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0. Introduction 

(i) On the history of the problem: 
Between 1848 and 1851 Janos BOLYAI made already the 

proposal (see [Bo],p.156-157), to study the planetary motion 
around the sun in the noneuclidean hyperbolic 3-space with a 
"radial" field of attraction by the sun, which — at a distance 
r from the sun — is reciprocally proportional to the area . of 
the 2-dim. distance sphere of radius r in that geometry. [With 
this proposal he intended to find results which could — 
possibly — allow to decide, whether the Euclidean resp. the 
hyperbolic geometry provides the "better" model for 
describing, what physicists can measure in reality.] — About 
the same time (-1851/52?) P . G . DIRICHLET mentioned (orally) 
to R. LIPSCHITZ (see [Lp2],p.ll7, footnote), that he had 
investigated the theory of gravitational attraction according 
to NEWTON'S law in the hyperbolic 3-space. — [After having 
treated the noneuclidean geometry of LOBATSCHEWSKI and BOLYAI 

in the spirit of Riemannian geometry (in particular see [Be]), 
E. BELTRAMI proved 1869 (see [St],p.472), that the constant 
speed geodesies are the only path's of point-like particles 
moving in a Riemannian manifold M in the atfsence of external 
forces (i.e. the corresponding competent Lagrangian is just 
the kinetic energy), thereby implicitly suggesting, that the 
LAGRANGE equations for the path c:I —» M of a particle in 
the Riemannian manifold M with an acceleration induced by some 



376 P. Dombrowski, J. Zitterbarth 

"force" F should be like 7gc = F(c) with a vector field 
F : T M — > T M along TT:TM — > M as "force".] — E . SCHERING 

described 1870 (see [Sch.̂ ] ,p. 318) the analytic expression 
-kcoth(r) (kelR+) for NEWTON'S gravitational potential of a 
central star in hyperbolic 3-space, r being the function which 
measures the distance from that star, and R. LIPSCHITZ (see 
[Lp^^p.SS and [Lp2],p.ll7, footnote) considered 1870 all 
functions V(r) depending only on the distance r from a fixed 
point in an n-dim. space form, which are harmonic (i.e. 
AV(r)=0), thereby determining implicitly NEWTON'S 

gravitational potential for the n-dim. space forms, and these 
were explicitly listed 1873 in an article by E . SCHERING (see 
[Sch2],p.l53, resp. [Ki2],p.27). 

W . KILLING published in 1885 a fundamental article with a 
great variety of (impressive!) results on the dynamics in 
1-connected n-dim. space forms of constant curvature K, .in 3 
particular about the planetary motion in IM̂  (see [Ki2],p.7-9), 
verifying {resp. detecting "the correct" version of) KEPLER'S 

laws for K*0. — H. LIEBKANN described 1905 the latter results 
on the planetary motion in more detail, especially he 
discussed the geometric nature of the "conics", which occur as 
the ("plane") KEPLER'S orbits of planets in the noneuclidean 

2 space forms (/c*0) (see [Li],p. 219-236 and p.182-196). 
(ii) Plan of this article: 
We want to give in this article a rather complete account 

of the planetary motion in the simply connected space forms IM̂  
of constant curvature K (in dimension n=3) and this in a 
uniform treatment vith respect to the curvature constant JC. We 
try to formulate the corresponding results in explicit 
dependence on K (eIR) in order to gain perfect control about 
the changes of the "laws of nature" when K changes, in 
particular to see how stably these laws behave when perturbing 
the value K=0, i.e. when passing from Euclidean to 
noneuclidean geometry. 

Of course, most of the important results are stated resp. 
mentioned already somewhere in the literature (in particular 
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see [Ki^] and [Li], loc.cit.). But in many cases these 
statements are (in the available literature) rather 
incomplete, sometimes not presented in an optimal form, or 
their proofs are not quite sufficient resp. rather "out of 
date", since several appropriate tools (e.g. technics of 
covariant derivation or BUSEMANN functions in the hyperbolic 
spaces) were not available, when these articles were written. 
So we thought it to be worthwile to make these (wonderful 
classical) results and proofs of them accessible in a rather 
rigid and complete version, including several improvements 
(e.g. concerning the completeness of the list of all possible 

2 "KEPLER orbits" in M^) . 
(iii) Organization of the article: 
§ 1 summarizes the definitions and basic properties of 

(what we call) the "K-geometric" functions sin
K' cos ,... 

[which essentially are the trigonometric ones for tc>0 resp. 
the hyperbolic ones for K<0] in a uniform way w.r.t. icelR 
(avoiding the complex domain) and pointing out their real 
analytic dependence on K. 

§ 2 describes some basic geometry of the space forms M" 
represented as (what we call) the WEIERSTRASS-models (i.e. as 
hypersurfaces in IRn+1, where R n + 1 is endowed with a Riemannian 
metric if K^O and with a Lorentzian metric if K<0) . KILLING 

used these models in his publications successfully, but he 
attributed the invention of these models to his teacher 
WEIERSTRASS in 1872 (see [Ki1],p.74, footnote). [These models, 
well-known for ice { 0, +1,-1} , seem to be not so familiar for 
ic*0,±l, at least they differ from the corresponding models one 
usually finds today.] The WEIERSTRASS models for Mn prove 
however to be optimally apt for getting the LIE group G n of 
all orientation preserving isometries of IM (resp. its LIE 

n ^ algebra 9K), considered as a subgroup of GL+(n+l,IR) (resp. of 
gl(n+l,IR)), analytically dependent on K, which was essential 
for the subsequent article (see [Zi2~\) in this journal, 

3 studying motions of rigid bodies in IM . 
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§ 3 contains, aside from a rather subtle version of the 

"inverse of the lav of energy" (see § 3.ii,iv), a list 

(without proofs) of "a priori information" about maximal 

solutions of the differential equation describing a mechanical 

process of one degree of freedom. These results are 

essentially known, but a direct reference (for all needed 

information) seemed to be not available in the literature. 

§ 4 gives an analytic description (and a metric 
2 . 

classification) of conics m IM̂  which is important for 

verifying KEPLER'S first law, later. 

§ 5 summarizes the basic (differential) "equations of 

motion" for a path c:I —> IM̂  moving in a "central force 

field", it is shown that such motions are "plane" and satisfy 

KEPLER'S second lav, moreover the equations are specialized, 

when this "central field" is induced by NEWTON'S gravitational 

potential (of a central "star"). 

§ 6 gives, finally, a complete list of all possible 3 
motions of point-like particles in IMr with an acceleration 

induced by NEWTON'S' gravitational potential. 

The results and proofs of this article are in part taken 

from informal lecture notes on differential geometry and 

mechanics by the first resp. from the doctoral thesis of the 

second author. 

1. The K-geometric functions sin and cos for iceIR 2 K K : — 

(i) The geometry (resp. the mechanics) in Riemannian 

manifolds of constant sectional' curvature K (eR) is governed 

by the two K.-geometric functions on IR defined by 

(1.1) 

sin (x) := I 
m Lz<Lv 2V+1 

vt0(2v+l)l 

cos«(x) :=
 J 0 T W ' x 2 V 

— — • sinh (v^/cx for k<0 

x for K = 0 

— •sin(v/Kx) for K>0 
Vk 

coshfv^cx) for <c<0 

1 for k=0 

cos(v^icx) for k>0 
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hence sin (x) and cos (x) are real analytic functions of 
2 

(K,X)€lR . 

sin^ and cos r are as well characterized as solutions on IR 
of the first order ODE system 

(1.1' ) sin^ = cosR and cos^ = -KS^n)C vith 

sinK(0) = 0 and cosk(0) = 1 , 

resp. as a (maximally defined) fundamental system of solutions 
of the second order ODE system 

(1.1 "> { Y " I si 
+ K - y = 0 with 

inR(0) = cos^iO) = 0 and sin^(O) - cosR(0) = 1 . 

(ii) Moreover we shall use the functions 

(-/c)-1/2tanh(v^(cx) for «0 

(1.2) 

with 

(1.2' ) 

and 

(1.3) « 

hence 

(1.3") 

tanR(x) 

cot (x) 
K x ' 

sinK(x) 
cosK(x) 

cosK(x) 
sinR(x) 

tan' = cos 
K K 

-2 

K-1/2tan(vic x) 

v ^ i c c o t h (I/-KX) 
1 
X 
ì/iccot (VÌCX) 

cot' = - sin 2 
K K 

x 
(x) := J sinK(t)dt = 2 sin2(J) = 

X 

2 for k=0 

for k = 0 

for K>0 

for « 0 

for K=0 

for K>0 

-• (l-cosK(x)) for K*0 

^'(X)+K-^(X) = 1 with 1/IK(0) = ip'K(0) = 0 . 

(iii) These functions fulfill the following relations: 

(1.4) sin K(-x) = -sin K(x) , c o s k ( - x ) = c o s r ( x ) , 

(1 .5) I 
sinR(x+y) = sinK(x)cosK(y) + cosk(x)sinK(y) , 
cosK(x+y) = cosK(x)cosK(y) - k•sinK(x)sinK(y) , 
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(1.6) 

(1.7) 

(1 

cos^(x) + K-Sin^(x) = 1 , cot^(x) = sin~2(x) - k , 

sinK(2x) = 2•sinR(x)COSR(x) = 
2-tan (x) 

1 + (c-tanK(x) 
2 2 2 cos)c(2x) = cosK(x) - K • SinK (x) = 2-COSK(X) - l = 

= 1 - 2K-sinK(x) = 
1 - K-tan~(x) 

1 + K-tanR(x) 

.8) I 
tanK(x+y) {l - k • tan^, (x) tanK (y) ) = tanjx) + tanjy), 
cotK(x+y)•(cotK(x) + cotK(y)) = cotK(x)•cotK(y) - K . 

(iv) If we define 

(1.9) 
nK : = { n 

oo for KSO 
/VK for K>0 ' 

then 

and 

(1.10) 

sinR(t) > 0 for all te]0,7iK[ 

cosK(t) > 0 for all te]~f J-T^C > 

. 2 2 For all a,ßelR with a + K-ß = 1 and (a^O if K*0) 

there exists exactly one t E ]-7Tk,TT ] 
cosK(t) = a and sinR(t) = |3 . 

such that 

2. The WEIERSTRASS model for "the" n-dim. 1-connected 
complete Riemannian C^-manifold of constant curvature K€lR 

(i) Notations for R n + 1. The bilinear forms <..,..> and 
" "n+l_ (.. I .. ) on IR 

We look at IR n+1 (with its standard coordinate functions 
x , ...,x ) as IRxlRn, and correspondingly the elements 

(2.0) 

n n + 1 
aeIR will be denoted by a = (aQ,a) with aQelR and 
aelRn, let <..,..> denote the canonical Euclidean inner 
product of IRnf o the origin, e := e n := (1,0,...,0) , 
el'"'*'en canonical basis of IR 

0 
n+1 

For every iceIR we define two symmetric bilinear 'forms 
<..,..>K and (..|..)K on IRn+1: For all a,belRn+1 (see (2.0)) 
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(2.1) 
<a,b>K := a Qb 0 + K-<a,b> = a Qb 0 + K- £ a-fcK 

i=l 

(alb), 
a Qb 0 + < ,b> 

£'ao 0 

, if K=0 

+ <a,b> , if K*0 , 

consequently 

(2.2) k*0 

Let e^ denote the Cu tensor field of type (0,2) 
such that for all pelRn+1 and v,weTpIRn+1 (see (2.1)) 

eR(v,v) :.= ( v ^ l v ^ , 
(2.3) where v* := (dpxQ(v),...,dpxn(v)) 

resp. v = (t i—» p + t-v~*) ' (0) . 

on „n+1 

Therefore eR is a Riemannian resp. Lorentzian C w metric on 
IRn+1 if K£0 resp. « 0 , and it is invariant under translations 
of IRn+1, its LE V I -C I V I T A covariant derivative 7° therefore 
being the canonical torsion- and curvature-free covariant 
derivative of the abelian LIE (vector-) group 1R 
by 

n+1 We denote 

(2.4) 

En+:1" := (IRn+1,e ) this Riemannian resp. Lorentzian C w 

manifold and V its L E V I - C I V I T A covariant derivative 
with V°Y := (Y~Vx , i.e. 

I 1 
all X, YeX (IR ) . 

= X. (Y"*) for 

(ii) The definition of IM̂  as a certain subman^old of IRn+1. 
(Im")k6|R is a C w family of n-dim. Riemannian manifolds. 
The inner metric d R and the exponential jnag expK_of IM̂  

For neIN, n*2, and KCIR the 

(2.5) 

_CJ n-dim. Riemannian C manifold 
reg 
,n+l 

IM' 
the n-dim. regular C w submanifold of IRn+1 (see (2.1)) 

is defined to have 
(2. ] 
n+1 l: {peIR" ' ~ | <p,p>K=l and (KSO pQ>0) } <—> IR 

as underlying Cu manifold and g := i*eK as its 
Riemannian metric (see (2.3)). Let V denote its L E V I -

C I V I T A covariant derivative. 
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Remarks. 

a) W n, as a C^-manifold, is a connected component of a 

quadric hypersurface of IR , namely for 

«0: the "upper" sheet (xQ (IM̂ ) SIR+!) of the two sheeted 

hyperboloid of revolution (around the x n-axis) in IRn+1 

- 1 / 2 

with center o and principal axes e, (—K) ' -e^,..., 

( - K ) " 1 / 2 e n (see (2.0)), 
/c=0: the affine hyperplane e+({0}xlRn) = x " 1 ^ ! } ) of R n + 1 , 

K>0: the ellipsoid of revolution (around the x n-axis) in IRn+1 

- 1 / 2 with center o and principal axes e, k ' -e ,..., 
- 1 / 2 k ' • e , n' 

hence (n^2!): 

(2.6) e € w" , w" is 1 -connected and (w" compact K>0) . 

b) For KiO the positive definiteness of g follows from the 

same property of e^, for K<0 it follows from the well known 

fact, that in Lorentzian vector spaces the orthogonal 

complement of a time-like vector is a space-like vector 

subspace. 

c) The Riemannian manifold IM", as a complete one of 

constant curvature K (see (2.9),(2.6)), seems to have been 

first introduced (for n=3 and K * 0 ) by K . WEIERSTRASS during 

Seminar talks he gave in 1872 (according to [Ki1],p.74, 

footnote) and IM̂  was subsequently used successfully by his 

doctorand W . KILLING (see e.g. [Ki ],p.4). 

d) We have inserted in WEIERSTRASS' definition the W Q for 

K=0, to get a "Cw family" (IM?)„ of 1-connected (see a)), 
K K € IK 

complete Riemannian manifolds of constant curvature k (see 

(2.6),(2.9)). This family seems to be optimally apt for 

studying the dependence on the curvature constant k of 

geometric theorems resp. of "physical laws of nature" in 

spaces of constant curvature K: The main reason for this being 

at first: 

CM^J^-ro is a C<J family of n-dim. Riemannian manifolds. 

K K €IK 

[This concept means: If J is a k-dim. Cu manifold, we call 

(M,), - a Cu family of n-dim. Riemannian manifolds, if there I L € J 
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is a (n+k)-dim. Cw manifold N, a n-dim. Cu foliation M of N, a 
Riemannian Cu metric g for the vector subbundle TM of TN over 
N (not only over M !), thus turning each leaf M(q) of M 
through a point qeN into a Riemannian Cu manifold, and there 
exists a Cw map f:J —> N such that for all ieJ the 
Riemannian manifold Ml is Cu isometric to the leaf M(f(t)). In 
our special case of the family (IM ) _ we have J := IR , we K fC€IK 
can take for N the (n+l)-dim. regular algebraic (hence Cw) 
hypersurface N := ip ({1}) of the open submanifold N of IRn+2 
with if := ( (IR+xlRn) xIR) u (Rn+1xR+) and 
<P := (Yq + (Yi+.-.+yJ)-yn+iJIN ' «here yQl . . •,Yn+1:Kn+2 R 

are the canonical coordinate functions, the foliation M of N 
is given by the hyperplane sections Y n + 1

 = const of N, the 
leaf of M through (e,ic)eN being Im£x{k} . A Riemannian C^ 
metric g for the vector subbundle TM of TN over N is given by: 
For all qeN(£IRn+2) and all v,weT M we have (where T M is n+2 q 
identified with a vector subspace of T IR ) : 

1 n q 
(2.7 ) g(v,w) := v w + £ v.w. for q_ ,, eIR* 

n+1 i=l 
qn+l n n n (2.72) g(v,w) := Z q ^ ) ^ Z q ^ ) + £ v ^ 
g0 i = 1 i = 1 i = 1 for q0€R*, 

where q^ := y^(q) and v^ := dy^v) for i=0,...,n+l. 
Observe, that for all qeN=#> 1({1>) we have (by definition of 
ip) at least q0"0 or «J^-j^O, therefore g is defined by (2.71) 
and (2.72) on all of N. Moreover, these two CU definitions 
(2.7 ) and (2.7 ) of g on open subsets of N coincide on 

n+2 
N n {qeIR ' qo' qn+lelR*^ : Since for veT^M we have 
dq<P(v) = dgyn+1(v) = 0 {the leaf of M through qeN is the 
connected component of <p-1 ({1>) n ({yn+1 (q) }) !), it 
follows: i n <3 , i n »/„I ^ „ . v „ .. _ « n+1 2 " V ( V ) = q0V0 + qn+l .^l

qiVi = 0 , i.e. vQ = - ^q.v.. 
t i=l ~ ~ " q0 i=l 

d y (v)=0 q-'n+l̂  ' 
Substituting this value of vQ and the analogous value of wQ in 
(2.7^) gives (2.72). Finally f:IR —> N can be chosen as 
(c i-» (1,0, . . ., 0,/c) , the isometry of with the leaf 
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M ( F (IC) ) = I M k x { k } i s g i v e n b y p (p,k) .] 

its Euler vector, field b y I f w e i n t r o d u c e n o w o n I R n + 1 

( s e e ( 2 . 3 ) ) 

( 2 . 8 1 ) E e X ( I R n + 1 ) ivith E ^ I d , then V ° E = X for X e X ( I R n + 1 ) 

i s t h e i n c l u s i o n m a p , t h e n ( s e e ( 2 . 4 ) ) a n d i f i : w " < — > I R n + 1 

( s e e ( 2 . 2 ) , . . . , ( 2 . 5 ) ) : 

( 2 . 8 2 )
 < i ' i >

K = 1 ' (E«i)"* = i , ( K * 0 * (c e | c ( E » i , E o i ) = l ) , 

a n d 

( 2 . 8 3 ) i * 1 ^ = { v e T I R n + 1 1 < P / V _ > > = 0} f o r all p e w " 
" P K P N K 

i n p a r t i c u l a r ( s e e ( 2 . 2 ) , ( 2 . 3 ) , ( 2 . 8 2 ) , ( 2 . 8 3 ) ) : 

( 2 . 8 4 ) (c e ( E » i , i X) = 0 for all X e X ( M ' ) . 

T h e r e f o r e ( s e e ( 2 . 8 2 ) , ( 2 . 8 ) , ( 2 . 8 4 ) ) w e o b t a i n a unit normal 

field along irINn b y s e t t i n g 

( 2 . 8 5 ) 

' ( a / a x Q ) <>i f o r k = o 

- / r i T T ( E o i ) f o r k*0 

t 
i. e. 

for all pelM^ one has ^(P)"* = 
e if K=0 

-v\Kr-p if K*O 

m o r e p r e c i s e l y ( s e e (2.1) , ( 2 . 8 2 ) , ( 2 . 8 4 ) , ( 2 . 8 ^ ) 

( 2 . 8 6 ) 
e K ( Ç K , Ç K ) = sgn/c := { + J 

for k*0 
for «0 ' 

= 0 a n d v x Ç k = HcTi^X for XeX(IM ), 
* K 

therefore IM̂  is an umbilical hyper surface in of mean 

curvature V\K I' ( w . r . t . t h e n o r m a l f i e l d £ , i n p a r t i c u l a r IMn 
n + 

i s t o t a l l y g e o d e s i c i n E Q ). 

M o r e o v e r w e h a v e t h e f o l l o w i n g r e l a t i o n b e t w e e n t h e 

Levi-Civita c o v a r i a n t d e r i v a t i v e 7 o f IMN a n d t h e o n e V ° o f 

( s e e ( 2 . 4 ) ) , d e p e n d i n g i n a r e a l a n a l y t i c w a y o n /ceR: 

( 2 . 9 ) i * ( ? x Y ) = ~ K - g ( X , Y ) • ( E » i ) f o r all X , Y e X ( w J ) , 

i n p a r t i c u l a r ( s e e (2. 5 ) , ( 2 . 8 4 ) , ( 2 . 9 ) ) 

( 2 . 1 0 ) g ( V x Y , Z ) = e
K (

7 x i * Y ' i * Z ) f o r a 1 1 X , Y , Z e X ( I M " ) , 

a n d w e g e t f r o m (2.9) f o r e v e r y C 



Planetary motion in a space of constant curvature 385 

(2.91) path c:I IM" : ( i ^ c ) " * « (i«c)" - ie-g(c,c) • (i«c) , 

where I is an open interval of R, a the canonical vector field 

d/dx on IR and where we define for any C00 path r:I —> V in a 

real vector space V the C00 path 7' :I —> V in the elementary 

way by 

(2.11) (f(t))~* := r' (t) := lim(i-(r(t+h)-r(t)) for all tel 
h->0 n 

and then y" := (r')' etc. 

Finally one gets from (2.10),(2.9) and (2.84) immediately 

VX,Y,Z,W€X(»£) 9 < W ' w ) = e
K <

7 £ v ? i * z ' i * w > + *-g(x,w)g(Y,z). 

Since the curvature tensor of 7° vanishes, it follows from the 

last statement and (2.10) for the curvature tensor R of 

(2 12) •[ M k o f constant curvature k, 

( and moreover w" is complete. 

The completeness of w" follows by the fact, that (see 

(2.9^)) a C°° path c:I —> is a maximally defined unit 

speed geodesic iff ioc:I —> R n + 1 is a maximal solution of 

(i°c)" + K'(i°c) = 0 , which implies by (1.1"): I=R and (see 

(2.11)) 

(2.13^) c(t) = cos K(t)c(0) + sin|c(t)c(0)"
> for all teR, 

i.e. the exponential map exp R of Im" satisfies 

i " for all pew", ueTplM" and teR: 
( 2 ' 1 3 ) "1 vex P | c(tu) = cos K(t)p + sin R(t) (i^u)"* 

from where one checks easily 

(2.13 ) exp has at each point of Im" the injectiv. radius n . X K IC < 

From (2.13),(2.13 1) one derives immediately (see 

(1.1),(1.3),(2.1)): 

{ The inner metric d R of satisfies for all p, qelM^: 
( 2 , 1 4 ) 1 cos (d (p,q))=<p,q> resp. 2<A (d^(p,q))=(q-p|q-p) . 

From (1.9),(2.14) follows 
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(2.14 1) diam(IM^) =nK, and for all p,qew": d K(p,q)=7i K q=-p-

Therefore, a c c o r d i n g to (2.13 ) ,(2.14 ) , w e h a v e 

(2.15) 
for every p e w " is e x p R | (veTpIM£ | llvllg<7rK} 

a C w diffeomorphism onto w"\{-p} 

and c o n s e q u e n t l y there exists (see (2.15)) a w e l l - d e f i n e d C u 

u n i t vector field U along the "collapsing" m a p M n ( p ) — > {p} , 
P ^ 

i.e. a 

C u m a p U p : w " ( p ) : = w " \ { p , - p } —>• T p w " characterized by 

e x p K ( d K ( p , q ) u p ( q ) ) = q for all q€lM^(p) :=w"\{p,-p}, 
(2.16) 

i.e. Up(<l) = ¿(0) # w h e r e c : [ 0 , d K ( p , q ) ] — > is t h e 

u n i q u e u n i t speed g e o d e s i c w i t h c(0) = p a n d 

c ( d K ( p , q ) ) = q . 

M o r e o v e r t h i s last g e o d e s i c c:IR — » is e x p l i c i t l y 

g i v e n by (see (2.14^)): 

0 J = ^ T T T T - i ^ ^ - P + s i V t ) - q > f o r t € R 

t ̂  . xe»_ j •< k 
[ with I := d K ( p , q ) . 

[For p r o v i n g < c , c > K = 1 use (1.5) and cos K(£) = < p , q > K 

(see (2.14)) and t h e n verify c" + k - c = o , see t h e r e m a r k 

b e f o r e (2.13 Q).] 

From (2.16),(1.1) follows: 

The C u m a p d K ( p , . . ) - U resp. (sin(c«>d)c (p, . . ) ) - U p 

from {p,-p} to T IM has a Cu extension onto 
n P ^ ^ 

W K\{-p} resp. onto all of IMk with value o at p, 

the first e x t e n s i o n being the inverse of the C^ d i f f e o m o r p h i s m 

(2.15), the second e x t e n s i o n — > TpW!c c h a r a c t e r i z e d by: 

i(p) + (i.f)~*:IM" — > is the c o m p o s i t i o n of t h e i n c l u s i o n 

map i : w " — » e " w i t h t h e (..I..)^-orthogonal p r o j e c t i o n of 

i(M^) onto i(p) + (i T M^)"* , and e.g. in case p = e t h i s 
K p K 

a m o u n t s to (i*f(q)) = (0,q) for q=(q 0,q)elM" (see (2.0)). 

Finally it follows from (2.1)., (2.3) , (2.5) , (2.13) , (2.13 ) , 

t h a t for ke{2,...,n} the canonical "inclusion" m a p 

(2.16 2) 
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IR k + 1 IR n + 1 ( ( a n , . . . , a j (-» (a n,.. . , a v , 0 , . . . ,0) ) i n d u c e s 

it 1-7 \ / canonical" isometric, distance preserving, 
0 1 o) Jc n 

[ totally geodesic C immersion c—> M^ , 

a n d m o r e o v e r , if k e { l , . . . , n } a n d V k : = { V | V is a (k-t-l)-dim. 

v e c t o r s u b s p a c e of IR n + 1 w i t h VnlM n*0}, t h e n (2.13) a n d t h e 

t r a n s v e r s a l i t y of E t o w " (see (2.8 2), (2.8 3)) imply: 

V i—> V n w " is a bijection of V^ onto the set of 

(2.17) 
all complete, connected k-dim. totally geodesic 

submanifolds A of w", each such A being isometric to 

IM*, vith a distance preserving inclusion A c — > IM 

(iii) T h e o r i e n t a t i o n of IMn. 
- - K 

Im" a d m i t s a c a n o n i c a l o r i e n t a t i o n i n d u c e d by t h e o n e of IR n + 1: 

For every pelM^ a basis ( v 1 # . . . , v n ) o f T p W " 
(2.18) positively oriented iff (see (2.3),(2.5)) the basis 

(p, (i^v^)"*,.., ( i # v )"*) of IRn is pos. oriented. 

(iv) T h e LIE g r o u p G" of all o r i e n t a t i o n p r e s e r v i n g 

i s o m e t r i e s of a n d t h e LIE a l g e b r a g " of t h i s g r o u p . 

L e t GL(n+l,IR)xlR n + 1 — [ R n + 1 ((«,p) h-»W-p) d e n o t e t h e 

c a n o n i c a l g r o u p a c t i o n of GL(n+l,IR) o n IR n + 1 f r o m t h e left. 

T h e n for e v e r y 

ffleGL(n+1,IR) vith A-IM^ew", i.e. (see (2.5) , (2.6)) : 

(2.19) < A P , A P > K = < P , P > K for p e w " and, if /csO: x Q ( A - p ) > 0 , 

t h e r e is a 

(2.20) unique Cu diffeomorph. f A : w " —> w " vith i ° f A = A-i, 

a n d b e c a u s e of 

(2.21) = A- (v"*) for veTIR n + 1 

it f o l l o w s from ( 2 . 1 8 ) , ( 2 . 2 0 ) , ( 2 . 2 1 ) : 

A (2.22) f is orientation preserving *=> WeGL +(n+l,IR) 

<=> d e t ( A ) > 0 . 
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Moreover (2.19),(2.2),(2.3),(2.5) imply 

(2.23) for (C*0: fW:IMn -v ' K. 

1 

is a C W isometry, 

(2.24) for ic=0: 
o* 

with aeIR and AeGL (n, IR) 

(where o,aeR are considered as (nxl)-matrices and B* is the 
transposed of a matrix B) . 

If we introduce therefore 

I 
(2.25) 

n,„,n. G^ := {0\eGL+(n+l,IR) I fl-M^SIM^) for k*0, 

{AsGL+(n+l,IR) Ifl-IM £IM' and AeSO(n)} , 

then one proves (in a standard way) for all iceIR: 

(2 26) a connected -dim. L I E subgroup 
GL+(n+l,IR), which is compact iff k>0 , 

of 

and (see (2.20)) 

(2.27) 

Isom (M") (ft »-> f A) is a Cu isomorphism onto 

the L I E group of all orientation preserving 

isometries of IM^, vhich acts transitively on w " (even 
transitively on the bundle of positive orthonormal 

n-frames of IMn) . Moreover Isom,, (IMn) is the connected k.' 0 K' 
component of Id in Isom(IMK) . 

In the following we identify Isom0(IM^) 
isomorphism (2.27), see also (2.20). 

with G n under the 

The LIE algebra g" of g" (=Isom Q ( W " )) will be as usual 
identified with a certain vector subspace of the vector space 
511 (n+1, IR) of all real (n+1)x(n+1)-matrices, namely with the 
image under the composition of the canonical maps 

T„G n 
D K TjiWi (n+l,IR) Hit (n+1, IR) 

where D is the unit (n+1)x(n+1)-matrix, j :G J M 511 (n+1,'IR) 
the inclusion map, (..)"* being defined for the vector space 
DU (n+1, IR) analogously to (2.3). Under this identification we 
get: 
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(2.28) 

The Lie algebra g" of ( s i s o m 0 , see (2.27)) is 

the Lie subalgebra of gi(n+l,IR) (:= Lie algebra of 
real (n+1) x (n+1)-matrices with the commutator as 
bracket operation) formed by all matrices 

(v;V), 
~KV* 

V with veIR and VeW s s (n,IR) , 

with the (commutator) bracket 

(2.280) t(v;V)K,(w;W)K] = (Vw-Wv;(VW-WV)-k(vw*-wv*))K 

where the elements of IR are considered as (nxl)-matrices and 
A* is the transposed of a matrix A and 3Jlss(n,IR) denotes the 

dim. vector space of all real skew-symmetric (nxn)-

matrices. 
Using (2.28Q) one can compute the Killing form B^ of g" 

(2.281) = -(n-1)(2k•<v, w> + <V,W>) = 
r*. r* »v 

(2.282) = (n-1)(trace of the matrix (v;V)R•(w;W)R) , 

where <V,W> := trace(V*-W) is the canonical Euclidean inner 
product on JJl(n,IR). Therefore, if n^2, B^ is negative definite 

for k>0, degenerate for k=0 and nondegenerate and indefinite 
for « 0 . 

Remark. The description (2.28) , (2.28Q) of the Lie algebras 
8k of the isometry groups of IMr (for all /ceR) as a certain C 
family of Lie subalgebras of g[(n+l,IR) [which should be 
understood in an analogous sense as in § 2.ii.d], depending 
analytically on (ceIR, is the main feature of the Weierstrass 
models IM̂  (icelR, see (2.5)), when studying the mechanics of 
rigid bodies in spaces of constant curvature with the aim of 
controlling how the results do depend on k, when k varies in 
the real numbers. 

Moreover the isotropy group of the point e in IsomQ(IM") 
(see (2.0),(2.6)) corresponds under the isomorphism (2.27) to 
the 
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fl 
(2.29) subgroup G

K l e
 : = {(lxA):= 

o* 
IAeSO(n)} of G^ 

and we call the corresponding LIE subalgebra of 
(2.28), (2.29)) : 

(see 

(2.290) { »Î 
[ the "isotr 

V)KIVeimss(n,IR) } 
sotropy subalgebra" of Q^. 

On the other hand we call the following vector subspace of 
only for ic=0, see 9K (which is a LIE subalgebra of 

(2.28),(2.28q)) 
(2.291) t":={ (v;0)R|velRn} the "translation subspace" of a", 

thereby giving rise to the 

(2.292) vectorspace splitting g" = ô" 
(v;V)K h-» ((o;V)K, (v;0)K) , 

n which is orthogonal with respect to the KILLING form of G 

(see (2.281)). 

Then the exponential function for matrices (defined by the 
classical power series) 

(2.30) Exp := Exp(n+1* :DIl(n+l,IR) —» GL+(n+l,R) 
maps into G n and 6 n onto Gn| 

K K K e 
more precisely (see (2.29),(2.29Q)) : for all VeJJlss(n,IR) : 

(2.300) Exp((o;V) ) = (lxA) with A := Exp ( n ) (V) e SO(n) . 

denote the canonical basis vectors Finally, if a^,...^ 
of IRn, then one checks easily (see(2.28)) for all t€lR: 

(2.31) 

and similar for a. 

cos (t) -/csin (t) 0 

Exp((tai;0)K) = 
sin (t) 

K K ' 

0 

0 

cosK(t) 
0 

0 

e G. 

„n-l More generally, if u e s" x = {a€lRn | <a, a>=l}, then (see 
(2.0) , (2.8_)) there is a unique ueT1IMn with (i.u)"* = (0,u) e 

n+1 ® k * e 1R and the orbit of the point eeIMK under the 1-parameter 
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subgroup (Exp((tu;0) R)) t e R in g" is (see (2.13),(2.30)) 

(2.32) 

the geodesic cu:IR —» im" of im" with c u(0) = e and 

c u(0) = u , i.e. for all teR: 

Exp((tu;0)K) e = c u(t) = cos K(t)e+sin K(t)•(0,u) . 

(v) The distance function r and the radial u n i t v e c t o r 

field R in m" with respect to the point _eelMj\ 

The (n-l)-dim. volume of geodesic spheres in w". 

If we denote (see (2.0),(2.6)) 

(2.330) e := (1,0,...,0) e and w"(e) :=IM^\{e,-e} , 

then the function r, which measures 1-be distance of the points 

of from e satisfies (see (2.14),(2.14),(1.9)) 

r := d (e,..) —» IR is C°, r|w"(e) is C u and >0, 

(2.33) and for p=(p Q,p) ew": p 0=cos K(r(p)), llpll=sin (r(p)) 

and if pewj(e): (0,p) = sin K (r (p)) • i ^ U J p p . 

Then we define on w"(e) the e-radial unit vector field R by 

(2.340) R(p) := (expK(x-Ue(p))) ' (r(p)) for pelM^ 

(see (2.15), (2.16)), R(p) being the velocity vector at time 

r(p) of the unique unit speed geodesic c:IR — • w " joining 

e = c(0) and p = c(r(p)) , thus explaining the terminology 

"e-radial" for the vector field R. Then 

(2 34) | 9( R» R) = 1 > 7
r
r = 0 a n d moreover R = grad(r) , 

[ hence R is C w, 

as one verifies easily, and (2.34Q),(2.13) imply: 

(2.341) (i*R)~* = - K-sin K(r)-e + coS(c (r) • (i*UJ~* . 

Furthermore, if peM"(e) and aeTjJjlM" is a unit vector orthogonal 

to U ß(p) (see (2.16)), then we define 

(2.35q) S* := [expK(r(p)•(cos(x) U e(p)+sin(x)-a))]'(0) e T p w J 

and we obtain from (2.35fl), (2.13) immediately 

(2.35^ (1*8®)"* = sinK(r(p)) • (i*a)"* , 
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which together with (2.34^),(2.5),(2.3) gives 

(2.352) g(R(p),Sa) = 0 and HSall =sinK(r(p)) . 

Moreover, if we consider Ue:W^(e) —» TIM̂  as a C w vector 
field in w" along the constant map w"(e) —> w" (q h-» p) , we 
obtain from (2.34Q) resp. (2.35Q) immediately (by the standard 
methods for computing covariant derivatives for vector fields 
along maps): 

(2-353> VR(p)Ue = 0 r e sP• V(S a) Ue = a ' 

From the last equation, from (2.34^,(2.35^ and (2.9) follows 
but V, a.R = cot (r(p))-Sa which implies [using V R=0 (see ^ p' K P K 

(2.34)) and that the set {Sa|aeT1lMn and g(a,U (p))=0> spans 
p p K e 

the orthogonal complement of R(p) in (see 
(2.351),(2.352))]: 
(2.35) VyR = cot (r) • [X - g(X,R) • R] for all Xel (lMn(e)) . A K K 

Remarks. 

a) (2.34Q),(2.34),(2.350),(2.352) amount essentially to 
the so-called "GAUSS Lemma" for expR in a very explicit form 
for the special Riemannian manifold IM̂ , which however here 
follows from elementary computations (without using JACOBI 

fields !) only using the explicit description (2.13) of the 
exponential map exp^ of IM̂  in IRn+1. 

b) We have the following geometric interpretation of S a: 
n P The point pelM (e) lies on the geodesic (distance) sphere 

_ -I K 
s
e~ (P) o f r a d i u s P r(p) e ]0,TTk[ (see (2.33Q) , (2.14^ ) , 

which is (see (2.15)) the image under exp (p..) of the 
I n n ^ Euclidean unit sphere T IM in T IM of radius 1 around the 

n 1 n e K e K 
origin of T IM , T IM being isometric to the standard sphere - C K c K ^ 
S ~ of E . (2.35^) says then, that S a is tangent to (p) 
at p, namely the image under (exp (p•..)). of the unit IC * -vector (cos(x)U (p) + sin(x)•a)'(0) tangent to T IMn at 

6 6 IC 
Ue(p). Therefore, due to (2.35^ the (n-l)-dim. volume element 

of s"-1(p) (pulled back to T V ? via exp fp-..)) is sin (p)n-i 
c e K K K 
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times the volume element of T^IM11 (isometric to S n ^J , e k v ' ' 

therefore for 

every pe]0,7TK[ the geodesic sphere S^ ^(p):= r 1 ({p>) 

(2.36) ] is a regular (n-1)-dim. C submanifold of IM̂  vith 

(n-1)-dim. volume vol(sj) 1(p)) = sin K(p)
n / 

where 

(2.36,) cr , := Euclidean (n-1) -dim. volume of S n 1 in E n 

1' n-1 . 
= 2 - fi /r 

(e.g. trQ=2, ct^tt, cr2=4n, <t2=2tt3 , . . .) . 

(vi) The Busemann function f? :IMn —> R of a unit speed 

geodesic c:IR —> w" for /c<0. 

a) Suppose now « 0 . Then in the Lorentzian vector space 

0 R n + 1 , < . .> ) (see (2.1),(2.2)) we have the future time 

resp. future light cone: 

(2.37) 

' C := {peR n + 11 <p,p> K>0 and p Q>0> 2 w" (see (2.5)) 

8C := {beIRn+11 <b,b> K=0 and b Q>0} = 

= asymptotic cone of M^ 

and (Lorentzian geometry !) for all VjVeCudC one has 

<v,v> K £ 0 and " = " iff R + v = (R+w S 3C. 

(Remember, that (because of k<0) IMn is a hyperboloid of 
+ ̂  K 

revolution in R , § 2.ii.a). Now, for any unit speed 

geodesic c:R —> we have (using (2.13),(2.2),(2.3), (2.5), 

(2 . 8 3 ) and «0) : 

(2.38) 
c(t) = cos K(t)c(0) + sinK(t)c' (0) for all teR and 

<c,c> K=l , c 0 = <c,e> K£l , < c , C > K=0 , <c' ,c' >k=k. 

Then we define the Busemann vector b of c by 
c 1 

(2.39) 
b c := c(0) + (l//^c) -c' (0) = 

= e~v/~^t-(c(t) + ( 1/t/—k") • c' (t) ) e R n + 1 for teR, 

where the second equation follows from (2.38) and one has the 

identities (which follow from (1.1)) in case k<0: 
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(2.40) 
_ . . V^icx , -V^KX 2 • cos (x) = e + e k v ' 

sin (x) = e ^ x -(C v ' 
If we introduce the "reverse" geodesic cv:R —> w" of c by 

(2.41) { ° V ( X ) : = c ( _ x ) ' t h e n bc v = c ( 0 ) " ( V ^ ) - C ( O ) 
1 and <b c,b c> K = <bcv,bcv>K = 0 and <b c,b cv> K = 2 

(see (2.38)). From (2.39),(2.41) and (2.17) one obtains 
immediately 

(2.42) 
_ . , '/-ict . , -/^ict , 2 • c (x) = e • b + e • b v , v

 ' c c ' 
hence c(R) = m" a Span{bc,bcv> 

From (2. 38), (2.42) we obtain 
v^ct -v^ict 2 s e • <b ,e> + e • <b v,e> for all telR, C K C K 

which implies <bc,e>K > 0 , therefore (see (2.37), (2 .41)) 
bc€3C and (together with (2.42) and its differentiated 
version) we get 

(2.43) b c = lim[2e c(t)] = lim[(2/v/::ic)e c' (t) ] e 8C , 
t-KO t-XB 

i.e.: b c is the "renormalized" direction of c(t) resp. c' (t) 
in R n + 1 if t tends to +oo and this direction b lies on the c cone 9C of asymptotic directions for the hyperboloid IM in „.I fc 
IR . Oppositely: 

{For every bedC and p€lM" there exists a unique unit 
K
 n speed geodesic c:IR —» vith c(0)=p and bcelR+b, 

namely c(t) := cosK(t)p + Vc/csinK(t) (<b,p>K
1 • b - p) for all 

telR (see (2.37) ) . 

b) Remark. For a complete 1-connected n-dim. Riemannian 
manifold M of strictly negative sectional curvature one is 
used to form à "closure" M of M by adding to M an ideal 
boundary "SM" of M, consisting of "points at infinity", which 
are equivalence classes of unit speed geodesies 
c,c,...:R —» M with respect to the relation: 
c asymptotic to c :<=* 

:<=» There exists peIR+ vith d(c(t),c(t)) < p for all teR+, 



Planetary motion in a space of constant curvature 395 

the equivalence class of c vith respect to this relation 

being denoted by c(oo), 

and c(oo) is called the point of c at +00 .. A topology on 

M := MuSM is then introduced, called the "cone toplogy", a 

terminology which seems to be motivated by our example in 

question M:=w". Because, since ic<0, the function cos | [ 0 , + c o [ 
^ n 

is strictly monotonic increasing, therefore in case M:=Mk the 

last definition amounts to 
(2 45 ) Í c(°°)=c(oo) iff there exists pelR+ 

0 [ vith <c(t),c(t)> K < p for all telR+ . 

This and the first equation of (2.43) (applied to c and c) 

implies therefore 

(2.45) c (00) = c(oo) <=> (<b b~> =0 ) IR -b = IR • b- . 
c c K (2.37) + c + c 

The cone topology on : a w " is then by definition the 

one, which makes the bijective map (see (2.5),(2.44),(2.45)) 

— ( IR -p if pelMn 

(2.46) h:w"; —» (CÚ3C)/IR vith h(p) := J K 

I IR ,- b if p=c(oo)e3IMn v + c f \ / K 

into a homeomorphism. In this way (Im£,3!m") becomes canonically 

homeomorphic to (D n,S n - 1), since the map CÜ3C —» IRn 

(v=(vQ,v) H-» (v^icv0) -v) induces a homeomorphism of 3C/IR+ 
resp. (Cu3C)/IR+ of onto the unit sphere S n _ 1 resp. the unit 

disc D n in IRn. 

Since the metric space (w",dK) is complete, one can not 

extend the metric d R onto all of I M ^ , however the Busemann 

functions which we will describe now will measure in a certain 

sense dis1 

infinity: 

c) For every unit speed geodesic c:IR —» IMn we define the 
n ^ 

Busemann function —> R of c by (see ( 2 . 3 7 ) ) : 

sense distances of points of IMn from the points c(œ)eaiMn at 
IC K 

(2.47) P c(p) := (1/v^ic) • ln(<p,b c> K) for all pelM^, 
therefore fi is C u. c 

This description of (3 is extrinsic since b e3C does not c c 
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belong to however from (2.47) we get via (2.43),(2.14), 
(2.40) and using limd (p,c(t)) = +oo the following intrinsic 

t-xo K 
one: 
(2.471) 0 c(p) = lim[d (p,c(t))-t] for all pewjj. 

t-Ko 
This means, that £ c(p) is some "renormalized distance of p 
from c(oo)" (see b)) and which can be symbolized (since 
t=dK(c(0),c(t)) ) by "/3c(p) = d)c(p,c(tD)) - dK(c(0)fc(«))". The 
last interpretation of however deserves a warning: This 
"distance from c(co)" is determined by c(oo) only up to an 
additive constant, more precisely (see (2 .45), (2.47)) : 
If c,c:IR —• w" are unit speed geodesies, then 

(2.472) £ c - /3- : m" — I R is constant iff c(co) = c(wj . 

Finally we mention another intrinsic description of |3C(P) 
for pew" (without any limiting process !) in terms of "polar 
coordinates with respect to (c(0),c(0))", more precisely a 
description which only involves the distance from p to c(0) 
and the angle between c(0) and the initial velocity vector 
u (p)eT1.ri.IMn of the unique unit speed geodesic joining c(0) U C ( U) K 
and p, namely: If we set (see (2.16)) 

rQ:=dK(c(0) ,..) IR and 

U 0 : = U c ( 0 ) : < ^ c ( ° ) > - T c ( 0 ) < ' 
i.e. for all pew" (see (2.16),(2.13),(2.16 )): (2.473) 
P = expK(r0(p)-U0(p)) = 

= cosK(r0(p))-c(0) + sinK(r0(p)) • (i^ip))"" , 

then one deduces (using (2.39) ,(2.473),(2.14),(2.38),(2.5), 
(2.3)) easily for all pew" 

(2.474) <p,b c> K = cosK(r0(p)) - v^csin K(r 0(p))-g(U 0(p),c(0)) 

(see (2.161)), which together with (2.47) provides the 
announced intrinsic description of Pc(p)• 

Moreover one sees from (2.47^) that 
(2.47k) (0, ).f = 0 for every isometry f:(M" —» m" . 3 r ̂  c c fc iv 

Going back again to (2.472) we observe, that according to 
(2.47 ) the differential resp. the gradient vector field of fi 4b C 
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does only depend on c(a>), more precisely: If we introduce for 

convenience of the computation the constant vector field 

b C ; m k T R n + 1 a l o n g ì:|MK ^ R n + 1 w i t h 

(2.48J i B c * = b c ' 
therefore e (B , B > = 0 and v"b„ = 0 for XeX(IM') K C C A C K 

(as follows from b ce3C, see (2.43), (2.37), resp. from (2.4)), 

then, using the unit normal field of w" in the 

definition (2.47) of the Busemann function can be written as 

(see (2.2),(2.3),(2.8^)): 

(2.481) |3c = (l//=2) •ln(v^c e K(S K,B c)) . 

Therefore for all XeXfw") we obtain from (2.481) (using 

(2.8 6),(2.48 0)): 

< 2 - 4 8 2 > X'*c = - e K ( g K , B c ) = " + « k ( € k ^ c ) '
B c , 1 * X > ' 

Since + e
K ( C K »

B
c ) ~

1 - B
c
 i s orthogonal to (see (2.8g)), 

it is tangential to (m", and therefore we get from (2.482) 

(2.483) 
l.gradß = - (£ + ,, _ . • B ) , c k e (£ ,B ) c' ' K V S K ' C' 
hence llgrad/3 II = 1 . 

Then the Hessian of can be computed for all XeX(w") as 

(2.484) 
(Hess/3c)(X) := Vx(grad|3c) = 

= - g(X,grad/3c)-gradßc] , 

in particular the Laplacian of ß c in is constant: 

(2.485) Aß c := trace(Hessßc) = (n-1) V^ic . 

We are now able to prove for every C°° path c:I —> w" : 

:I —> m" is a maximal integral curve of -grad/9 iff 
(2 49) - c 

' 1 t=|r an(j c is a unit speed geodesic vith c(oo)=c(oo) . 

( c:l 

\ I=IF 

[Proof: First one obtains immediately from (2.47^ and 

(2.131): 

(2.50) |3 it) = -t for t€lR, therefore g(grad/3 °c,c) = -1 . c c 

But grad/3 »c (see (2.48 )) and c are both unit vector fields, 
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so it follows from ( 2 . 5 0 ) and CAUCHY-SCHWARZ (in-) equality: 

(2.50^) c = -(grad(3c)oc . 

If c:IR —> IM̂  is now an arbitrary unit speed geodesic with 

c(oo)=c(oo) then we get from (2.47 ), that grad|3- = grad£ c and 

therefore (apply (2.50^) for c instead of c): 

c = -(grad0-)»c = -(grad(3c)»c = , whereby (2.49)"*" is 

proved. Suppose oppositely, that c:I —> IM̂  is a maximal 

integral curve of -grad/3c and without loss of generality Oel. 

Choose then the unique unit speed geodesic c:IR —> IM̂  with 

c ( 0 ) = c ( 0 ) and c(oo) = c(cd) , (see (2 . 44) , (2 . 45) ) . 

Then c is according to the (already proved !) statement 

(2.49)"*" a maximal integral curve of -grad/3c. Therefore by 

the uniqueness property of maximal integral curves of a vector 

field with the same initial values it follows I=R and c=c, in 

particular c is (as c) a unit speed geodesic with c(co) =c(oo) . ] 

From (2.49) one gets immediately 

(2.51) 

If c:IR —> IM̂  is any unit speed geodesic and there 

exists tQ€lR with c (t Q; = -gradj3c(c(tQ)) , then 

c(cd) = C(co) 

[Proof: After re-scaling c we may assume L e t t h e n 

(see (2.49)) c:IR —> IM̂  denote the maximal integral curve of 

-grad(3c with c(0)=c(0), therefore 

c'(0) = -grad0 c(c(O)) = -grad0 c(c(0)) = c'(0) . 

But according to (2.49) c is a unit speed geodesic with 

c (oo) =c (co) . Because of the uniqueness theorem for maximal 

geodesies with the same initial velocity vectors it follows 

therefore c=c and thus c (oo) =c (co) =c (oo) . ] 

d) The horosphere H := H(p,c(a>)) through pelMn with limit 

point c(oo)edlMK (see b) ) is defined as usual to be the regular 

(n-l)-dim. level submanifold of the BUSEMANN function fi 

through p in i.e. (see (2.47)) 

(2.52) H = /3~1({Pc(p)>) = {q6w"l<q- P /b c> K=0} . 

[We observe: Because of (2.472) for any unit speed geodesic 

6:R - > with c(oo) =c(oo) holds f^ 1 ({0£(p) }) = ^ ( { ^ ( p ) } ) , 
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i.e. H in fact depends only on c(a>) . ] 
Moreover: Because of (2.44),(2.475) and the fact, that the 

group Gj acts transitively on the set of all unit speed 
geodesies in IM̂ , it follows from (2.52): 

(2.521) Each two horospheres of w" are congruent in w". 

Remark.. Since V := {velRn+11 <v,bc>K=0} is a n-dim. vector 
subspace of R n + 1, which is tangent to the asymptotic cone dC 
for the hyperboloid w" along the generator (see 
(2.37),(2.43)), we get from (2.52) the following extrinsic 
description of the horosphere H as the "hyperplane section" of 
w" with the n-dim. affine subspace of IRn+1 through p, which is 
parallel to V in IRn+1. 

From the last remark and (2.52) follows, that if e.g. 
c(0) =e and c' (OHe^ then (see (2.39)) bc = e + (1/V̂ ic) ^ 
resp. (see (2.47)) 0c(e)=O and: 

r {aeRn|a1=0} —» IRn+1 

(a i—> (- £<a,a> , -^<a,a> , a2,...,an)) 
induces a C u diffeomorphism of IRn 1 onto the 

t horosphere H = p " 1 ^ } ) of w". 

From (2.52) follows, that £ := -(grad/3 )°j is a unit _ c 
normal field along j:H c—> IM̂  and therefore it follows 
directly from (2.482) and [Do],4.5.ii,iii, that the shape 
operator of H with respect to the normal field C at peH equals 
v^ic-Id , i.e. H is an umbilical hypersurface in IMn of ipti K 
constant mean curvature v̂ ic (w.r.t. £) and if n^3, the 
(n-l)-dim. riemannian submanifold H of IM̂  is. of vanishing 
sectional curvature. 

From the description (2.52) of the horosphere H it is 
clear (m" is the boundary of an unbounded convex body in IRn+1, 
hence m" has the "two-piece property") that Mn\H consists of + K 
two components H , H where 

(2.522) • 
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(2.53) H + = {qeM"|f?c(q)>f3c(p) } = w " A {qeR n + 11 <q-p,b c> K>0} 

and H is defined correspondingly. 

Because of (2.50) the sets H + , H can be characterized 

(without using b c or 0 c) in the following way: 

(2.53^ 

H + resp. H is the connected component of M"\H, 

which contains the points c(t) for t —» -co resp. 

t — > +00 . 

Moreover the normal field property of - ( g r a d / 3 c ) o j for 

j:H c—> M" allows (using (2.47 ), (2.49), (2.50), (2.51), 

(2.53^)) to characterize the asymptotic behaviour of a unit 

speed geodesic c:IR —> w" with respect to the given c (see 

b) , (2.45Q)) as follows: 

c(co)=c(oo) There exists t 0
€ j c(t Q)€H and 

c intersects H at the time tfi 
+ -orthogonally, passing from H to H . 

(2.54) 

(If one side of (2.54) is true, then c(]-oo,tQ[) £H
+ and 

c(]t0,o>[)£H .) 

If we choose now for the given unit speed geodesic 

—> M " the 

after (2.54)): 

c:IR —» m " the special horosphere (see (2.50) and the remark 

(2.55q) 
H c := H(c(0) ,c(oo)) := ({0}) , 

then H * = ß ~ 1 ( > R + ) and H ~ = ß ~ 1 ( I R _ ) 

and we get, that the BUSEMANN function measures the 

oriented distance of the points in IMR from the horosphere H C 

(2.55) 0 c(p) = 
+ dist(p,H c) for p e H^ u H c 

- dist(p,H c) for p e H^ u H c 

where dist(p,H c) = inf{d R(p,q)|qeH c} . Moreover, as one can 

show [using ( 2 . 4 7 2 ) , ( 2 . 4 7 3 ) , the CAUCHY-SCHWARZ inequality and 

the strict monotony of (see (1.1)) 
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(2.56) 
• y/Zĵ  * y cosk(x) + V^/c-sinK(x) = e and 

cos (x) - V-K - sin (x) = for k<0 ] K K J 

that the latter infimum is attained exactly at the one point 
(<?=) c(/9c(p)) e H c , where c:IR —> IM̂  is the unique unit 
speed geodesic (see (2.44), (2.45)) with c(0) = p and 
c(oo) = C(oo) 

2 
(viij Basic geometry and polar coordinates m IMk. 

In all of this section (vii) we assume n=2. 2 
a) Then due to the canonical orientation of IMk (see 

(2.18)) we have a uniquely determined complex Cw structure J 2 U 2 for IM , i.e. a C tensor field J on IM of type (1,1), such 
2 1 2 K 

that for all peWK and ueTpIMK one has 
2 (2.57) (u,Ju) is a pos. oriented orthonormal 2-frame of T^WK, 

2 i.e. J is the rotation of T IM about the angle tt/2 in the 
P P K 

positive sense w.r.t the given orientation, in particular 
(JoJ) (v) = - v , g(Jv,Jw) = g(v,w) 
and g(Jv,w) = - g(v,Jw) , 

and from (2.58) follows easily: 
(2.59) J is V-parallel, i.e. VvJY = JVvY for all X,YeX(IM2) . A A K 

(2.58) for all v,weT IM2: P K 

2 manifold IM̂  can be described as the differential 2-form with 
b) The oriented area form a of the oriented Riemannian 
Lfold II 

(see a)): 
(2.60) / °"(X'Y) := g(JX,Y) for all X,Ye3f(IM2), 

I therefore <x is V-parallel 

(together with g and J, see (2.59)), moreover one has for all 
X, Y, ZeX(IM2) the identity: 

(2.60^ cr(X,Y)cr(Z,W) = g(X,Z)g(Y,W) - g(X,W)g(Y,Z) . 
. . 3 c) Because of (n) , Remark a) we have, if e=(l,0,0)elR : 

(2.61Q) W2(e) := IM2\{e, -e} is Cw diffeomorphic to IR2\{o} 
2 2 and if r := d^e,..):^ —> IR and R := grad(r) on M£(e) 
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(see (v)a)), then it follows from (2.34),(2.58): 

(2.61) 
(R,JR) is a positively oriented orthonormal C u frame 

2 
field on IMk (e) and therefore (see (2. 35) , (2 . 60)) 
VXR = cotR(r) -o-(R,X) • JR for all XeX(IM^ (e)) , 

and (see (2.60)): 

(2.611) dr (R) = g(R,R) = <r(R,JR) = 1 , dr(JR) = g(R,JR) = 0. 

2 If we define therefore the "polar angle form 9 on M (e) v.r.t. 
2 K. 

e" as usual as the Pfaffian form on IMK(e) with (see 
(2.60),(1.9)) : 
„ „ . i e ( x ) : = i i f o r a 1 1 X , I ( I£>' (2.62 ) < K. 

I i.e. e(R) = 0 and 0(JR) = sinK(r) 
then evidently (use (2.61) , (2.62Q) , (2.59) and V torsionfree!) 

[ (dr,sinK(r)e) ii 
(2.62) | v r = cos (r)-Si ww^ S(X)-JR for XeX (IM̂  (e)) and d 0 = o , X IC (C 

is the dual frame field of (R,JR), 
= cos (r)-i 

K v ' 
consequently 

2 
(2.621) g = drodr + sinK(r)•(0o8) and <r = sin^(r)•(drA©) . 

2 2 Moreover, if Ue:IMK(e) —> T(Mk is the vector field along the 2 2 . map WK(e) —> (p e) , which was defined in (2.16), then one has 
(2.63) V xU e = 0(X)-JUe for all XeOC(lM̂ ). 

[Because of (2.61) it suffices to verify this for Xe{R,JR} in 
which cases the assertion (2.63) follows from (2.35 ), 

2 . . . observing that for pelMK(e) one finds easily (with use of 

(2.350),(2.351)) sinK(r(p))-JR(p) = S* with a := JUe(p) .] 

d) Suppose now, that we have chosen 1 2 2 
(2.64Q) a fixed unit tangent vector uelMM^ of IM̂  at e 
(which we can interpret as a constant vector field 
IM^(e) —» TIM̂  along the map IM^(e) —» IM̂  (p t-> e) ) . 

Then we can introduce the two Cu functions 
cos#>u, sin<pu:IM^(e) —> IR by (see (2.16) , (2. 60) , (2. 64Q)) : 
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(2.64) • 
cos<pu := g(u,Ue) , sin#>u := <r(u,Ue) : IM2(e) —• R , 
i.e. = (cos^pu) u + (sin<pu) • Ju and therefore 
VpelM2(e) p = e x P K ( r ( P ) " ( c o s < P u ( P ) - u + sin(pu(p) • Ju) ) 

1 2 . . where U (p)eT M is the initial velocity vector of the unit 
c e <c 2 

speed geodesic c:R —> IM joining e = c(0) with 2 . . . p = c(r(p)) e WK(e) , i.e. Ue(p) is the direction under which 
an observer, situated at e, "sees" the point p, and we call 
therefore the three functions r, cos<p , sin<pu the "polar 
coordinate functions for IM2 v.r.t. (e,u)". / ^ 

[Warning: We have not introduced a continuous angle 
2 

function <pu:IMK(e) —» R (which is impossible because of 
(2.16Q)), but only cospu,sin^u. See however Remark 2) below.] 

Then one obtains from (2.60^,(2.64)) 

(2.641) cos ipu2 + sin<pu2 = 1 , 
i.e. (cos^u, sin(pu) :IM2 (e) —» S 1 is a Cw map. 

and from (2 . 64) , (2 . 63) one gets (because of X-cos(pu=g(u, V^Ue) , 
. . .) 

d(cos^u) = - (sin^>u)-e and d(sin^u) = (cos^u)-e , 
(2.65) in particular for every C1 path c:I —> W2(e) : 

(cospu<>c)' =-(sin^u<>c)e(c) , (sini>u»c)' = (cos(pu«c)8(c) . 

Remark. 
1) The first equation of (2.62) says, that the connection 

form w:=(J12:=-g(E2,VE^) with respect to the orthonormal frame 
field(ElfE2) : = (R, JR) in the sense of E. CARTAN satisfies 
(see (2 . 62Q) ) (2 . 651) W = - COS^FR )-B , therefore dw = K-CT 
(see (2.65),(2.62),(2.62 )). 

2) The oriented angle function 
1 2 1 2 /. (..,..) :T IM xT IM—»]-TT,7I] for the oriented 2-dim. Euclidean 

U 6 K 6 fv 
1 2 

vector space TeIMK (where (u,Ju) is a positively oriented 
orthonormal 2 frame, see (2.64Q)) is as usual defined by (see 
(2.60)) 
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1 2 ( For all v,weT IM : z (v,w) e ]-jt,ti] and 
(2 66) i e tc o 
v ' ' \ c o s U o ( v , w ) ) = g(v,w) , s i n U o ( v , w ) ) = cr(v,w) , 

2 2 using g(v,w) + cr(v,w) = 1 (cf. (2.60)), i.e. the point 1 (g(v,w) ,<r(v,w)) lies on the unit circle S . This function z 
1 2 ° satisfies for all v,w,weTeIMK: 

. _ .. . f w*v =» z. ( (2.66 ) i o l 

[ ^ (v,w) - z 
(v,w) = - ¿ o(w,v) 

cv , -Q( V' W) S m ° d 271 ' 

(verify, that cos and sin have equal value for the left and 
the right hand side of the congruence (2.66.)). Moreover: 

2 
The comparison of (2.64),(2.66) implies for all peW K: 
(2.66.) ( (c°s<Pu)(p) = c o s U o ( u , U e ( p ) ) ) , 

[ (sin#>u) (p) = s i n U o ( u , U e ( p ) ) ) , 
which provides the following geometric interpretation of the 

2 2 functions cos^>u, sin^u:IMK(e) —» IR : For every pelMK(e) the 
number (cos(pu) (p) resp. (sin(pu) (p) is the cosine resp. the 
sine of the oriented angle between the fixed direction u in 

2 . TgIMK (see (2.64Q)) and the direction U e(p), under which an 
observer at e "sees" the point p. This interpretation becomes 

2 

more satisfactory, using a covering model for M (e): 
3) Consider (see (1.9)) 

(*) 2 H: = ]0,TrK[xlR as an open C submanifold of IR and let 

p, ip: ] 0,ttk[xR —» IR denote the first resp. second (2.67Q) 
projection. 

Then the C u map 

{ fU:" 
( a uni\ 

(2.67) •( " •= expK(p-(cos((p) u + sin(ip) • Ju) ) :fl —» W^(e) is 
universal covering for IM^(e) (see (2.15) , (2.61Q)) 

which evidently satisfies (compare (2.16) with (2.67)): 

(2.671) rof u = p and U e » f u = c o s ( p ) u + sin(p)•Ju , 

i.e. (see (2.64),(2.67^)) : 

(2.612) (cos(pu)°fu = cos (<p) and (sinp u)«f u = sin (tp) , 

whence one deduces 
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(2.67 3) ( f u ) * d r = dp and (using (2.65)) ( f u ) * e = d<p , 

a n d t h e r e f o r e (see (2.62),(2.67^)) 

(2.67 4) (f U)*(a|) = R » f U and (f U)*(g|) = ( s i n K ( r ) - J R ) o f
u . 

Finally t h e c o m p a r i s o n of (2.66 2) a n d (2.67 2) y i e l d s 

(2.67 5) <p — ^ o(u,U e<>f
u) m o d 2tt . 

N o w suppose, t h a t relNu{co,<j} and we are g i v e n a 

(2.68Q) C r map h : N — » o f a 1 - c o n n e c t e d C r manifold N 

2 into W K ( e ) . T h e n b e c a u s e of (2.67) a n d t h e s i m p l e 

c o n n e c t e d n e s s of N t h e r e e x i s t s by t h e m o n o d r o m y p r i n c i p l e a 

. v. lifting fi:N — » fl of h v.r.t. fu:fl — > M 2 (e) , 
(¿.bB) i „ K 

( C r liftii 

1 i.e. f u< fi = h 

a n d w e o b t a i n for t h i s m a p fi:N — » ft (see (2.68),(2.67^), 

(2.67 3)) 

(2.68 1) 

r « h = p»fi , h*0 = d((pofi) and 

U e » h -= cos((p«fi) 'U + sin(poli) • J u , i.e. 

(cos(pu) »h = cos((p»fi) and (sin(pu) «h = sin(pofi) , 

a n d w e g e t f r o m (2.68),(2.67 5) and (2.66^) 

(2.68 2) V p g 6 N ip (fi (q)) -ip (fi. (p)) = ^ Q ( U e ( h ( p ) ) ,U e(h(q))) m o d 2n. 

M o r e o v e r , if t h e r e exists 

| q Q e N , si 

I i.e. U v i 

t h e n ( r ( h ( q Q ) ) , 0 ) e f i a n d f u ( ( r ( h ( q Q ) ) , 0 ) ) = h ( q Q ) d u e to 

(2.16),(2.67),(2.69 ) and consei 

m o n o d r o m y p r i n c i p l e t h e r e e x i s t a 

(2.69 ) { q 0 e N ' s u c h t h a t h ( q 0 ) 6 exp K(]0,7r K[-u) , 
0 ' • - " ^ ( q ^ ^ u , 

eu( 

( 2 . 1 6 ) , ( 2 . 6 7 ) , ( 2 . 6 9 q ) and c o n s e q u e n t l y a c c o r d i n g to t h e 

(2.69) 

u n i q u e lift of h: (N,q Q) — > (IM2 (e) ,ex P ) c (] 0,ttk [ • u)) 

with respect to fu:fl — » IM2(e) , we call it , 

s. t. f uofi^ u' q0^ = h and fi(u'q0} (q Q)=(r (h(q Q)), 0), 

i.e. p « R ( u , q 0 ) ( q Q ) = r o h ( q 0 ) and <p°h.(u' q 0 ) (q Q) =0. 

For t h i s fi<u'V t h e s t a t e m e n t s (2 . 68^^) , (2. 68 2) h o l d m.m., 

m o r e o v e r 
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(2.69^ for all qeN: 0x>fi(u'qO* (q) s ¿Q(u,Ue(h(q))) mod 2n . 

Via (2.67^) the polar angle form 0 gets now an interpretation 
appealing to its name: 

2 . 1 Suppose that c: [ot,/3] —> WK(e) is an arbitrary C path and 
c: [a,(3] —> fi any lift of c with respect to f u (see (2.67)), 
then (see (2.673)) 

(2.70) 
| ©(¿(t))dt = J e = J u _ e = J_(fu)*e = J_d#> = 

= f(c(0))-»>(c(a)) s ¿o(Ue(c(a)) ,Ue(c(|3))) mod 2tt, 

in particular, if c is closed, i.e. c(a)=c(|3), then 
(2.70^) (winding number of c vith resp. to e) := ¡̂f" I © € Z . 

c 

2 (viii) Maximal curves of constant oriented curvature lnJM^. 

First we commemorate the following concepts and results 
about plane curves (from differential geometry): 
Suppose (M,g) is a 2-dim. oriented Riemannian C s manifold, 
se{oo,w}, J its complex structure (defined m.m. as in (vii)a)). 

2 
Suppose I is an open interval in IR, c:I —> M a unit speed C 
path in M. Then c resp. Jc is the unit tangent resp. principal 
unit normal vector field of c and one calls 

(2 71) i Kc := —* R the oriented curvature of c, 
I wherefore c satisfies the FRENET ODE V„c = k •Jc . v o c 

Moreover the name "oriented" curvature is motivated by: 

(2 71 ) \ reverse Pa*-h c of c (see (2.41)) has oriented 
1 I curvature k, = - k K (c ) c 

g 
Suppose now, that A.:M —> IR is a C function on M, se{oo,u>, 
with llgradXIl = 1 , and c:I —> M is the maximal C 1 integral 
curve of the unit vector field JgradX through some point 
peM. Then c is a C s path and (see (2.71)): 
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c(I) is the connected component of the point p in the 
level set X ({*(P)>) of X through p and c has the 
curvature (see (2.71)): < c = hessX(JgradX,JgradX)»c, 

(2.72) where hessX(X,Y) := g(V^(gradA),Y) for X,YeX(M), 
moreover: 
If X ^({Mp)}) compact or M is complete, then I=IR 
and in the first case c:R —> M is periodic. 

After these general remarks we return to the geometry of 
2 

(M,g) := IMk and we choose for the following sections a),b),c) 
(see (2.5),(2.3),(2.0), in particular e1=(0,l,0), e2=(0,0,l)) 
(2.73) ueT^IM^ , such that (i.uj^e. , therefore (i.Ju)"*=e_ 6 JC * 1 * ^ 
(see (2.57), (2.18) , (2.3), (2.5)) . 

a) Suppose pe]0,Tr [. Then the set r ^({p}) (:=distance 
2 sphere of radius p in M with center e) is closed and bounded 
K 2 in the complete manifold IM̂ , hence compact, and therefore (see 

(2.72), (2.62), (2.61),(2.34)) the maximal integral C w curve 
2 

c:IR —> M K(e) of JR = Jgrad(r) with c(0) = expR(pu) 
satisfies: c is a periodic unit speed curve with (c (R) = r ^({p}) and c has constant curvature 

K c - c o V p , , = o V , 0 . V > - { ]•«.•[ 
(in particular c is for k>0 and p=(nK/2) a unit speed 
geodesic). Moreover it follows from (2.74) and (2.33), that 
for k*0: 

(2.741) c(R) = U2k n x" 1 ( {coS(c (p) } ) , 
2 i.e. : c(R) is the intersection of IM vith "the" affine plane 

3 K 3 m R , which is affinely parallel in R to the affine tangent 
2 

plane of IM̂  at the center e of the distance sphere c(R) (at 
the Euclidean oriented distance cosK(p)-l). 
Finally (see (2.26)): 

2 (c:R —> IM is an orbit of the 1 -param. subgroup of 
2 sin (r) 

G generated by the Killing vector field . . . - JR. < s m K ( p ) 2 b) If k<0 and Z 3:^ —> R is the Busemann function of the 
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2 
unit speed geodesic t expK(tu) , then — since M^ is 
complete — it follows from (2.72) and (2.48.),(2.48 ): The U) 2 
maximal integral C curve c:IR —» o f J(grad(3) with 
c(0) = e satisfies (see (vi)d), (2.52) and use, that due to 
(2.52^), (2.522) horospheres are connected): 
c is a unit speed curve with 
(2 75) c C ) = 0 ^({O}) (=horosphere through e with limit 

point "expK (oo-u)") and c has const, curvature /cc=v^»c. 
Moreover it follows from (2.52), (2.39) and (2.73) that 

(2.751) c(R) = IM2 n '(xQ - • X ^ _ 1 ( {1} ) , 
2 i.e. : c(IR) is the intersection of IM with "the" affme plane 

3 K 
in IR through e, which is which is parallel to the affme 

2 3 
tangent plane of the asymptotic cone dC of Mk in IR (see 
(2.37)) at the point e + (l/V^ic) • (i*u)~* . 
Finally (see (2.26)): 

2 c:R —> IMk is an orbit of the 1 -param. subgroup of (2.752) 2 V-k. • 8 gener. by the K I L L I N G vector field e ^-Jgrad(3. 

c) Suppose therefore (see (1.1)) sinK:IR —> IR is a 
C u diffeomorphism and we obtain on IM2 the extrinsicly defined 

(2.76) C w function S := sin~1«x. I IM2 :IM2 —» IR . v ' k 2 K K 
2 . . . . Using (2.73) we get on IM (e) the following intrinsic 

2 K 
description of X 2IM k: 

sinK(r)-sin»>u = sinR (r) • g(Ju, sin<pu* Ju) = sin^(r)•g(Ju,Ue) = 

( 2- 5 8> J (2.3), (2.5) ( 2- 6 4> Î (2.33 ,(2.76^ 
= ( I ^ J U ^ L S I N ^ R ) • I * U E " > ) K = X 2 I M 2 , 

hence (see (2.76)): 

(2.761) sinK(ô) = sinK(r) sin»>u on IM2(e). 

The "Law of sines" for rectangular triangles in the Euclidean 
resp. the hyperbolic plane (of curvature K) and (2.76^) tell 
but, that 5 measures the oriented distance from the geodesic 

2 - 1 , . . . expK(IR-u)= =M Knx 2 ({0}), S being positive in the "half plane" 
2 - 1 M k a x 2 b o u n d e d by expR(IR-u) in which Ju points, negative 
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in the opposite "half plane"1. Then one computes from (2.76^) 
and (1.1' ),(2.65), (2.62Q), (2.60),(2.34) : 

(2.762) gradS = c o s
1
( 6 ) ' (cosK(r) (sin»u) -R + (cos<pu) • JR) 

2 
on WK(e), from where one gets (observing (2.76^,(2.64^, 
(2.61),(1.6)): llgradSll=l on IM̂ , moreover one obtains from 
(2.762) (using (2.65),(2.62),(2.59)): 
(2.763) VxeX(IM2) v

x
g r a d S = ~ K - t a n

K ( 5 ) ' 9 ( J 9 r a d 5 / x) ' J (3 r a d 5 • 
2 . Since M is complete, we get from (2.72) for any peR: 

2 (J If c:IR —> WK(e) is the maximal integral C curve of 
JR = JgradS with c(0) = expK(pJu) , then (see (2.72), 
(2.763)): c is a unit speed curve with 

(c(R) = S ^({p}) and c has curvature <c=-KtanK(p) , 

v t i e r e — - { j ! ^ , £ 

(in particular c is a geodesic if k=0 or p=0 and /c<0) . 
Moreover, we get by the above-mentioned geometric 
interpretation of S as the oriented distance from the geodesic 
t exp^(tu) : c(IR) is the connected component of the point 
expR(pJu) in the boundary of the tubular neighborhood of 
exp K(Ru) of radius |p| and which we call therefore the 
"p-distant parallel of expK(R-u)". Furthermore, one obtains 
from (2.76),(2.77): 

(2.77^ c(R) = W ^ n x" 1 ({sin^ (p) }) , 

i.e.: c(R), the p-distant parallel of the geodesic exp (R-u) 
2 2 K 3 in is the intersection of IM̂  vith the affine plane of R , 

1 If one wants to describe the 
geodesic exp (R-u) also in the 

K -1 replace in (2.76) s i n
K
 bY 

this function S is continuous 

oriented distance S from the 
case k>0, one only has to 

( " V J - r v r V * " 1 • T h e n 

on IMk, however Cu only on 
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vhich is (at the oriented Euclidean distance sin (p)) affinely 
- 1 3 parallel to the 2-dim. vector subspace x ({0}) of R , that 

2 
intersects (in the sense of (2.17)) IMr in the geodesic 
expK(IR-u). Finally (see (2.26)) 

2 
c:R —» M is an orbit of the 1 -param. subgroup of 
2 cos k(5) G gener. by the Killing V. field -.—r-JgradS . < * cos K(p) 

(2.772) 

2 Since (see (2.27)) the group G of all orientation 
2 K. . preserving isometries of IM acts transitively on the unit 

2 . 2 tangent bundle of IM , since for every C unit speed 
2 o ' ' 2 path c in WK and every feG^ and since every f € G

K is (see 
(2.20)) induced by a certain linear map A:R3 —» R3 which 

3 . evidently maps (affine) planes of R into (affine) planes of 
3 

R , preserving the parallelity between such planes, the 
results (2.71^),(2.74),...,(2.77and the uniqueness theorem 
for the solutions of the ODE (2.71) allow to state the 
following résumé: 

2 1 2 d) Proposition. For every pelMK, ueTp!MK and <c0eR, there 2 2 exist exactly one maximally unit speed C path c:R —* Mk of 
constant oriented curvature k =Kn and c(0)=u. This c is C , 

3 . c. 0 3 . i«c:R —>R is a plane curve in R and — if k*0 — c(R) is the 
2 3 . intersection of the hypersurface IM of R with an affine plane 3 . K 

of R (which is the osculating plane of i<>c) . More 
specifically one can say: In case 

iKQlefOj/^f: c(R) is a p-distant parallel curve to 
a geodesic vith p€R, s.t. KQ=-(ctanK(p) 
(in partic. c(R) a geodesic for kq=0). 

IìCQ^/^ : c(R) is a 1 -dim. horosphere in IM̂ . 
I kq I e oo[ : c(R) is a 1 -dim. distance sphere of 

radius peR+, such that KQ=cotK(p) • 

kq=0 : c(R) is a geodesic (=straight line). 
KQelR* : c(R) is a 1 -dim. distance sphere 

(=euclidean circle) of radius 1/|k |. 

k<0 and 

K.-0 and 
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k>0 and K
0
eR : C(R) a distance sphere of 

radius pe]0,7rK[, s.t. JcQ=cotK(P) (in 
partic. c(IR) a geodesic for P=^"7r(C) • 

Finally: Each of these unit speed curves of constant oriented 
curvature is the unit speed orbit of a 1-parameter subgroup of 

2 
orientation preserving isometries of IMk (the opposite of this 
statement being trivial). 

3. Informations about the maximal solutions of the ODE, 
describing a mechanical process of one degree of freedom 

(i) Data: 
Suppose M is a non-empty open interval of IR, 
a:M —> IR is a loc. Lipschitzian function (e.g. C1) , 

(3'°) ' u:M —» IR is any primitive funct. for -a (i.e. U' =-a), 
- (r0,v0) € MxIR and EQ := \-v2Q + U(rQ) . 

Then consider the following ODE initial value problems: 
(3.1) y" = a(y) with y(0) = r Q and y' (0) = vQ , 
resp. 
(3.2) |-(y')2 + U(y) = EQ with y(0) = rQ and y' (0) = vQ . 

We call the ODE of (3.1) the "lav of acceleration" resp. the 
one of (3.2) the "lav of energy" for a certain (mechanical) 
process of one degree of freedom with M as its configuration 
space, MxIR as its state space (or phase space), (rQ,v0) its 
initial state, EQ its total energy, a its acceleration with U 
as ("a-effective") potential, the "mechanical process" itself 

2 
will be viewed as "the" maximal C solution of (3.1) (see 
below (3.5)). Remark. By a "solution" of the ODE (3.1) resp. (3.2) we 
always mean a twice resp. once differentiable function 
r:I —• IR on an open interval I of IR with 0€l and r(I)£M such 
that (r"=a«r and r(0)=rQ and r' (0)=vQ) resp. (|(r' )2+U(r)=EQ 
and r(0)=r. and r' (0)=v ), and then one can show, that r has 
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2 1 to be C (trivial) resp. C (using D A R B O U X ' S theorem) . Such a 
solution is called "maximal", if r is not the restriction of a 
solution r:I —• IR with isl and 1*1. 

There is a very tight correlation between the two ODE's 
(3.1),(3.2), essentially well known, and of which correlation 
we present here a rather subtle (for our purposes useful) 
version: 
(ii) Proposition. (Data as in (i).) For any open interval I of 

2 
IR with Oel and every C function r:I —> IR with r(I)£M the 
following three statements a)-c) are pairwise equivalent: 
a) r is a solution of (3.1). 
b) r is a solution of (3.2) and (r' non-constant or a(rQ)=0). 
c) r is a solution of (3.2) and (r non-constant or a(rQ)=0). 

Remark. The stated equivalences remain true, if "solution" 
is substituted each time by "maximal solution". 

Proof. 
a) =» b) : That r (being a solution of (3.1)) is as well a 

l 2 solution of (3.2) follows by differentiating (r') + U(r) . 
If moreover r' is constant, then r"=0, hence 

a(rQ) = r"(0) = 0 . 
a 

b) =» c) : Trivial. 

c) ^ a): For this we distinguish two cases: 
st 1 case: r is constant: Then r' = r" = 0 and therefore 

r"-a(r) = -a(r) = -a(rQ) = 0 . 
c 

2n<* case: r is non-constant: 

Then H := {tellr'(t)*0} * 0 . From c) (i.e. from (3.2) with 
y=r) follows by differentiation immediately r' -(r"-a(r)) = 0, 
which implies by definition of H: 
(3.3) r" = a(r) (on H and thus by continuity) on Hnl * 0 . 
So we are done, if Hnl = I . otherwise denote by 

G an arbitrary (non-empty) connected component of I\H, 
therefore G is an open, non-empty proper subinterval of I, 
consequently infl s infG < supG s supl and the equality 
signs do not hold simultaneously. Therefore there exists 
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TE{infG,supG}R\I, in particular xe(G\G)nI and since G is (as a 
connected component of I\H) closed in I\H, i.e. Gn(I\H)=G, it 
follows, that 
(3.4) r e Hnl , whence (see(3.3)) r"(x) = a(r(x)) . 
Moreover G£(I\H)£(I\H), hence r' vanishes on the open interval 
G of I, in particular r"-a(r) is constant on G and by 
continuity actually on Gnl (ax). Therefore (see (3.4)) r"=a(r) 
holds on G, which finishes the proof. 

(iii) Since the ODE (3.1) of second order is equivalent to 
the ODE system of first order with locally Lipschitzian a (see 
(3.0)): 

y' = v and = a(y) with y(0) = rn and v(0) = v 
we obtain from the general theory of ODE's the following 

Existence and Uniqueness Theorem for (3.1): 
Data as in (i), then: 

2 
There exists exactly one maximal C solution of (3.1) 

2 (3.5) • and any C solution of (3.1) is a restriction of this 
maximal one, 

2 

e.g. for any C solution r:I —» IR of (3.1) the following 
five statements a),...,e) are therefore trivially equivalent: 

(3.6) 

a) 
b) 
c) 
d) 

e) 

r : I —» IR 
(r, r' ) : I —> IR 
r' = a°r = 0 

is constant 
2 is constant 

(U»r) = U' or = 0 ) 
v0 = a(r0) = 0 E q - U(rQ) = U' (rQ) = 0 ) 

(i.e. 
(i.e. 

(such a state (vQ,r0) is called a "state of 
equilibrium" for the law of acceleration y"=a(y)), 
There exists t €l with o r'(tQ) = a(r(tQ)) = 0 
(i.e. E. - U(r(t ) ) = U' (r (t ) ) = 0 ) 

The discussion of "the" solution of (3.1) (see (3.5)) is 
frequently done (e.g. for KEPLER'S problem) by discussing 
"the"(?) solution of the corresponding law of energy (3.2). 
This procedure deserves some caution (see the "Warning" 
below), a certain justification for it however is provided by 
the following 

(iv) Corollary. Data as in (i). Then there exists a 
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2 
maximal C solution r:I —• IR of (3.2), vhich is unique among 

2 
all C solutions of (3.2) if a(rQ) = 0 , resp. vhich is non-
constant and is at least unique among all non-constant 
solutions of (3.2) if * 0 . Moreover this solutions of 
(3.2) is the unique maximal solutions of (3.1) (see (3.5)). 

[Proof: Trivial consequence of Proposition (ii) and 
(3.6). ] 

Warning: 
a) The C w ODE (y' ) 2 + y 2 = 1 vith y(0)=l and y' (0)=0, 

which describes the "lav of energy" for the harmonic 
oscillator (with a certain initial state), has tvo different 
maximal C W solutions r = cos and r = 1 (on IR) , but here we 
have a ( r

Q ) = - 1 * 0 . Therefore in the last Corollary one 
can get in general no better results with respect to the 
uniqueness. Moreover the last example demonstrates that the 
"law of energy" alone is not sufficient to single out the 
proper mechanical process solving (3.1), but that one has in 
addition to take in account the initial acceleration a(rQ): If 
a(rQ)=0, then the constant solution resp. if a(rQ)*0, 
then (not the constant but only) the non-constant maximal C 2 

solution of (3.2) describes the mechanical process determined 
by (3.1). 

b) For the first order ODE (3.2) (law of energy for (3.1)) 
it makes of course sense to speak of C 1 solutions. However in 
Corollary (iv) it is essential for the "uniqueness" part to 2 . admit only C solutions: Because already in the preceding 
example a) of the harmonic oscillator there exists e.g. a 
whole family (r_)_ „ of maximal C 1 solutions r :IR —> IR of L T€1K X 

2 
the corresponding law of energy ((3.2) with 2U(x) := x , 
rQ=l, vQ=0), namely 

rT(t) = 1 for t—x and ir̂ .(t) = cos(t-x) for tax. 

However r is lacking the second order differentiability at 
(exactly the point) xelR+, where we have a "jump" in the 
acceleration: lim r"(t) = 0 > -1 = lim r"(t) . Therefore 

x t* x f x T 

these C solutions of the law of energy correspond to 
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"mechanical processes" (not admitted as "solutions" in (3.1)) 
with sudden passages from rest to harmonic oscillation. 

For a non-constant process of one degree of freedom 
r:I —> IR with prescribed (acceleration a resp. its) potential 
U and initial state (r0,vQ) as in (3.0) one can get a priori 
(i.e. expressible only in terms of the data U,r Q,v 0) 
qualitative information about I and the behaviour of r without 
knowing an explicit quantitative description of r (which in 
general is accessible only through numerical methods for 
solving an ODE). For the convenience of the reader we give 
here a rather detailed summary of these (essentially 
vell-Knovn) results without proof (a complete proof of which 
was presented by the first author in his course on "Mechanik" 
1982/83 at Koln) in the following 

(v) Theorem. 
Data: ¿s in (i), in particular 

(3.70) Eq - U(r0) * 0 , 
and we make the additional assumption (thereby excluding a 
constant process r:I —> IR solving (3.1), see (3.6)): 
(3.7) (Eq - U(rQ),U' (rQ)) * (0,0) . 

Consider the following subsets of M: 

(3.80) 

M, := {peMIE. > U(p)} and 
(*> °(<) 
M q := {peM|E0=U(p) and U'(p)*0> , 
consequently for every peMQ there exists celR+ vith 
]p-c,p[ £ M and . ]p,p+c[ £ M if U'(p) > 0 . R < + ) (<) 

From (3.7g), (3.7), (3.8g) follows, that r Q e M +uM Q and 
therefore 

(3 8) •( H : = connected component of the point r Q in M +uM Q 

^ is the largest subinterval of M +uM Q (£M) vith r QeH. 

For this interval H one obtains from (3 .7), (3.8Q),(3.8) 

(3.90) infH =: r m i n ^ r Q ^ r m a x := supH and r m i n < r m a x , 
(3.9) H° = ]r m i n,r m a x[ « 0 and (E0-U)(H°) £ R + := ]0f»[ , 

i 3' 9-) r m i n e M ^ t E 0 = U ( W a n d ( rmin 6 H « U'< rmin> < 0>J ' 
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(3.9 J r eM * [E =U(r ) and (r eH <=> U' (r ) >0) ] . v +' max L 0 v max' v max * max' 'J 

Finally we define the numbers *c_e[-oo,0] and r+e[0,oo] by 

*»ax d x 
(3.10) x := - f dx —• and x := [ 

J V2 (E_—U(x) ) + J V2 (E_—U(x) ) 
min 0 

in particular (see (3.9)): 
(3.100) (t_=0 r m. n=r 0) and (z+=0 r m a x=r Q), hence x_<t+, 
and one has the useful information: 

(3.10J 

(3.10+) { 
r . min 6 M\H r . min e M and U' <rmin> = o , 

r . m m € M and T_ = - oo 9 

r max 6 M\H r max e M and U' (r ) 1 max' = 0 , 
rmax 6 M and T + = + oo • 

2 
Assertion. If r:I —» IR is the maximal C solution of 

(3.1) (see (3.5)) for the given data U:M —> IR , 
(r0,vQ) e MxIR of (3.0), (3.7), then: 
a) C r:I —> IR ii 
i 3- 1 1) { H of IR, in i 

ls an open mapping of I onto the subspace 

particular r(I) = H . 
b) For every xel the following is true: 

(3.120) r ( r ) e { r m i n , W « r'(x)=0 

(3.12) <=> I is symmetric and r is even v.r.t. z, 

i.e. <t (I) = I and r«crT = r , 

where o~T(x) := 2x-x : IR —» IR is the reflection of R at x. 

c) With sgn(vQ) := j ^ iff vq j < o one 9 e t s : 

l1» I f H " 3 r m i n ' W ' t h e n V ° a n d 

(3 13) •[ r : I — > H is biJective vith r' (I) s sgn(vQ)-IR+ 
[ and I = sgn(vQ)•]t_,t+[ . 

<2> I f H = [rmin'rmaxt ' t h e n 
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zQ := sgn(v Q ) - T _ e I , moreover r(x0) = r m i n , 
(3.14) r' (In] —oo,Tg[) £ R_ , r' (Ia]t0,oo[) £ R + 

and I = s g n ( v Q ) • ] 2 t _ - t + / t + [ . 

<3> I f H = ]rmin'rmax3 ' t h e n 

x 0 := sgn(v0)-T+ € I , moreover r(zQ) = r m a x , 
(3.15) • r' (lA]-oofT0[) £ R + , r' (In]r0#«B[) £ R_ 

and I = sgn(v Q)•]r_, 2 t + - t _ [ . 

<4> I f H = ^rmin'rmax^ ' t h e n 

i * \ ( I = R , z ,t eR and r:R —» R is periodic 
I o' I ~ 

[ with smallest period 2T := 2•(^ -z ) e ^ , 

moreover one has for all Tel: 
r(z) = r . <=» r(x+T) = r x ' min v ' max 

( 3 . 1 6 ) => r' (] t , t + T [ ) £ R + and r' (] t - T , t [ ) £ R , 
finally: (r(x)fr'(T)) = (r0,vQ) <=> r e (2T)-Z . 

2 4. C o m e s in IM̂  

We use the notations introduced in § 2 and we study now 
2 

the geometry of certain subsets of IM̂ , which will later occur 
as the possible orbit sets of a point moving in a central 
force field with a Newton's potential, see below § 6. 2 (i) Definition. A subset K of IM is called a conic 

2 K 
(section) in M iff K is a connected component of the 

2 3 intersection of IM (£R , see (2.5)) with the zero-level set 
-1 K . 3 . P ({0>) of a polynomial function p:R —» R , which is 

homogeneous of degree two. 
-1 . 3 [Evidently p. ({0}) is a quadric cone in R and recalling, 

2 . 
that W Q is the affine hyperplane xQ=l, we see that in case k=0 
this definition coincides with the concept of a conic in 
classical Euclidean geometry.] 

(ii) Definition. 
2 Suppose K is a subset of IMk. Then we define: 

2 
a) K is called an ellipse iff there exist points p,pe(MK 

and a number aeR with 
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(4.1q) 0 s f := i-d^p,^ < a < ¿-7rK (see (1.9)), 
such that 
(4.1) K = {q€W^|dK(q,p)+dK(q,p)=2a} . 
Correspondingly we call p and p the focal points of K, a the 
major semiaxis of K and f (see (4.1Q)) the focal length of K. 

2 
b) K is called a hyperbola iff there exist points p,peWK 

and a number aeIR with 
(4.2q) 0 < a < f := J dK(p,p) < J-ir̂  (see (1.9)), 
such that 
(4.2) K = {qeIM^|d)c(q,p)=d)c(q,p)+2a} . 
Correspondingly we call p and p the focal points of K, p the 
closer one, a the major semiaxis of K and f (see (4.2Q)) the 
focal length of K. 

In order to compare ours with the classical notation of a 
hyperbola, we point out, that the set (4.2) is only one branch 
of the classical hyperbola 
(4.2^ R = {qeN^ I I d^ (q,p)-d'K (q, p) I =2a} , 
namely that branch, which faces p. 

c) K is called a semihyperbola iff there exists a point 
2 . 2 pelM̂ , a unit speed geodesic y:IR —> IM̂  and a number aeIR with 

(4.3q) - i-7TK < a < f := §-5y(p) + (see (1.9)), 
such that 
(4.3) K = {qeM^|Sy(q)-dK(q,p)=2a} , 

2 where 5 :IM —> IR denotes the oriented distance from r(IR), f K 2 defined by 6 := 6«f with 5 from (2.76) and feG being the 
2 K 

orientation preserving isometry of IM , such that f.r(O) = u JC * 
with u from (2.73). Correspondingly we call p the focal point 
of K, ? the focal line of K, a the major semiaxis of K and f 
(see (4.3Q)) the focal length of K. 

d) K is called a horoellipse iff k<0 and there exists a 
2 2 point pelMR, a unit speed geodesic yrlR —» IMr with y(0)=p and 
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a positive number selR+, such that 

(4.4) K = {qew2|dK(q,p)+|3r(q)=2s} , 
2 where (3 : I M — » IR denotes the BUSEMANN function of r (see 

7 fC 

(2.47), (2.47^)). Correspondingly we call p the focal point 
of K, n the axis of K and s the pericentral distance of K (see 
below (4.101)) . 

e) K is called a horohyperbola iff «0 and there exists a 
2 2 point P eW K > a unit speed geodesic y:IR —> IMk with r(0)=p and 

a positive number selR+, such that 

(4.5) K = {qeM^|dK(q,p)-<3y(q)=2s} , 
2 where fi :IM —> IR denotes the BUSEMANN function of y (see 'r K. ' \ 

(2.47), (2.47^)). Correspondingly we call p the focal point 
of K, r the axis of K and s the pericentral distance of K (see 
below (4.11 )). 

(iii) Remarks. 
a) The Euclidean parabola is obviously a semihyperbola (see 
(ii)c)) with the special data K=0 and a=0. Oppositely one 
checks easily, that in case K=0 every semihyperbola can be 
interpreted as a (Euclidean) parabola (with the same focal 
point). 

b) In case K>0 hyperbolas and semihyperbolas can be 
interpreted as ellipses. To see this, choose for the set (4.2) 
as focal points p and -p and as major semiaxis i-ir^-a, for the 
set (4.3) choose as focal points p and (I/V'K) • (0) and as 
major semiaxis -i-Ti^-a. 

c) We can unify the metric descriptions of conics in (ii) 
2 

as follows: If the subset K of IMk IS an ellipse or a 
hyperbola or a semihyperbola or a horoellipse or a 
horohyperbola (see (ii)), then there exists a maximal unit 2 2 speed C path c:IR —> IM̂  of constant oriented curvature 
(see § 2.viii), such that 

(4.6) K = {q€M2|d K(q,p)=dist(q (c(IR))} , 

2 . 
where peW R is the focal point of K resp. in case K is an 
ellipse any of the two focal points resp. in case K is a 
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hyperbola the closer focal point. This path c of constant 

curvature has the following image: 

If K is an ellipse or a hyperbola, then c(R) is the 1-dim. 

distance sphere of radius two times the major semiaxis and 

with center at the other focal point p. In case of the ellipse 

both focal points are contained in the same connected 
2 . . . . . 

component of WK\C(IR) (namely in the "interior", i.e. in the 

bounded one, if /c*o) . In case K is a hyperbola the two focal 

points are contained in different connected components of 
2 . . . . . M^\c(IR) (hence p lies in the "exterior", i.e. in the unbounded 

one, if K S O ) . 

If K is a semihyperbola, then c(IR) is the (2a)-distant 

parallel curve to the geodesic, which is the focal line of K, 

and a being the major semiaxis (see § 2.viii.c,d). 

If K is a horoellipse, then c(IR) is the 1-dim. horosphere 

(3 ({2s}) , and if K is a horohyperbola, then c(IR) is the 
* . -1 1-dim. horosphere ({-2s}), where y is the axis and s the 

pericentral distance of K. These two cases differ only with 
2 respect to the connected component of MK\C(IR) which contains 

the focal point p. 

Remark. The idea to characterize the conics uniformly as 
2 

sets of points in IM̂  which have equal distance from a certain 

"leading curve" and one "focal point" (not on that curve) is 

used (for K=-1) by LIEBMANN (see [Li],p. 184-186) , however the 

uniform interpretation of the "leading curves" as curves of 

constant curvature is lacking in LIEBMANN's book. 
(iv) Proposition. 

2 
a) Let K denote the ellipse in IM̂  (see (n)a)) with focal 

length f, major semiaxis a (see (4.1Q)) and focal points e and 

fu(2f,TT) (see (2.330) , (2.640) , (2.67)) . Then K is the regular 
(J 2 C submanifold of W^ defined by the equation (see (1.2), 

(2.33), (2.640), (2.64), (4.1Q)) 

sinR(2a) + sinK(2f)-cos(pu 

(4.7) cotK(r) = z.sin^a+fj.sin^a-f) 

(for K=-1 see [Li],p.184) and the function r measuring the 
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distance from e has the following values on K: 
(4.71) r(K) = [a-f,a+f] (see (2.33),(4. 1Q)) . 

2 
b) Let K denote the hyperbola in (see (n)b)) with 

focal length f, major semiaxis a (see (4.2Q)) and focal points 
e and fu(2f,0), e being the closer one (see 
(2.33q),(2.64q),(2.67)). Then K is the regular Cu submanifold 

2 
of IMk defined by the equation (see (1.2), (2.33), (2.64Q), 
(2.64), (4.2q)) sinK(2a) + sinK(2f)-cos(pu (4.8) cotK(r) = 2•sin (f+a)•sin (f-a) 

distance from e attains on K the minimum (see (2.33),(4.2Q)): 
(for k=-1 see [Li],p.184) and the function r measuring the 
distance from e attains c 
(4.81) min(r|K) = f-a . 

2 
c) Let K denote the semihyperbola in IM̂  (see (n)c)) with 

focal length f, major semiaxis a (see (4.2Q)), focal point e 
(see (2.33Q)) and focal line y orthogonal to the geodesic 
exp (R-u) through exp (2f-u) (see (2.64 )). Then K is the (J 2 regular C submanifold of IMr defined by the equation (see 
(1.2),(2.33), (2.640) , (2.64), (4.3Q)) 

cos (2a) + cos (2f)-cos<p 
{4'9) C O t

K
( r ) * n/c(2f) - sin^(2a) 

(for k=-1 see [Li],p.185-186) and the function r measuring the 
distance from e attains on K the minimum (see (2.33),(4.2Q)): 
(4.91) min(rlK) = f-a . 

2 
d) Suppose k<0 and let K denote the horoellipse in M^ (see 

(ii)d)) with focal point e (see (2.33Q)), pericentral distance 
s (eR ) and axis exp (-xu) (see (2.64 )). Then K is the (J 2 regular C submanifold of WK defined by the equation (see 
(1.2), (2.33), (2.640), (2.64)) 

V̂ -(C-S , -V^K • S e + e • cos(p 
(4.10) cot (r) = = • H v ' kv ' 2-sin (s) K v ' 

(for >c=-l see [Li],p.186) and the function r measuring the 
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distance from e attains on K the minimum (see (2.33),(4.2Q)): 
(4.10^ min(r|K) = s . 

2 
e) Suppose K<0 and let K denote the horohyperbola in W R 

(see (ii)e)) with focal point e (see (2.33^)), pericentral 
distance s (eIR ) and axis exp (xu) (see (2.64-)). Then K is 

(j 2 the regular C submanifold of IMr defined by the equation (see 
(1.2) , (2.33) , (2.64q), (2.64)) 

—Vr—£ • S , • s e + e • cos ip 
(4.11) c o t ^ r ) = 2 . s i n ( s ) " 

K v ' 

(for k=-1 see [Li],p.186) and the function r measuring the 
distance from e attains on K the minimum (see (2.33),(4.2Q)): 
(4.11^) min(r|K) = s . 

Remark. The equations (4.7)—(4.11) evidently have a common 
functional structure, namely they all can be written as linear 
equations in cotK(r) and cospu: 

(4.12) cotR(r) = a + /3-cospu vith a e 1R+ and /3 e [0,co[ . 

We will use this unified version of the defining equations 
below in (v) for our further investigations on the geometry of 
the subsets introduced in (ii). 

Sketch of the proof. Using the "K-geometric functions" 
introduced in § 1 it is possible, to formulate the 

2 
trigonometry in M k uniformly for all values of K. For example 
the "law of cosines" takes the form (see [Fe],p.55): 

(4.13) 

0 K(c) = *I>K (a) C O S R (b) + <l>K{b) - sinK (a) sin^ (b) cos (r) , 
if arb,ce]0,n [ are the length's of the sides of a 

2 
geodesic triangle in IM^ and t is the (inner) angle 
opposite to the side c. 

Ad a): Due to the definition (ii)a) and our assumption, K 
is the set of all solutions of the equation 

(4.14x) dK(e,..) + dK(fu(2f,TT),..) = 2a . 

If we define (see (2.66),(2.16),(2.64 )) 
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- . . 2 then <p is not continuous on IM^fe), nevertheless (see (2.662), 
(4.142)) : 

(4.142) cos«<p = cos(Pu , hence cos(n-ip) = - c o s . 
Using (4.13) and (2 . 33),(2.64Q) , (2.67), (4.142) we get, that 
the solutions of (4.14^) are exactly the ones of the equation 

#K(2a-r) = 2f)cosK(r) + ^(r) -
- sin (2f) sin (r) cos (71-̂ ) . $ K K 

Moreover, using (1.3), (1.5), (1.7), (1.6), we get 

(4.145) ifiK( 2a-r) = 2sin^ (a) coS(c (r) - sinK(2a)sin^(r) + ^(r) 
and 
(4.146) sin^(a) - sin^(f) = sinK(a+f)•sin^(a-f) . 

Because of (4.1Q) and (1.3), (4.143), (4.145), (4.14g) the 
solutions of (4.14^) are exactly the ones of (4.7). 

Finally (1.2'),(1.9) imply, that 

(4.147) c o t
K strictly monotonic decreasing on ]0,ti [. 

We get from (4.7) and (2.16),(4.14 ),(4.14 ) ,(4.14?) , that r|K 
can attain extremal values only at the points of Knexp^ (IR • u) , 
and this intersection can be computed explicitely from (4.14^ 
and (2.67), which leads to (4.7^. 

Ad b): Similar to a). 
Ad c): Due to the definition (ii)c) and our assumption, K 

is the set of all solutions of the equation 
(4.151) Sy(..) - dK(e,..) = 2a , 

2 
where 7 is a geodesic in IM̂  orthogonal to expK(R-u) and 
S (e)=2f. Without loss of generality we assume u = e and 9 -1-
7(0) = expK(2f-u) . Then the isometry f from the definition 
(ii)c) is in the sense of (2.20),(2.27) induced by the matrix 

(4.144) 
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1 0 0 
0 0 1 
0 - 1 0 

cosK(-2f) -KsinK(-2f) 0 
sinK(-2f) cosK(-2f) 

cosK(2f) /csinK(2f) 0 

0 0 

hence according to (2.76) and the definition of S 

sinK(2f) -cosK(2f) 0 

(4.152) sin «S = x_of = [sin (2f) xn - cos (2f) • x ] IIM 

From (2.33),(2.64),(2.16),(2.5),(2.3),(2.1)) and our special 
choice of u we get 

.2 
(4.153) 

cos (r) - x.llM (cv ' O K 
cos® 

sin (r) K ' % r) = Vx?+x?|IM2 

= (x./v^x^) HM^(e) ru 1' 
Now we can prove, that the solutions of (4.15^) 
the ones of the equation 

are exactly 

(4.154) sinK(r+2a) = sinK(2f)cos^(r) cos^ (2f ) cos (ip) sin^ (r) . 

In case kso this follows from (2.33) ,(4.152),(4.153) and the 
injectivity of sinR (see (1.1)). The case k>0 requires some 
additional arguments (but we will not use it in this article). 
Because of (1.5),(4.3Q) the solutions of (4.154) are exactly 
the ones of (4.9). (4.9^ is proved analogously to (4.7^. 

Ad d),e): If we introduce for brevity 

-, . ( -1 if K is a horoellipse 
' 1 'I +1 if K ii 

and if we define 
is a horohyperbola , 

y(x) := expK(xu) (M (4.162) . „ , * k % < - K. 

we can prove the assertions d),e) simultaneously, namely: Due 
to the definition (ii)d),e) and (2.33) and our assumption, K 
is the set of all solutions of the equation 
(4.163) r - ff-fl , . = 2s Hr (o-x) 
where according to (4.162)f(4.16^,(2.64 ),(2.47),(2.474), 
(2.33), (2.64) we have 

(4.164) î^^ ^r(cx)^ = cosK(r) - v^k • sin^ (r) • cos(pu 

and according to (2.40) and k<0 
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<4.165) e a V r i ? - ( r " 2 s ) = e- 2 c r V r^' s[cos K(r) + ^ic • sin^ (r) ] . 

Because of (2.40), (4.16 ), (4.164), (4.165) and k<0 the 
solutions of (4.163) are exactly the ones of (4.10) resp. 
(4.11). (4.10^) and (4.H^) are proved analogously to (4.7^), 
using (2.50). 

(v) Proposition. Suppose aelR+ and ß€[0,co[ and consider the 
level set (see (1.2),(2.33Q),(2.33) , (2. 64 ),(2.64)) 

(4.12') K := [cotK(r) - (a+ß-cos<pu) ]-1({0}) s lM2(e) . 

Then the following is true: 
M 2 ,. _ _ » ( K is a 1 -dim. regular C submanifold of IM , 

' l ' l 2 " [ connected and closed in IM^. 

(4.172) If K is the ellipse as in (iv)a), then K is compact. 

(4.17) 

K is a conic (see (i)), more precisely it is 

isometric to one connected component of the 
2 3 intersection of IM^ with the quadric cone in IR 

(see § 2.i, (4.12')): a 2-(x 2+x 2) = ( x ^ x ^ 2 . 

(4 18) / K a integral manifold 
\ dr - 3-e vith 9 := ß-sin2(r)-

fold of the Pfaffian form 

sin 

(see (2.33), (2.62q), (2.62), (2.64), (4.12')). For the last 
function we find (see (4.18),(4.12')): 

(4.19) ?2|K = SorlK with S := sin^-[|S2-(cotK-a)2] . 

For further applications we specify the constants a,(3 in the 
latter function & for the different metric types of conics, 
which we had introduced in (ii): 
If K is the ellipse as in (iv)a), then the function & of 
(4.19) can be written as 

2 [ ( " c o s
K(2a) & — Sin • 1 ; r-=-t • -ZT k L^sinK(a+f)•sinK(a-f) 
sinK(2a) . 2 1 

+ sin (a+f)-sinK(a-f)-cot,cJ'SlrV " XJ 

(4•19^) 
+ 



426 P. Dombrowski, J. Zitterbarth 

If K is the hyperbola as in (iv)b), then the function § of 
(4.19) can be written as 

(4.192) 

2 rr cosK(2a) 
5 = sin [fe K L[sinK(f+a)-sinK(f-a) 

sinR(2a) x 2 -| 
+ sinR(f+a) -sinK(f-a)

 coticJ s^n/c " ' 

If K is the semihyperbola as in (iv)c), then the function & of 
(4.19) can be written as 

(4.193) 

. 2 rr " 2 K " s i V 2 a > 
9 = «nK-[[. sinK(2f) - sm K(2a) 

2-cos (2a) ^ -| 
—. . ._ . • cot -sin - 1 s in (2f) - s in (2a) K.) K J K K 

If K is the horoellipse as in (iv)d), then the function § of 
(4.19) can be written as 

(4.194) v = + _ ^ Z _ ! . c o t ) c ) . s i n ^ - l] . 

If K is the horohyperbola as in (iv)e), then the function & of 
(4.19) can be written as 

(4.195) » = sxn2- [ f + SlH^iT-cotJ - m j - l] . 

We go back now to the general situation of (4.12'): 
2 Suppose c:I —> IM̂  is a path with the following 4 properties: 

(4.201) c(I) s W2(e) , c is C2 and 6(c)2 > 0 

(see (2.33q),(2.620)), 

(4.20) ((r»c)')2 = S(r.c)'0(c)2 

(see (2.33),(2.620),(4.19)), 

(4.20_) there exists rel with c(t) e K and c(t) e T . .K 2 C (T) 

(see (4.12'),(4.17 )) and 
either [|9=0 and r«c constant] or (4.203) i or [|3*0 and r»c non-constant] . 

Then it follows from (4.20 ),(4.20),(4.20 ),(4.203), that 
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(4.21) c(I) £ K , 
2 . 2 in particular c is a C map into the submanifold K of IM . 

1 2 . Oppositely every C path c:I —> W K with c(I) £ K is a 
solution of the differential equation (4.20). 
With respect to the condition (4.20^) we make the remark: 

(4 20 ) •[ I f T e I f u l f i l l s C( T) € K n expK(IR u) , 
4 [ then (4.20) implies c(r) e . 

Remark. In [Li],p.192-193 was proved the special case k=-1 
of the following result (valid for all ksIR, see [Zi^],p.163): 

The ellipse of (iv)a) is isometric to one connected 
2 component of the intersection of IM with the quadric cone in 

3 K 
IR defined by 

2 2 
X1 X2 2 (4.17) + T — = 

tan^(a) tan^(b) 

(see § 2.i, (4.12') and let b denote the minor semiaxis of K, 
. 2 . 2 . 2 . 2 . 2 defined by sin (a) = s m (b) + sin (f) - Ksin (b)sin (f) . and IC K IC IC IC 

b€]0,a]). 
The hyperbola of (iv)b) is isometric to one connected 

2 component of the intersection of IM with the quadric cone in 
3 . K 

IR defined by 
2 2 

X1 X2 2 (4.17) ^ T~T = x0 
tan*(a) sin^(b) 

(see § 2.i, (4.12') and let b denote the minor semiaxis of K, 
2 2 2 2 2 defined by sin (f) = sin (a) + sin (b) - <sin (a)sin (b) and ^ R N fv N 

be]0,f[), and moreover the other connected component of this 
intersection is the image of the second branch of the 
classical hyperbola (4.2^ under the same isometry. 

Sketch of the proof. From (1.2'),(2.65) we get 

dtcot^rj-ia+e-cos^) ] = -sin^2 (r) • (dr-? • 0) 

with 9 as in (4.18). This implies (4.18) and (because of 
(2.62),(4.12')) the property of K being a 1-dim. regular C u 

2 
submanifold of M r. Using (2.64^ and (4.12') we conclude 
(4.19) and by (4.19),(1.2),(1.6) we get 
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$ = sin 2 • [ [ (/32-oc2+ic) + 2a-cot^]•sin2 - 1] . 

Now we compare (4.7)-(4.11) with (4.12') and use the 

identities from § 1 to get (4.19^-(4.19 g). 

Because of (1.2'),(1-9),(4.14) we have the 

(inverse C u function arcot := (cot l]0,7i [) _ 1 , 

. rtn / ]}/—<, co [ if KSO, defined on | J .f K>0> 

and we consider the C u path c:I —> IM2 (see (2.67)) 

(4.22) c(x) := f u(arcot K(a+p-cos(x)),x)11 , where 

I is the connected component of zero in the maximal 

domain of definition of f u(arcot^ (oc+£• cos(x)), x) . 

Now we check, that {te [-tt,7T] I a+/3 • cos (t) ecot^ (] 0 , [ ) } is an 

interval which is contained in I, and we use this and (4.12'), 

(4.22),(2.672) to prove 

(4.22^) c(I) = K , hence K is connected. 

2 According to § 2. iv isometries of IM are restrictions of 
3 K 

certain linear mappings of IR and therefore they map conics of 
2 

IM̂  again onto such conics. Hence we may assume for the proof 

of (4.17) without loss of generality u~* = e^ . Then we get 

from (4.15 ) and (1.2),(4.12'), that K is contained in the 
, 2 2 2 2 quadric cone given by the equation a •(x +x ) = (xn-/3x..) 2 2 i t u i 

Then we prove, that (x^+x^lK > 0 and conclude (together 

with (4.22-)), that K is a connected component of the 
. . . 2 intersection of this quadric cone with IM^. 

From (4.12'), (4.18),(4.19) we get immediately the validity 

of (4.204) and that any C 1 path c with c(I)£K satisfies the 

ODE (4.20). We now return to (4.22) and prove 

(4.22^) c is the universal covering of the 1-dim. manifold K 

(see (2.67), (2.672), (4.12'), (4.22), (4.22^-(4.22 )) and 

moreover, that 

(4.22^) e ( c ) = 1 and r»c satisfies (4.20 ). 

(4. 2 2 2 ) 



Planetary motion in a space of constant curvature 429 

2 
Let c:I —> WK be a path with the properties (4.20^), 

(4.20),(4.202),(4.203). 
If fi=0, then K is a distance sphere with center e (see 

(2.33),(4.12')). Hence (4.202) and r»c constant imply c(I)£K. 
Suppose now (3*0, choose rel as in (4.202) and consider 

(4.22g) (pQ := ¿o(u,Ue(c(T))) e I and 
rx • (4.22?) <pc(x) := j 9(c(t))dt : I —> R 

(see (2.64Q) , (2.66), (2.67Q) , (2.67) , (2.673), (2.675), (4.202), 
(4.22.) , (4.22-)) . Then we conclude from (4.20.), that ip is a 2 1 C 
C diffeomorphism from I onto the interval i>c(I) of IR, and we 
prove (using (4.12' ),(4.18) , (4. 19), (4.20), (4.20 ), (4.221), 
(4.22) , (4.22 )-(4.22 )) : 

- 1 2 r«co (X+(PQ) and r»c°<pc both are non-constant C 
solutions of the ODE initial value problem 
(4.228) (y' ) 2 = s(y) Vlth y(0) = (r.c) (<PQ) , y (0)=(r.c)' (ip0) , 

where *§ is as in (4.19), and moreover r«c<> (x+v>Q) is a maximal 
solution of this problem. 

Hence r«c = r°c° (tpc+<pQ) by the uniqueness result § 3.iv. 
Using (2.67Q), (2.67) , (2.67x) , (2.673) , (2.675), (4.22), (4.22g), 
(4.227) we conclude 

(4.22g) c = Co (<PC+<PQ) , 

hence c(I)£K according to (4.22^). 

5. Motion of a point-like particle with p-central 
acceleration, KEPLER'S second law and NEWTON'S potential 
in the space IM" of constant curvature KSIR (n^2) 

(i) Data and notations for § 5: As in § 2 and nelN, n^2. 

(ii) Motion of a point-like particle in IM̂  with p-central 
acceleration. 

Suppose 

(5.0) we have fixed a point p in w" 

(e.g. the position of the sun). 
a) Let r := d (p,..):w" —> IR denote the continuous 
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function (Cu on w"(p):=M"\{p,-p}) measuring the distance of 
n n il points of M k from p in the intrinsic metric dK:IMKxlMK —• R of 

the riemannian manifold m" of constant curvature m (efft) (see 
(2.15),(2.16)). Then according to (2.15) , (2.12) for every 
point qeMn(p) there exists a unique unit speed geodesic 
rq:IR —» M^ with rq(0) = p and rq(rp(q)) = q (the "light 
ray" from the sun to q), and we call 

(5.1) Rp(<l) : = yq(rp(q)) e T qw" the p-radial direction at q, 

and — as for (2.34) — one proves 
(5.2) R = grad(r ) is a Cu unit vector field on w"(p). 

P P * 
b) Let be given selNu{oo,cd}, s£2, and let (see (5.0) , (2.16)) 

(5.3) I be an open interval of IR and c:I —> IM^(p) a C s path 

describing the motion of a point-like particle in w"(p). 
Definition (see (2.10)). 

(5.40) c:I —» w"(p) has p-central acceleration 
iff 7„e e IR- (R oC) o p 

[i.e. for every time tei the acceleration vector (Vgc)(t) of c 
is proportional to the p-central direction Rp(c(t)) at the 
position of the particle at this time t], and which evidently 
is equivalent to saying (choose a:=g(Vsc,R<>c) ) : 

c:I —> IMn(p) has p-central acceleration 
K S-2 iff there exists a C function a:I —> IR with (5.4p) 

(Vgc)(t) = a(t)-Rp(c(t)) for all tel, i.e. 
c is a C2 solution of the ODE V„c - a-(R °c) = o d p 

[In the terminology of dynamics this means (the particle 
having unit mass), that the acceleration of c is induced by 
the time-dependent p-central force field a-Rp:IxlM"(p) —» TIM" 
((t,q) h* (a(t),Rp(q)) .] 

c) Remark. If f^G^ is an orientation preserving isometry 
of w" such that f(p)=e (see (2.0)), then evidently c:I —> w" 
is a C s path in w"(p) iff f»c:I —» is a C s path in w"(e) 
and c has p-central acceleration iff f»c has e-central 
acceleration. [Because one checks (using f(p)=e and f 
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distance preserving), that r p = r
e
o f ' therefore (see (5.2)) 

f*Rp=Re<>f, finally Vg (f oC) *=f*Vac. ] 

Since g" acts transitively on w" (cf. (2.27)) one sees, 
that studying the motion of a point-like particle with 
p-central acceleration is — up to an isometry — the same as 
studying the motion of a point-like particle with e-central 
acceleration. Therefore from now on we will consider only 
motions of the latter type, in which case we have with the 
notations of (2.33) , (2.34): r =r and R =R, and (5.4 ) is 

* * © g P 
reduced (for selNu{oo,(j}, ss2) to: 
For every Cs path c:I —» w"(e) := IM^\{e,-e} one defines: 

(5.4) 
c has e-central acceleration V„c e IR- (Roc) 

S—2 
There exists a C function a:I 
vith V^c = a-(R°c) . 

d) Since i:w"(e) <—>IRx(Rn\{o}) (see (2.5) , (2.16)) the 
ODE of (5.4) admits the following extrinsic version: For the 
(5.5q) C s path (y0,y) :=ioc:I Rx(IRn\{o}) (t *-»(yQ(t) ,y(t)) ) 

the ODE (5.4) is equivalent to: 

J Yq = ((y'0)2+«y',y'>) y 0 - K-a-v<y,y> 
(5-5) { y" = ((y'0)2+K<y ,y'>) y + a y 0 <y,y>"1/2-y , 

which is (even a:I —> IR might be only C° !) locally 

Lipschitzian in (y0,y/y'0/Y') <= . Therefore we get 
from the well-known uniqueness theorem: 
If a:I —» R is a C° function, tQeI, G a neighborhood of t Q 

in I and c,c:G —» wj?(e) are two C2 path's satisfying 

(5.6) 
Vgc = a•(Roc) , Vgc = a-(Roc) and 
c(tQ) = c(tQ) , ¿(tQ) = c'(tQ) , 
then c and c coincide on a neighborhood of t Q in I. 

(iii) Theorem (Motions of point-like particles in m" 
(n£2), which have e-central acceleration, are "plane".). 

2 
Suppose ns2, I is an open interval of IR, Oel and the C 

path c:I —» w"(e) (see (2.16)) describes the motion of a 
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point-like particle, c having e-central acceleration (see 
2 2 (5.4)). Then there exists a C path c o : I —* 

(eQ:=(l,0,0)) which has eQ-central acceleration and a distance 
• . . . 2 n preserving isometric immersion f: ( ^ z ^ ) —* (MK»©) onto a 

2-dim. totally geodesic submanifold P of IM̂ , such that 
c = f°cQ , in particular c(I) is contained in the 2-dim. 
"plane" P of w". 

Remark. This theorem justifies, to study motions of 
point-like particles with e-central acceleration in IMn with 

2 K 
n*2 only in the 2-dim. case of IMk. 

Proof. Denote by 

(I-a 3-dim. vector subspace of IRn+1 containing 
( 5- 7) I « c(0) and c' (0) (:=i^c(0)^, see (2.11)). 
Then (see (2.17)) one has: 

(5.8) 
P := IMnnV is a 2-dim. totally geodesic submanifold 
with inclusion j:P '—> IMn and vhich is Cu isometric 

2 K 
to IM̂ . 

We want to show first 
(5.9) c(I) s P , 
and we introduce for that purpose the following subset H of I: 
(5.10) H := {telIc(t)eP and c ( t ) e j ^ T c P > . 
By the choice of P (see (5.7),(5.8)) it follows OeH and by its 
definition (5.10) and continuity of c,c it follows that H is 
closed in I. For proving (5.9) it suffices therefore to show: 
(5.11) H is open in I. 

Ad (5.11): By hypothesis and (5.4) there exists a 
(5.12) C° function a:I —> IR such that V^c = a-(R»c) . 
Choose next (see (5.8) and (5.7) for "eeP") a 
(5.13) C w isometry h:(IM^,e ) —> (P,e) with e : = (1,0,0) €|R3. 
Now, since h : W

K —» p is an isometry, since P is totally 
geodesic in and because of (2 .15) , (2 .14 ) it follows that 

2 n 
(5 14) { f : = ^°h: — > (IM

Kie) i-s a distance preserving 
[ isometric Cu immersion, 

in particular r Q := dR(e0,..) = dK(e,f(..)) = r«f , 
therefore if (see (2.34)) 
(5.15) RQ:=grad(r0) resp. R:=grad(r), then f^R0 = R«f . 
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Suppose now t QeH. Then there exists by the existence theorem 
for ODE's (cf. (5.5)) a neighborhood G of t Q in I and a 
(5.16)/ C2 path C ( ) : G - » » £ ( e 0 ) with v a6 0 = a-(R 0oc 0) and 

{ f(c0(tQ)) = c(tQ) , f,i0(t0) = ¿(t0) 
(c(tg)eP and °( to) e^* T

C(t ) P b y (5.10)!). Therefore (see 

(5.14) and use, that h is isometric, j totally geodesic): 

V f o C 0 > ' ( 5
=
1 4 ) V ^ h o C 0 > ' = vaJ* h*°o = ^ a h * 6 o = 

(5.17) = = - i 5 j«.(R.f.c 0) 

and f(c0(t0)) = c(tQ)' , f ^ 0 ( t 0 ) = ¿(t0) 
From (5.12),(5.17) and (5.6) follows but: c and f«cfl coincide 
on a neighborhood of t Q in I, i.e. without loss of generality 
(G so small that) 
c|G = f°c = j»h«c , in particular c(G)sh(c (G))£P and 

(5.14) 0 

for all teG: ¿(t) = j*(h^ 0(t)) e j*Th ( t )P = j*T c ( t )P . 

This proves GSH (see (5.10)) and therefore (5.11). 

Therefore (5.9) is true, and since P is by (5.8) a regular 
submanifold of M n it follows from (5.9) that there exists a k v ' 

(5.18) C 2 path c ^ I —> P with c = j »c^ , 
2 

and if we define (see (5.13),(5.18)) the C path 
- 1 2 (5.19) c Q := h <>c^:I —» IM̂  , then one has c = f°c0 

(see (5.14),(5.18)) and one proves (using (5.19),(5.15), 
(5.12)) analogously to (5.17) f*( v

ac Q
) = f * ( a ' ( R 0 ° C 0 ) } ' 

from where one concludes by the immersion property of f (see 
(5.14)) that vg co = a"( Ro° cO^ ' i-e. c Q has eQ-central 

acceleration. This, together with (5.14),(5.19) finishes the 
proof of the theorem. 

(iv) The law of acceleration for motions of poiiTt-like 
',' 2 particles in IM̂  expressed in polar coordinates. 

2 Applying the orthonormal frame field (R,JR) on IMK(e) of 
§ 2.vii we are going to give now a (more explicit, but still 
intrinsic) transcription of the ODE of (5.4), which will be 
useful for further discussions of the properties of the 
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solutions of (5.4). First we have for any C path 
2 

c:I —• w K( e) with S€lNu{oo,(j} and s^2 (see (2.61)): 

c = g(R«c,c) • (R«c) + g(JR<>c,c) • (JR«c) , 

therefore (see (2.34) , (2.60), (2.62 )) 

(5.20^) c = (r«c)' • (Roc) + sinK(roc)•0(c)•(JRoc) , 
from where we get by covariant differentiation (using the 
V-parallelity of J (see (2.59)) and (2.62) for computing V^R): 

Vac = '[(roc)" - sin|c(roc)cos(c(roc) (0(c))2]-(R«c) + 
+ [sinK(roc)(0(c))' + 2(roc)'cosK(roc)0(c)]•(JR»c). 

2 
Since sinK(r) is strictly positive on w

K( e) (see (1.9), 
(2.141),(2.16)), the ODE of (5.4), which characterizes c as a 
path having e-central acceleration, becomes via (5.20) 
equivalent to the following ODE system: 

( (5.21^ (roc)" - sinK(roC) cosK(roC)•(0(6))2 = a , 
(5-21) | (5.212) (0(c))' + 2• (r»c)' •cotK(r»c) •0(c) = 0 . 

Here the C S function r»c:I —> ]0,ttk[ measures the distance 
of the moving particle from the center e, whereas (due to 
(2.70)) 

s-1 (5.22) 0(c) :I —» IR is the (C ) angular velocity of Ue«c, 
1 2 i.e. of the direction map U »c:I —> T IM , which assigns to 

. . . e e * 1 2 each tel the initial vector U »C(t) := r+(0) e T IM of the 6 L & K 
unique unit speed geodesic — > (the "sunbeam") 
joining e = rt(0) (the "sun") with c(t) = ?t(r°c(t)) (the 
"planet" at the time t). 

(v) Theorem (The constancy of the scalar angular momentum 
and Kepler's second lav for motions of point-like particles in 
1 2 TeIMK having e-central acceleration). 

2 
Suppose I is an open interval of IR and let the C path 

2 c:I —» IM (e) (see (2.16)) describe the motion of a point-like 
K. 2 . . particle in MR(e), having e-cen,tral acceleration, i.e. (see 

(5.4)) there exists a 

(5.23) C° function a:I —» IR with V c = a-(Roc) . 

(5.20) 
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2 

Let r := dK(e,..):MK —> R denote the function, which 
measures the distance of the points of IM̂  from the center e 
(see (2.33)) and let 0 denote the polar angle (Pfaffian) form 
on IM^(e) (see (2.621)). 

Assertion. 
a) The so-called scalar angular momentum (function) of c 

2 
(5 24) / sinK(r®c) • 6(c) :I —> IR is constant on I, 

[ say of value LeIR. 
b) Since (see (1.9),(2.14 )) 

(5.25) (sinK»r)(M^(e)) £ R+ 
the two scalar ODE's (5.21) (which transcribe the vector ODE 
of (5.23) into radial and angular components, see (5.20)) are 
equivalent to the following two ones: 

cos (r»c) 
(5.26x) (roc)" ^ i/ = a 

sinK(r«c) (5.26) 
(5.262) 0(c) = ^ 

sin (roc) K 
which — in contrast to (5.21) — is no more a "coupled" system 
of ODE's. 

C ) ("Kepler's second law") : Consider the 

(5.27) 
2 2 C map F:IRxI —» with 

F(s,t) := expK(s-(r°c) (t) • (U oc) (t) ) for (s,t)elRxI. 

[Geometric interpretation of F: For every fixed tel the 
2 map F(..,t):IR —» M is the constant speed geodesic y ... of 2 K 

M with (0) = e and (1) = c(t) . Hence for any K C {T-J j C (t) 
AeIR and all t,tel with tsf the map F|[0,A]x[t,t] describes 

2 2 the C surface in which is "swept out" by the geodesic 
segments f o r T varyi-n9 [t,t] (with 
7_,_»([0,X]) being "A-homothetic" to the geodesic segment c it; 
r_,_>([0,l]) joining e and c(x) as shortest path).] 

' 2 If <r denotes the area form of IM̂  (see (2.60)) and if we 
define for XelR+ the function A^:{(t,t)elxl|tst} —> IR by 



436 P. Dombrowski, J. Zitterbarth 

(5.28q) for t,fel with tat, A (t,t) := f F*cr 
J[0,A]x[t,t] 

2 
vhich is the oriented area of the C surface FI [0,A]x[t,t] 
in M2, then for all t,tel with t*t: 

(5.28) 

AA(t,t) = 2L-J 
€ sinj(|-(r»c)(r)) 

sir£((roC) (r)) 
dz = 

A2L (t-t) if K = 0 
if \=2 2L-(t-t) 

not constantly proportional to (€-t), if 
(k*0 and A*2 and r<>c not constant) . 

Commentary. The last result only in case K=0 happens to 
express (with A=l) KEPLER'S second law, namely: "The shortest 
geodesic segments ([0,1]) joining e and c(x) sweep out 
within equally long time intervals equally large oriented 

2 
areas in M •" This law has (according to (5.28)) for arbitrary 
fcelR to be substituted by: "The two times lengthened geodesic 

'c(x) 
starting at e and having C(T) as their 
within equally long time intervals equally large 

C ( T ) 
midpoint, sweep out 

oriented 
areas in IM [From this result, where one has A=2, 

case 
the 
K = 0 classical "KEPLER'S second law" (i.e. A=l) follows in 

(without the explicit result (5.28)) directly via the property 
all M-(AN) = a • (N) for the Lebesgue measure 

. . 2 2 M -measurable sets N in the Euclidean 2-space a e 
This version of KEPLER'S second law was 

and 
3 

stated 
[Kij ] ,p. 9 for KeIR* and proved in [Li],p.234 for ic=-l 
conservative forces. 

in 
and 

Proof. (5.24) follows by differentiating sinK(r«c) e(c) 
and using (5.21^). From (5.24) and (5.25) one obtains (5.262). 
Substituting the value of 0(c) from (5.262) into the equation 
(5.21^ gives (5.26 ). 

Ad c): Choose a unit vector u e TX- Let p,<p:\R IR 
denote the first resp. 
get the (see (2.13)) 

second projection of IR onto IR. Then we 
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(5.29) -I ~ m a p f : = e x P K ( P ' ( c o s ( » > ) - u + sin(<t>) • Ju) ) :R2 —> M 2, 
I e-1 g. r«f = p on [0,TI [x[R. 

The comparison of (5.29) with (2.67) yields 

( 5 . 3 0 ) f|fl = f u with ® = ]0,7IK[XIR S R 2 , 

and therefore we obtain from (5.30),(2.62 1),(2.67 1),(2.67 3): 
(5.31 ) (f*6) |® = d^lfl resp. (f*cr) |® = (sin K(p) • (dp^dip) ) |fl. 
But since f*9 and dip resp. f*cr and sin (p) • (dp*d<p) are real-

2 2 analytic differential forms on R and fi open in IR (see 
(5.30)) it follows from (5.31 ): 
(5.31) f*0 = dp resp. f*(r = sin R(p) • (dpAdp) on R 2 . 
Suppose now (see (2.68Q),(2.68)), that we have chosen a 

. / C 2 lift c: I —> fl of c: I —» IM2 (e) 
[ vith respect to f u:H —> ^ ( e ) , i.e. c = f u»c . 

Then due to (5.32 Q),(5.30),(2.68 ): 
U e»c = cos((p«c)u+sin((p«c)Ju , 

which together with (5.29) and (5.27) implies 
(5.32 ) I F( s' t> = f°g(s,t) , where 

1 \ g(s,t) := (s-(roc)(t),(p.c)(t)) for (s,t)€RxI, 
therefore (if x:RxI — • R , z:RxI —> I are canonical), then 

2 g is C vith p<>g = x- (r«c«T) and <p°g = <p°c«x , 
(5.32) thus d(pog) = (r«c)(r)dx + x-(r»c)' (x)dx and 

d(^)og) = T*d(<p°c) = 8(c(t) )dr , 
(2.681) 

consequently we get from (5.32^),(5.31),(5.32): 
F*(t = g* (sin^ (p) • (dpAdp)) = 

= sin (x-(r°c)(x))•(r»c)' (x)-6(c(x))•(dxAdx) = 
= 2-g|[sinJ(|- (r»c) (x) )] = ± (dxAdx) . 
* 1.3),(5.26 2) sin K((r.c)(r)) 

From the last equation, from (5.28Q) and FUBINI'S theorem the 
assertion (5.28) follows immediately. 

(vi)Motions of particles in IM̂  with accelerations induced 
by a potential. 

a) If (M,g) is any C s Riemannian manifold (S€lNu{oo,(j>, 
SI2) , 7 its LEVI-CIVITA covariant derivative, then we say that 

2 the acceleration 7 g c of a C path c:I —> M is induced by a 
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potential iff there exists a C1 function 

{7 defined on an open neighborhood U of c(I) in M, 
such that Vgc = - (gradV)»c , 
lr and any C function —> R (lskss) satisfying (5.33) is 
k 

called a (C ) potential for Vgc. - From (5.33) follows the 
well-known Lav of energy: 
(5.34) Ec := i-g(c,c) + (V°c):I —> R is constant, 

where the functions Ec , i-g(c,c) , on I are called 
then total, kinetic, potential energy of c respectively. 
[(5.34) follows just by differentiating Ec and using then 
(5.33). Moreover (5.34) motivates the (at first sight strange) 
choice of the minus sign in (5.33): Gains (resp. . losses) in 
kinetic energy should be compensated by losses (resp. gains) 
in potential energy so as to balance the total energy.] 

b) If in particular (M,g) is IM̂  and r := d (ef..):w" —> IR 
the function measuring the distance of the points of Mk from e 
(being Cu on IMn(e), see (2.33 ) , (2.33)), then one says, that 

^ 2 n the acceleration of a C path c:I —> IM (e) is induced by a 
k K k (C ) potential only depending on r, iff there exists a (C ) 

function (l^k) of one real variable 
V:H —> R , defined on an open interval H of R 

(5 35) containing r(c(I)), such that V°r is a potential for 
VQc, i.e. (see (5. 33), (2. 34)) : 
VQc = - [grad(V»r) ] »c = - (V' <> (r»c)) • (R«c) . 

2 
The comparison of (5.35) and (5.4) shows for any C path 
c:I —> W^(e) : If the acceleration of c is induced by a 
potential (V»r) depending only on r, then c has e-central 
acceleration [with a := g(Vac,R°c) = - (V' <> (r®c)) ). 

c) With respect to the question, whether the inverse of 
the last conclusion is true, we have the following 
information: Suppose, that selNu{oo,u>}, ss2 and that we are 
given a 
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C s path c:I —• vith e-central acceleration 

(5 36) ( s e e ( 5- 4)) an& us assume in addition, that 
(roc)' has no zero's on I. Then V gc is induced by a 
C potential V»r only depending on r. 

[A construction of such a V is very direct: First, by 
assumption, roc:I —» IR is a C s diffeomorphism onto an open 
interval H := r(c(I)) of IR. If a := g(V c,R«c) , then 

-1 . s-2 -a° (r«c) :H —> IR is a C function and if V denotes any 
s-1 primitive function of it, then V:r(c(I)) —> IR is a C 

function with - V' °(r«c) = a = g(V c,R»c) , which together 
s-l with (5.4), (5.35) shows, that v»r is a C potential for 

va¿.] 

d) Remark. The result c) guarantees, that for any 
arbitrary C s path c:I —» w"(e) with e-central acceleration 
and for every (open!) connected component G of 
{tell(roc)' (t) *0} the acceleration of c|G is induced by a 
potential V.«r depending only on r. However in general for two 
such components G and S the ranges of definition r (c(G)) 
resp. r 1(c(G)) of V Q resp. V^ overlap and V G and Vg don't fit 
together, in particular Vg«r and. Vg«r are not restrictions of 
a potential for Vgc on I [e.g.: The C path c:I —> IMK(e) 
with e-central acceleration, defined by 

2 
c(t) := (l,l+sm(l)t -sm(t),0) for telR, has only one zero t Q 

of (roc)', and (because 2sin(l)>l) tQe]0,l[. So 0 and 1 are 
from two different connected components of {telRI(roc)' (t)*0}, 
but c(0) = c(l) and (^a¿) (0) * (Vgc)(1) , which excludes 
in view of (5.33) the existence of any potential for V gc on 
all of IR whatsoever!]. Nevertheless: If e.g. c:I —» w"(e) is 
C w, then the zero's of (roc)' are isolated and hence any 
compact subinterval [a,b] of I is covered by only finitely 
many of these connected components G, i.e. the study of 
c|[a,b] is then reduced to the study of finitely many C u 

path's with accelerations induced by C w potentials depending 
only on r (see (5.35)). 
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(vii) Newton'spotential in_ one.# _ 
only on r and having divergence free gradient)r 

a) If (M,g) is a n-dim. C s (sa2) Riemannian manifold, 7 
its Levi-Civit* covariant derivative, then for every C 

k-1 
(lsk^s-l) vector field XeX(M) its C divergence (function) 
divX is defined by 

divX := trace(VX) (VX viewed as (1,1) tensor field) 
n 

(5.37 ) = E g(?E X,E.) locally, 
i=l i 

if (E1,...,En) is an ON frame field. 
)t 

Then for every C function X of M one has 

(5.37) div(AX) = (X'X) + AdivX = g(gradA,X) + AdivX 

k+1 
and for any C function ^ of M one defines its Laplacian A^ 
by 
(5.37 ) A(fr = divgradtfi = trace(Hess^) . 

(5.37q) 

b) All classical authors agree that "the" distinguishing 3 
property of Newton's gravitational potential V in E \{o} is 
the fact, that it first depends only on r ( = distance from the 
origin), i.e. V = V»r with decreasing V:IR+ —» IR and that 
it has divergence free gradient, i.e. (see (5.37^) 
AV = A(V°r) = 0 , and which proves to be equivalent to the 3 
condition that there exists kelR̂  , such that for all peE \{o} 
the "force vector" -(gradt?)(p) points towards the origin (i.e. 
the center "attracts") and the length of the "force vector" 2 
llgrad (V»r) II (p) equals k divided by the normalized area r(p) 
of the sphere through p with center o. 

This definition is adopted always for En\{0> with 
arbitrary n^2 and was for the hyperbolic space wf1(e) already 
proposed by J. Bolyai between 1848 and 1851 (see [Bo],p.156, 
line 7-) in order to study motions of celestial bodies in 
hyperbolic 3-space. It was then extensively used by 

3 W. Killing (see [Ki2],p.7) for MK(e) with <c*0, later on (about 
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1905) it was discussed widely by H. LIEBMANN (see e.g. 
[Li],p.224, § 49, section 1) and applied by many others: We 
shall follow this convention and define for n^2 (see (1.9) and 
see (2.36) for the volume of spheres in IM^): 

There exists kelR+, such that the following holds: 

, . . (Gradient of N E W T O N ' S potential V in IMn(e) ) = 1 n K = k-sin^ (r)-R 

(k including the gravitational constant and the mass of the 
attracting "sun" at e). If we denote therefore by 

(5.381) Vn:]0,nK[ —» IR a primitive function of k-sin^~n 

(for an explicit description of such a primitive function Vr 

for arbitr 
trivially 
for arbitrary n see e.g. [Sch2],p.l53 resp. (Ki2],p.27), then 

(5.38) grad(Vn°r) = (V^ r)gradr = k•sin^-n(r)•R . 
t (5.38),(2.34) 

Now we have due to (2.35): V R = cot (r)•[X - g(X,R)•R] . 
X K 

Therefore choosing a local orthonormal frame field (E1,...,E ) 
of IM^(e) with E 1 coinciding with R, then due to (5.37Q): 

(5.39q) 

n 
div(R) = I cotK(r)g(Ei-5ilE1,E.) = 

1 1 n 2 = cot (r)- I (l-«t,) = (n-l)-cot (r) 
i=l 1 1 K 

Consequently one computes using (5.38),(5.37),(5.39q),(2.34), 
(1.1) easily 

(5.39) A(Vn«r) = divgrad(Vn°r) = 0 , 

and (5.38),(5.39) prove, that V °r satisfies m.m. the 
3 

classical requirements for the N E W T O N ' S potential in E \{o}. 

From (5.38^) and (1.2') we get in case n=3 explicitely: 
(5 40) I N e h t o n ' s potential V3°r = - k-(cot^T) on IMK(e), 

with V 3 = - k-cotK and V'3 = + k-sin^2 
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(5.41) • 

2 . . . . (viii) C paths with^ accelerations admitting N E W T O N ' S 

3-dim. potential. 

2 3 According to (vi)b) every C path c:I —> M R(e) with an 

acceleration induced by N E W T O N ' S potential V 3 » r has e-central 

acceleration, hence [according to theorem (iii) and the 

following remark (of § 5)] c is a "plane" curve and it can be 

studied through a 

2 2 C path c:I —» (M^(e) with an acceleration induced 

by N E W T O N ' S (3-dim.) potential 

V»r = - cot (r) :IM2 (e) — I R . 
K K _ 

Here: keIR , V := - k-cot , V' := k-sin , and 
-2 therefore a = g(V ac,R»c) = - k-sin^ (r<>c) . 

Combining this statement (5.41) with (5.2 6) (which is via 

(5.21),(5.4) eguivalent to c having e-central acceleration 

with a:=g(7 a¿,R»c)) gives the following 

2 3 

(ix) Proposition. A C path c:I —» W K(e) has an 

acceleration induced by N E W T O N ' S 3-dim. potential - k-cot R(r) 

with kelR+ iff there exists an L€lR such that c is congruent in 

IM^(e) to a C 2 path c:I —> W 2(e) («—» IM^(e)) which satisfies 

the ODE's: 
(5.42) (roc)" = sin~ 2(r»c)•[cot K(r«c)-L

2 - k] , 

(5.43) 6(c) = L-sin~ 2(r°c) . 

Moreover, if (5.42),(5.43) are satisfied, then we get from 

(5.33) the lav of energy: 

(5.44) |-[((ro C)')
2 + sin 2 (r»c) • e (c) 2 ] - k - c o t j r o c ) = 

= E = constant c 

(x) In the Euclidean case one more constant of the motion 

in N E W T O N ' S (3-dim.) potential is known, the so-called Lenz 

vector. This concept has the following generalization for 

arbitrary K (see [Zi^jp.Sl): 

2 

If LeIR and c:I —> W K(e) is a solution of the ODE's 

(5.42),(5.43), then the Lenz vector (see (2.16),(2.57),(5.24)) 
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(5.45) lc := - L-J«c - [k + /c-L2-tanK(^) ] • (UeoC) :l Te«J 

is constant on I, where (see (2 .16) , (2 . 57) , (2 . 62Q)) 

(5.46) «c := (r»c)'•(Ue«c) + sinK(r.c)-e(i) • (JU^c) :I —• TJM2 

can be characterized by the V-parallel-transport along 
exp (x-U (c(t)))I[0,1] mapping «c(t) onto c(t) for tel. 

3 
6. Motion of a point-like particle in IM̂  with acceleration 

induced by NEWTON'S gravitational potential 
Now we are able to classify all possible orbits in 

NEWTON'S 3-dim. potential and to discuss the geometry of these 
orbits. According to § 5.iii,viii we have to consider only 
"plane" curves and hence we have the following 

2 (i) Data: We use for the 2-dim. standard space IM̂  of 
constant curvature icelR the notations introduced in § 2, in 

2 2 particular e := (1,0,0) e IM̂  , r := d (e,..):M
K —* R t h e 

function measuring the distance from e and 0 the polar angle 
2 2 form on IM (e) :=M \{e,-e>. K K ^ 

Suppose c:I —» IM̂  is a maximally defined path describing 
the motion of a point-like particle, c having an acceleration 
induced by NEWTON'S 3-dim. potential, i.e. (see § 5.vi-viii) 

2 c:I —> IM is a maximal solution of the ODE K 

(6.1) Vac = - [grad(-k-cotK(r))]oC = - k-sin"2(r»c)•(R°c) 
with a fixed positive number k€lR+. 

Then I is an open interval of IR, 
(6.1^ c is a C°° path vith c(I)£IM2(e) 
and according to (5.24) , (5.44) we introduce the numbers E,LelR, 
where 
(6 2) / E tota-1 energy of c, i.e. the constant value of 

\ J-[((r»c)')2 + sin2(r»c)-0(i)2] - k-cotK(roC) , 

ĝ 3j / L is the scalar angular momentum of c, i.e. the 
[ constant value of sin2(r»c)•9(c) . 
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(ii) Proposition. Data as in (i) and consider the function 
I 2 

( 6 . 4 ) U : = —-
2 • sin 2 " * - c o V ] O f V 

(see (1.1),(1.2),(1.9), (6.3)) . Then (see § 3.i,(6.2),(6.4)) 

(roc) is a maximally defined process of one degree of 
(6.5) freedom with the (effective) potential U and total 

energy E, 

and this function U (see (6.4)) has the following properties: 

( 6 . 6 1 ) 

(6.62) 

(6.63) 

(6-64) 

(6.65) 

U is a C u function on ]0,7tk[ 

U(x) 

U(x) 

x* 0 
J - co i f 
\ + oo i f 

L=0 
L*0 

X71 — { + 71 I -K V. 

00 i f K>0 
k V̂ JC i f KiO ' 

i f L = 0 , then U is strictly monotonic increasing, 
2 i f k<0 andf L tk/V^K, 

then U is strictly monotonic decreasing, 

(6.66) 

(6.6?) 

othervise, i.e. if L * 0 and [ « 0 ^ L , there 
exists exactly one critical point p of U i n ] 0 , t t ^ [ 

and U is strictly monotonic decreasing on ] 0 , p ] , 

strictly monotonic increasing on [p,nK[ and attains 
at p its absolute minimum of value 

, 2 
min(U) = -

2 • L 
- + l.T? 2 + 2 L 

Remark. For the later applications of (6.61)-(6.6^) it is 
helpful to "see" these properties of U by drawing a picture of 
the graph of U. 

Proof. According to § 5.ix the ODE (6.1) is equivalent to 
the ODE-system (5.42),(5.43), where (using (6.4)) the equation 
(5.42) can be written as 

(6.7X) ( r o c ) " = - U' ( r » c ) , 

and using (6.3),(6.4) the law of energy (6.2) takes the form 

( 6 . 7 2 ) E = ((r»c)' ) 2 + U(roc) 
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Since c is a maximal solution of (6.1), we can conclude, that 
r»c is a maximal solution of (6.7^). This completes the proof 
of (6.5). 

From (6.4) and (1.1),(1.2),(1.1'),(1.2' ) we get immediately 
(6.61),(6.62),(6.63) and 

(6.73) [U' (t) = 0 <=> k = L 2 cotK(t)] for all t€]0,7i [. 

This implies: In case L=0 resp. in case « 0 and L sk/V^ic 
there exists no critical point of U. Otherwise there exists 
exactly one critical point p of U in ]0,7iK[ and (using (1.6)) 

(6.7 ) U(p) = - + f-L 2 . 
4 2 • L 

The preceding remarks imply (6.64) and (6.65) (using (6.6^), 
(6.62)). Moreover we investigate the rational function 

(6.8l) /(x) := - + |-x . 

k 2 K Since f (x) = + ^ , we have 
2 • X 

(6.83) k^O t strictly monotonic increasing on IR+, 

(6.84) k<0 =» { strictly monotonic increasing on lOjkv'^ic]. 
From ( 6 . 6 3 ),(6.7 4), ( 6.8 1 ) - ( 6.8 3) we get U(p) < lim U(x) and 

x»nK 

thereby we can complete the proof of (6.6,). 
6 

(iii) Proposition. Data as in (i). 
a) The constants E , L (see (6.2), (6.3)) fulfill: 

s bounded <=> 
[(k>0 and E arbitrary) or (ksO and E<-k-v^ic) ] 

2 
Ìr«c i 

2 (6.10) r°c bounded =» L s 
k . _ 

" 2E l f K = 0 ' 
(E + / E 2+Kk 2) if K*0 . 

b) If L*0 and r«c is bounded (see (6.3), (6.9)), then the 
following is true: 

If (6.10) holds with "=", then the equation U(x) = E 
i (6.4),(6.2)) has exaci 

is constant of this value. 
(see (6.4), (6.2)) has exactly one solution in ]0,rr^[ and r»c 
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If (6.10) holds with "<", then the equation U(x) = E 
(see (6.4), (6.2)) has in ]0,ttk[ exactly two solutions 
rmin < rmax a n d r ° c i s P e r i o d i c w i t h (r-c)(I) = [r m i n,r m a x] 
and has the behaviour as indicated in (3.16). 

c) If L*0 and r°c is unbounded (see (6.3),(6.9)), then the 
equation U(x) = E (see (6.4),(6.2)) has exactly one solution 
rmin 6 an(* r ° c ( r° c) i1) = [rmin'°°^ an<* 
behaves as described in (3.14), in particular (r»c)(t) —» œ 
for t —» infl and for t —» supl. 

Proof. 
Ad a): Because of (6.5) we can apply § 3.iii,v to r°c. 

Hence we can choose 

(6.11 ) i -0 e I a n d r0 : = ( r ' C H V V i t h 

~«c constant or sup(r»c)(I) > r Q > inf(r»c)(I) 

and get (see (6.4),(6.11 ), (6.2)) 

(6.112) U(r^) s E and (r°c not constant <=» u(r0) < E) 

and (see (3.9+) for and (3.9 ) , (3.8),(3.8Q) for "<="): 

(6.11_) r°c bounded 3- r r U(p) a E . 3 pe[r0,7iK[ 
Using (6.6^)-(6.67) we see the equivalence of the right hand 
sides of (6.113) and (6.9). 

Now suppose roc is bounded. Then according to (6.9) the 
right hand side of the inequality in (6.10) is positive. Hence 
(6.10) holds for L=0 and we can assume L*0. Then we conclude 
from (6.61)-(6.67),(6.81),(6.9),(6.112): 

(6.114) E £ t(L2) vith I as in (6.81). 

Now we consider (see (6.8^)-(6.83)) 

UIR+) if K —0 
(6.8 ) I := •{ "r _ 

1 (fl ]0,k/v^ic]) if (C<0 

(6.85) ? = 

' ̂  (X + v42+/ck2) if K>0 , 
2 

- !hIIR- i f K = 0 ' 
i (X + \/x2+Kk2) | ]-œ,-k-V^K] if K<0 . 
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Then (6.114) implies because of (6.8^-(6.8g),(6.9): 

L 2 S J(E) . Because of (6.85) this proves (6.10). 

Ad b),c): Because of (6.5) a direct consequence of 

§ 3.iii,v and (6.6^-(6.6y), notice 

(equality in (6.10)) E = minU . 

(iv) Proposition. Data as in (i), assume L*0 and consider 

the function 

(6.12) 9 := s i n j . f g f + ^ - c o t ^ - s i n 2 - i] . 

Then c is a C00 solution of the first order ODE 

(6.13) ((r«c)') 2 = ?(r«c)-9(c) 2 and 8(c) 2 > 0 

(see (2.33) , (6.12), (2.62Q)) . 

Remark. In [Li] (case K = - 1 ) and E . WHITTAKER'S classical 

book on analytical dynamics (case /c=0) the equation ( 6 . 1 3 ) is 

formulated as (|^)2 = v£(r) . 

Proof. This is a consequence of the law of energy, namely 

((r«c)' ) 2 = 2E + 2k-cot (r»c) - sin 2(r«c)•9(c) 2 = 
( 6 - 2 ) K / 

= [2E + 2k'cot (r»c) - L -sin (r)]»c , 
(6.3) K K 

where in case L*0 

2E + 2 k c o t (roc) - L 2 • s i n - 2 ( r ) = L 2 • s i n - 4 ( r ) S(r) 
(6.12) K 

and (6.3) completes the proof. 

(v) Theorem (All radial orbits in N E W T O N ' S 3 -dim. 

potential). 

Data as in (i) and in addition 

(6.14) 8(c) = 0 . 

Assertion. 
, 2 

a) There exists a unit speed geodesic r:IR — » IM̂  with 

7 ( 0 ) = e and c(I), £ y {] 0, ttk [) . 

b) Suppose t Q 6 1 and r Q : = (r.c) (tQ) , r'0: = (r«c)' (tQ) . If 

(6.15) KiO and r 0 a v^r-g) := /2k- [cot K(r 0) - v^ic] , 

then roc is strictly monotonic incrGasin^ with (r°c)(t) —> co 
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for t —> supl . In all cases different from (6.15) one has 
(r»c)(t) —> 0 for t —> supl , i.e. the particle falls into 
the "sun". 

Hence the number v^i^g) is the "escaping velocity" (for 
the distance r Q) and this effect occurs only if (c*o. 

Sketch of the proof. 
Choose r(x) := expR(x-Ue(c(tQ))) with a t g d , check 
E £ supU(]r0,nK[) <=> [JCS 0 and I r'Q I ̂  (rQ) ] 

(see (6.2),(6.4),(6.15)) and apply § 3.v, § 6.ii. 

(vi) Theorem (All bounded non-radial orbits in NEWTON'S 
3-dim. potential, KEPLER'S first and third lav). 

Data as in (i) and in addition 

(6.16) 0(c) * 0 and r°c bounded. 

Assertion. 
2 

a) ("KEPLER'S first law"): c:I —» IM^ is periodic (in 
particular I=IR) and c(I) is an ellipse (see § 4.ii.a) with one 
focal point at e. 

b) Between the "geometrical" parameters of this ellipse — 
major semiaxis a and focal length f — and the "physical" 
parameters of c — total energy E and scalar angular momentum L 
— the following relations hold: 
(6.17) E = -k-cot (2a) 

2 K 

(6.18) |^-sinK(2a) = sin^(a) - sin2(f) . 

c) ("KEPLER'S third law") : The periodic time T of c (i.e. 
the smallest positive period of c) satisfies 

2 
(6.19) T 2 = -^jp— cosK(a)-sinj(a) . 

With fixed major semiaxis a the periodic time T is a strictly 
monotonic decreasing function of the curvature constant K. 

Remarks. 
a) For KEPLER'S second law see above § 5.v.c. 
b) These results were essentially formulated for (celR* in 

[Ki2],p.7-9 and proved for K=-1 in [Li],p.234-236. 
c) We try to give a numerical estimate for the influence 
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of the curvature of the universe onto the'planetary year, i.e. 

the periodic time of our earth. The major semiaxis of the 

elliptic orbit of our earth around the sun is well known and 
6 13 equals approximately a - 150 10 km = 1,5-10 cm . Due to 

28 [HE](preface) the radius of our universe is of size 10 cm . 
3 If our universe would be the M with K>0, then we can assume 

3 28 n K = diam(W K) a 10 cm , hence 

( 6 . 2 0 p := a/n K s 1,5-10~ 1 5 . 

For the version ( 6 . 1 9 ) of K E P L E R ' S third law one finds the 

power series expansion 

( 6 . 2 0 2 ) 
T ( a ( K ,

2 3. 

2 2 2 2 1 7 2 3 [1 - (K*z) + | - ( K a V - ^ ( t c a V + ...] 

which leads in case K>0 to the approximation (see (6.20^) 

(6.203) T(a,<c) - T(a,0) • [l - if 0 < rcp « 1 . 

Using T(a,0) - 365 days = 3,1536-106 sec and (6.20^,(6.20 3) 

we get: 

(6.204) lT(a,K) - T(a,0)| S 7 , 5 8 1 0 ~ 9 sec < 10~ 8 sec , 
3 

i.e.: If our universe is an IM with /c>0, then the "planetary 

year" of our earth differs from the Euclidean value at most by 

10 - 8 sec ! 

Proof. 

Ad a),b): First we get from (6.16),(6.9) 

(6.211) k > 0 or [ k s 0 and E < - k - v ^ ] 

and from (6.16),(6.3) 

(6.212) L * 0 . 

Because of (6.21^ the equation (6.17) has exactly one 

solution a in lO/j'^C and, since r«c is bounded, we conclude 

from (6.10) , (6.17) (using (1.1),(1.2),(1.6),(1.7)) for this 

solution 

L 2 ? (6.213) i ^ - s i n ^ a ) s sin^(a) 

with equality in (6.213) iff equality in (6.10). Because of 
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(6.213) and a€]0,^-7iK[ .the equation (6.18) has exactly one 
solution f in [0,a[ and f=0 iff equality in (6.10). Hence 
(usifig (1.2) ,(4.14,),(6.21_)) we have found unique numbers b Z 
a,felR with the following three properties: 

(6.214) 0 * f < a < 

2E " c o s
K( 2®) 

(6.215) = s i n^ ( a + f ).sin^ja-f) ' 

2k sinK(2a) 
( 6 . 2 16 ) 72 = sin(a+f)•sin(a-f) ' Li K K 
These numbers a,f satisfy (6.17),(6.18) and fulfill (because 
of (iii)b)) 

(6.217) f=0 r«c constant. 

Moreover we compute using (6.4),(6.2lg),(1.1),(1.2),(1.5), 
(1.7),(6.17) 

(6.21g) U(a-f.) = U (a+f) = E vith U from (6.4). 

Because of (6.16), (6.21), (6.214), (6.21?), (6.21g) the 
proposition (iii)b) yields 

(6 21 ) •[ I = R a n d r° c Peri°dic vith 
9 \ (roc)(I) = [a-f,a+f] . 

Hence we can choose 

(6.22^) x e R vith (r»c)(x) = a-f = min(r«c) 

and (see (2.16)) 

(6.222) u := Ue(c(T)) e TglM̂  vith z from (6.221) . 

2 Now let K denote the ellipse in IMk (see § 4.ii.a) with 
focal length a, major semiaxis a (see (6.214)-(6.21g)) and 
focal points e and fu(2f,7 
Then due to § 4.iv.a we have 
focal points e and fu(2f,7r) (see (2.33Q) , (6.222) , (2 .67)) . 

(6.22,) | K = t C O V r > " («+P-COS,,u)] -({0}) -1, 
'3' . 

vith aelR+, /3e[0,co[ and O=0 *=> f=0) 

and according to (4.19^,(6.215),(6.21g) 

(6.224) the functions & from (4.19) and (6.12) coincide. 
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Moreover (4.7),(4.7 ), (6.22 ),(6.22 ) imply 
(6.22g) C (T) e K n exp^flR u) 
and (6.3),(6.212) yield 
(6.22,) 6(c)2 > 0 . 

D 
We can conclude from (6.lx),(6.21?),(6.21g),(6.223)-(6.22g) by 
using proposition § 4.v 
(6.22,) f S K 

[ and c is an open mapping into the 1-dim. manifold K 
(since c is a submersion into K because of (6.22.)). o 

We now introduce (see (6.21g),(6.221)) 

rx • (6.23^) <pc(x) := J e(c(t) )dt . 

Then (see (6.1^ , (6.22g) and use (6.3),(6.21g),(6.214),(1.9) 
for surjectivity) 
(6.232) (PC:IR —> R is a C00 diffeomorphism 
with (use (2.673), (2.675) , (6.22 )) 
(6.233) <PC = ^o(u,Ue»c) mod 271 . 

Hence we can introduce the number (see (6.231),(6.232)) 
(6.234) T := (¥>c)_1(sgn(e(6)) -271) - (i>c)_1(0) e R + 

and find (use (2.16) , (6.222) , (6.23^-(6.23 ) ) : T+T is the 
first moment in time after z, at which c intersects the 
geodesic segment expK(xu)I]0,nK[. Using (6.22^),(6.22?), 
(6.223),(4.71) we conclude (r°c)(T+T) = (r«c)(x) = a-f . 
Hence according to (6.21g) and proposition (iii)b) the number 
T must be a period of r»c and because of (6.3) a period of 
0(c) too, which implies (see (6.23^,(6.23^) <pQ(x+T) = <Pc(x) 
mod 2ti. Now we can conclude: 

(6.235) c is periodic vith smallest positive period T. 
Hence c(R) = c([0,T]) is compact and with (6.22?), (6.223), 
(4.171) follows c(IR) = K . 

Ad c): Because of (6.235),(6.234),(6.23 ) the periodic 
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t i m e T o f c c a n b e c o m p u t e d b y 

T = I ^ " ( ( i » ) " 1 ) ' ( t ) d t | = | [ 2 7 7 ( — i - . (i> ) _ 1 ) ( t ) d t | = 
J n u J n a /r*\ 

= - r i - f ( s i n 2 ( r ) 
( 6 . 3 ) | L | 0 l i 

2 

? T T T ' i 

0 ( c ) 
27T , _ 

»CO( » ) A ) ( t ) d t = 
T ' 
= l / ( c o t 2 ( r ) + / c ) , . 

4 s i n 2 ( a + f ) s i n 2 ( a - f ) 
— d t = 

^ Q [ s i n K ( 2 a ) + s i n K ( 2 f ) c o s ( t ) ] 2 + 4 < s i n ^ ( a + f ) s i n ^ ( a - f ) 

L ( 6 . 2 2 ? ) , ( 4 . 7 ) , ( 6 . 2 2 3 ) , ( 2 . 6 6 2 ) 

(1/vlc)-coSy
2(a)-siny2(a)-29 

(6.21 g) 

w i t h 

" 4 s i n ^ / 2 ( a + f ) s i n ^ / 2 ( a - f ) 
5 : = J — : 2 . 2 t~2 d t • JQ [ s m K ( 2 a ) + s i n R ( 2 f ) c o s ( t ) ] +4»c s in^ ( a + f ) s i n £ ( a - f ) 

H e n c e f o r a p r o o f o f ( 6 . 1 9 ) we h a v e t o s how 

9 = tt- s i n R ( a ) . 

T h i s i n t e g r a t i o n i s t h e o n l y p a r t o f t h e p r o o f , w h i c h r e q u i r e s 

d i f f e r e n t a r g u m e n t a t i o n i n c a s e k>0 r e s p . k=0 r e s p . k < 0 . F o r 

d e t a i l s s e e [ Z i ^ ] , p . 3 6 - 4 0 . 

B e c a u s e o f ( 6 . 1 9 ) , ( 6 . 2 1 4 ) , ( 1 . 9 ) i t s u f f i c e s f o r t h e p r o o f 

o f t h e m o n o t o n y s t a t e m e n t t o s h o w : 

( 6 . 2 4 ^ 
g | [ c o s x ( y ) s i n ^ ( y ) ] < 0 on 

n : = { (/c , a ) e R 2 | a>0 and k<(^-)2} . 2, a 

S i n c e ( s e e ( 1 . 9 ) , ( 6 . 2 4 1 ) ) 

( 6 . 2 4 2 ) c o s x ( y ) > 0 and s i n x ( y ) > 0 on n , 

i t s u f f i c e s f o r ( 6 . 2 4 ^ t o show 

( 6 - 2 4 3 ) a l [ c o s x ( Y ) ] < 0 a n d a ^ C s i n x ( Y ) ] < 0 on n . 

F o r t h i s p u r p o s e we d e d u c e f r o m ( 1 . 1 ) : 

( 6 . 2 4 4 ) 
• ^ [ c o s ( y ) ] = - i • s i n ( y ) on R 2 and 3 x L x V J ' J 2 

a ^ s l n x a | [ s i n v ( y ) ] = 0 on y 1 ( { 0 } ) . 

( v i i ) T h e o r e m (All unbounded non-radial orbits in N E W T O N ' S 

3-dim. potential). 
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Data as in (i) and in addition 

(6.25) 0(c) * 0 and r»c unbounded. 

Assertion. Then we have < * 0 and E a - k v̂ ic and for 
c(I) holds: 

a) If E > + kV^ic , 
then c(I) is a hyperbola (see § 4.ii.b) with closer focal 
point e. Between the "geometrical" parameters of this 
hyperbola — major semiaxis a and focal length f — and the 
"physical" parameters of c — total energy E and scalar angular 
momentum L — the following relations hold: 

(6.26) . E = k-cotK(2a) , 
2 

(6.262) ^•sin)c(2a) = sin2(f) - sin2(a) . 

b) If (c = 0 and E = 0 , 
then c(I) is a parabola (see § 4.iii.a) with focal point e. 
Between the "geometrical" parameter of this parabola — 
pericentral distance s (see (4.9^)) — and the "physical" 
parameter of c — scalar angular momentum L — the following 
relation holds: 

(6.271) L 2 = k-2s . 

c) If K < 0 and E = + kV^/c , 

then c(I) is a horohyperbola (see § 4.ii.e) with focal point 
e. Between the "geometrical" parameter of this horohyperbola — 
pericentral distance s — and the "physical" parameter of c — 
scalar angular momentum L — the following relation holds: 

(6. 28^) L 2 = 2k-sinR(s) •ev/~*'S . 

d) If k < 0 and - k-v^ic < E < + k-v^ic , 
then c(I) is a semihyperbola (see § 4.ii.c) with focal point 
e. Between the "geometrical" parameters of this semihyperbola 
— major semiaxis a and focal length f — and the "physical" 
parameters of c — total energy E and scalar angular momentum L 
— the following relations hold: 

(6.29^) E = - k<-tanK(2a) , 
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(6.292) (L2/k)•COSr(2a) = sinK(2f) - sinK(2a) . 

e) If k < 0 and E = - k-v^c , 
then c(I) is a horoellipse (see § 4.ii.d) with focal point 
e. Between the "geometrical" parameter of this horoellipse — 
pericentral distance s — and the "physical" parameter of c — 
scalar angular momentum L — the following relation holds: 

(6.30^ L 2 = 2k sinK(s) e-v/~*'s . 

Proof. First we get from (6.25),(6.9),(6.3) the first 
assertion and 

(6.31^ L * 0 . 

Because of (6.31^),(6.25) we can apply proposition (iii)c) to 
r°c and hence choose a 

(6.312) T e I with (r»c)(r) = rain(r«c) 

and (see (2.16)) 

(6.313) u := Ue(c(T)) € t V with x as in (6.31 ). 

Moreover we get from the limes statements in (iii)b): In the 
. . 2 • 2 one point compactification u {a>} of IMr one has c(t) —» oo 

for t —* infl and for t —» supl , hence c(I) u {oo} 
2 • compact in U {CO) and consequently 

( 6 . 3 1 4 ) C ( I ) is closed in IM2 . 

Ad a): Because of k s O and E > + k-V^/c the equation 
(6.26^) has exactly one solution a in R +. For this number a 
the equation (6.262) has exactly one solution f in ]a,co[. 
Hence (using (1.2) , (4.14g) , (6. 3 1 ^ ) we have found unique 
numbers a,felR with the following three properties: 
(6.321) 0 < a < f < oo , 

, F cos (2a) 
If, ->9 \ ££i ^ v 2;

 T 2 sin (f+a) sin (f-a) ' L K K. 
2k sinK(2a) 

(6.323) = s i n ^ ( f + a ) . s i n K ( f _ a ) • 

These numbers fulfill (6.26.),(6.26.) and we compute using 
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(6.4),(6.323),(1.2),(1.5),(1.7),(6.26^ 

(6.324) U(f-a) = E with U as in (6.4). 

Because of (6.25),(6.31^,(6.32^,(6.32 4) the proposition 
(iii)c) yields 

(6.325) (r»c) (I) = [f-a,oo[ . 
2 

Now let K denote the hyperbola in IM̂  (see § 4.n.b) with focal 
length f, major semiaxis a (see (6.32^)-(6.323)) and focal 
points e and fu(2f,0), e being the closer one (see (2.33Q), 
(6.313),(2.67)). Then due to § 4.iv.b we have 

(6.32g) K = [cotK(r) - (a+/3-cosi>u) ] _ 1({0}) Wthoc,/3eR+ 

and according to (4.192),(6.322),(6.323) 

(6.327) the functions § from (4.19) and (6.12) coincide. 

Moreover (4.8),(4.8 ),(6.31 ), (6.313)f (6.32g) imply 
(6.32_) c(t) e K r> exp ilR-u) o K 

and (6.3),(6.31 ) yield 

(6.32g) 0(c)2 > 0 . 
We . can conclude from (6.1^),(6.32g)-(6.32g) by using 
proposition § 4.v: c(I) £ K and c is an open mapping into 
the 1-dim. manifold K (since c is a submersion into K because 
of (6.32g)). Together with (6.314),(6.32fi),(4.17^ it follows 
then c(I) = K . 

Ad b)-e): Analogous to a), use (4.193) - (4.19,.) and 
conclude from (6.62)-(6.67) and (6.112), that ( k<0 and 
E = -k-S-ic ) is possible only if L 2 < k/v^ic . 

(viii) Remark. In case k<0 one has (see § 6.vi,vii) rather 
many geometrically different types of orbits of point-like 
particles moving in a central force field with Nevtton's 
potential, which correspond to the various geometric types of 
the geometry of curves of constant (oriented) curvature in the 
hyperbolic plane (see § 2.viii.d and § 4.iii.c). For a better 
understanding of this geometric diversity of "Kepler orbits" 
the following consideration might be helpful: 
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Choose a fixed negative value K of the curvature constant, 
2 a fixed unit speed geodesic r:IR —» IM with r(0)=e, a fixed 
^ 2 , 

value L of the scalar angular momentum with 0 < L < k/v^ic 
and study then the family of curves c £ characterized by the 
following three properties: 

2 . 2 a) c_:I —> IM is a maximally defined path in IM with L K K acceleration induced by NEWTON'S 3-dim. potential, 

b) c £ has total energy E and scalar angular momentum equal to 
the given L, 

c) Oel and c„(0) = r(min(r°c„)) 
(the, minimum exists according to § 6.iii.b,c). 

From condition c) and the proofs of (vi),(vii) we get the 
following additional information in Theorem (vi),(vii): 

In case E < -k-v^ic the ellipse c„(I) (see § 4.ii.a, E> 
§ 6.vi.a,b) has the second focal point y(-2f„), where a„,f., 
are the unique solutions of (6.17) ,(6.18),(6.214). 

In case E = -k-V^c the horoellipse c£(I) (see § 4.ii.d, 
§ 6.vii.e) has the axis r(-x). 

In case -k-V^K < E < +k-v^K the semihyperbola c„(I) (see L 
§ 4.ii.c, § 6.vii.d) has the focal line with initial velocity 
vector jf(2f£), where a

E / f
E
 a r e t h e unique solutions of 

(4.3 q),(6.29,(6.29 2) . 
In case E = H-k-i/̂ K the horohyperbola c„(I) (see 

§ 4.ii.e, § 6.vii.c) has the axis r(x). 

In case E > +kV::K the hyperbola c„(I) (see § 4.ii.b, Ct 
i 6.vii.a) has the second focal point r(2f„), where a,,,^ are 
the unique solutions of (6.26^),(6.262),(6.321). 

Now suppose E ?! -k-v^ic . Then one checks f„ —> + co 
(use (4.71),(6.17)). Hence the focal point r(-2f£) of the 

2 
ellipse cE(I) different from e converges in W K to r(-oo) (see 
§ 2.vi.b) and for the equation characterizing cE(I) we get 
(see (2.471), (4.7X) and (4.1),(4.4)): 
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d R(e,..) + [d K(T(-2f E),..) - 2f £] = 2-(a £ - f £) . 

* ^r(-x) 

For E * one again checks f £ —> + oo (use (4.8^), 

(6.261)). Hence the focal point y(2f£) of the hyperbola c £(I) 

2 

different from e converges in IMk to y(+oo) (see § 2.vi.b) and 

for the equation characterizing c_(I) we get (see (2.41.), 

(4.81) and (4.2),(4.5)): 

d K(e,..) - [d K(y(2f E) ..) - 2f £] = 2 (fE — a E) . 

Suppose -k-V^c < E < +k• and E —> a-k-V^ic with 

<re{l, -1} . Then one checks f £ —> a co (use ( 4 . 9 ^ , ( 6 . 2 9 ^ ) . 

Hence the intersection point y(2fE) of the focal line of the 

semihyperbola c_(I) with the given geodesic y has the same £j 
2 

limes in IM̂  as the focal point different from e of the ellipse 

resp. hyperbola when approaching cr-k-V^K from the other side. 
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