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WHITNEY TOPOLOGY AND STRUCTURAL STABILITY
OF SMOOTH MAPPINGS IN DIFFERENTIAL SPACES

The main part of this work 1is devoted to defining the
differential structure on the space of k-jets in the category
of differential spaces in the sense of Sikorski [21]. The
proof of the consistency of the differential structure
introduced here with the Ehresmann differential structure [4],
in the case when all differential spaces are differentiable
manifolds, 1is given. Then, with the help of the
differential structure on the space of Jjets, the Whitney
topology is defined on the set of smooth maps. The paper ehds
with a discussion of the structural stability of smooth
mappings.

1. Introduction and notation

The notion of differential space as a natural
generalization of the smooth manifold concept appeared
independently in works of several authors, and the necéssity
of this generalization has become evident in many mathematical
problems (1], (2], [3], (5], (9], (10], {20] - [27)]. Some
physical applications of this generalization are presented in
{el, (73, (81, (111, [12], [17].

R. Sikorski introduced his concept of differential spaces
in [21] and [22], and subsequently gave a beautiful exposition
of modefn differential geometry in book ([23]. This approach
has allowed him to substantially generalize many geometric
problems so far reserved only for smooth manifolds.
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Let M be any set, and C a set of real functions defined on
M. The weakest topology on M, in which all functions of the

family C are continuous, will be denoted by T For any subset

A c M, let CA denote the set of all real funcgions 8 on A such
that, for any p € A, there exist an open neighbourhood U € Te
of p and a function o e C satisfying the condition
B8IANU = a|AnU. By scC we shall denote the family of all real
functions on M which may be presented as wo(al,...,an), where
n € C, ne N. A family C 1is called the

differential structure (in the sense of Sikorski, d-structure,

w e Cm(Rn), Cyposes

for short) on M if C = CM = gcC, and its elements are called
smooth functions on M [23]. The pair (M, C) is said to be a
differential space (d-space, for short). For an arbitrary set
Co of real functions on M, the set (scco)M is the smallest
differential structure on M containing C,- A differential
structure € on M 1is said to be generated by C° iff

C = (scCO)M. We shall use also the following shorter notation:
(1.1) gen(co) = (scCo)M,

if M is well known from the context.

By ¥(M) we will denote a differential structure on a set M
in the sense of Sikorski, i.e. ¥(M) is a set of all real
functions on M which are assumed to be smooth. So, %(M) will
always denote a chosen differential structure, the definition
of which will be given explicitly or will be assumed clear
from the context. For a differentiable manifold the
differential structure is (traditionally) determined by its
atlas.

All differentiable manifolds in this work are assumed to
be smooth, i.e. of class C”, and by a smooth mapping of two
manifolds we understand a map which is differentiable of class
c®.

Let (M, ¥(M)) and (N, F(N)) be two differentiable
manifolds, and C”(M, N) be the set of all smooth mappings from
M to N. For any integer k = 0, one defines an equivalence
relation in c®(M, N), the so called k-jet relation at p e M;
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for any £, g e Cm(M, N), £ E; g 1iff f(p) = g(p) and there

exist charts (U, ¢) and (V, ¥) on M and N, respectively, such
that

(1.2) D, (¥o£24"1) (#(p)) = D (¥eged™ ) (4(p)),
where p € U, f(p) € V, Da := aglo...oa;m,
o = (al,...,am) € Ng, No :t= {0, 1, 2, ...}, and m = dim M,

n = dim N.

For future convenience, 1let us associate with the
multiindex o the following two integers |al := Ay Foeee ooy
| e= 1. . 1
and «! o leeeran
For a smooth mapping f: M —— N, the equivalence class of

f with respect to the relation E; is said to be the k-jet of f
at a point p € M and denoted by jgf, i.e.

.k

(1.3) Jpf =L f ]Ek .

p
So, the set of all k-jets of smooth mappings from M to N is
the quotient set
(ec]
(1.4) Jk(M’ N) := € (M, N)/_k
p =
p
The set of all k-jets of smooth mappings from C® (M, N) is

given as the disjoint sum

(1.5) X, N) :=U 3%(m, N) .
peM P
For the set Jk(M, N), one defines the following two mappings

k

a: Jk(M, N) > jpf —— p € M,

(1.6) X X
&: T (M, N) > jpf —— f(p) € N,

which are known as source and target mappings.
Following C. Ehresmann [4], one defines an atlas on the
set Jk(M, N) of k-jets which contains all charts

k

(1.7) <¢,¥>: (a, &) T (Uxv) — Eq
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defined by

(1.8) <6,¥>(350) [¢(p), (0, (Wete0™h) (0P i lalsk, jsn)],

where (U, ¢), (V, ¥) are charts on M and N, respectively,

m = dim M, n = dim N, and

k 1 m j . i j
(1.9) E := {((x feeesX ), (xg; lal=k, j=n)}; x, xg € R}
. . ’ m+k , . .
is the Euclidean m+ n- m -dimensional space, i.e.
Ek = RL, where L = [m + n-[m+k]].
mn m

For future convenience, let us denote by p the projection
of the space Eﬁn onto its subspace Rm, i.e.

p: E 3 x ((xl,...,xm), (xg: faxl=k, j=n)) r—

mn
(1.10)
— (xl,...,xm) e R™ .

Let <¢,y>: (a, &) 1(UxV) — Ein

determined by charts (U, ¢), (V, ¥) of the manifolds M and N,
respectively. One can easily see that if

be the Ehresmann chart

0 := <¢,¥> L(x) e M, N),

for some x € Ek , then
mn

(1.11) ae) = ¢ top(x) = ¢ (xt, ..., XM,

The problem arises: how to choose a suitable mapping
representing the k-jet 8 in a simple way? Let us denote by

(1.12) ei: $(U) — R,
the real functions given by
3
. X
1 m
(1.13) 8J(er, ... &M =7 —7 (£ - 0%,
lal=k
o a
j=1,...,n, where (£- x)a = (El - xl) 1-...-(§ - xm) m’ and

(1.14) 6. := (6 ,..,e:): ¢ (U) — R".
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It turns out that the mapping w-loexo¢ is a suitable (and
simple ‘enough) local representative of the k-jet 8, i.e.
-1 .k
(1.15) 8 = <¢,¥> "(x) =7 » (W°9x°¢)-
¢ “ep(x)

The proof is reduced to a simple algebraic manipulations.

The mapping w_loexo¢ is actually defined on the open
subset U ¢ M and formally, according to the definitionh assumed

»

here, should not appear in the form j:(w_loexo¢). However, we
can always replace w_loexo¢ by a (globally defined) mapping

fe: M —— N, such that both mappings w-loexo¢ and f9 have the
same germ at p and, of course, the resulting k-jet is
independent of the chosen representative of the germ.
(Equivalently, one might base one’s considerations on 1local
smooth mappings from M to N and define k-jets by the
corresponding equivalence relation in the set of all such
local smooth mappings.) So, we should not fix up any global

representative of w-loexo¢.

2. The differential space of k-jets

It is evident that to define k-jets for smooth mappings of
differential spaces there is no possibility, in general, to
use charts, simply because charts may not be available (such a
case is common for differential spaces).

The concept of a k-jet of smooth mappings in the case of
differential spaces was originally introduced in [29] and then
in [11]. The definitions presented in [29] and [11]] are
formally different and the corresponding concepts of k-jets
slightly differ when tangent vectors to a d-space M have no
smooth prolongations. The definition introduced in (11] and
presented in this work is formulated entirely in terms of the
two d-spaces M and N in question, which seems to be simpler
and more natural. Let us remind this definition in a ' concise
way.

For any two differential spaces (M, ¥(M)) and (N, ¥(N)),
let us denote by C(M, N) the set of all smooth mappings from M
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to N. Then, we define the k-jet equivalence relation at p e M
in the set C(M, N), namely
Definition 2,1 For any f, g € C(M, N), we assume

k . k k
. f = ff df =d
(2.1) p9 1 P pJ’

where the symbol dgf stands for the k-th differential of the
mapping f at the point p e M (for the definition see
Appendix I). So, by the k-jet of a mapping f € C(M, N) at
P € M we shall understand the equivalence class

.k k k
. f := C(M, N): da~g = d_f}.
(2.2) Jp {g € C(M, N) o9 P }

We shall denote (as it 1is the use in the case of
differentiable manifolds)

(2.3) J;(M, N) := {jgf: £fecw my =N,
P
(2.4) aXm, §) :=U K¥m, N).
peM p

Oon the set of k-jets Jk(M, N) we define the differential
structure (in the sense of Sikorski)

F(Jk(M, N)) := gen ({aoa: x € FM)} v {Beb: B € F(N)} v
(2.5) X Kk
v {FB: Xe X"(M), B e ?(N)}],
where Ik(M) denotes the ¥(M)-module of all smooth k-vector
fields defined on (M, ¥(M)) (see Appendix I and also [11] or
[15]), and

X Koo o ey = rak
(2.6) Tg(3pf) := X(p) (Bef) (A E(X(P)) 1 (B) -

Definition 2.2 The pair (J5(M, N), #(3¥(M, N))) will be
called the differential space of Kk-jets of smooth mappings
from M to N.

Further we can define fiber bundles of k-jets (a suitable
concept of the fiber bundle in the category of d-spaces was
introduced and investigated in" [28])as, for example,
(Jk(M, N), a, M), (Jk(M, N), &, N), (Jk(M, N), (a, &), MxN).

Of course, the differential structure 9(Jk(M, N)) 1is
required to coincide with the Ehresmann structure for
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differentiable manifolds. This is actually stated by the
following

Proposition 2.3 Let (M, F(M)) and (N, F(N)) be
differentiable manifolds. Then the differential structure
?(Jk(M, N)), defined by (2.5), coincides with the Ehresmann
differential structure on Jk(M, N).

Proof. Starting from Ehresmann differential structure on
Jk(M, N), determined by charts (1.7), for the case when M and
N are differentiable manifolds, we shall show the smoothness
of the functions generating the d-structure 9(Jk(M, N)),
defined by (2.5), which 1is enough for the proof of the
smoothness of all functions of ?(Jk(M, N)).

For any a € ¥(M), we obtain

-1 .k -1
woac<g 0> 71 (x) = aea(3 ) (weo,00)] = weeTrep(x)
¢ “op(x)

The function ao¢_1 is differentiable because « € F(M) and
(U, ¢) 1is a chart on M. The projection P is also
differentiable. This means the differentiability of
aoao<¢,w>_1 and proves the smoothness of aeca (locally, but it

is enough).

In turn, for any B € ¥(N), we get

Boboco, w> M (x) = Bo8(3F  weo,00)] = aruhes (87 hepix)) =

9™ ep(x)
_ -1
= By re0 op(x).

Let us notice that (6,) X is a smooth family of mappings

Xe€E
mn
(see Appendix II for the definition and properties of smooth

families). Indeed, the mapping

¥ pu)xEl 5 (€, x) — ¥%(€, x) =6 (£) € RV

defined as the composition of polynomials

2]

(g, x) 1= (19,...,90) (8, x) = (6L(6),...,6%8)) = o (6),

where
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B
x -
2] o a
Wj(E: X) = 2 —;T(E -x),
Jal=k
is differentiable of class c®. Obviously, Bow-l is

differentiable of class C* since B8 € $(N) and (V, ¥) is a
chart on N. Thus, as it follows from Proposition A.II.1(ii),
(Bow-loex) x is a smooth family and the mapping
xeE T
~, mn ‘ _
X —— Boy oexop(x) is smooth (see Proposition A.II.2(i)).
(The smoothness of Bo& may be also demonstrated in a shorter
way. Namely, one can easily see that the function Bo&o<¢,w>_1
is a constant function.)
In the proof of smoothness of functions Fx, for X e Ik(M)
and B € ¥(N), we shall denote by the same symbol ¥ the
restriction of the global k-field X to the open subspace

U ¢ M, where U is the domain of the chart ¢. We obtain

X -1 X,.k
rre<e, > 1 (x) = TR(3¥_ ($e6,04)) =
8 B o) X

= X(¢ Top(x)) (Bo¥ o0 o0) = (A0 (x(s7Tep(x)))1(By o0 ) =
= (XX (p(x)) 1By Mo0) = ([()5X]1(Bv o0, ) 1ep(x).

Obviously, the k-field (¢)fx is smooth, and therefore

([(¢)§X](Bow-loex)) k is a smooth family. From Appendix II
XeE
mn

it follows that F§o<¢,w>-1 is a differentiable function, which

means that Fx is smooth.

B

Now, let us assume the smoothness of all functions of the
family 9(Jk(M, N)). We have to show the smoothness of all
functions a on Jk(M, N) for which the composition
A, i= Ae<p,¥> 1 is differentiable, i.e. A, is a (local)
Cm-differentiabie function on Eﬁn‘ The differentiability of AA
means that A = AA°<¢IW> is smooth (= denotes the lqcal
equality on the domain of <¢,y>) provided the components of
<¢,y> are smooth with respect to the differential structure
F(3K(M, N)). Let & € J5(M, N), then
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<4,¥>(6) = ((a(6)), (D (¥ o5 067™1)(#(a(6))); lal=k, Isn)).

The components <¢,w>1 = ¢1oa are smooth since they are
generators of the differential structure 9(Jk(M, N)).
For |lal = 0 we get the components

<p.¥>3(0) = ¥ler (a(e)) = wIesce), i.e. <p.¥>3 = yles,

j=1,...,n, which are smooth since they are also generators
of ?(Jk(M, N)). For the case when |al =z 1 we obtain

<s.9>3(8) = b (W2 067") (4(a(e))) =

= (a% (D (8:a(0)))1(We£y) = [(d¥671eD 0] (a(8))) (¥ 1) =

. “1,kp
= [(($)%D,) (a(8))1 (¥ o1, = r "%,
l1.e.
PRI Cap .8
<¢,Vl>a(9) = rwj ’

j =1,...,n, which generate (locally on the domains of charts)
the structure ?(Jk(M, N)) and therefore they are smooth.

This ends the proof of the compatibility of the
differential structure 9(Jk(M, N)) with the Ehresmann
structure in the case of differentiable manifolds.

Let us end this section with stating one more fact.

Proposition 2,4 For any £ € C(M, N), the mapping

(2.7) i¥e: m — ¥, N),

defined by jkf(p) := j:f, P € M, is smooth.
Proof. We shall show that xojkf € ¥(M), for any
K € ?(Jk(n, N)). Of course, it is enough to take elements «
from the set of generators of 9(Jk(M, N)). So, 1if «k = «a-a,
a € ¥F(M), we get
acaci¥E(p) = aca(3Ke) = a(p),

i.e. aoaojkf = ae€ F(M). Next, for k = Bo&4, B € F(N), we

obtain
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Bebo 3 £(p) = BeB(IFE) = B(£(P)) = BoL(P),
i.e. Bo&ojkf = Bof € ¥F(M) because £ is smooth. For «k =T

X € ¥(M), B € ¥(N), we have
X X, Koy _ VEY =
B B(pr) = X(p) (B-£) (X(B-£)) (P),
i.e. F:ojkf = X(B-f) € ¥(M), which is the consequence of the
facts Bof € $(M) and X € Ik(M). This ends the proof of this
fact.

The mappings jkf, introduced above, will play an essential

r¥.i%epp) =T

role in the next section.

3. Whitney C®-topology on the set C(M, N)

The differential structure ?(Jk(M, N)), introduced in the
previous section, endows the set Jk(M, N) with the topology

. s s k .
tg(Jk(M' N)) this is the weakest topology on J (M, N) in

which all functions of ?(Jk(M, N)) are continuous.

For any set B e T we define the set

F(I5(M, N))’

G, ¢ C(M, N) by the formula

B

(3.1) G, i= {f € C(M, N): F*E(M) < B}.

B

Obviously, for any B, B’ € tg(Jk(M, N)) !

(3.2) Gg N Gg, = Gg g/ -

Thus, the family {Gg : B e rg(Jk(M N))} forms a base of
’
some topology on the set C(M, N); we shall denote it by
tk(C(M, N)). This topology, for the differentiable manifolds,
is known as the strong Whitney Ck—topology.
Definition 3.1 By Whitney Cm—topology on C(M, N) we shall
understand, in analogy with the manifold case, the topology
[r]
determined by the base U tk(C(M, N)); i.e. the sun
k=0
[» ] .
U<z, (c(M, N)) is the base of the Whitney c”-topology
k=0
introduced here for the case of differential spaces.

Remark. Having the Cm—topology we may consider every
differential structure, every family of smooth
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(pseudo)Riemannian metrics, the space of smooth k-fields or
smooth forms, etc., defined in the category of d-spaces, as
some topological épaces, In particular, this enables:' us to
consider the continuity of (almost) Poisson structures in
d-spaces [17].

4. Structural stability of smooth mappings

Let M, N be any differential spaces, and'fl, f. : M — N

smooth mappings. We shall introduce the concépt of the
structural stability of smooth mappings of d-spaces in full
analogy with the standard case of differentiable manifolds.
However, this construction would not be possible without
having the differential structure on Jk(M, N) which enabled us
to define the Whitney Cw—topology on C(M, N). As practice
shows, this topology is the best one for the stability
consideration purposes. ’ ’

Definition 4.1 We shall say that fl' f2 € C(Mj N) are
c®-equivalent iff there exist diffeomorphisms ¢: M —— M and
¥: N —— N, such that the diagram

M ! > N
¢l 1'//
M f2 > N
commutes, i.e. f, =y of o L.

Remark. Following the classical approach, we shall assume
that ¢ and ¥ preserve any additional structures on M or N,
e.g. a linear or partial ordering. If, for example, N = R, we
assume that ¥ preserves the natural 1linear ordering of the
real line R.

Definition 4,2 A mapping f € C(M, N) 1is said to be
structurally stable iff the equivalence class [f] of f, with
respect to the C”-equivalence relation, is an open set in the
Whitney ¢®-topology on the set C(M, N).

Definition 4.3 A subset G ¢ C(M, N) will be called the
generic subset iff G is open and dense in the Whitney
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Cm-topology.

If a generic set G ¢ C(M, N) is the collection of all
elements which possess some property ?, determining G
uniquely, we shall speak of P as a generic property of all
elements of the set G.

Generic properties of objects are of primary importance
from the stability theory point of view. As an example of an
advantage we may have from these concepts, let us notice that
any property of elements of the completion of some generic set
never refers to structurally stable elements because such a
completion does not contain any open set.

5. Final remarks

It remains an open dquestion concerning a natural
differential structure on the topological space C(M, N) with
the Whitney Cw—topology. My suggestion would be to call the
admissible differential structure each of the differential
structures on C(M, N) that determines (not merely agrees with)
the Whitney Cm—topology on C(M, N). This is not obvious for me
whether such admissible d-structures always exists, and - if
they exist - which of them should be chosen as the most
natural one.

There is one differential structure.on the set C(M, N),
suggested to me by Professor A. Frdlicher, which is also
natural in a certain sense. Namely, let us denote by DS the
category of differential spaces. Then, 1let M, N € DS be

X
d-spaces. It is a well known fact that the sets [NM] and NXXM
are of the same cardinality, for any d-space X € DS. Indeed,
the mapping

X
8: [NM] 5 £ —— &(f) enTM,
defined by the formula

®(f) (x,p) := (£(x))(p),

is a bijection. If X, M and N are d-spaces, the bijection @&
allows us to select all mappings £f: X —— C(M, N) such that
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®(f): XxM —— N is smooth; let us denote by Co(x, C(M, N))
the set of all such mappings f. Then, on the set C(M, N) we
may define the differential structure ?Q(C(M, N)) coinduced by
all mappings from the sets co(x, C(M, N)), X e DS (30), 1i.e.
the strongest differential structure on C(M, N) with respect
to which all mappings f € co(x, C(M, N)) are smooth, for any
X e DS.

As it seems, the d-structure defined above, should hardly
be expected to agree with the Whitney topology on C(M, N).

There is also one more interesting and open dguestion
closely related to the above definition of ?Q(C(M, N)).
Namely, one may be interested whether the category of
differential spaces is Cartesian closed or not [5]. Let us
remind that the category of differential spaces would (by
definition) be Cartesian closed iff, for any smooth mapping
h: (X, (X)) — (c(M, N), ?Q(C(M, N))), the mapping &(h) is
also smooth, for all differential spaces X, M, N € DS.

Let us end this section with the proposal of the partial
differential equation concept in the category of differential
spaces. Namely, by a partial differential equation of order k
in the category of differential spaces we may understand a
subbundle

((s, $@*M, N)g), ag, M, FM)))

Is’
of the bundle

(*m, M, 5@3Em, N, a, M, FM))).
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Appendix

I. For all definitions mentioned here, see {11] and [15].

Let (M, ¥(M)) be a d-space. By np, p € M, we denote the
linear subspace of ¥(M) defined as
(A I.1) op 2= {f - f(p): £ € F(M)}

Next, let o; denote the linear subspace of ¥(M) spanned by
all products of k functions of op, i.e.
k

(A I.2) °p = span{al-...-ak: Ogyeess@y € up}.

By the k-th tangent vector to (M, ¥(M)) at p e€ M, where
k 21 is an integer, we understand any 1linear mapping
v: ¥(M) — R, such that

(1) v(k)

o, for any constant function k € ¥(M),
(ii) vlok = 0.

One can find an analogous definition, for the manifold case,
in (31). Obviously, this is a generalization of the usual
concept of tangent vector specified with the help of the well
known Leibniz rule; we get the standard case when k = 1,

Since, for any k = 1, u;+1 c oX, we get Ték)u c T£k+1),

where Ték)n denotes the set of all k-th tangent vectors to M
k

at p. This means that, for any k = 1, Ték) =U Tén), which

allows for the following definition of the set of all tangent

vectors of any order © ,
p{®) =y (M,
P n=1 P

=)
Remark. Of course, Tém) = U T(n), for any i =1, 2,... .
n=1

Naturally, Ték)M turns out to form a linear space, for any
k=1,2,...,m. .

For any smooth mapping f: (M, $(M)) —— (N, ¥$(N)), we
define the so-called k-th differential of £, as the 1linear
mapping

(A I.3) d:f: Tl()k)M — ¥

£(p) N
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given by the formula
(A I.4) [45E(V)1(8) := V(Be£),

for any v € Ték)n, k=1 2,..., o, and B € ¥(N); dgf 1= £(p).

In turn, by dkf we denote the mapping

(A I.5) at: TPy sy ey — 5 rKy = y T(k)N,
e P e 4
k k _ ko, . .
such that d fIT(k)M = dpf, k=1, 2,..., w; d°f is said to be

the k-th differential of the mapping £ or the k-th tangent
mapping to f. Directly from the definition, we get the rule

k

(A I.6) aX(ge£) = d¥g.a¥e,

for any smooth mappings f: (M, F(M)) —— (N, F(N)) and
g: (N, ¥(N)) —— (P, ¥(P)). (The chain rule for k~th vectors
can be found in [11].) '

By the k-th vector field on (M, $(M)) (k~-th field,
shortly) we mean any mapping V: M —— T(k)M, such that
V(p) € Ték)u, k=1,..., o, p e M. V is said to be a smooth
k-th field if, for any f e ¥M, the function
M>p r— V(p)f € R is smooth. Equivalently, we can
understand the concept of a smooth k-th field as the smooth
mapping V: (M, ¥(M)) — (T®)M, #(2®)M)), where by F(T¥)n)
we mean the weakest differential structure on T(k)M with
respect to which the mappings QoT: T(k)M — R and
dka: T(k)M —_— Rk are smooth, for any x € F(M), where
n: TkM —— M is the natural projection, i.e. n(T(k)M) = {p}
[11]. For the set Rk we assume the natural (Euclidean)
differential structure €&,  generated by the projections
Pprecrt Py The pair (T(ﬁ)M, ?(T(k)M)) is called the tangent
space of k-th order to (M, ¥(M)). Obviously, m is smooth. We
deriote

(A I.7) X (m, gy) 1= (r®y, (X yyy.

The triple ((T¥'m, #(r®)My), n, (M, F(M))) is said to be
the tangent bundle of k-~th order.
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II. The main reference concerning the topic considered
here is [19]).

Let (M, ¥(M)) and (N, ¥(N)) be d-spaces.

Definition II.1 (i) A family (aq)qu of smooth
functions aq € ¥(M), indexed by points of N, is said to be a
smooth family of functions if the function ¥%: MxN —— R,
defined by Wa(p, q) := aq(p), for (p, g) € MxN, 1is smooth,

ice. ¥* e F(MxN) = F(M)xF(N).

(ii) Analogously, a family (uq) of smooth mappings

geN
uq: M —— L, where M, N, L are d-spaces, is said to be a

smooth family of mappings if the mapping
¥H: MxN 3 (p,q) — uq(p) € L is smooth.
(iii) Next (in analogy with Ref.[19]), the family (xq)qu of

smooth k-fields on M, indexed by points of N, is said to be a
smooth family of k-th fields if the mapping

WX: MxN > (p, q) —— Wx(p, qg) = Xq(p) € T(k)M,

is smooth.
We shall prove some useful properties of smooth families.
Proposition II.1 Let (“q)qu’ uq: M ——> L, be a smooth
family. Moreover, let £&: P —— M, 7: L — Q, {: R —— N be
smooth mappings, where M, N, P, Q and R are considered to be
d-spaces. Then the following families are smooth:

(1) (rq)qu, where rq := uqo&: P— L,
(ii) (sq)qu, where sq := nouq: M — Q,
(iii) (tz)zeR’ where tz := uC(Z): M — L.

Proof. (i) The smoothness of (uq)qu requires the
mapping ¥ MxN > (p, 9) — W“(p, q) == uq(p) € L to be
smooth. To prove the smoothness of (r ) we have to check

q’'qgeN
the smoothness of the mapping

r

¥ : PxN > (m, q) — ¥ (m, q) := rq(m) = uq(E(m)) =

= (Hgo€) (m) = w(gm), q) e L.
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Let us denote by pry and pry the projections of the
Cartesian product PxN on 1its axes, of course both these
projections are smooth mappings. Hence, +the mapping ¥ is
smooth as the composition of smooth mappings,

ro_ oM. (r. :
¥ =¥ (E prpr PrN) .

(ii) For (sq)qu, we focus on the mapping

¥S: MxN > (p,q) — Ws(p,q) = sq(p) =

= memy (p) = n-¥"(p,q) € Q.

Hence, v® = now“ which proves the smoothness of ¥

and,
consequently, it means that (sq)qu is smooth.
(iii) For (tz)zeR’ we have

t

¥ : MxR » (p,z) —— Wt(p,z) =t (p) = uc(z)(p) € L.

However, u. ,,(pP) = w(p, ¢(z)) = W“°(prM. Cepryp) (P, 2), where

Pry and prp are the natural projections of MxR onto the axes M

and R, respectively. The smoothness of Wt (and consequently of
t _ U .

(tz)zeR) follows from the formula ¥~ = ¥ o(prM, ¢ er).

Proposition II.2 Let (uq)qu

mappings uq: M——> L, and let p: N—> M, A: M ——> N be

be a smooth family of smooth

smooth mappings. Then the following two mappings are smooth:’

(1) Fp= Ns>q+r— Fp(q) 1= uq(p(q)) € L,

(ii) FA: M>p +— Fh(p) = “A(p)(p) e L.
Proof. (i) F,(q) = ug(p(@) = ¥(p(@,q) = ¥e(p,idy) (@),

i.e. Fp = W“o(p,idN), which is evidently a smooth mapping.
. _ oM = oMo (g
(ii) F,(p) = “A(p)(p) =¥ (p, A(p)) = ¥ (idy, A)(p), hence

F, = T“o(idu, A), which ends the proof.

Proposition II.3 Let (aq)qu be a smooth family of real
functions on M, aq € ¥(M), and let X be a smooth k-field on M.

Then the family (7q)qu' where 7q: := Xoa is smooth.

q’ .
Proof. Let iq: M —— MxN be the inclusion mapping, which
is smooth.

4 x ‘= = = ao' =
¥(p, @) = 7,(P) (X ) (P) = X(pP)exy = X(p) (¥ i)
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_ aK a _ . .k o
= [dp(iq)X(P)]W = [(lq)*%(P)]W .

.0f course, the field X, X(p, q) := (iq)EPX(p), is smooth on
the Cartesian product MxN. Indeed,

X(p, @) (£opry) = [(1)5 X(P)1(£oPTyy) = [A5(1)X(P)](Eepry) =
= X(P) (£opTyed ) = X(P)E = (X£) (P) = (X£)opry(P, @),

which means that X(fepr ) =(Xf)e.pr , where f ¢ ¥(M).

In turn,
(X(gepry) 1(p, @) = X(P, Q) (gepry) =

= (1)3X(P) (gPry) = X(P) (goPryeiy) = O,

because prNoiq is a constant mapping, g € ¥(N). This means
that X is a smooth k-field on MxN. Hence ¥’ = X(¥*) is a
smooth function on MxN, and therefore the family (1q)qu
proves to be smooth.

Proposition II.4 Let (xq)qu be a smooth family of smooth
k-fields on (M, ¥(M)), and o« € ¥$(M). Then, the family (aq)

where aq = an, q € N, is smooth.

Proof. From the assumption of smoothness of the family

geN’

(

) we know that the mapping

xq geN

¥: W s (p, @) — Xy (p) < (K y
is smooth. In turn, the mapping
¥¥: MxN > {p, 9) — Wa(p, q) := aq(p) € R
is also smooth because
¥p, q) = ay(p) = X (P)a =[¥(p, @)](x) =
= a®a(¥(p, @) = (@ «¥¥) (p, q),

i.e. ¥* = dkaowx, which is a composition of smooth mappings.

The last formula shows the smoothness of the family (aq)qu.
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