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SOME REMARKS ON THE MOTION OF A RIGID BODY IN A 
SPACE OF CONSTANT CURVATURE WITHOUT EXTERNAL FORCES1 

0. Introduction 

Due to H. v. Helmholtz the foundations of classical 
mechanics do not require the "space" to satisfy the full 
Euclidean geometry, but only free movability of rigid bodies. 
This property of Euclidean spaces however is shared by all 

3 
3-dim. 1-connected Riemannian manifolds Mk of constant 
curvature icelR and it characterizes these standard spaces in a 
large class of topological spaces (see e.g. [5],p.220, 
Corollaire 1; certain group actions can topologically model 
the "transport of rigid bodies"). All known experiments for 
detecting the value of K in "reality" will not give an exact 
value zero but only highly probable estimates for K, close to 3 
zero. So it is interesting to study mechanical problems in IMk 
for arbitrary K and to investigate, how the corresponding 
results depend on K and how "stable" these "laws of nature" 
are with respect to perturbations of the curvature, in 
particular when perturbing the value K=0. 

We want to present here some results on the motion of a 
rigid body in IM̂  without external forces. The first results 
concern the equations of motion, which are reformulations of 
more or less known facts in new coordinates (see [4] for KeIR* 
and see .[1] for an invariant interpretation in case of k=0 and 

"""This is an extract of main results of the doctoral thesis of 
the author (see [6]). 
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one point of the body fixed). These coordinates have the 
advantage of working uniformly for all values of k and of 
making geometric interpretations of the solutions easier. 
Computations in these coordinates make use of the WeierstraB 

3 . . . model for WK (see § 2 . 1 1 of the preceding article [2]). The 
procedure of proving the equations of motion suggests an idea, 
how to define the tensor of inertia and the center of mass for 
arbitrary k, the latter definition being a modification of the 
corresponding concept in [3]. 

If the rigid body is a ball with a full rotational 
symmetric distribution of mass, then the equations of motion 
simplify and can be solved completely. We discuss the geometry 
of these solutions: When the ball moves without external 
forces, then the axis of rotation undergoes parallel transport 

3 (in the sense of Levi-Civita in IM̂ ) along the path of its 
center of mass (which is of course the metric center of the 

3 
ball), this path being a "normed helix" in IM̂ , i.e. a curve of 
constant speed, constant curvature and constant torsion. If 
k*0, then these constant values of curvature and torsion are 
different from zero on an open, dense subset of all possible 
initial conditions. In particular the path of the center is in 
general not a geodesic. On the other hand both the curvature 
and the torsion tend to 0 (like 0(/c)) for k —> 0 , thus 
explaining, that physical measurements in "reality" will 
behave "stable", when k varies around zero, whereas the 
quality of the mathematical solutions behaves "instable" in 
the sense, that it changes from the geodesic to the helix 
type. 

If the rigid body has a distribution of mass, which allows 
a rotational symmetry only with respect to one fixed axis, 
then it seems, that most of the solutions of the equations of 
motion are accessible only through numerical methods. However, 
the few solutions, that can be given in closed form, contain 
all the solutions, where the axis of symmetry undergoes 
parallel transport (in the sense of Levi-Civita), and all the 
solutions, where the center of mass moves along a geodesic. 
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1. Notations and basic concepts 

(i) We use the notations of the preceding article [2]. 
3 

In particular, given a real number KeIR, let IM := IM̂  
denote the WeierstraB model of the 3-dim. 1-connected complete 
Riemannian C W manifold of constant curvature K (cf. [2], 
§ 2.ii), which is a certain canonically oriented submanifold 4 . . . of IR , g the Riemannian and d := d :IMxlM —» IR the intrinsic 

3 K . . metric of IM, G := the Lie group of all orientation 
preserving isometries of IM, considered as a Lie subgroup of 

3 
GL+(4,IR) (cf. [2], § 2.iv), g := Qk the Lie algebra of this 
group, considered as a subalgebra of the matrix Lie algebra 
DJ1 (4, IR) (cf. [2], § 2. iv) , and e := e Q = = (1,0,0,0) e IM , 
which is a point of first order contact between all members of 
the family (NJ)RgR . 

4 
Furthermore, let x^:IR —> IR and x^^ :5H (4 ,IR) —> IR for 

i,j€{0,...,3} denote the canonical coordinates, 
L f = f•..:G —» G resp. R f = ..•f:G —» G for feG the left 
resp. right translation and ..^:TG —> g the left parallelism 

of G, given by := (Lf
 1) , if feG and <seTfG. In 

particular, if y:J —> G is any smooth curve and teJ, then 
r (t)T = r ( t ) - 1 r ' (t) , where y' (t) = lim ? ( t + h ) j.s the ij . _ n h-»0 
derivative in the vector space 5H(4,IR) (2G) . 

In what follows, we identify the points of IM resp. the 
4 tangent vectors of T IM with the corresponding points in IR 

4 resp. with the tangent vectors in T̂ IR under the inclusion map 
i:IM —> IR4 resp. under its differential, thereby giving rise 

4 
to the canonical map .. :TIM —> IR (the composition of 
i^: TIM —» TIR4 and the standard map . .^:TIR4 —» IR4 , cf. 
[2], (2.3)) . 

(ii) We define n := ( x ^ x ^ x ^ I IM: IM —> IR3 . 
4 

Then (l,i) :IM —• IR is (extrinsically interpreted) the 
(. . I . .) ̂ -orthogonal projection of IM onto e+T M ^ (use 
[2],(2.1),(2.5)). 

The restrictions of the canonical coordinates 
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4 4 XQ,...,x3:R —» R to the submanifold IM of R are related to 
the intrinsic geometry of IM as follows (cf. [2], § l.i,iv, 
§ 2.i,ii) : 

sin 
(0,i) = ( — . . ) ) " (exp~ on M\{-e}, 

sin 
where exp 1 abbreviates (exp |U (o))-1 and is C w even at e e \ 11 x 

2 0, and xo' w = cosK»d(e, . .) , <n,n.> = sinK<>d(e,..) , 
2 . 2 . 2 <n,n> - <n,u> = sin^'dist(..,c^(R)) for all ueS , 

where cu:R —• M denotes the geodesic of IM with cu(0)=e and 
¿u(0)^=(0,u). 

A proof can be obtained using [2], (2.13) and — for the 
last equation — in addition by some straightforward 
computations. 

3 . . ( i n ) We introduce the IR -valued left invariant Pfaffian 
forms cj,v on G by requiring (j° , v ° s= :9 —* r 3 

to be the linear projections given by u? := i+i'9 with 

indices mod 3 in {1,2,3} and v° := x^qIs for ie{l,2,3} (cf. 
(i)) • 

Then (u°,u°,u°,v°,v°,v°) is a basis for g* (cf. 

[2], (2.28)) and from [2],(2.28Q) follows by straightforward 
computations: 

"([?,!)]) =w(C)xu(T)) + k-V(€)XV(T)) a n d 

v(t?,T)]) = u(C)xv(ti) + v(S)x<j(n) for all 
3 

in particular (j|6:6 —> (R ,..x..) is a Lie algebra 
isomorphism, where 6 (=ker(v°), cf. [2],(2.292)) denotes the 
Lie subalgebra of g corresponding to the isotropy subgroup of 
G for the point eelM. 

For geometric interpretations see below (iv),(v) and 
§ 2.iii. 

(iv) For £eg let u (£)eT IM denote the vector with -* e e 
u
e(€) = (0,<*>(£)) . Then one checks easily, that 

w
e(S)*•• : T

e
w —* T e

w is the velocity field of the 
one-parameter group of rotations of (the 3-dim. oriented 
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Euclidean vector space) TMM generated by the 
Killing-orthogonal projection of £ onto 6 (cf. (iii)). More 
precisely use the projection of the splitting (2.292) in [2]. 

(v) For let v (£)eT M denote the vector with 
v (£)"* = #v(C)) . Then again it follows easily, that v (?) © © 
is the velocity vector at time 0 of the orbit of the point e 
under the one-parameter subgroup of G generated by 

4 
(vi) For £€g and qeM the action of 9 on IR by matrix 

multiplication gives (cf. (ii),(iii) and use [2], (2.28)): 
C-q = (-/c-<v(C) ,i(q)>, (u(C)xa(q))+x0(q)v(?) ) € IRxIR3 = IR4 . 

3 2. A model for the rigid body in IM := 

(i) We describe the body in its initial position by its 
distribution of mass m. This is a (non-negative) Borel measure 
m on IM with 0 < m(IM) < 00 , which has to satisfy additional 
conditions (e.g. for getting a well defined center of mass 
resp. definiteness of , see below § 4.i,ii resp. § 2.iv and 
§ 5.vi). In order to avoid longer discussions, depending 
mainly on too general "admissible measures", we shall restrict 
ourselves to measures m satisfying the following two 
conditions: 
a) Let m be 3-dim. extended, i.e. m(IM\E)>0 for all 2-dim. 

totally geodesic submanifolds E of IM. 
b) There exists pAelM and ee]0,^-7i [ (cf. [2], § l.iv), such U o K 

that m is concentrated in the ball Uc(pQ), i.e 
m(M\Ue(p0))=0. 
Note, that 7iK=diam(IM) , and physics tells us that classical 

mechanics does not apply to objects of a size comparable to 
the diameter of the universe. So condition b) is not a serious 
restriction. 

The condition a) is easily seen to be equivalent to the 
following one: 

a) If <p:IM —> IR is any m-measurable non-negative function on 
IM, the zeros of which are contained in a 2-dim. totally 
geodesic submani fold of IM, then | p(q)dm(q) > 0 . 

IM 
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(ii) Any given position of the body can be obtained by 
exactly one feG (cf. § l.i) transporting the body from the 
initial position to the given one. This identifies (as usual) 
the configuration space of the rigid body with the Lie group G 
of all orientation preserving isometries. 

A "resting" observer describes the body by the mass 
distribution f*m (with (f*m)(B):=m(f(B)) for all Borel subsets 
BSIM) after it was transported with feG from the initial 
position. If we denote by SIM the set of all non-negative Borel 
measures on IM satisfying the conditions a) and b) from (i), 
then this actually allows the "resting" observer — from a more 
sophisticated point of view — to identify the "rigid body in IM 
with mass distribution m" itself with the subset {(f,f*m)IfeG} 
of GxBlM, which is the orbit of (id,m) under the the action of 
the group G from the right on GxBIM, and the different elements 
(f,f*m) of that orbit are then viewed as the different 
possible "positions" of the rigid body in IM. The usage of the 
group action of G on G from the right can be motivated by 
(iii)• 

An observer moving along with the body describes the body 
in every possible position by the mass distribution m 
introduced in (i). Therefore we will most of the time use 
descriptions relative to an observer moving along with the 
body rather than that moving relative to a "resting" observer. 

(iii) Let y:J —> G be a smooth curve in the Lie group of 
motions (:= orientation preserving isometries) of IM. Using 
(ii) we consider y as a process of motion of the rigid body in 
IM. Correspondingly the tangent vector field r:J —* TG of r 
(which allows to recapture r as n°y, using the canonical 
projection tt:TG —> G ) is called the (evolution-) path of 
states of the given process of motion n. 

The so-called body representation on TIM of the process of 
motion H (resp. of its path of states r) is the following 
time-dependent vector field V on IM: 

For (t,p)eJxlM let V*(p) be the vector in T IM, which is U p 
mapped by the differential of the isometry r(t)-..:IM—• IM 
onto the velocity vector at time t of the orbit yp:J —> IM of 
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the point p under j, i.e. 
v£(p) := (r(t)"1-..)*(r-P) " (t) e TpM for all (t,p)«JxlM. 
Using the notations from § l.i, this vector field can be 

computed by V*(p)~* = r(t)L-p e IR4 for all (t,p)€jxW. 
Now we consider the ball U := Ue (pQ) from (i)b) as an 

open neighborhood of the rigid body and, if (A1,A2,A3) is an 
orthonormal frame field on U (the bundle TIM is trivial over 
the cell U !), then we define the n-moving frame (E1#E2,E3) 
along the orbit path JxU —f IM ( (t,p) i-» r(t)-p ) of the 
body by 

E ^ t ^ ) C*(t)•-.)*A±CP) for all (t,p)eJxU, ie{l,2,3}.2 

Then evidently (since r(t) • . . :IM —> IM is an isometry) 
g((r-p)'(t),Ei(t,p)) = g(V*(p),Ai(p)) 
for all (t,p)€jxU and ie{l,2,3}. 

This allows us to interpret, for a fixed time teJ, the 
vector field on IM as the distribution at the moment t of 
the velocity (of the various orbits under the action of r) in 
IM relative to an observer moving along with the body under r. 

Together with § l.iv,v this motivates the following 
terminology (cf. § l.i,iii): 

u(y) = <j°(rT):J —> IR3 is called the angular velocity of r 
o • 3 in body coordinates with respect to e, v(r) = v (rT):J —> IR Li 

is.called the translation velocity of y in body coordinates 

2 Oppositely, if we are given a point pelM, a positively 
oriented orthonormal frame (e1,e2,e3) of T̂ IM and a positively 
oriented orthonormal C00 frame field (E1,E2,E3) along a C00 
curve c:J —> IM , then these data determine (G operates 
simply transitive on the oriented frame bundle of IM) a unique 
C00 curve r:J —* G , such that r(t) -p = c(t) and 
(r(t)-..) e. = E.(t) for all teJ. This explains, why so often * 1 X 
in the classical literature a process of motion of a rigid 

3 
body in E (with the distinguished p:=o and the canonical 
frame (e1,e2,e3) in o) is simply described by a certain 
positively oriented frame field (E^E^E^ along some C00 curve 
in E3 as the moving reference system ("Gang-Bezugssystem" in 
German). 



472 J. Zitterbarth 

with respect to e . 
The so called space representation on TIM of the process of 

motion r (resp. of its path of states f ) is the following 
time-dependent vector field W7 on IM: 

For (t,p)eJx(M let W*(p)eT IM be the velocity vector at time t p 
t of the orbit under r of that point of IM, whose orbit passes 
at time t just the point p, i.e. 

w£(p) := (y (r(t)_1-p) )'(t) e TpIM for all (t,p)eJxlM. 
Tf 

For fixed teJ we can interpret the vector field on IM as 
the distribution, at the moment t in time, of the velocity (of 
various orbits under the action of 7) in IM relative to a 
"resting" observer. Using the notations from § l.i, this 
vector field can be computed by 

W*(p)~* = r(t)R-p e IR4 for all (t,p)eJxlM, 
where ..R:TG—>3 denotes the right parallelism of G, given by 
wR ^(R"1)^« , if feG and weTfG. 

(iv) We define the function —> " (cf. § l.i, 
§ 2.i) by 

:= | g( (exp(x?) q) ' (0), (exp(x7,) g) ' (0) )dm(q) = 
EM 

= f (C-qlTTq)-dm(q) for all 5,T)eg. 
IM K 

The integrals exist because of the compact support of m 
and the second equation follows from (exp(x£) q)"(0)-* = £-q 
for £eg and qelM and the definition of g. Then 3" is obviously 
a symmetric positive semidefinite IR-bilinear form on 9 and we 
will see later in § 5.vi, that the conditions imposed in (i) 
on m imply the definiteness of 7 . Hence 7 is an Euclidean m m 
inner product on the Lie algebra 9 of G, induced by the rigid 
body. 

(v) Let ¿m:TG —» IR denote one half times the square of 
the norm, given by the left-invariant Riemannian metric on G 
induced by (cf. (iv)). Then for a smooth curve r:J —* G 
one obtains 
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» - f v * i A > = r L ( i L ' q l , L ' q ) ^ ( q l = IM 
= f (r-rT-qlr-rT-qJ^dmCq) 2 J|M L 1 ^ lK 

= r -q = ((r-q) •)"* 
= J- f g((r-q)', (yq)-)dm(q) . ^ J IU ' IM 

So, interpreting j as a process of motion of the rigid 
body, im«r is the kinetic energy of the rigid body (with mass 
distribution m) moving under y, and therefore is the 
Lagrangian of the rigid body in the absence of external 
forces. 

(vi) According to (iv),(v) and [1],3.7.1 a curve y:J — > G 
is a process of motion of the rigid body without external 
forces iff y is a geodesic in G with respect to the 
left-invariant Riemannian metric on G induced by 7 . m 

(vii) The group action of G on G from the left and the 
Lagrangian satisfy the hypotheses of E. Noether's theorem 
(see [1],4.2.14). This gives us an Ad*-equivariant 

momentum mapping ?m:TG —> g* (« h-> 5™) 

defined by := F ^ m ( € G l f ) forfeG, «sTfG, £sfl, where 
according to (iv),(v) and [1],3.6.10,4.1.25.a we have 
F = a n d = (R*)*? • Therefore we obtain « m m L L G f £ * 

fm = y (-- "-1 « mv ? . = y («T ,Ad."1". .) :9 —• R for feG and weT_G, l Li X £ 
and the Ad*-equivariance of means (cf. [1],4.2.6) 

'"l ) = 5 ™ ( A d f 1 ? ) f o r a I i W € T G ' f € G ' f * 
If y:J —» G is a process of motion of the rigid body 

without external forces, then 
5y = y m(''L' A dr 1 ,' , ) : J —• 9* (t i-> is constant on J. 

(viii) We define the matrix eme!JJl (3, R) implicitly by 

<u(?) ,0m-tj(T))> = ym(?,Tj) for all je6, 

where 6 denotes the Lie algebra of the isotropy subgroup of 
3 

the point eelM in G. w|6:6 —> R is a vector space 
isomorphism (cf. § l.iii). Together with (iv) follows, that e m 
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is well defined, symmetric and positive. We call 0 m the tensor 
of inertia of m with respect to e. More precisely this tensor 
is an endomorphism of T M and 0 m is its representation matrix 
(with respect to the basis of TMM mapped by . onto 

< el' e2' e3 , )-

3. Geometry of orbits under a process of motion 

We use the notations introduced in § 1. Let r:J —> G 
3 

denote a C curve in the Lie group of motions of the standard 
space M. We study the geometry of the orbit y e : J —> im of 
the point eeW under y. 

(i) Let (a1#a2,a3) denote the orthonormal frame of 
(TeM,ge) with ai* = f o r ie{l,2,3}. For t«=J and ie{l,2,3} 
we define E ^ t ) := ritj^cu e T ^ J ^ I M . Then (E^E^E-j) is a 
C 3 positively oriented orthonormal frame field in IM along y e 
(classically called "moving reference frame", in German: 
"Gang-Bezugssystem", see footnote 2) and (note G£GL (4 , IR)) 

E^t)"* = r (t) •ei for all teJ and ie{l,2,3>. 

(ii) The velocity field of the orbit y e is given by 
3 

(r-e)' = I v.(r)E. . 
i=l 

[Because 3 

((ye) •)-* = r -e j y r L e y y (0,v(r)) = £ v ;.(r)ye i . ] 
§ l.i [2],(2.28) 1 - 1 

• i 3 (iii) Lemma. For every C map z:J —• IR one has 
3 3 

7 ( I z.E.) = £ [z'+(u(r)xz)].Ei , 
i=l i=l 

where V is the Levi-Civita covariant derivative in M and 
a := the canonical vector field on R (2J). 

Proof. g(V a (
ji 1«j Ej ,' Ed ) = » j £ 1 V e j 1 ' l , f ' a i ) i e " 

3 
T (r' - L [ z j e j + V l ' V 1 * " * ! ^ 

§ l.i 3 , 
= z i + j l e i }

K
, Z j 
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= [z'+(u(r)xz)]i for all ie{l,2,3>. 

(iv) Remark. The results (ii),(iii) shed some light on the 
relation between the two IR3-valued left invariant Pfaffian 
forms v resp. u on G on the one side and the basis forms 9^ 
resp. the connection forms ok^ of M (i,je{l,2,3}) on the other 
side. 

Here the Pfaffian forms resp. (i,je{l,2,3}) are 
understood to be defined on the principal bundle TT:FIM — • IM 

of the Riemannian manifold IM (consisting of all orthonormal 
frames tangent to IM) , as usual. If E^:FM—» TIM for ie{l,2,3} 
are the canonical projections (E^ assigning to each 

orthonormal frame tangent to IM its i t h component vector), then 
the definitions of the 0. resp. u.. amount to the following 

. l equations: For any differentiable manifold N, any C map 
—» F1M and any vector field XeX(N) one has for all 

i, je{l,2,3}: 
e^X) = giE^i, resp. w... (^X) = g(E.oi,7x(Ejof)) . 

Therefore, if E : = ( E 1 , E 2 , E 3 ) : J —> FIM is the orthonormal 
frame field along r-e introduced in (i) , then TT<>E = r-e and 
the results (ii),(iii) are equivalent to saying, for all 
i«{l,2,3}: 

8i(E) = g(Eif (r-e) •) = V;L(f) resp. 

w i + 1 > i + 2 ( E ) = g(E i + 1,V aE. + 2) = - (^(r) with indices mod 3. 

(v) The acceleration field of the orbit r-e is given by 
3 

V y ' e ) ' = I [(v(r))'+(u(r)xv(jr))] ea 
i=l 

(use (ii),(iii)). 

(vi) The orbit r-e:J —> IM is a (constant speed) geodesic 
iff (v(r))'+(w(f)xv(i)) = o . 

(vii) The scalar invariants — velocity u , curvature r-e 
K„._ and torsion T — of the orbit r e can be computed by r • e r * e 

V e = n v {* ) n ' 
Kr-e = ( V e ) ~ 3 ' l l v ( * ) x t ( v ( * ) ) , + ( a , ( * ) x v ( * ) ) } 1 1 ' 
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where 
u := [(v(y))' +(u(r)xv(r))]' + u(i)x[(v(r))'+(u(y)xv(r))] 

(use (i),(ii),(v) and u i = g(7a7fl(y-e)',Ei) , cf. (iii)). 
(viii) If any tangential vector aeTeM at N in e is given 

and aeIR3 characterized by a* = (0,a) , then the translation 
of a by i is V-parallel, i.e. the vector field along y e 
defined by t h-» r(t)^a is a parallel field (in the sense of 
Levi-Civita in IM) , iff u(y)xa = o (use (i) , (iii)) . 

4. The center of mass of the rigid body 

(i) Theorem. Let m be given as in § 2.i and define the 

function F:IM—> IR by F(p) := f sin2(d(p,q))dm(q) for pelM 
IM K 

(in German literature called the "second order moment" of m 
with respect to p). Then one has: 
a) F is a C00 function. 

cos -sin 
b) gradpF = -2-j ^ -(d(p,q)) • e x p ^ (q) dm (q) for all psIM, 

IM 
where exp 1 stands for (exp |U (o)) 1. e e 71̂  

c) If pQ and e are chosen as in § 2.i, then the ball U e(p Q) 
contains exactly one critical point S of F and F attains 
its absolute minimum at S. 

d) If S is chosen as in c) , c:IR —» IM is any unit-speed 
geodesic with c(0) = S and if we define 

¿(0)) := | [cos2(d(S,q))-K-(¿(0))^|q)2]dm(q) , 
IM 

then (F»c) (t) = F(S) + M(c (0)) • sin2 (t) for all telR 
and ^(¿(0)) > 0 . 

(ii) Definition. The point S of (i)c) is called the center 
of mass of m. 

(iii) Corollary (use § l.ii). If the center of mass of m 
is the point eelM, then 

f x (q)i(q)dm(q) = o . 
IM 

Remark. In [3] similar results were proved for the 
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function p H h i (d(p,q))dm(q) , and like there, usage of 
JW K 

the embedding of M in IR (cf. [2 ], § 2. ii) shortens the proof. 
Proof of (i): 
Ad a). Because m has compact support (cf. § 2.i), it 

suffices to prove that sin^°d:IMxlM —» IR is a C00 function. The 
case (c=0 is trivial (recall sinQ(x)=x) and [2], (1.6) , (2.14) 
imply in case of K*0: 

sin^od = (1-cos^od) = (1 - <• .,. .>£) IMxIM . 

Ad b). It is sufficient to prove for gelM, for a unit-speed 
geodesic c:IR —> IM and telR: 
(sin^.d(..,q)oC)'(t) = 

' 0 if (K>0 and) d(c(t) ,q) = TT 
cos sin 

-2 ^ £(d(c(t),q))-g(expcJt)(q),c(t)) otherwise 

In case K=0 both sides are equal to 2 • (c (t) -q I c (t)~*) . In 
. 2 K 

case d(c(t),q) = rc^ the function sinK«d(..,q)»c attains 
its absolute minimum (of value 0) at t. In the other cases the 
assertion follows from (cf. [2], (2.2),(2.14)) 

[sin^(d(c,q)) ]' = - <c,q>K • <c*, q>K = -2•COSk(d(c,q)) • (c">|q)(C 
and using [2], (2.2), (2.83) and the identity (cf. [2],(2.13)) 

sin 
q = cosK(d(c(t) , q) ) • c(t) + ^-^(dfcit) ,q)) - e x p ^ (q)"* . 

Ad c). For all p,qelM with d(q,pQ) < d(p,p0) < i-TrK one 

can show g(exp"1(q),exp"1(pQ)) > 0 (see e.g. [3],p.90,92). 

Together with b) and (cf. § 2.i) e < ^-rc^ this implies for 
all p6aue(p0): 

g(gradpF, exp"1 (pQ)) < 0 , e x p " 1 ^ ) pointing "inwards" Ue(p0). 

Therefore, F|Uc(pQ) must attain its minimum at an interior 
point S of Uc(pQ) and d) will complete the proof of c), since 
every point qeU (p )\{S} can be joined with S by a geodesic 

1 . . 1 and c < 4 implies d(q,S) < j'71* ' hence 
(sin*)' (d(q,S)) > 0 . 

Ad d). We shall only use the fact that S is any critical 



478 J. zitterbarth 

point of F contained in U c(p 0). Choose qeW and any unit-speed 
geodesic c:IR —> IM . Then one has 

[sin^(d(c,q))]"= 2-cos^(d(c,q)) - 2K-(c^lq)2 . 

[Because, in case »c=0 both sides are equal to 2. Otherwise one 
computes [sin2(d(c,q)) ]" = - £-<c"*,q>2 - <c,q>K•<c",q>K , 
which implies the desired result, using that c", the second 

4 order derivative of c in IR , equals -KC. ] 

If d(c(0),q) < TTk and telR, then 
(sin^od(..,q)oC)"(t) = 

= 2-cosK(2t)-[cosJ(d(c(0),q)) - K- (¿(O^lq) 2] + 
cos •sin 

+ 4K-sinK(2t) -(d(c(0) ,q)) g ( e x p ^ 0 ) (q),c(0) ) . 

[Because, in case k=0 both sides are equal to 2. Otherwise we 

have (sin2.d(..,q)<>c)"(t) = 2<c2 • (c (t) | q) 2 - 2K • (¿(t)^| q) 2 . 
Inserting c(t) = cos^(t)•c (0) + sinR(t) • c(0)"* (cf. [2], 
(2.13)) and c (t) = -K-sinK(t)-c(0) + cos^ (t) • ¿(0)"* (cf. 
[2],(1.1')) and using the bilinearity of (..|..)K

 a n d 

[2],(1.7) we get the proposed equation.] 
In case c(0) = S we get from the last equation (using b) 

and grad F=o): (F«c)"(t) = f (sin2«d(.. ,q) °c)"(t)dm(q) = 
S IM K 

= 2-cosK(2t)-^(¿(0)) for all telR. 

This yields (observing (Foe)'(0) = g(gradgF,c(0)) = 0) 

(Foe)' (t) = sinR(2t)-JK(C(0) ) for all telR, 

and thereby the first assertion of d). 

It remains to show JM(c(0)) > 0 . This follows, in case 
KSO, from cos2 (d(S,..)) - K-(c(0)~*| . .) 2 a 1 on IM 
and in case K>0 from m(IM\U2c(S)) = 0 (cf. c) and § 2.i) and 

c o s J ( d ( S , . . ) ) - K - ( C ( 0 ) " > | . . ) J = 

= cos2(d(S,..))-cos2(d(c(|-nK),..)) a 

£ cos2(2c) - | > 0 on U 2 c(S), 

which depends on ¿(0)"* = Sic-c^-n^) (use [2],(2.13)) and our 
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choice of g < ¿-it . O K 

5. Preparations for the equations of motion 
We use the notations introduced in § 1 and § 2. 
(i) Lemma. 
<w,em-w> = <w,w>-f sin2 (dist(q,c (IR)))dm(q) for all weIR3, 

IM W 

where C
W
: R —* w denotes the geodesic with c

w(°) = e a n d 

¿w(0)"> = (0,w) . 
Proof. The case w=o is trivial. Let w*o and with 

u(£) = w (cf. § l.iii) . Let y:IR —> G denote the one-
parameter group generated by Then 

<w,0m-w> = = V*L'*L } = J g ( ( r q)'' (r q)')dm(q) 
(M 

(use § 2.v,viii) and the orbit r q traces a "plane" circle 
with (measured in M) radius dist(q,cw(R)) and constant angular 
velocity II w If, hence ll(yq)*ll = llwll • sinK (dist (q, cw(IR))) . 

(i i) Lemma. 
<w,em-w> = I [<w,w>-<a(q),t(q)> - <w,i(q)>•<w,a(q)>]dm(q) = 

IM 
= | <wxi(q) , wxa(q) >dm(q) for all w,welR3. 

IM 
Proof. The second equation follows by standard identities 

3 about the cross product in (IR ,<..,..>). Both sides of the 
. . 3 first equation are bilinear and symmetric in w,weR (cf. 

§ 2.iv,viii). Hence it is sufficient, to consider w=welR3. The 
case w=o is trivial and in case w*o we conclude from § l.ii 

<w, w> • sin2 (dist (q, cw(IR) )) = <w, w> • <a(q) ,i(q) > - <i(q) ,w>2 

for all qelM, where c w is the geodesic introduced in (i) . 
(iii) Lemma. For all i,je{l,2,3} we have 

=i w
C ( x 2l + X2 + X? ) 5ij" Xi Xj ] d l n ' 

[m(IM) • I - K - e m ] ij = J (x26ij+»cxixj)dm , 
IM 

[2-0m - trace(8m)-I] . . = - 2 - f x?dm < 0 , 
IM 

where I denotes the (3x3)-unit matrix. In particular if K*0: 
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« i i < 6 i + l , i + l + ® i+2, i+2 W i t h i n d i C 6 S ™od 3 i n {1,2,3}, 
which i s a c e r t a i n t r i a n g l e i nequa l i t y f o r the p r i n c i p a l axes 
of the tensor of i n e r t i a i n case k*0. 

Proof . The f i r s t equat ion fo l l ows from t := ( x l f x 2 , x 3 ) |IM 
and ( i i ) , the second from (x^llM) + K-<a,a> = 1 and the f i r s t 
one. These two equations imply the t h i r d one and i n case ic*0 

0l!\ = " f xjldm] - f x?dm and 
1 1 K IM IM 

e i + l , i + l + e I + 2 , i + 2 = t race(6 - , - e», = 

= J- [m(IM) - r x2dm] + f x?dm . 
M IM 

Now we get the i n equa l i t i e s us ing (c f . § 2 . i . a ) f x?dm > 0 . 
IM 1 

( i v ) Lemma. 

= «->(€) ,em-(j(T))> + <v(C), [m(iM) • I - K-em] V(v)> + 

+ <w(?)xf x (q)a(q)dm(q) ,v(T))> + 
IM 

+ <V(?) ,(J(7))xf x (q)a(q)dm(q)> for all C,7}ea, 
IM 

where I denotes the (3x3)-un i t mat r i x . 

Proof . According to § 2 . i v , v i i i both s ides of the proposed 
equat ion are b i l i n e a r and symmetric i n Hence i t i s 
s u f f i c i e n t , to prove i t f o r £=Tjeg. We compute 

= f (C-qIC-q) dm(q) m * J |M j—1 

s i i v = (-K-<v(C) ,/t(q)>, (u(?)xa(q))+x (q)v(C) ) 
5 § l . v i 0 

= J [K -<v (0 , i ( q )> 2 + 
T M + <("(£)x i (q))+x 0 (q)v(C) , (u(?)x i (q))+x n (q)v(?)>]dm(q) 

[2] , (2 .1) 

= f <u(£)xa(q),w(€)xa(q)>dm(q) + 
IM 

+' f [*5(q)-<v(C) ,v(C)> + K-<v(C) ,i(q)>2]dm(q) + 
IM 

+ 2-<v(€) ,(J(?)xf xn(q)i(q)dm(q)> , 
J IM 

where f «<>(?)xi(q),u(£)xa(q)>dm(q) = <u(C),em-u(£)> 
IM ( i i ) 
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and f [xj(q)-<v(C) ,v(C)> + (c-<v(?) ,i(q)>2]dm(q) = 
IM 

= <v(€) ,v(0>-m(IM) " 
T [2], (2.1) , (2.5) 

- K-\ [<v(0 ,v(S)>-</i(q) ,a(q)> - <v(C) ,a(q)>2]dm(q) = 
IM 

= <v(?) , [m(IM) • I - K-em] -v(?)> . 
(ii) 

(v) Corollary (use § 4.iii). If the center of mass of m is 
the point e, then for all 

= <"(?) ,0m-cj(n)> + <v(C) , [m(IM) -I - K-em] -v(7})> . 

(vi) Lemma. J is positive definite. 
m 

Proof. After choosing another initial position of the body 
we may assume, that the center of mass of m is the point e. 
According to (v) and § l.iii we have to show: 

6 m and m(IM)-I - K-em are positive definite. 

The positive definiteness of e m follows from (i) and 
- 3 condition a) in § 2.1, since for weIR \{o> the function 

. 2 . . sinK(dist(..,cw(R))) is non-negative, continuous and its 
zeros are exactly the points of the geodesic line cw(R) (which 
is always contained in a 2-dim. totally geodesic submanifold 
of IM) . 

3 From the proof of ( i v) we know for weIR 

<w, [m(IM) • I - jc-e111]-w> = f [x2(q) <w,w> + »c• <w,T.(q)>2]dm(q) . 
IM 

If w*o and k>0, then the integrand is non-negative, continuous 
and its zeros are contained in IMnx'^iO}), which is a 2-dim. 
totally geodesic submanifold of IM. Hence the positive 
definiteness of m(IM)-I - K-em follows for k>0 from condition 
a) in § 2.i, and for k*0 it is a consequence of the same 
property of © m and m(IM)>0. 

(vii) Lemma. If r: J —> G is a smooth curve and £€g , 
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then (AcT1?)' = [Ad^1?,^] ,3 

"((Ad"1?)') =u(Ad^)xu(r) +K'V(Ad^)xv(r) , 

vUAd"1?)') = "(Ad'^Jxviy) + v(Ad^5)xu(y) . 

Proof. The differentiability of Ad^1?^ —» 9 follows 
from that of t• Then, by differentiating f t 1 = id , we get 
(7 1)' = 1 and use this to compute (cf. [2],(2.28)) 

(Ad"1?)' = (r-1-?-*)' =r_1-?-r' + (r_1)'-?-r = 
= r_1-e-r-rL - i^r^-S-r = Ad^1?-^ - ̂ -Ad^1? = 
= [Ad^1?,^] • 

The other assertions follow by using § l.iii. 
(viii) Lemma. If the center of mass of m is the point e, 

then for a smooth curve t' J —» G and ?eg one obtains 

(*"<?))' = «¿(Ad"1?),®111-(u(f))' -
- (em-u(T))xcj(f) + IC-(em-v(r))xv(r)>+ 

+ <v(Ad~1?), [m(IM) • I - (c-em] • [ (v(f))' + (w(r)xv(r)) ] + 
+ (c- [2-em - trace(8m) -I] • (u(i) xv(r) )> 

(cf. § 2.vii) . 
Proof. First § 2.vii implies, that ?m:TG —* 9* is a 

C°°-map, and so the differentiability of :J —> IR follows 
from that of 7: J —> TG . We compute 

<**<€>>' j (\(iL.Ad;1?))' = 
§ 2.vii 

§ 2.iv 
J <u((tL)') ,em-(j(Ad 1̂?)> + 

(v) and S=e + <v((7^)' ),[m(W)•I - k •8m]•vfAd^1?)> + 

3 In [l],4.1.25.c is proved (Ady?)' = [yR,Adr?] (cf. 
§ 2.iii). 
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+ < w ( y L ) ^ " - « ( ( A d y 1 ? ) ' ) > + 

+ < v ( f L ) , [ m ( M ) - I - » c - e m ] - v ( ( A d " 1 ? ) ' ) > , 

w h e r e , b e c a u s e e m i s s y m m e t r i c ( w . r . t . < . . , . . > ) a n d a r e 

l i n e a r o n a a n d w ( r L ) = w ( r ) , v ( y L ) = v ( y ) , 

< u ( ( T l ) ' ) , e m - w ( A d y 1 e ) > + < V ( ( r L ) ' ) , [ m ( I M ) • I - K - e m ] • v ( A d ~ 1 C ) > = 

= « ¿ ( A d " ^ ) , e m - ( U ( r ) ) ' > + ^ ( A d " 1 ^ ) , [ m ( N ) - I - ( c - e m ] • ( v ( y ) ) ' > 

a n d , u s i n g ( v i i ) , 

< ( J ( f L ) , e m - w ( ( A d y 1 ? ) ' ) > + < v ( r L ) , [ m ( M ) - i - K - e 1 0 ] - v i i A d ^ 1 ? ) ' ) > = 

= < e m t j ( f ) . u t A d ' ^ i x u t r ) - K ' v f A d ' ^ j x v t r ) » + 

7 T 

+ < [ m ( M ) - I - K - 0 m ] - v ( i r ) , u ( A d " : 5 ) x v ( r ) + v f A d " 1 ^ ) x w ( y ) > = Q 9 

= - ^ ( A d " 1 ? ) , ( e m - w ( y ) ) x u ( r ) + ( [ m ( M ) - i - < • e m ] • v ( i ) ) x v ( r ) > + 

- - c v i A d " 1 ? ) , * - ( 0 m - u ( r ) ) x v ( i ) + ( [ m (IM) • I - K - e m ] • v ( f ) ) x u ( i r ) > = 

= - < ( j ( A d ^ x C ) , ( e m - u ( i r ) ) x u ( i r ) - k - ( e m - v ( r ) ) x v ( r ) > + 

+ « v i A d " 1 ? ) , [ m ( I M ) - I - K - d m ] • ( u ( i r ) x v ( r ) ) + 

+ k - [ 0 m - ( u ( r ) x v ( r ) ) ~ ( 9 m - u ( i r ) ) x v ( i r ) - u ( j r ) x ( 0 m - v ( y ) ) ] > . 

T h e p r o o f i s c o m p l e t e d b y t h e o b s e r v a t i o n 

( 0 m - a ) x b + a x f e ^ - b ) = [ t r a c e ( e m ) • I - e 1 " ] • ( a x b ) f o r a l l a , b e R 3 

b e c a u s e o f t h e s y m m e t r y o f e m . 

6 . E q u a t i o n s o f m o t i o n 

We u s e t h e n o t a t i o n s i n t r o d u c e d i n § 1 a n d § 2 . 

( i ) T h e o r e m . I f t h e c e n t e r o f m a s s o f t h e r i g i d b o d y w i t h 
2 

m a s s d i s t r i b u t i o n m i s t h e p o i n t e e l M , t h e n a C c u r v e 

? : J — > G i s a p r o c e s s o f m o t i o n o f t h a t r i g i d b o d y w i t h o u t 

e x t e r n a l f o r c e s i f a n d o n l y i f y : J — > g i s a s o l u t i o n o f l j 

t h e f o l l o w i n g O D E s y s t e m : 

0 m - ( u ( y ) ) ' - ( 0 m - < j ( y ) ) x u ( y ) + k • ( e m - v ( y ) ) x v ( j r ) = o , 

[ m ( ( M ) • I - K - e V [ ( v ( y ) ) ' + ( w ( r ) x v ( r ) ) ] + 

+ K - [ 2 - e 1 " - t r a c e ( 0 m ) • I ] • ( u ( y ) x v ( r ) ) = o . 

( i i ) R e m a r k s . a ) F r o m § l . i i i w e g e t = o ° ( y T ) a n d 



484 J. Zitterbarth 

v(r) = v (rL) where 
„m 

, o o. ((j ,v ) IR is a IR-vector space 
isomorphism and 6 and m(IM)I - <c -9 m are symmetric and 
positive definite, therefore invertible, according to § 2.viii 

3 
and the proof of § 5.vi. Hence the (IR -valued) equations in 
(i) are a (non-linear!) first order ODE in g for y L and can be 
written as (yL)' = with a polynomial map —* a ' 
which is homogeneous of degree two (and induced by the rigid 
body)• 

b) If the tensor of inertia 8ra is diagonal, then the 
equations in (i) take the form (use § 5.iii): 

e; i-<V j ,>>' + [033~e22]' [U2(ir,U3(i') ~ k - V 2 ^ V 3 ^ J = 0 ' 
e?„-<u_(i))' + [e"-e™ ]•[u_(r)W (f) - k-v,<t)Vi(r)] = o , 22 
,m 

L"ll "33J 1 3 l " 1 " ' 3 l " 1 
033-(u3(r))' + [ G ^ - e ^ ] • [0>1(r)u2(y) - <c-v1(y)v2 (f ) ] = o , 

J (xJ+KxJjdm- (v^r))' (xJ-KxJ)dm-[u(y)xv(f) = o , 
IM (M 

j (>4 M 

I J iu w 

-t-icx^dm-(v2(r) )' + | (Xg-Kx^dm-[(j(r)xv(f) ]2 = 0 , 
IM IM 

+KX*)dm- (v (y))' + f (x^-Kx^dm-[(j(f)xv(f) ] = 0 , 
I M " IM 

be whereby the coefficients of the first 3 equations can 
written as (use § 5.iii): 

= L< X2 + X3> d l n ' 033-e22 = L^tt** e t C-
IM IM and the coefficients of the last 3 equations can be written as 

'IM 

'IM 

(XQ+kx^) dm = m(IM) - , 

, 2 2 , j . . . . _m (Xg-Kx^dm = m(IM) - k-822 - K' 03 3 

c) If the tensor of inertia © m is diagonal and (Ç^/ 

etc. 

denotes the basis 
§ 5.viii implies 

C , , . . o o o o o o. of a dual to (u1,(J2,w3,v1,v2,v3) , 

V A d ^ i > 

then 

i-l. 

l.h. ' 
side 
of 
ODE 
in b) 

the matrix in this equation being the transposed of the 
representation matrix of the automorphism Ad"1 with respect to 
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the basis • • . • 
d) The additional assumptions on m can always be satisfied 

by choosing another initial position of the (unchanged) body. 
More precisely, for a given m there always exists an isometry 
feG of IM, such that the Borel measure f*m (with 
(f*m) (B) :=m(f (B)) for all Borel subsets BSIM) has center of 
mass e and a tensor of inertia in diagonal form. 

e) In case k=0 the first 3 equations of the ODE system in 
b) become the classical Euler equations and the last 3 
equations become equivalent to the classical condition that 
the center of mass moves with constant speed along a geodesic 
of M (use § 3.vi). 

f) In case /c*0 the center of mass rather rarely moves 
along a geodesic of IM (which drastically contrasts the case 
K=0) , see below § 7.iv and § 8.iv, and the example of a 
"symmetric ball" studied in § 7 will show, that this fact does 
not depend on our choice of the concept "center of mass", 
which might have been suspected to be not appropriate in this 
respect. We are rather inclined to see the reason for this 
phenomenon of a nongeodesic motion of the center of mass in 
case fc*0 in the different structure of the Lie group G (in 
contrast to the case K=0), more precisely in the lack of a 
subgroup of translations in G for tc*0. 

Proof of (i). Let y:J —> G be a process of motion of 
the rigid body with mass distribution m without external 
forces. Then —» a* is constant according to § 2.vii and 
from § 5.viii we get for all £ea 

0 = (**(€))' = <u(Ad~1C)fem- (u(j))' -

- (em-w(y))xu(r) + K-(em-v(f))xv(f)> + 

+ ^ ( A d ^ S ) , [m(M)-I - K-0m] • [ (V(f))' + (w(r)xv(y)) ] + 

+ K-[2-em - trace(em)•I]•(w(*)xv(f))> . 

For every teJ, however, Ad"). . :a —» a is bijective as well 
3 3 

as (w,v) |a:9 —> IR xIR . Since the last equation holds for 
all £ea, it implies that fT : J —» a is a solution of the ODE 
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in (i). 
Apply uniqueness for the above ODE in g and for the ODE 

Y' = Y-fT in W(4,IR) to complete the proof. 

7. Motion of a ball with rotational symmetric distribution 
of mass in the absence of external forces 

We use the notations introduced in § 1 and § 2 and specify 
m as follows: 

(i) Let the point pQ from § 2. i be equal to e and let m be 
invariant under the isotropy subgroup of G for the point eelM, 

i.e. f*m=m for all feG (cf. § 6.ii.d), in other words the 
. . l rigid body is a geodesic ball of radius < „-n^ with metric o K 

center e and a full rotational symmetric distribution of mass 
(e.g. including the case of a geodesic ball of constant 
density of mass). 

(ii) For this m, because of the symmetry obviously holds: 
The center of mass of m is the point e and the tensor of 
inertia ©m is scalar, i.e. 8111 = tf-I , where I is the 

»a r 2 r 2 r 2 identity and (cf. § 5.iii) = x dm = x_dm = x.dm > 0 . 
IM IM 

So § 6.i,ii.b imply: 
A smooth curve y.3 —» G is a process of motion of the 

ball with mass distribution m without external forces iff 
(W(r))' = 0 and (V(r))' + K-(U(r)xv(y)) = 0 , 

f o o (x.-KX.Jdm e ]l,oo[ for k<0 
where K := , = ZZl'lT ' = 1 • 

f (X^+KX^)dm 
IM e ]0,1[ for JC>0 

(iii) This ODE system is de facto linear and we get: 
A smooth curve 7: J —> G is a process of motion of the 

ball with mass distribution m without external forces iff 
there exist a positively oriented orthonormal basis (e^e^e^ 
of IR3 and real numbers A^jX^A^ e IR , such that 

= ^e-L and v(r) = ̂ e^^ + • [sinfKA^x)e2 + cos(KA1x)e;}] 
with K from (ii). 
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Proof. Verify first by simple computation, that the r L 

given by the last equations (cf. § fi.ii.a) is a solution of 
the ODE in (ii), and show then, that all initial conditions in 
9 can be realized by such curves. 

(iv) Let m,K be as in (i), (ii) and let y:J —• G be a 
process of motion of the ball with mass distribution m without 
external forces. Then one obtains for the orbit y e : J — > M 
of the metric center e of the ball under y and any fixed teJ: 

y-e is a curve in IM of constant speed 
iiv(y (t)) II 

and — if this is *0 — of constant (geodesic) curvature 
11-KI • llcj(y(t) )xv(y(t)) II • llv(y(t)) II-2 

and — if this is *0 too — of constant torsion 
(1-K) -<a)(r(t)) ,v(y(t))> - llv(f (t)) II-2 , 

where 1-K = K "m^) = O(k) for n —• 0 , but tf > 0 
(cf. (ii)), in particular 
y-e: J —» IM is a geodesic 
<=» ^ k=0 or [u>(y(t)) and v(y(t)) are linearly dependent]J , 
y e:J —> IM is a plane curve4 *=* 

k=0 or [u(y(t)) and v(y(t)) are linearly dependent] 
or [(j(y(t)) and v(y(t)) are orthogonal]J . 

Proof. With ( e ^ e ^ e ^ and A^A^A-j from (iii) we get 
first (using § 3.vii) 
ll (y • e) ° II = llv(y) II = VA2+A2 constant, 
(v(y))' = KX1X3-[cosfKAjXje - sin(KA x)e ] , 
(v(y))' i v(i) , 
w(y)xv(y) = A1X;J-[sin(KX1x)e;} - cos(KX1x)e2] , 
(v(y))'+(u(y)xv(y)) = - (1-K) A ^ • [cos (KA^x) e^sinfKAjX) e3 ] . 
So the curvature of y e is equal to 11-KI • I A A | • llv(y) II-2 , 
hence constant, and ' ' = "w(T) xv(y) ll . 

Next we obtain 
u := [(v(y))'+(u(y)xv(y))]' + u(y)x[(v(y))' +(u(y)xv (y))] = 

4 i.e. contained in a 2-dim. totally geodesic submanifold of M 



488 J. Zitterbarth 

= - (1-K)2X^A3-[sin(KA x)e2 + cos(KX1x)e3] , 
det(v(r),(v(f))' + (u(y)xv(y)),u) = 

= (1-K)•A1\2-(I1-KI•U1X3I)2 constant, 
where A ^ = <u>(y) , v(y) > and l l - K M A ^ I = Ky . g • II v(y) II2 . 
So § 3.vii yields the assertion on the torsion of y-e. 

(v) Let m be as above and let y:J —» G be a process of 
motion of the ball with mass distribution m without external 
forces. Define ue(y):J—> TMM by <Je(y)~* = (0,w(y)) and let 
tQeJ. We can interpret IR-we(y(t0)) as rotation axis of y at 
the moment tg in time in body coordinates and state: 

y transports the vector u>e(y(tQ)) parallelly, i.e. the 
vector field defined by t i—» y ( t ) ( y ( t Q ) ) is a parallel 
field (in the sense of Levi-Civita in IM) along the orbit y e 
of the ball's center. 

This vector field is equal to the one defined by 
t r (t) .u (r (t) ) . We can interpret IR • y (t) . u (y (t)) as a * e * e 
rotation axis of y at the moment t in time in space 
coordinates. 

Proof. u(y) is constant according to (iii). Apply 
§ 3.viii. 

8. Motion of a symmetric gyroscope without external forces 
We use the notations introduced in § 1 and § 2 and specify 

m as follows: 
(i) Let the center of mass of m be the point e, let m be 

invariant under the group of rotations around the axis 
Span(e,e1) nlM (the image of a geodesic in IM, cf. [2], (2.13)) 
and let © ^ * 0™2 • Hence the tensor of inertia ©m is a 
diagonal matrix with = e™3 , but m (and 0 m) possesses no 
symmetry with respect to any other axis. We call the body a 
(free movable) symmetric gyroscope. 

(ii) For this m the results § 6.i,ii.b imply: A smooth 
curve y:J —» G is a process of motion of the gyroscope with 
mass distribution m without external forces iff yT:J —> 3 is Li 
a solution of the following ODE system (cf. § 6.ii.a): 

(Wl(y))' = 0 , 
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where 

(u2(r))' + K- [ u . j U J u ^ r J - K V ^ m ^ y ) ] = 0 , 

(u3(r))' - K-[^(7)0)2 (i)-Kv 1(i)v 2(f)] = 0 , 

(v^T))' + c 1- [w(y)xv(r)]1 = 0 , 

(v2(r))' + c 2-[u(*)xv(r)] 2 = o , 

(v3(f))' + C 2- [(j(T)xv(y) ] 3 = 0 , 

L ( x o " K X i ) d m | ( x ^ - ^ j d m 
K •= 1 1 ** c •= —— c •= —— 

e22 ' ]>;+»<?>*»'  2 ' L ( XS+KX2> dm  

with K e IR* and 

IM IM 

k<0 =» ( C ^ C e]l,oo[ and C 1*C 2) 

k=0 => C^=C 2=1 

k>0 =» (C 1,C 2€]0,1[ and C 2*C 3) 

In case k=0 cf. § 6.ii.e. 

(iii) Let m,C 2 be as above and let ic*0. Then for a smooth 

curve r:J —* G the following two statements a) and b) are 

equivalent (where V denotes the Levi-Civita covariant 

derivative in IM) : 

a) y is a process of motion without external forces of the 

gyroscope with mass distribution m, such that the symmetry 

axis of the gyroscope, i.e. the vector ueTeIM with u ^ e ^ , 

is V-parallelly transported by y, i.e. the vector field 

along the orbit y e of the center of mass, defined by 

t i-» y(t)^u , is V-parallel. 

b) One of the following two conditions a) and 0) is 

fulfilled: 

a) There exist numbers A ,A eIR, such that 

= (X1,0,0) and v(r) = (X2,0,0) . 

Hence r is a left coset of an one-parameter subgroup of G> 

which can be interpreted as a screw motion in the 

direction of the gyroscope's axis of symmetry. 

0) There exist numbers A^A^A-jSlR, such that u(ir) = (X l f0,0) 

and v(f) = (0,A 2sin(C 2X 1x+A 3),X 2cos(C 2X 1x+X 3)) . 

Here the center of mass e is either at rest (if * 2
= 0 ) o r 

moves with constant speed (of value IA2I) along a plane 

curve with constant curvature (of value 

IC 2~lI•I^I•|A 2|
 1) and the gyroscope's axis of symmetry 
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stays orthogonal to the plane in which the center of mass 
e moves. 
Proof. According to § 3.viii we have to look for those 

solutions of the ODE in (ii) , which satisfy W2 ̂  = 0 an<* 
w
3(y) = 0 • Since (c*0 by our assumption, the second and third 
equation of the ODE imply v1(y)v;j(y) = 0 and 
vi(y)vi(y) = 0 • B u t § 6.ii.a shows, that yT is an integral 

(j • curve of a C vector field on g. Hence y and (cf. § l.iii) 
v(r) are C maps and we can conclude: 

v1(r) = 0 or v2(y) = v3(y) = 0 . 
st 

1 case: v2(r) = v3(r) = 0 . 
Together with w

2 ^ = w3 ̂  = 0 w e g e t w(y)xv(r) = o . 
This leads to the situation a) of b). 

rid 
2 case: v^fy) = 0 . 

The fourth equation of the ODE is satisfied because of 
u 2 (y) = u3(i) = 0 and the last two equations yield (v2(r))' - c2(j1(f)-v3(y) = (v3(y))' + c ^ i r ) - v 2 ( r ) = o . 
Together with the first equation of the ODE this gives the 
situation (3) of b) . Concerning the geometry of y e one finds 
by computation using § 3.vi that 

II (ye) "II = llv(r)H = 1*2' constant, furthermore 

(v(y))'+(u(r)xv(r)) = 
= (C2-l) •X1X2-(0,cos(C2\1x+X3),-sin(C2X1x+X3) ) e v i ^ ) 1 , 

hence (curvature of y e ) = I C2~l | • U x I • I * 2 I _ 1 is constant, 

finally [ (v(ir))'+(o(r)xv(r)) ]' + x[(v(*))'+("(*)*v(r))] = 

= -(C 2-l) 2^. V(i) , hence 7 gv a (r • e) ' = - (C.,-1) 2\\• (r • e) ' 

and the curve y e is plane. 
With E l fE 2,E 3 from § 3.i we have [ti-»r(t)^u] = E^ and 

Span((r-e)-,7a(r-e) •) £ Span(E2,E3) = E 1
± . 

(iv) Let m,K be as above and let K*0. Then for a smooth 
curve tzJ —» G the following two statements a) and b) are 
equivalent: 
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a) r is a process of motion without external forces of the 
gyroscope with mass distribution m, such that the orbit 
y e of the center of mass e under y is a geodesic in M. 

b) One of the following four conditions a),..,8) is 
fulfilled: 

a) There exist numbers , A-3€lR, such that 
v(y) = o and w(y) = (A^,X2cos(KAjX+A^),A2sin(KA1x+A3) ) . 
Here e is at rest, i.e. y-e is constant. 

/3) The condition a) of (iii)b) is satisfied. 
3 

y) There exists a vector aelR and numbers A^A^eR, such that 
a 1 = 0 and w(y) = A^a , v(y) = A 2a . 

Hence y is a left coset of an one-parameter subgroup of G, 
which can be interpreted as a screw motion in the 
direction orthogonal to the gyroscope's axis of symmetry. 3 

S) k > 0 and there exist a vector aelR and <T€{+1,-1}, such 
that a^ * 0 and u(r) = trVJc-a. , v(y) = a . 
Hence y is a left coset of an one-parameter subgroup of G, 
which can be interpreted as a screw motion in the 
direction diagonal to the gyroscope's axis of symmetry. 
[Screw motions in such directions can occur as process of 
motion without external forces only in case k>0 and if in 
addition this special proportionality between the 
translational and the angular velocity holds.] 
Proof. According to § 3.vi we have to look for those 

solutions of the ODE in (ii), which satisfy 
(v(y))' +(w(y)xv(y)) = o . Because of our assumption k*0 

(hence C ^ C ^ l ) this is compatible with the last 3 equations 
of the ODE only in case (v(y))' = o and u(y)xv(y) = o . So 
we have v(y) constant and u(y) and v(y) linearly dependent. 
The further discussion is left to the reader. 

(v) Let m be as in (i) and suppose /c*0. If y:J —> G is a 
process of motion of the gyroscope with mass distribution m 
without external forces, then the orbit y e of the center of 
mass e under y is a totally geodesic immersion in IM, i.e. its 
geodesic curvature equals zero, only if the parametrization 
y-e:J —» IM is already a constant speed geodesic in IM (use 
(ii) and § 3.ii,v). 



492 J. Zitterbarth 

9. A review of some further results of [6] 

The machinery for describing the motion of the rigid body 
in the present paper was — for simplicity — developed for 
special initial data. Many objects introduced here with 
respect to eelM could have been introduced as well with respect 
to an arbitrary reference point pelM, e.g. the angular and 
translational velocity with respect to p as TplM-valued 
mappings using the ideas of § l.iv,v. The just mentioned 
mappings give rise to a vector space isomorphism 
3 —> T WxT IM . Using this isomorphism and the Riemannian 

P P m , metric g of W, the momentum mapping $ :TG —> g* induces the 
maps Lm,P1":TG —» T IM , where, via E. Noehter's theorem and 

. p p . p . . . . m the just mentioned identifications, L^ corresponds to the 
operation of the isotropy subgroup of G for the point pelM and 
Pp corresponds, in case k=0, to the operation of the 
translation subgroup (£G), but allows in case k*0 no 
independent interpretation through Noether's theorem. Given a 
process of motion 7:J —> G , we call the angular 
momentum with respect to p of the body (with mass distribution 
m) moving under y and Pp°y the translational momentum with 
respect to p of the body (with mass distribution m) moving 
under r. In [6] the following integral formulas for these 
momenta are proved: If teJ with -p t r(t)-Ue(p0) , where c 
and p Q are chosen as in § 2. i and -p denotes the antipodal 
point to p (which lies in IM only for k>0) , then 

(L™of)(t) = | [r (y(t)-q)xl|P ((T.q)-(t))]dm(q) 
IM 

and (P™-T)(t) = f YI (l)dm(q) , 
p . IM , q 

S l n K -1 where r := ( — — » d ( p , ..)) • exp :IM\{-p} —> T IM (interpret 
sin p p

 r
 p 

K — 1 5 — — — and exp analogously to § l.ii) , x p 
ct,q ( x ) : = e x py(t) q ^ x e x p r ( t ) q ( p ) ) is the shortest geodesic 
5 

The extension of Tp, in case k>0, to IM by requiring 
r (—p) :=o is C w on the whole of IM. 
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from (-p*) r(t)-q=c£ (0) to p = c * g(l) , 
:T ... M —> T M denotes the Levi-Civita parallel y(t)-q T(t)•q p 

transport along c? I[0,1] and Y? denotes the Jacobi field x., q u, q 
along cj with *£>q(0) = i*-*)'^) a n d (VaYt,q)(0) = ° ' 

It is further proved, that the derivatives (L^»?)' , 
(Pp°r)' possess similar integral formulas [only replace (rq)" 
by Va(r-q)']. If we recall § 6.ii.c and use 

= x. o (Lm°r)~* and = x . <> (Pmo for r l i e ' r 3 + i' l e ' 
ie{l,2,3}, where are chosen as in § 6.ii.c, then the 1 o 
last result enables us to formulate the equations of motion 
for the rigid body vith external forces, if these external 
forces are given as a law of acceleration for the points of 
the body. 

Now consider that the body is fixed in one point 
P € ( u

c ( P 0 ) £ T h e n the tangential space 1MM at M in p is a 
distinguished Euclidean space for this problem and in [6] a 
Euclidean mechanical model in T̂ IM is given, which describes 
modulo the exponential map exp exactly the corresponding (non P Euclidean) motion in IM. This model consists of the induced 
mass distribution z m in T IM, defined by P P * 

sin 
(t m) (B) := f ( _ ^ )

2
{ d ( p / g ) ) d m ( q ) f J ovn iR̂ TT inl I A 

6 

exp (BnU (o)) 
P K. 

for all Borel subsets BST IM, and of the induced external P 
forces. If the external forces in IM are given as a law of 
acceleration for the points of the body, then, the induced lav 
of acceleration in TMM is obtained by "conjugation" with exp^. 

6 If we denote by V resp. V the volume measure of (IM,g) resp. 
P . -1 of (TMM,gp), then V induces via the map (exPplU^ (o)) a 

measure on T IM, whose density with respect to V is equal to 
sin p 

the function < ("ST^ (o) :T M->[0f»[ . 
71 ^ K 
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Other concepts for describing the external forces require 

additional modifications in defining the appropriate "induced 

forces" in T W. 
P 
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