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SOME REMARKS ON THE MOTION OF A RIGID BODY IN A

SPACE OF CONSTANT CURVATURE WITHOUT EXTERNAL FORCES1

0. Introduction

Due to H. v. Helmholtz the foundations of classical
mechanics do not require the “space” to satisfy the full
Euclidean geometry, but only free movability of rigid bodies.
This property of Euclidean spaces however 1is shared by all
3-dim. 1l-connected Riemannian manifolds Nz of constant
curvature keR and it characterizes these standard spaces in a
large class of topological spaces (see e.d. [5],p.220,
Corollaire 1; certain group actions can topologically model
the “transport of rigid bodies”). All known experiments for
detecting the value of k in “reality” will not give an exact
value zero but only highly probable estimates for k, close to
zero. So it is interesting to study mechanical problems in Nz
for arbitrary k and to investigate, how the corresponding
results depend on k and how “stable” these “laws of nature”
are with respect to perturbations of the curvature, in

particular when perturbing the value k=0.

We want to present here some results on the motion of a
rigid body in Ni without external forces. The first results
concern the equations of motion, which are reformulations of
more or less known facts in new coordinates (see [4] for keR¥*
and see [1] for an invariant interpretation in case of k=0 and

1This is an extract of main results of the doctoral thesis of
the author (see [6]).
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one point of the body fixed). These coordinates have the
advantage of working uniformly for all values of xk and of
making geometric interpretations of the solutions easier.
Computations in these coordinates make use of the WeierstraB
model for Ni (see § 2.i1 of the preceding article [2]}). The
procedure of proving the equations of motion suggests an idea,
how to define the tensor of inertia and the center of mass for
arbitrary k, the latter definition being a modification of the
corresponding concept in ([3].

If the rigid body is a ball with a full rotational
symmetric distribution of mass, then the equations of motion
simplify and can be solved completely. We discuss the geometry
of these solutions: When the ball moves without external
forces, then the axis of rotation undergoes parallel transport
(in the sense of Levi-Civita in Mi) along the path of its
center of mass (which is of course the metric center of the
ball), this path being a “normed helix” in Ni, i.e. a curve of
constant speed, constant curvature and constant torsion. If
k20, then these constant values of curvature and torsion are
different from zero on an open, dense subset of all possible
initial conditions. In particular the path of the center is in
general not a geodesic. On the other hand both the curvature
and the torsion tend to 0 (like O(kx)) for kK—> 0, thus
explaining, that physical measurements in “reality” will
behave “stable”, when k varies around zero, whereas the
quality of the mathematical solutions behaves “instable” in
the sense, that it changes from the geodesic to the helix

type.

If the rigid body has a distribution of mass, which allows
a rotational symmetry only with respect to one fixed axis,
then it seems, that most of the solutions of the equations of
motion are accessible only through numerical methods. However,
the few solutions, that can be given in closed form, contain
all the solutions, where the axis of symmetry undergoes
parallel transport (in the sense of Levi-Civita), and all the
solutions, where the center of mass moves along a geodesic.
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1. Notations and basic concepts

(i) We use the notations of the preceding article [2].

In particular, given a real number keR, let M:= Nz
denote the Weierstraf model of the 3-dim. 1l-connected complete
Riemannian c“ manifold of constant curvature « (cf. [2],
§ 2.ii), which is a certain canonically oriented submanifold
of R4, g the Riemannian and 4 := dK:NxM — R the intrinsic
metric of M, G := Gi the Lie group of all orientation

preserving isometries of M, considered as a Lie subgroup of
GL,(4,R) (cf. [2], § 2.iv), g := gi the Lie algebrg of this
group, considered as a subalgebra of the matrix Lie algebra
Mm(4,R) (cf. [2], & 2.iv), and e:i=e,= = (1,0,0,0) e M,
which is a point of first order contact between all members of

the family (mz)

KeR
Furthermore, let xi:lR4 — R and xij:m(4,R) — R for
i,je{0,...,3} denote the canonical coordinates,

Lf =f-..:G -— G resp. Rf = ..-f:G—> G for feG the left

resp. right translation and :TG — g the left parallelism

“er
of G, given by o 1= (Lgl)*u , if feG and weTG. 1In
particular, if ¥:J — G 1is any smooth curve and teJ, then

1

yt), =7(t) Y9 (t) , where 9’ (t) = 1im LEHIZV(L) 4o 4pe
L h

h->0
derivative in the vector space M(4,R) (=2G).

In what follows, we identify the points of M resp. the
tangent vectors of TpM with the corresponding points in R4
resp. with the tangent vectors in T R? under the inclusion map
i:M — r? resp. under its differential, thereby giving rise

to the canonical map it — R4 (the composition of
i,: ™M — TR4 and the standard map .._):TIR4 - r* ' cf.
[2],(2.3)).

(ii) We define ~n := (xl,xz,x3)|N:N — R3 .

Then (1,1):M — R4 is (extrinsically interpreted) the
(..I..)K-orthogonal projection of M onto e+TeN*=Ng‘ (use

[(21,(2.1),(2.5)).
The restrictions of the canonical coordinates
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xo,...,x3:lR4 — R to the submanifold M of R4 are related to

the intrinsic geometry of M as follows (cf. (2], § 1.i,iv,
§ 2.i,ii):
sinK -1,>
(0,n) = (——ed(e,..))  (exp_")” on M\{-e},

sin

. (A]
K is C even at

where exp_ ! abbreviates (exp_|U. (o)) ! and
e e "m,

0, and XOIN = cosKod(e,..) , <a,n> = siniod(e,..) '
<n,n> - <n,u>2 = siniodist(..,cu(m)) for all uesz,
where cu:R — M denotes the geodesic of M with cu(0)=e and

éu(O)*=(o,u).

A proof can be obtained using [2],(2.13) and - for the
last equation - in addition by some straightforward
computations.

(iii) We introduce the R3-valued left invariant Pfaffian

A o ,_ o ,_ e s 3
forms w,v on G by requiring W .—wlid , Vo= vlid tg R
. . . . o ,_ .
to be the linear projections given by wy = xi+2,i+119 with
indices mod 3 in {1,2,3} and v? i= xiolg for ie{1,2,3} (cf.
(1)) .
0O 0 o0 _0 _ 0 0O . .
Then (wl,wz,w3,vl,v2,v3) is a basis for q* (cf.

[2},(2.28)) and from [2],(2.280) follows by straightforward
computations:

w([g,M]) = w(€)xw(M) + k-v(§)xv(n) and
v([g,M]) = w(€)xv(n) + v(§)xw(n) for all §,meg,
in particular wld:d — (R3,..x..) is a Lie algebra

isomorphism, where o (=ker(v°), cf. [2],(2.292)) denotes the
Lie subalgebra of g corresponding to the isotropy subgroup of
G for the point eeM.

For geometric interpretations see below (iv),(v) and

§ 2.iii.

(iv) For £eg let we(s)eTeN denote the vector with
we(g)* = (0,w(&)) . Then one checks easily, that
we(g)x..:TeN — TeN is the velocity field of the

one-parameter group of rotations of (the 3-dim. oriented
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Euclidean vector space) TeN generated by the
Killing-orthogonal projection of £ onto & (cf. (iii)). More
precisely use the projection of the splitting (2.292) in [2].

(v) For £eg let ve(e)eTeN denote the vector with
ve(€)+ = (0,v(£)) . Then again it follows easily, that ve(g)
is the velocity vector at time 0 of the orbit of the point e
under the one-parameter subgroup of G generated by £.

(vi) For £eg and geM the action of g on r* by matrix
multiplication gives (cf. (ii), (iii) and use [2],(2.28)):

£:q = (-k-<v(£),2(Q)>, (W(E)xn(q) ) +x, (A V(E)) € RxR® = R .

2. A model for the rigid body in M := Mi

(1) We describe the body in its initial position by its
distribution of mass m. This is a (non-negative) Borel measure
m on M with 0 <m(M) < ®, which has to satisfy additional
conditions (e.g. for getting a well defined center of mass
resp. definiteness of 7m , see below § 4.i,ii resp. § 2.iv and
§ 5.vi). In order to avoid 1longer discussions, depending
mainly on too general “admissible measures”, we shall restrict
ourselves to measures m satisfying the following two
conditions:

a) Let m be 3-dim. extended, i.e. mn(M\E)>0 for all 2-dim.

totally geodesic submanifolds E of M.

b) There exists poeN and ce]o,%-nx[ (cf. [21, § 1.iv), such

that m is concentrated in the ball Uc(po), i.e

m(M\U_(p,))=0.

Note, that nK=diam(N), and physics tells us that classical
mechanics does not apply to objects of a size comparable to
the diameter of the universe. So condition b) is not a serious
restriction.

The condition a) is easily seen to be equivalent to the

following one:

a) If 9»:M —> R 1is any m-measurable non-negative function on
M, the zeros of which are contained in a 2-dim. totally
geodesic submanifold of M, then J p(g)dm(g) > 0 .

M
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(ii) Any given position of the body can be obtained by
exactly one feG (cf. § 1.i) transporting the body from the
initial position to the given one. This identifies (as usual)
the configuration space of the rigid body with the Lie group G
of all orientation preserving isometries.

A “resting” observer describes the body by the mass
distribution f*m (with (f*m) (B):=m(f(B)) for all Borel subsets
BSM) after it was transported with feG from the initial
position. If we denote by BM the set of all non-negative Borel
measures on M satisfying the conditions a) and b) from (i),
then this actually allows the “resting” observer — from a more
sophisticated point of view — to identify the “rigid body in M
with mass distribution m” itself with the subset {(f,f*m)ifeG}
of GxBM, which is the orbit of (id,m) under the the action of
the group G from the right on GxBM, and the different elements
(f,f*m) of that orbit are then viewed as the different
possible “positions” of the rigid body in M. The usage of the
group action of G on G from the right can be motivated . by
(iii).

An observer moving along with the body describes the body
in every possible position by the mass distribution m
introduced in (i). Therefore we will most of the time use
descriptions relative to an observer moving along with the
body rather than that moving relative to a “resting” observer.

(iii) Let %:J -—> G be a smooth curve in the Lie group of
motions (:= orientation preserving isometries) of M. Using
(ii) we consider 7y as a process of motion of the rigid body in
M. Correspondingly the tangent vector field ¥:J — TG of ¥
(which allows to recapture 7y as mey, using the canonical
projection m:TG — G ) is called the (evolution-) path of
states of the given process of motion 7.

The so-called body representation on TM of the process of
motion ¥ (resp. of its path \fw\states ) is the following
time-dependent vector field v? on M:

For (t,p)eIxM let Wz(p) be the vector in TpN, which is
mapped by the differential of the isometry 7E)- e M — M
onto the velocity vector at time t of the orbit 7:p:J-— M of
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the point p under 7, i.e.
vi) = (r(e) L) (rp) (L) € T M for all (t,p)edxM.

Using the notations from § 1.i, this vector field can be
computed by wz(p)* =7(t)'p e R rfor all (t,p)eIxM.
Now we consider the ball U := Uc(po) from (i)b) as an

open neighborhood of the rigid body and, if (Al,A A3) is an

’
orthonormal frame field on U (the bundle TM is irivial over
the cell U !), then we define the y-moving frame (El’Ez'E3)
along the orbit path IxU — M ( (t,p) » 7(t)'p) of the
body by

E;(t,p) := (y(£)-..),A;(p) for all (t,p)edxU, ie{1,2,3}.°

Then evidently (since v¥(t):..:M — M is an isometry)

g((v-p) " (t),E; (t,p)) = g(vi(p),A;(P))
for all (t,p)edJxU and ie{1,2,3}.

This allows us to interpret, for a fixed time teJ, the

vector field w{ on M as the distribution at the moment t of

the velocity (of the various orbits under the action of ¥) in
M relative to an observer moving along with the body under 7.

Together with § 1.iv,v this motivates the following
terminology (cf. § 1.i,iii):

w(y) = wo(iL):J — R> is called the angular velocity of 7
in body coordinates with respect to e, v(i) = vo(iL):J — R3

is.called the translation velocity of ¥ in body coordinates

2 Oppositely, if we are given a point peM, a positively
oriented orthonormal frame (el,ez,e3) of TpN and a positively

oriented orthonormal c® frame field (El'E E3) along a c®

21
curve c:J — M, then these data determine (G operates
s%mply transitive on the oriented frame bundle of M) a unique
C curve ¥:J > G, such that Y(t)-p = c(t) and
(1(t)-..)*ei = Ei(t) for all teJ. This explains, why so often

in the classical literature a process of motion of a rigid

body in g3 (with the distinguished p:=o and the canonical
frame (e;re,,e,) in o) 1is simply described by a certain

positively oriented frame field (El'E E3) along some €~ curve

2!
in E3 as the moving reference system (“Gang-Bezugssystem” in
German).
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with respect to e.

The so called space representation on TM of the process of
motion 7 (resp. of its path of states 7) is the following
time-dependent vector field w? on M:

For (t,p)eJxM let w:(p)eTpN be the velocity vector at time
t of the orbit under 7y of that point of M, whose orbit passes
at time t just the point p, i.e.

Wl (p) := (v ) Lp)) (e e T M for all (t,p)elxM.

For fixed teJ we can interpret the vector field Mz on M as
the distribution, at the moment t in time, of the velocity (of
various orbits under the action of ) in M relative to a
“resting” observer. Using the notations from § 1.1, this
vector field can be computed by

4

WL(P)” = 7(t)g-P € R° for all (t,p)eIxM,

where - g TG—3 denotes the right parallelism of G, given by
=1 .
N .—(Rf )8 + if feG and ueTfG.
(iv) We define the function Tai9%x8 — R (cf. § 1.1,
§ 2.i) by

T (E,m) 1= [Mguexp(xs)-q)'w),<exp<xn)-q)'<0))dm<q> -
= [ (¢-ain-@) an(@)  for all g, mes.
M

The integrals exist because of the compact support of m
and the second equation follows from (exp(xE)-q)'(O)* =£-q
for £eg and gqeM and the definition of g. Then ﬂm is obviously
a symmetric positive semidefinite R~bilinear form on g and we
will see later in § 5.vi, that the conditions imposed in (i)
on m imply the definiteness of ﬂm. Hence 7 is an Euclidean
inner product on the Lie algebra g of G, induced by the rigid
body.

(v) Let Zm:TG — R denote one half times the square of
the norm, given by the left-invariant Riemannian metric on G
induced by ﬂm (cf. (iv)). Then for a smooth curve ¥:J —> G
one obtains
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-1, . . -_—}.. - . -
£m°1 = 5 gm(TLl"L) 2 Im(vL qIWL q)xdm(q)

= %-fm(v-%L-qlw-%L-q)Kdm(q)
=y -q=((v'q°)”
=3[ et@a, o )am@ .
1]

So, interpreting ¥ as a process of motion of the rigid
body, £mo1 is the kinetic energy of the rigid body (with mass
distribution m) moving under %, and therefore fm is the
Lagrangian of the rigid body in the absence of external
forces.

(vi) According to (iv),(v) and [1],3.7.1 a curve 7:J — G
is a process of motion of the rigid body without external
forces iff ¥ 1is a geodesic in G with respect to the
left-invariant Riemannian metric on G induced by ﬂm.

(vii) The group action of G on G from the 1left and the
Lagrangian £m satisfy the hypotheses of E. Noether’s theorem
(see [1],4.2.14). This gives us an Ad*-equivariant

momentum mapping TG — g* (v - 5$)

. m .
defined by 90(5) := F“Zm(EGIf) for feG, veTe
according to (iv),(v) and [1)],3.6.10,4.1.25.a we have

G, €£eg, where

ruzm = 7m(uL,..L) and &Glf = (Rf)*g . Therefore we obtain
m
A3

= -1 .
3 = ﬂm(uL,Adf ..):g — R for feG and ueTfG,

and the Ad*-equivariance of " means (cf. [1),4.2.6)

5TLf) J(E) = $h(aazle) for all seTG, feG, geg.
* .

If 7:J — G is a process of motion of the rigid body
without external forces, then

3 = 7m(%L,Ad;1u.):J — g* (t > ¢ is constant on J.

7 7(t))
(viii) We define the matrix emem(B,R) implicitly by

<w(£),0™ w(n)> =17 (§,m) for all &, mes,

where 6 denotes the Lie algebra of the isotropy subgroup of
the point eeM in G. wlb:b——>R3 is a vector space
isomorphism (cf. § 1.iii). Together with (iv) follows, that e™



474 J. Zitterbarth

is well defined, symmetric and positive. We call 6™ the tensor
of inertia of m with respect to e. More precisely this tensor
is an endomorphism of TM and 6" is its representation matrix

(with respect to the basis of T M mapped by ..” onto

(eyre,5,e5)) .

3. Geometry of orbits under a process of motion

We use the notations introduced in § 1. Let 7:J > G
denote a C> curve in the Lie group of motions of the standard
space M. We study the geometry of the orbit 7-e:J—o M of
the point eeM under 7.

(i) Let (al,az,a3) denote the orthonormal frame of
(TgM,g,) with a.,” = e, for ie{1,2,3}. For teJ and ie{1,2,3}

i i
wg define Ei(t) := 7(t)*ai € T1(t)-eN . Then (El'Ez’E3) is a
C” positively oriented orthonormal frame field in M along 7-e
(classically called “moving reference frame”, in German:

“Gang-Bezugssystem”, see footnote 2) and (note G<GL(4,R))
Ei(t)* = v(t)-e; for all teJ and ie{1,2,3}.

(ii) The velocity field of the orbit 7-e is given by
3 .

2 vi(1)Ei .

1=1

(v-e)’

[ Because

((v-e))”

[l

vi(%)".ei |

Ve yy e T 7 (0,v(¥)) =
1

§ 1.i  [2],(2.28)

T~ w

1

iii) Lemma. For ever Cl ma z:J — R3 one has
( Y P

3 .
v, z 24By) = I (2 +(()x2) )E,

where V is the Levi-Civita covariant derivative in M and

3 := the canonical vector field on R (2J).

dx
3
Proof. g(V ( Z z E ) /E; ) = ([ ¥ 2.7 e, ]'l1 e, )
3513
3
T (v Z [z e + zij e. ]|1 e. )
1.1 3
=2, + Y (7 le.) z. =
i j=1 L 73 3
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= [z’+(u(ir)xz)]i for all ie{1,2,3}.

(iv) Remark. The results (ii), (iii) shed some light on the
relation between the two R°-valued left invariant Pfaffian
forms v resp. w on G on the one side and the basis forms ei

resp. the connection forms W, of M (i,je{1,2,3}) on the other

. J
side.
Here the Pfaffian forms 6, resp. wij (i,je{1,2,3}) are
understood to be defined on the principal bundle M:FM — M

of the Riemannian manifold M (consisting of all orthonormal
frames tangent to M), as usual. If Ei:FN — ™ for ie{1,2,3}
are the canonical projections (Ei assigning to each

orthonormal frame tangent to M its ith component vector), then

the definitions of the 6, resp. wij amount to the following
equations: For any differentiable manifold N, any ct map
{:N — FM and any vector field XeX (N) one has for all
i,je{1,2,3}:

ei (£,X) = g(Ei°#f (nef) ,X) resp. wij (£,X) = 9(E1°€,Vx(l€j°#) ).

Therefore, if E := (El,Ez,E3):J — FM is the orthonormal
frame field along 7-e introduced in (i), then =n<E = 7-e and
the results (ii), (iii) are equivalent to saying, for all
ie{1,2,3}:

6, (E)

9(E;, (v-€)") = v (¥) resp.
wi+1,i+2(t) = 9(E{1/Y5E{4p) = - wi(i) with indices mod 3.
(v) The acceleration field of the orbit ¥-e is given by
3
Vylv-e)" = E [(V(7))'+(U(7)XV(7))]iEi
1=1
(use (ii), (iii)).

(vi) The orbit 7-e:J — M is a (constant speed) geodesic

iff (V7)) +H(@(7)xv(7)) = o .
(vii) The scalar invariants — velocity Y e ! curvature
Kw-e and torsion tw-e — of the orbit 7-e can be computed by
S e = nv(r)h ,
_3 . . , . .
Kyoo = (8,.0) " IV(DIX[(V(I)) +(@()xV () I,

re = (Ko 8. o) 2 det(V(¥), (V(¥)) +(w(3)xv()),u) ,

Gl
|
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where
u = [(V(7)) HW(@)xV (7)) )+ w@)x[(V(T)) +H(w(7)xV(7))])
(use (i), (ii), (v) and u; = g(VaVa(w-e)',Ei) , cf. (iii)).

(viii) If any tangential vector aeT M at M in e 1is given
and aeR> characterized by a’ = (0,a) , then the translation
of a by ¥ is V-parallel, i.e. the vector field along 7-e
defined by t = 7(t),a is a parallel field (in the sense of
Levi-civita in M), iff w(7)xa = 0o (use (i), (iii)).

4. The center of mass of the rigid body

(i) Theorem. Let m be given as in § 2.1 and define the
function F:M — R by F(p) := I sini(d(p,q))dm(q) for peM
M

(in German literature called the “second order moment” of m
with respect to p). Then one has:
a) F is a c® function.

-sin

cos
b) gradpF = —2-I ———5§———5(d(p,q))-expgl(q)dm(q) for all peM,
M

where exp;1 stands for (exp,|U_ (o))" L.
K

c) If Pg and € are chosen as in § 2.i, then the ball Uc(po)
contains exactly one critical point S of F and F attains
its absolute minimum at S.

d) If S is chosen as in c), c:R—> M is any unit-speed
geodesic with c(0) =S and if we define

H(S(0)) := [M[cosi(d(s,q)>-x-(é(O))*lq)ildm(q) ,

then (Fec) (t) = F(S) + M(é(o))-sini(t) for all teR
and M(c(0)) >0 .

(ii) Definition. The point S of (i)c) is called the center
of mass of m.

(iii) Corollary (use § 1.ii). If the center of mass of m
is the point eeM, then '

[ Xotar@an(@ = o .

Remark. In [3] similar results were proved for the
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function p — I w (d(p,q))dm(q) , and like there, usage of

the embedding of M in R (cf. [2], § 2.1ii) shortens the proof.

Proof of (i):

Ad a). Because m has compact support (cf. § 2.i), it
suffices to prove that siniod:MxN — R is a ¢® function. The
case k=0 is trivial (recall sino(x)=x) and [2],(1.6),(2.14)
imply in case of k=#0:

.2 -1 ,._ 2° =1, - 2
51nxod =z (1 cos, d) 2 (1 <..,..>K)INxN .

Ad b). It is sufficient to prove for geM, for a unit-speed
geodesic c:R -— M and teR:
(2 R
(sin _ed(..,qg)°c)’ (t) =

{ 0 . if (k>0 and) d(c(t),q) = L

= cos, -sin -1 . )
-2-————;————(d(c(t),q))-g(expc(t)(q) sc(t)) otherwise

In case k=0 both sides are equal to 2 (c(t)-qlc(t) ) In
case d(c(t),q) = T the function sin® od( «,q)ec attains

its absolute minimum (of value 0) at t. In the other cases the
assertion follows from (cf. ([2],(2.2),(2.14))

) , 2 . .
[sin (d(c,q)) ) = - ;'<c,q>,<'<c-’.<l.[>,C = -2'C°SK(d(CIQ))'(c—’Iq)K

and using [2],(2.2),(2.83) and the identity (cf. [2],(2.13))
sin

q = cos, (d(c(t) ;@) e(t) + ——(d(e(t),q)) expg y (D)

Ad c). For all p,geM with d(q, po) < d(p,po) < %-nk one
can show g(exp (q) exp (po)) >0 (see e.dq. [3]),p.90,92).

Together with b) and (cf. § 2.i) e < %-nn this implies for
all pedU (po):
g(gradpF exp (po)) <0, exp (po) pointing “inwards” Ue(po).
~ Therefore, FIUe(pO) must attain its minimum at an interior
point S of Uc(po) and d) will complete the proof of c), since
every point quc(po)\{S} can be joined with S by a geodesic
and € < %~nk implies d(q,S) < %-n
s 2y,
(sin )’ (d(q,S)) >0 .

k! hence

Ad d). We shall only use the fact that S is any critical
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point of F contained in Uc(po). Choose geM and any unit-speed
geodesic c:R — M . Then one has

.2 17 2 e ] 2
(sin (d(c,q))]"” = 2-cos_ (d(c,q)) - 2k-(c’lq), .
[Because, in case k=0 both sides are equal to 2. Otherwise one
.2 " 2 -9 2 2 ’
computes [51nx(d(c,q))] =-g<cha>, - E-<c,q>x-<c 'q>x ,
which implies the desired result, using that <c¢’/, the second

order derivative of c in R4, equals -kc.]

If 4d(c(0),q) < n, and teR, then
(sinZed(..,q)oc)"(t) =
= 2-cos, (2t) - [cos?(d(c(0),q)) - k- (&(0) 1q)2] +

cos_-sin

+ 4x-sin (2t) —5—%(d(c(0),q)) *gexp] ) (@),€(0)) -

[Because, in case k=0 both sides are equal to 2. Otherwise we

have  (sinZed(..,q)ec)”(t) = 2c- (c(t) 1@ 2 - 2c- (&(8) 1) 2 .
Inserting c(t) = cosK(t)~c(0) + sinK(t)-é(0)+ (cf. (21,
(2.13)) and c(t)” = -k-sin (t)-c(0) + cosx(t)-é(O)* (cf.

[2],(1.1")) and using the bilinearity of (..1. and

[2],(1.7) we get the proposed equation.]

')x

In case c(0) =S we get from the last equation (using b)
s .2 17

| (sinZea(..,q)ec)"(t)am(q) =

M

2-cosK(2t)-M(é(O)) for all teR.

and gradSF=o): (Fec) ' (t)

This yields (observing (Fec)’ (0) = g(gradSF,é(O)) = 0)
(Fec)’ (t) = sin _(2t) -#(c(0)) for all teR,
and thereby the first assertion of d).

It remains to show #(c(0)) > 0 . This follows, in case
k=0, from cosi(d(s,..)) - x-(é(O)%I..)i Z1 on M

and in case k>0 from m(N\Uzc(S)) =0 (cf. c) and § 2.i) and

cosi(d(s,..))-x-(é(O)*l..)i =

= cosi(d(s,..))-cosi(d(c(%-n Ysaa)) 2

K
2 1
z cosK(zc) -5 0 on Uzc(S),

which depends on é(O)* = VE-c(%-nK) (use [(2],(2.13)) and our
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. 1
choice of ¢ < 3 M ¢

5. Preparations for the equations of motion

We use the notations introduced in § 1 and § 2.
(i) Lemma.

<w,em~w> = <w,w>-I sini(dist(q,cw(R)))dm(q) for all weR3,
M

where cy iR — M denotes the geodesic with cw(O) =e and
. -
c,(0) = (0,w) .

Proof. The case w=0 is trivial. Let w#zo and £eb with
wW() =w (cf. § 1.iii). Let 7:R — G denote the one-
parameter group generated by £. Then

m s . .

<w,8™w> =T (£,€) =T, (v,,7) = jmg((v-q) , (v-q) " )am(q)

(use § 2.v,viii) and the orbit 7-q traces a “plane” circle

with (measured in M) radius dist(q,cw(m)) and constant angular
velocity Hwl, hence K(y-q) "1 = uwu-sinx(dist(q,cw(k))) .

(ii) Lemma.

<w,8™-w> = I (<w,W>-<a(q) ,n(g)> = <w,n(q)>-<W,n(g)>)dm(g) =
M

f <wxn(q) ,wxa(q)>dm({(q) for all w,QeR3.
]

Proof. The second equation follows by standard identities
about the cross product in (R>,<..,..>). Both sides of the
first equation are bilinear and symmetric in w,ﬁeR3 (cf.
§ 2.iv,viii). Hence it is sufficient, to consider w=weR>. The
case w=0 is trivial and in case w#0o we conclude from § 1.ii

<w,w>-sini(dist(q,cw(m))) = <w,w>-<1(q) ,n(g)> - <n(q),w>2
for all geM, where c, is the geodesic introduced in (i).

(iii) Lemma. For all i,je{1,2,3} we have
2

m _ 2 2 -
eij = IM[(xl+x2+x3)6ij xixj]dm P
m _ 2
[m (M) ; - k-8 ]ij = Im(xoaij+Kxixj)dm ’

[2-6™ - trace(em)-I]ii = - z-I xidm <o,
M

where I denotes the (3x3)-unit matrix. In particular if x=0:
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m m bul . . . .
eii < ei+1,i+1 + ei+2,i+2 with indices mod 3 in {1,2,3},

which is a certain triangle inequality for the principal axes
of the tensor of inertia in case kz0.

Proof. The first equation follows from n = (xl,xz,x3)lN
and (ii), the second from (xglN) + k-<n,n> =1 and the first
one. These two equations imply the third one and in case k#0

m

-1 _ 2 _ 2
eii =z (m (M) I xodm] Imxidm and

M

m m _ m,_ m
Oi+1,i+1 T Cisn,i4p ~ trace(6’) - 6;;
= %-[m(N) - I xgdm] + I xidm .
M M

Now we get the inequalities using (cf. § 2.i.a) I xidm >0 .
M

(iv) Lemma.
TL(E,m) = <w(£),8M w(n)> + <v(£),[m(M) I~ k-6"]-v(m)> +

+ <w(g)x NXO(Q)n(Q)dm(Q),V(n)> +
+ <v(g),w(n) x| x5(a)r(q)dm(q)> for all g, meg,
M

where I denotes the (3x3)-unit matrix.

Proof. According to § 2.iv,viii both sides of the proposed
equation are bilinear and symmetric in §€,neg. Hence it is
sufficient, to prove it for £=meg. We compute

7 (£,6) = jm(€~ql£-q)xdm(q)

(-K-<v(£) ,n(q)>, (W(E)x2(q) ) +X,(q) V(§) )

§ 2.1iv § 1.vi

= [ tee<vie) n@>? +

My <(w(§)xn(q)) +x,(q) V(E) , (W(&) xn(q) ) +x,4(q) V(&) >]dm(q)
(21,(2.1)

= jm<w(s>xn(q),w<e>xn(q>>dm(q) +
¢ [ o (@ <v(©) ,v(©)> + ke<vi@) @ > 1an(@) +
+ z~<v(s>,w(z)xjmxo<q>a<q)dm(q)> ,

where [ <w(€)xn(a),0(€)xn(@)>dn(q) = <w(€),0™ w(€)>
M | (ii)
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and fmtx§<q)-<v<s),v<s)> + ke <v(£) ,n(q)>Jdn(q) =

= <v(£),v(£)> m(M) -
[21,(2.1),(2.5)

- n-IN[<v(s),v(s)>-<a<q),n(q)> - <v(£) ,a(q)>21dm(q) =

= <v(€),[m(M)-I - k-87)-V(E)> .
(ii)

(v) Corollary (use § 4.iii). If the center of mass of m is
the point e, then for all £,neg

7 (E,1) = <w(€),8™ w(m> + <v(£),[m(M)-I = k-6"]-v(n)> .

(vi) Lemma, 7m is positive definite.

Proof. After choosing another initial position of the body
we may assume, that the center of mass of m is the point e.
According to (v) and § 1.iii we have to show:

m

6 and m(M)-I - k-8™ are positive definite.

The positive definiteness of 6™ follows from (i) and
condition a) in § 2.i, since for weR3\{o} the function
sini(dist(..,cw(m))) is non-negative, continuous and its
zeros are exactly the points of the geodesic line cw(R) (which
is always contained in a 2-dim. totally geodesic submanifold
of M).

From the proof of (iv) we know for WER3

<w,[m(M)-I - n-em]~w> = I [xg(q)-<w,w> + x-<w,a(q)>2]dm(q) .
' M

If w#o and k>0, then the integrand is non-negative, continuous
and its zeros are contained in Nnxal({O}), which is a 2-dim.
totally geodesic submanifold of M. Hence the positive
definiteness of m(M)-I - k-8™ follows for k>0 from condition
a) in § 2.i, and for k=0 it 1is a consequence of the same
property of eé™ and m(M)>0.

(vii) Lemma. If 7:J — G 1is a smooth curve and Eeg ,
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then (Ad;ls)' 3

_1 .
(Ad,"€,7.] ,

w((Ad;16)") = w(Ad TE)xw(¥) + k-v(Ad TE)xv(¥) ,

v(ad 1)) = w(ad te) xv(7) + v(Ad T xw(¥) .

Proof., The differentiability of Ad;lng — g follows
from that of y. Then, by differentiating 1~1-1 = id , we get
Yy = -%L-v-l and use this to compute (cf. [2],(2.28))

aa o) = o Then =y e + Th gy =

= ,‘1.5.,.;L - ;L.,—1.€.7 = Ad;lg.;L - ;L.Ad;lg =
= (ad e, 7))

The other assertions follow by using § 1.iii.

(viii) Lemma. If the center of mass of m is the point e,
then for a smooth curve ¥:J — G and £eg one obtains

(53(6)) = <w(ad ), 6™ (0(3))" -
- (@™ w(7))x0(¥) + k- (81 V(7)) xv(7)> +
+ <v(Ad le), (m(M) T - k-6 [(V())' +(@(M)xv())] +
+ k-[2-8™ - trace(8™) -I]- (w(¥)xv(7))>
(cf. § 2.vii).

Proof. First § 2.vii implies, that TG — a* is a
c®-map, and so the differentiability of 9?(&):J — R follows
from that of 7:J — TG . We compute

m PR ; -1 ‘=
(FFE)) T (T, (ip,aate)) =
§ 2.vii
T In((p) AT + 9 (7, (A TE)) =
§ 2.1iv

T <w((7)’) 6™ w(ad te)> +

(v) and s=e +<v((3g)"), m) T - k-6"1-v(ad tE)> +

3 In (1],4.1.25.c 1is proved (Adws)’ = [%R,Advﬁ] (cf.

§ 2.iii).
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+ <w(ry) o™ o((ad te))> +

+<v(r), (m) I - k-8")-v((ad e))>

m . N
where, because 68 is symmetric (w.r.t. <..,..>) and wy,vy are

linear on g and w(&L)=w(i), V(%L)=V(i),

<w((%L)l),9m.w(Ad;1€)> +<v((3)), [m(M) - T - K'Gm]-v(Ad;lg)>

= <w(ad ), 8™ ((1))7 > + <v(Ad ), (n(M) T - k-6"1 - (v(3)) >
and, using (vii),
<o (7)™ (AL 1) )> + <v(rp), () T - k8" v((ad tE) >

<em-w(i),u(Ad;1§)xw(&) - x-v(Ad;ls)xv(&)> +

+ <[m(M)-I - x-em]-v(i),w(Ad;lg)xv(&) + v(Ad;lg)xu(i)> =

+

- <w(ad 1), (6™ 0 () xw(¥) + ((m(M) T - k-8™1-v(¥))xv(¥)>

<v(ad 1E), ke (6™ 0 () xv(¥) + ((m(M) T - k™1 v(¥))xw(7)>

- <w(Ad;1g),(em-w(%))xw(&) -k (8™ V() ) xV(7)> +
+ <v(Ad 1), (m() T - k-8™) - (L) xv(7)) +
+ k- (O™ (W) xV (7)) = (8™ w())xV(7) - w()x (8™ V(7)) ]> .

The proof is completed by the observation
(6™-a)xb + ax(6™-b) = [trace(6™)-I - 6™]- (axb) for all a,beR>
because of the symmetry of e™.

6. Equations of motion

We use the notations introduced in § 1 and § 2.

(i) Theorem. If the center of mass of the rigid body with
mass distribution m is the point eeM, then a C2 curve
7:J — G 1is a process of motion of that rigid body without
external forces if and only if %L:J — g 1is a solution of
the following ODE system:

™ (w(7)) = (O™ w(¥))xw(7) + k- (8™-V (7)) xV(¥)

1
o]

(m(M) -I = k-0 [(V(7)) +(w(7)xv(7))] +

+ k-[2-8™ - trace(8™) - I]: (w(¥)xV(¥))

I
(o}

(ii) Remarks.
a) From § 1.4iii we get w(y) = wo(%L) and
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v(%) = vo(iL) , Wwhere (wo,vo):g - RG is a R-vector space
isomorphism and e™ and m(M)-I - k-e™ are symmetric and
positive definite, therefore invertible, according to § 2.viii
and the proof of § 5.vi. Hence the (R3-va1ued) equations in
(i) are a (non-linear!) first order ODE in g for %L and can be
written as (7L)' = Q7 with a polynomial map Q8 — 8,
which is homogeneous of degree two (and induced by the rigid
body) .

b) If the tensor of inertia o™ is diagonal, then the
equations in (i) take the form (use § 5.iii):

611 (0 (7)) + [633-65,1 [0y (N wy(7) = K-V, (F)V4(7)] =0,
65, (W, (1)) + (6],-65,1 (W (1w, (7) = k- Vo (1) V(7)) = 0,
655 (Wy (7)) + [65,-67,1 [0, ()0, (7) = K-V, (F)V,(3)] =0,

jm(xg+xx§)am~(vl<i))' * jw(xg—xxi)dm-[w(%)xv(%)]l =0,

I
o
~

jm(x§+xx§)dm-(v2<%))' * jw(xg-nxﬁ)dm-[w(i)xv(i)]z -

|
(=]
~

[ xdexdyam: (vy()) + [ (xd-kxg)ame [w(3)xv(3) 1, =
0 3 3 0 3 3
M ™M
whereby the coefficients of the first 3 equations can be
written as (use § 5.iii):
m _ 2,2 m _.m _ 2_2
911 = Jm(x2+x3)dm ’ 933 922 = IN(XZ x3)dm etc.

and the coefficients of the last 3 equations can be written as

J' (x%+kx2)dm = m(M) - k-8, ,
0 1 11
M
2 2 _ _ L. M
JN(xO-le)dm = m(M) K 622 K 633 etc.

c) If the tensor of inertia o™ is diagonal and (61""556)

denotes the basis of g dual to (wi,wg,wg,vg,vg,vg), then
§ 5.viii implies
m -1 -1
(F:(£.)) w,(Ad_"&E.) ..... v,(Ad_"E.) 1.h.
(s .1 1 .7 1 3 ‘7 1 side
= X : | of :
m , -1 -1 _ODE
(9%(66)) wl(Ad7 56) ..... v3(Ad1 56) in b)

the matrix in this equation being the transposed of the
representation matrix of the automorphism Ad;1 with respect to
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the basis (El,...,ss).

d) The additional assumptions on m can always be satisfied
by choosing another initial position of the (unchanged) body.
More precisely, for a given m there always exists an isometry
feG of M, such that the Borel measure f*m (with
(f*m) (B) :=m(f(B)) for all Borel subsets BsM) has center of
mass e and a tensor of inertia in diagonal form.

e) In case k=0 the first 3 equations of the ODE system in
b) become the classical Euler equations and the last 3
equations become equivalent to the classical condition that
the center of mass moves with constant speed along a geodesic
of M (use § 3.vi).

f) In case k#*0 the center of mass rather rarely moves
along a geodesic of M (which drastically contrasts the case
k=0), see below § 7.iv and § 8.iv, and the example of a
“symmetric ball” studied in § 7 will show, that this fact does
not depend on our choice of the concept “center of mass”,
which might have been suspected to be not appropriate in this
respect. We are rather inclined to see the reason for this
phenomenon of a nongeodesic motion of the center of mass in
case k#0 in the different structure of the Lie group G (in
contrast to the case k=0), more precisely in the lack of a
subgroup of translations in G for k=#0.

Proof of (i). Let %:J —> G be a process of motion of
the rigid body with mass distribution m without external
forces. Then Sg:J — g* 1is constant according to § 2.vii and
from § 5.viii we get for all €eg

0 = (#7(6)) = <w(ad ’e),6™ (u(¥)) -
- (8™ w () xw () + k- (8" V(7)) xv(¥)> +
+ <v(Ad1E), [m(M) T - k6™ [(V(1)) +(@(I)xv ()] +

+ k-[2-8™ - trace(8™) - I]- (w(7)xV(7))> .

For every teJ, however, Ad;%t):g — g 1is bijective as well

as (w,v)Ig:g — R3xR3 . Since the last equation holds for

all £eg, it implies that %L:J — g is a solution of the ODE
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in (1i).
Apply uniqueness for the above ODE in g and for the ODE
Y = Y-iL in M(4,R) to complete the proof.

7. Motion of a ball with rotational symmetric distribution

of mass in the absence of external forces

We use the notations introduced in § 1 and § 2 and specify
m as follows:

(i) Let the point Py from § 2.1 be equal to e and let m be
invariant under the isotropy subgroup of G for the point eecM,
i.e. f*m=m for all feGe (cf. § 6.ii.d), 1in other words the
rigid body is a geodesic ball of radius < %-nn with metric
center e and a full rotational symmetric distribution of mass
(e.g. including the case of a geodesic ball of constant
density of mass).

(ii) For this m, because of the symmetry obviously holds:

The center of mass of m is the point e and the tensor of

inertia o™ is scalar, 1i.e. o™ =1 , where I is the
identity and (cf. § 5.iii) 3 = I x2dm = I x2dm = J' x2dm > o0 .
M M M

So § 6.i,ii.b imply:

A smooth curve ¥:J — G 1is a process of motion of the
ball with mass distribution m without external forces iff

(W(7))" =0 and (v(7))' + K- (W(@)xv(¥)) =0,

I (xg-xxi)dm
M

m

J1,o[ for k<O
=1 for k=0 .
10,1 for k>0

_ m(M)-2x®
T m(M)—k?d

where K :=

m

I (xg+xxi)dm
M

(iii) This ODE system is de facto linear and we get:
A smooth curve 7:J — G 1is a process of moction of the
ball with mass distribution m without external forces iff
there exist a positively oriented orthonormal basis (el,ez,e

l’AZ’AB e R , such that

e, + 13-[51n(KA1x)e2 + cos(KAlx)e3]

)
3
of R3 and real numbers a

w(r) = Alel and v(7) = Az

with K from (ii).
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Proof. Verify first by simple computationj that the %L
given by the last equations (cf. § 6.ii.a) is “a solution of
the ODE in (ii), and show then, that all initial conditions in
g can be realized by such curves.

(iv) Let m,K be as in (i), (ii) and let 7:J — G be a
process of motion of the ball with mass distribution m without
external forces. Then one obtains for the orbit 7'e:tJ o M
of the metric center e of the ball under 7y and any fixed teJ:

7-e is a curve in M of constant speed
v (r(t))H
and — if this is #0 — of constant (geodesic) curvature
1 1-K| - 0 (7 (£) ) xV (7 (t)) 1-1v(y(t)) 12
and — if this is 20 too — of constant torsion

(1-K) -<w(7(t)), V(7 (t))> - Iv(¥(t))n~2 ,
where 1-K = K'ﬁTﬁ?:EE =0(k) for kK —>0, but 9 >0

(cf. (ii)), in particular
7-e:J - M 1is a geodesic
o [ k=0 or [w(7(t)) and v(7(t)) are linearly dependent]] ,
y-e:J — M is a plane curve! o
P [ k=0 or [w(y(t)) and v(7(t)) are linearly dependent]
or [w(i(t)) and v(%(t)) are orthogonal]] .

A from (iii) we get

Proof. With (el,ez,e3) and Al,hz, 3

first (using § 3.vii)

W(y-e)ll = nv(z)ll = ¢A§+A§ constant,
(v(7))’ = Khlls-[cos(xllx)e2 - 51n(KA1x)e3] ,

v(7)' L V() ,
W(T)xv(7) = A A5 [sin(Kx x)e, - cos(Kr x)e,] ,
(V(7)) +(w(F)xv (7)) = - (1-K)A 2, [cos (KA x)e,-sin(KA x)e ] .

So the curvature of 7y-e is equal to |1-K|~|7\17\3|-Ilv(z'r)ll-2 '

hence constant, and |A;A4l = Nw(7)xv(z)l .

Next we obtain
u o= (V7)) H@ (@) xv(7)) ]+ () X[ (V7)) H(7)xv(7))] =

4 i.e. contained in a 2-dim. totally geodesic submanifold of M
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_ _ _wv 2325 . . ]
= .(1 K).AIA3 [51.n(l(7t]:x)e2 + cos(Khlx)e3] ’
det(v(7), (V(¥))’ +(w(¥)xv(7)),u) =
= (1-K)-7\1>«2-(I1-KI'IA1A3I)2 constant,
h . _ . . 2
where Alhz = <w(7),v(7)> and |1-K|-|A1A3I = Kv-e tv(y)ti= .
So § 3.vii yields the assertion on the torsion of 7-e.
(v) Let m be as above and let 7%:J -—> G be a process of
motion of the ball with mass distribution m without external

forces. Define we(%):J — T,M by we(%)* = (0,w(¥)) and let

toeJ. We can interpret R-we(%(to)) as rotation axis of y at
the moment to in time in body coordinates and state:

7 transports the vector we(v(to)) parallelly, i.e. the
vector field defined by t z(t)*we(w(to)) is a parallel

field (in the sense of Levi-Civita in M) along the orbit ¢-e
of the ball’s center.

This vector field 1is equal to the one defined by
t - 7(t)*we('}(t)) . We can interpret lR-r(t)*we(ir(t)) as a
rotation axis of ¥y at the moment t in time in space
coordinates.

Proof. w(¥) is constant according to (i1ii). Apply
§ 3.viii. -

8. Motion of a symmetric gyroscope without external forces

We use the notations introduced in § 1 and § 2 and specify
m as follows:

(i) Let the center of mass of m be the point e, let m be
invariant under the group of rotations around the axis
Span(e,el)nM (the image of a geodesic in M, c¢f. [2],(2.13))

and let GTI # 922 . Hence the tensor of inertia 6" is a
diagonal matrix with e =™ , but m (and em) possesses no

22 33
symmetry with respect to any other axis. We call the body a

(free movable) symmetric gyroscope.

(ii) For this m the results § 6.i,ii.b imply: A smooth
curve 7:J — G 1is a process of motion of the gyroscope with
mass distribution m without. external forces iff éL:J — g is
a solution of the following ODE system (cf. § 6.ii.a):

( (1)) =0,
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(0, (7))’ + K- [0y (70 (¥) =k (7)V,(7)] =0,
(W3 (1)) = K- [0 ()0, (7) =&V, () v, (7)] = 0,
(vi(1))* + €y [0()xv(¥)], =0,
(Vo (7)) + Cyr [w(7)xV(7)], = 0,
(V3(3)) + Cyr [0(7)xv(7)]5 =0,

where :
m __.m (xz-nxz)dm (xz—nxz)dm
e.,-6 0 1 0 2
11 °22 _ M _'M
Ki=—3—+ € *= z,_ 2. . C2°° z. 2
(2] (x.+kx.)dm (X~+kx_)dm
22 M 0 1 M 0 2

k<0 = (Cl,cze]l,m[ and C1$C2)
with K e R* and k=0 = C1=C2=1 .
k>0 3 (Cl,Cze]O,l[ and szcs)
In case k=0 cf. § 6.ii.e.
(iii) Let m,C,
curve 7:J — G the following two statements a) and b) are

equivalent (where V denotes the Levi-Civita covariant
derivative in M):

be as above and let k#0. Then for a smooth

a) 7 is a process of motion without external forces of the
gyroscope with mass distribution m, such that the symmetry
axis of the gyroscope, i.e. the vector ueTeN with u-)=e1 ,
is V-parallelly transported by 7, i.e. the vector field
along the orbit 7-e of the center of mass, defined by
t - 7(t),u, is V-parallel.

b) One of the following two conditions «) and B) is
fulfilled:

a) There exist numbers A.,A.€R, such that

1%2
w(¥) = (2,,0,0) and Vv(¥) = (1,,0,0) .
Hence ¥ is a left coset of an one-parameter subgroup of G;
which can be interpreted as a screw motion in the
direction of the gyroscope’s axis of symmetry.
B) There exist numbers Al,Az,A3eR, such that w(%) = (Al,o,o)
and v(7y) = (O,Azsin(C2A1x+A3),Azcos(clex+k3)) .
Here the center of mass e is either at rest (if 12=0) or
moves with constant speed (of value IA2|) along a plane
curve with constant curvature (of value

|C2-1|'IA1I-IA2|_1) and the gyroscope’s axis of symmetry
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stays orthogonal to the plane in which the center of mass

e moves.
Proof. According to § 3.viii we have to 1look for those
solutions of the ODE in (ii), which satisfy wz(i) =0 and
wy(7) =0 . Since k#0 by our assumption, the second and third
equation of the ODE imply V1(7)V3(1) =0 and

vl(i)vz(i) =0 . But § 6.ii.a shows, that &L is an integral
curve of a c” vector field on g. Hence %L and (cf. § 1.iii)

v(%) are c¥ maps and we can conclude:

vl('}) =0 or vz({;) = v3(i/) =0 .

15t case: vz(i) = v3(i) =0 .
Together with wz(ir) = 03(1}) =0 we get W) XV(T) = o .
This leads to the situation a) of b).

nd

2 case: vl(i) =0 .
The fourth equation of the ODE is satisfied because of
wz(%) = 03(%) = 0 and the last two equations yield

(Vo (1)) = Cou) (3) V4 (7) = (V4(7))" + Cpu  (7) -V, (¥) = O .
Together with the first equation of the ODE this gives the

situation B) of b). Concerning the geometry of y¥-e one finds
by computation using § 3.vi that

N(r-e) 1 = Hv(i)u = Ja,|l 1is constant, furthermore

2
(V7)) +(0 () xv(7)) =
= (C,=1) "A A, (0,008 (C,A X+A5), —in(C A x40,) ) € V(rp)*

hence (curvature of y-e) = ICz-ll-Illl-Ihzl 1 s constant,

finally [(V(7))’ +((¥)xV(7))]" + 0(7)x[(V(7))’ +(@(7)xV(¥))] =
= -(Cz-l)zhi~v('}) , hence Vava(y-e)' = _(Cz-l)z)‘i'("'e).
and the curve 7-e is plane.

With E E2,E3 from § 3.i we have [ty (t), u] =E and

177 1
: . . 1
Span((7-e) ,Va(w-e) ) s Span(Ez,E3) = E1 .
(iv) Let m,K be as above and let k20. Then for a smooth
curve 7:J — G the following two statements a) and b) are
equivalent:



Motion of a rigid body in a space of constant curvature 491

a) 7 is a process of motion without external forces of the
gyroscope with mass distribution m, such that the orbit
7-e of the center of mass e under y is a geodesic in M.

b) One of the following four conditions o), ..,8) is
fulfilled:

a) There exist numbers a A_€R, such that

1°%21%3
v(y) =0 and w(7) = (Al,kzcos(KA1x+h3),1251n(Kllx+x3)).
Here e is at rest, i.e. 7-e is constant.

B) The condition a) of (iii)b) is satisfied.

¥) There exists a vector aeR3 and numbers A, ,A,€R, such that

1772

a, =0 and w(y) = ra s, v(7) = rya .

Henc: 7 is a left coset of an one-parameter subgroup of G,
which can be interpreted as a screw motion in the
direction orthogonal to the gyroscope’s axis of symmetry.
d) Kk > 0 and there exist a vector aem3 and oce{+1,-1}, such
that a, * 0 and w(r) =c-Vk-a,, V(¥) =a .
Hence 7 is a left coset of an one-~parameter subgroup of G,
which can be interpreted as a screw motion in the
direction diagonal to the gyroscope’s axis of symmetry.
[Screw motions in such directions can occur as process of
motion without external forces only in case k>0 and if in
addition this special proportionality between the
translational and the angular velocity holds.]

Proof. According to § 3.vi we have to 1look for those

solutions of the ODE in (ii), which satisfy
(V7)) +(W(7)xv(7)) =0 . Because of our assumption k=0
(hence Cl,C2¢1) this is compatible with the last 3 equations

of the ODE only in case (v(7))’ =o and w(¥)xv(7¥) =0 . So
we have v(7) constant and w(7y) and v(y) linearly dependent.
The further discussion is left to the reader.

(v) Let m be as in (i) and suppose kz0. If 7:J —> G 1is a
process of motion of the gyroscope with mass distribution m
without external forces, then the orbit y-e of the center of
mass e under y is a totally geodesic immersion in M, i.e. its
geodesic curvature equals zero, only if the parametrization
7-e:J — M 1is already a constant speed geodesic in M (use
(ii) and § 3.ii,v).
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9. A review of some further results of (6]

The machinery for describing the motion of the rigid body
in the present paper was — for simplicity -~ developed for
special initial data. Many objects introduced here with
respect to eeM could have been introduced as well with respect
to an arbitrary reference point peM, e.q. the angular and
translational velocity with respect to p as TpN-valued
mappings using the ideas of § 1.iv,v. The just mentioned
mappings give rise to a vector space isomorphism
8 — TpNprN . Using this isomorphism and the Riemannian
metric g of M, the momentum mapping TG — g* induces the
maps Lg,Pg:TG — TpN , Where, via E. Noehter’s theorem and
the just mentioned identifications, Lg corresponds to the
operation of the isotropy subgroup of G for the point peM and
Pg corresponds, in case «=0, to the operation of the
translation subgroup (£G), but allows in case k#0 no
independent interpretation through Noether’s theorem. Given a
process of motion 7:J — G , we call Lgo% the  angular
momentum with respect to p of the body (with mass distribution
m) moving under ¥ and Pgoi the translational momentum with
respect to p of the body (with mass distribution m) moving
under ¥. In [6] the following integral formulas for these
momenta are proved: If teJ with -p ¢ v(t)-Ue(po) , Where ¢
and p, are chosen as in § 2.i and -p denotes the antipodal
point to p (which lies in M only for k>0), then

m - - . P .q)
(Tged) (1) = [ [rp(r (&)@ x1f y) g ((r-@ " (8) Jan(@)

and  (B0e9) (t) = [ ¥§ (vam() ,
p . M 4

sin, -1
wpere rp = ( % od(p,..))-expp :M\{-p} — TpN (interpret
sin
% and exp;1 analogously to § l.ii)s,
4 .= — i i
ct,q(x) = ewa(t)-q(x expw(t)'q(p)) is the shortest geode51p

5 The extension of rp, in case k>0, to M by requiring

rp(-p):=o is c” on the whole of M.
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¥ Y
- q = 0) t = 1) ,

from (-p#) 7v(t)-q Ct'q( ) o p Ct,q( )

o) : -
It : T M— T M denotes the Levi-Civita arallel

7(t) -3 Tr(t) q p P
transport along c: q|[0,1] and Ye q denotes the Jacobi field

7 !

T ey 4 -
along Ct,q with Yt,q(o) = (7-q) (t) and (VaYt,q)(O) o .

It is further proved, that the derivatives (Lgoi)',

(Pgo&)’ possess similar integral formulas [only replace (7-q)°

by Va(w-q)']. If we recall § 6.1ii.c and use
m _ P B m B o pM, iy

9é(6i) =% o (Lge?) and T (8545) = %4°(Pg 7) for
ie{1,2,3}, where gl,...,gs are chosen as in § 6.ii.c, then the

last result enables us to formulate the eguations of motion
for the rigid body with external forces, 1if these external
forces are given as a law of acceleration for the points of
the body.

Now consider that the body is fixed in one point
pe(UC(po)s)N. Then the tangential space TpN at M in p 1is a
distinguished Euclidean space for this problem and in [6] a
Euclidean mechanical model in TpN is given, which describes
modulo the exponential map expp exactly the corresponding (non
Euclidean) motion in M. This model consists of the induced
mass distribution rpm in TpN, defined by

sin
(tgm) (B) := | (% @(p,@)dn(q) ©

expp(BnUn (0))
K

for all Borel subsets BSTpN, and of the induced external
forces. If the external forces in M are given as a law of
acceleration for the points of the body, then, the induced law

of acceleration in TpN is obtained by “conjugation” with expp.

6 If we denote by V resp. Vp the volume measure of (M,g) resp.

of (Tpm,gp), then V induces via the map (exppIUn (o))"1 a

measure on TpM, whose density with respect to Vp is equal to

sinK 5
the function (( < ) °"--”)'XU (0):TpN—+[0,w[ .
n

K
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Other concepts for describing the external forces require

additional modifications in defining the appropriate “induced

forces” in TpM.

(1]

(2]

(3]

(4]

(5]

[6]
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