is smooth. 

*r(P, q) * r„(p) = (Xa)(p) = X(p)a = X(p)(»"«i ) = 
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= tdp(iq)X(p)]4-a * [(iq)Íx(p)]íü 

) k 
<3 *P the Cartesian product MxN. Indeed, 

Of course, the field X, X(p, q) := X(p), is smooth on 

X(p, q)(f»prM) = [(i)^X(p)](f.prM) = [d*(ijX(p) ] (f.prM) = 

= X(p)(foprM»ig) = X(p)f = (Xf)(p) = (Xf).prM(p, q), 

which means that X(f«pr ) =(Xf)«pr , where f e ?(M). 
In turn, 

[X(goprN)](p, q) = X(p, q)(g»prN) = 

= (iq)Jx(p)(g.prN) = X(p)(goprNoiq) = o, 

because P*"N®iq is a constant mapping, g e 3s(N) . This means that X is a smooth k-field on MxN. Hence = X(¥a) is a 
smooth function on MxN, and therefore the family (r ) q qeN 
proves to be smooth. 

Proposition II.4 Let ( Xq) q e N
 b e a smooth family of smooth 

k-fields on (M, ?(M)), and a € ?(M) . Then, the family (<*q)qeN/ 
where ot_ := X_a, q € N, is smooth, q q 

Proof. From the assumption of smoothness of the family 
(Xq)geN we know that the mapping 

fX: MxN a (p, q) i • X (p) e T ( k )M 

is smooth. In turn, the mapping 

¥a: MxN s (p, q) i > ¥a(p, q) := ag(p) € R 

is also smooth because 

q) = aq(P) = Xg(p)a =[^X(p, q)](a) = 

= dka(¥X(p, q)) = (d*«.**)(p, q), 
a k X i.e. • z d , which is a composition of smooth mappings. 

The last formula shows the smoothness of the family (a ) q qeN 
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