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ON THE PLANETARY MOTION IN THE 3-DIM. STANDARD SPACES Mz

OF CONSTANT CURVATURE KeR

0. Introduction

(i) On the history of the problem:

Between 1848 and 1851 Janos Borval made already the
proposal (see [Bo},p.156=-157), to study the planetary motion
around the sun in the noneuclidean hyperbolic 3-space with a
“radial” field of attraction by the sun, which — at a distance
r from the sun — is reciprocally proportional to the area . of
the 2-dim. distance sphere of radius r in that geometry. [With
this proposal he intended to find results which could -
possibly — allow to decide, whether the Euclidean resp. the
hyperbolic geometry provides the “better” model for
describing, what physicists can measure in reality.] - About
the same time (-1851/52?) P. G. Dirici,er mentioned (orally)
to R. LipscHiTZ (See [Lpz],p.117, footnote), that he  had
investigated the theory of gravitational attraction according
to Newron’s law in the hyperbolic 3-space. -~ ([After having
treated the noneuclidean geometry of Loearsciewski and  BoLyal
in the spirit of Riemannian geometry (in particular see [Be]),
E. BeLtraMl proved 1869 (see [St],p.472), that the constant
speed geodesics are the only path’s of point-like particles
moving in a Riemannian manifold M in the absence of external
forces (i.e. the corresponding competent Lagrangian is ' just
the kinetic energy), thereby implicitly suggesting, that the
LacrancE equations for the path c¢c:I — M of a particle in
the Riemannian manifold M with an acceleration induced by some
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“force” F should be like Vaé = F(c) with a vector field

F:TM — TM along n:T™ — M as “force”.])] — E. SCcHERING
described 1870 (see [Schl],p.318) the analytic expression
-k-coth(r) (keR+) for Newton’s gravitational potential of a
central star in hyperbolic 3-space, r being the function which
measures the distance from that star, and R. LipscHITZ (see
[Lpl],p.55 and [Lpz],p.117, footnote) considered 1870 all
functions V(r) depending only on the distance r from a fixed
point in an n-dim. space form, which are harmonic (i.e.
AV (r)=0), thereby determining implicitly NEWTON’ S
gravitational potential for the n-dim. space forms, and these
were explicitly listed 1873 in an article by E. ScHERING ({See
[Schz],p.153, resp. [Kiz],p.27).

W. KiLine published in 1885 a fundamental article with a
great variety of (impressive!) results on the dynamics in
l-connected n-dim. space forms of constant curvature «k, in
particular about the planetary motion in Mz (see [Kiz],p.7—9),
verifying (resp. detecting “the correct” version of) KePLER’S
laws for k#0. — H. LieexanN described 1905 the latter results
on the planetary motion in more detail, especially he
discussed the geometric nature of the “conics”, which occur as
the (“plane”) KerLer’s orbits of planets in the noneuclidean
space forms Nz (k20) (see [Li],p.219—23§ and p.182-196).

(ii) Plan of this article:

We want to give in this article a rather complete account
of the planetary motion in the simply connected space forms N:
of constant curvature k (in dimension n=3) and this in a
uniform treatment with respect to the curvature constant k. We
try to formulate the corresponding results in explicit
dependence on k (€R) in order to gain perfect control about
the changes of the “laws of nature” when k changes, in
particular to see how stably these laws behave when perturbing
the value k=0, i.e. when |passing from Euclidean to
noneuclidean geometry.

Of course, most of the important results are stated resp.
mentioned already somewhere in the literature (in particular
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see [Kiz] and [Lij, loc.cit.). But in many cases these
statements are (in the available literature) rather
incomplete, sometimes not presented in an optimal form, or
their proofs are not quite sufficient resp. rather “out of
date”, since several appropriate tools (e.g. technics of
covariant derivation or Busemasn functions in the hyperbolic
spaces) were not available, when these articles were written.
So we thought it to be worthwile to make these (wonderful
classical) results and proofs of them accessible in a rather
rigid and complete version, including several improvements
(e.g. concerning the completeness of the list of all possible
“KeprLER orbits” in Ni).

(iii) Organization of the article:

§ 1 summarizes the definitions and basic properties of
(what we call) the “k-geometric” functions sinx, COS, ). .-
[which essentially are the trigonometric ones for k>0 resp.
the hyperbolic ones for k<0] in a uniform way w.r.t. keR
(avoiding the complex domain) and pointing out their real
analytic dependence on k.

§ 2 describes some basic geometry of the space forms MZ
represented as (what we call) the Weierstrass-models (i.e. as

hypersurfaces in Rn+l, where Rn+l

is endowed with a Riemannian
metric if k20 and with a Lorentzian metric if «k<0). KiILLiNG
used these models in his publications successfully, but he
attributed the invention of these models to his teacher
WEIERSTRASS in 1872 (see [Kil],p.74, footnote). [These models,
well-known for ke{0,+1,-1}, seem to be not so familiar for
k#0,*1, at least they differ from the corresponding models one
usually finds today.] The WeiersTRASs models for Mz prove
however to be optimally apt for getting the Lie group G: of
all orientation preserving isometries of Ng (resp. its Lie
algebra g:), considered as a subgroup of GL+(n+1,R) (resp. of
al(n+1,R) ), analytically dependent on k, which was essential
for the subsequent article (see [Ziz]) in this 3journal,

studying motions of rigid bodies in Nz.
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§ 3 contains, aside from a rather subtle version of the
“inverse of the law of energy” (see § 3.ii,iv), a 1list
(without proofs) of “a priori dinformation” about maximal
solutions of the differential equation describing a mechanical
process of one degree of freedom. These results are
essentially known, but a direct reference (for all needed
information) seemed to be not available in the literature.

§ 4 gives an analytic description (and a metric
classification) of conics in Ni which is important for
verifying Kepier’s first law, later.

§ 5 summarizes the basic (differential) *“equations of
motion” for a path c:I — N: moving in a “central force
field”, it is shown that such motions are “plane” and satisfy
KerLEr’s second law, moreover the equations are specialized,
when this “central field” is induced by Newron’s gravitational
potential (of a central “star”).

§ 6 gives, finally, a complete 1list of all possible
motions of point-like particles in NZ with an acceleration
induced by Newron’s’ gravitational potential.

The results and proofs of this article are in part taken
from informal 1lecture notes on differential geometry and
mechanics by the first resp. from the doctoral thesis of the

second author.

1. The k-geometric functions sin_ and cos_ for keR

(i) The geometry (resp. the mechanics) in Riemannian
manifolds of constant sectional’ curvature kx (eR) is governed
by the two k-geometric functions on R defined by

( —l—-sinh(v-xx for k<0

( ® v V-K
sin_(x) := —1:51—T-x2v+1 =4 x for k=0

K V=°(2v+1).
{ —l-sin(V?x) for k>0
(1.1) A vK
cosh (V-kx) for k<0
= (-K)v 2p

cosx(x) := ¥ (2v)"x =4 1 for k=0
\ v=0 | cos (VKXx) for k>0
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hence sinx(x) and cosx(x) are real analytic functions of

(x,x)eRz.
Sinx and cos, are as well characterized as solutions on R
of the first order ODE system
(1.17) { sin, = cos, and cos, = -ksin with
51nx(0) = 0 and cosn(o) =1,
resp. as a (maximally defined) fundamental system of solutions
of the second order ODE system

(1.17) { Yy’ + k'y =0 with
51nK(0) = cosk(o) =0 and 51nk(0) = cosK(O) =1 .

(ii) Moreover we shall use the functions

. sin_(x) (-n)_l/ztanh(v—xx) for k<0
* K = =
tanx(x) = cosK(x) x_l/2 for k=0
K tan (VK'x) for k>0
(1.2) A
cos_ (x) v~-kcoth (V~-kx) for k<0
.= K =11 =
cotx(x) = m = X for k=0
vKcot (VKx) for k>0
with
(1.2°) tan’ = cos;2 , cot! = - sin;2
and
X 2 x
wK(x) i= I051nx(t)dt = 2-51nK(5) =
(1.3) 2
g— for k=0
%-(1-cosk(x)) for k#0
hence
(1.3") w;(x)+x-wx(x) = 1 with wK(O) = Wk(O) =0 .

(iii) These functions fulfill the following relations:

(1.4) sinx(-x) = -sinx(x) ' cosK(-x) = cosK(x) R

sinx(x+y)
(1-5) cosx(x+y)

sinx(x)cosk(y) + cosx(x)sinx(y) ’

cosn(x)cosn(y) - x-sink(x)sinn(y) ’
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(1.6) cosi(x) + x-sini(x) =1, coti(x) = sinzz(x) -k,

[ 2-tank(x)
sinn(2x) 2-sinK(x)cosK(x) = 5 P
1+ K-tanx(x)

2 2 - .. 2 _ -
(1.7) A cosx(2x) cosn(x) - K 51nn(x) = 2 cosx(x) 1
2 1 - x-tani(x)
=1 - 2x-sinx(x) = 5 ‘
\ 1 + x-tanx(x)

tan_ (x+y)-(1 - x-tan_(x)tan_ (y)) = tan_ (x) + tan_(y),
1.8) K K K K K
( cotx(x+y)-(cotn(x) + cotK(y)) = cotK(x)-cotK(y) - K .

(iv) If we define
{ + o for k=0
T o=

K n/vK for k>0 '
(1.9)
sin_(t) > 0 for all te)o,m [
K K
then 1 1
cosK(t) > 0 for all tE]-f'"n’f'nn[ ’
and
For all o,BeR with a2 + K'Bz =1 and (az0 if k=0)
(1.10) there exists exactly one t e ]-nn’"x] such that
cosn(t) = a and sinx(t) =8 .

2. The WeiersTrass model Mf for “the” n-dim. l-connected

complete Riemannian c”-manifold of constant curvature keR

(i) Notations for R™1. The bilinear forms <eeyoe> and

K
(°'|")x on RATL,

n+1

We look at R (with its standard coordinate functions

) as Rxmn, and correspondingly the elements

X yeee,X
o’ ‘“n
aeRn+1 will be denoted by a = (ao,a) with aoeR and
(2.0) aemn, let <..,..> denote the canonical Euclidean inner
product of Rn, o the origin, e := e, = (rx,0,...,0) ,
ey, 00) the canonical basis of Rn+1.

For every keR we define two symmetric bilinear ‘forms

Seegee>, and ("I")x on Rn+1: For all a,bemn+l (see (2.0))
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<a,b>x := aob0 + k-<a,b> = aob0 + x-iglaibi
(z.1) aobo + < ,b> , 1if k=0
(alb)'c := { 1 )
x 3 o + <a,b> , if k=0 ,
consequently
(2.2) k0 > <""'>x = x-(..l..)K .

Let e, denote the c“ tensor field of type (0,2) on Rn+1,

such that for all peRn+1 and v,weTpRn+l (see (2.1)):
._)
e,c(v,w) = (V_)Iw_))x '
(2.3) where v := (dpxo(v),...,dpxn(v))

resp. v=(t —p+t-v’)(0) .

. . . . W .
Therefore e is a Riemannian resp. Lorentzian C metric on

K
R if k=0 resp. k<0, and it is invariant under translations

of |Rn+1, o

being the canonical torsion- and curvature-free covariant

derivative of the abelian Lie (vector-) group R"*1. we denote

by

its Levi-Civita covariant derivative V¥ therefore

E2+1 1= (mn+1,e ) this Riemannian resp. Lorentzian ¥

. o, . . .
manifold and V- its Levi-CiviTa covariant derivative

with V;Y 1= (Y)),X , i.e. (v;Y)* = X+ (Y") for

all X,veX(R™MY).

(2.4)

(ii) The definition of N: as a certain submanifold of R"'L,

n

The inner metric d,.and the exponential map exp, of NE

LY

is a ¢ family of n-dim. Riemannian manifolds.

For neN, nz2, and keR the )
( n-dim. Riemannian C¥ manifold ™" is defined to have

n+l (see (2.1))
n+1

the n-dim. regular c” submanifold of R

i: {pemn+ll<p,p>n=1 and (k=0 » p°>0)} S R
as underlying c® manifold and g := i*e'c as its
Riemannian metric (see (2.3)). Let V denote its Levi-

(2.5) {

CiviTA covariant derivative.
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Remarks.
a) M:, as a Cw—manifold, is a connected component of a
quadric hypersurface of Rn+1, namely for

k<0: the “upper” sheet (xo(Nﬁ)sR+!) of the two sheeted

-axis) 1in rA+1

-1/2.

hyperboloid of revolution (around the Xg
with center o and principal axes e, (-«k)

(-) /%o (see (2.0)),
n+1

k=0: the affine hyperplane e+({0}xR") = xal({l}) of R,

€ reees

k>0: the ellipsoid of revolution (around the xo—axis) in R
with center o and principal axes e, x_l/z-el,...,
2.,

n
hence (nz2!):
(2.6) e € NE ’ NE is l-connected and (N: compact & Kk>0).

b) For kz0 the positive definiteness of g follows from the
same property of e, for k<0 it follows from the well known
fact, that in Lorentzian vector spaces the orthogonal
complement of a time-~like vector is a space-like vector
subspace.

c) The Riemannian manifold NQ, as a complete 6ne of
constant curvature k (see (2.9),(2.6)), seems to have been
first introduced (for n=3 and «k#0) by K. WeiErsTRASS during

11/P-74,
footnote) and Nz was subsequently used successfully by his

Seminar talks he gave in 1872 (according to [Ki

doctorand W. KiLLine (see e.q. [Kiz],p.4).

d) We have inserted in Weierstrass’ definition the M for

n
W , n 0
k=0, to get a “C” family” (NK)KER of 1l-connected (see a)),
complete Riemannian manifolds of constant curvature k (see
(2.6),(2.9)). This family seems to be optimally apt for
studying the dependence on the curvature constant «k of
geometric theorems resp. of “physical laws of nature” in
spaces of constant curvature k: The main reason for this being
at first:

(M)

KeR is a c¥ family of n-dim. Riemannian manifolds.

[This concept means: If J is a k-dim. ¥ manifold, we call
ac” family of n-dim. Riemannian manifolds, if there

M)

t’Led
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is a (n+k)-dim. c” manifold N, a n-dim. c® foliation M of N, a
Riemannian c* metric g for the vector subbundle TM of TN over
N (not only over M !), thus turning each 1leaf M(q) of M
through a point geN into a Riemannian c“ manifold, and there
exists a c¥ map f:J —- N such that for all teJ the
Riemannian manifold M is ¢¥ isometric to the leaf M(f(L)). In

our special case of the family (Nz)nem we have J := R , we
can take for N the (n+1)—dim. regular algebraic (hence Cw)

hypersurface N := ({1}) of the open submanifold N of Rn+2

with = ((RpR™)xR) v (R™IxR,) and

n+2
) (yO + (y1 ...+y ) - yn+1)IN , where yo,...,yn+1:m — R

are the canonical coordinate functions, the foliation M of N

= const c¢f N, the
W

is given by the hyperplane sections Yn+1

leaf of M through (e,k)eN being Nzx(x} . A Riemannian C
metric g for the vector subbundle TM of TN over N is given by:

For all qu(sRn+2) and all v,weT M we have (where T M is
q n+2 q

identified with a vector subspace of TqR )
n
1
(2.7.) g(v,w) := VW, + ¥ Vv.w, for g R*
1 941 070 jop 11 n+1€

qn+1 n n n

(2.7,)  g(v,w) = === ( L q;v;) (L qyw;) + L vyw,
i=1 i=1 i=1
99 for qoem*,

where q; =Yg (q) and vi := dy (v) for i=0,...,n+1.
Observe, that for all qu— ({1}) we have (by definition of

¢) at least qo:o or qn+1¢0, therefore g is defined by (2.71)

and (2.7 ) on all of N. Moreover, these two c¥ definitions

(2.7 ) and (2.7 ) of g on open subsets of N coincide on

N n {qeR Iqo,qn+1 *} @ Since for veTqM we have
d o(v) = dy (v) = 0 (the leaf of M through qeN is the
q q n+1 -1 -1 , .
connected component of ® T ({1}) n yn+1({yn+1(q)}) 1), it

follows:
n q n
1 . n+l
5-d o(v) = gq,.V, + g - Ygq,wv, =0, i.e. v, = - - Y q.v..
2 'q 00 n+1l j=p 11 0 9, j=1 1 1

dqyn+1(v)=0
0 0 in
(2.71) gives (2.72). Finally f:R — N can be chosen as

kK > (1,0,...,0,k) , the isometry of NE with the 1leaf

Substituting this value of v, and the analogous value of w
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M(f(k)) = Ngx{n} is given by p = (p,x) .]

If we introduce now on Rn+1

(see (2.3))
(2.81) EeX (R

its Euer vector. field E by

"1) with E’-1a , then V$E = X for Xex(R"'})
(see (2.4)) and if i:MZ s R™?!  is the inclusion map, then

(see (2.2),...,(2.5)):

(2.8,) <i,i> =1, (E«i)” = i , (k=0 » k-e (Eei,Eei)=1) ,
and

. n _ n+1l > _ n
(2.83) l*Tpr = {veTpR I<p,v > = 0} for all peNK R

in particular (see (2.2),(2.3),(2.82),(2.83)):
(2.8,) k-e (Eei,i,X) = 0 for all Xex(mz).

Therefore (see (2.82),(2.83),(2.84)) we obtain a unit normal
n+1

field EK along i:Nz s E, by setting
(a/axo)oi for k=0 o’
EK = ) , id.e.
-VIkT(Eoi) for k=0

(2'85) e if k=0

for all peN: one has EK(D)* = ’
-VkTp if k=0

more precisely (see (2.1),(2.82),(2.84),(2.81))

_ o +1 for kz0
(2.8.) e (£ r€y) = sgnk := { -1 for k<0 '
‘76

. _ [e] _ _ . n
e (§.,,1,X) =0 and V. = -VIkTi X for XeX(M.),

therefore NQ is an umbilical hypersurface in E:+1 of mean
curvature V|k| (w.r.t. the normal field En’ in particular Ng

is totally geodesic in Eg+l).

Moreover we have the following relation between the
o

Levi-Civita covariant derivative v of M: and the one V of
E:+1 (see (2.4)), depending in a real analytic way on keR:

. 0, . n
(2.9) 1*(VXY) = Vxl*Y - k-g(X,Y) - (Eei) for all X,YEI(NK),

in particular (see (2.5),(2.84),(2.9))
0. . n
(2.10) g(VXY,Z) = eK(Vxl*Y,l*Z) for all X,Y,ZeI(NK),

and we get from (2.9) for every c®
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(2.9 path c:I — NE : (i*Vaé)Q = (iec)” - k-g(c,c)- (iec),

1)
where I is an open interval of R, 8 the canonical vector field
d/dx on R and where we define for any c¢® path 7:I — V in a

real vector space V the c® path 7’ :I — V in the elementary

way by

(2.11) (i(t))» =7 () := lim(%-(w(t+h)-7(t)) for all tel
h-0

and then 7" := (7v')’ etc.

Finally one gets from (2.10),(2.9) and (2.84) immediately

- 0,0, . .
Vx,Y,z,Wex(mz) g(V,9,Z,W) = e, (VVoi 2,1, W) + k-g(X,W)g(Y¥,2).

Since the curvature tensor of v° vanishes, it follows from the
last statement and (2.10) for the curvature tensor R of NE

K

(2.12) M} is of constant curvature K,
and moreover m: is complete.

The completeness of Nz follows by the fact, that (see
(2.91)) a c® path c:I — M" is a maximally defined wunit

K
speed geodesic iff i.c:I — R

is a maximal solution of
(iec)” + k-(iec) = 0 , which implies by (1.1): I=R and (see
(2.11)) '

(2.13,) c(t) = cos, (t)c(0) + sinx(t)é(o)_) for all teR,

i.e. the exponential map exp, of Mz satisfies l
for all peME, ueT;Nz and teR: _

(2.13) { ioexpx(tu) = cosK(t)p + sinK(t)(i*u)é '

from where one checks easily

(2.131) exp, has at each point of NZ the injectiv. radius T, .

From (2.13),(2.131) one derives immediately (see
(1.1),(1.3),(2.1)):

{' The inner metric dx of NE satisfies for all p,quE:
2.14
(2:14) 1 cos, (4, (p,@))=<p,a>, resp. 2y, (4, (p,a))=(a-Pla-P) .

From (1.9),(2.14) follows
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. n
(2.141) dlam(Nx)=nK, and for all p,qu:: dK(p,q)=nK < gq=-p.

Therefore, according to (2.13,),(2.14,), we have

, n . n
(2.15) { for every peM is exp, |{veT M |Ivi <m, }

ac¥ diffeomorphism onto N:\{—p}

and consequently there exists (see (2.15)) a well-defined c¥
unit vector field Up along the “collapsing” map Nz(p) — {p} .,
i.e. a

{ c¥ map Up:N:(p):=M:\{p,-p} — T;
(2.16)

N: characterized by
exp, (d, (P,q) U, (q)) = q for all qeM}(p) =M \{P,-P},

is the
P and

i.e. Up(q) = ¢c(0) , where c:[0,d (P,q)] — M

=3

unique unit speed geodesic with c(0)
c(d . (p,q)) =q .

Moreover this last geodesic c:R — N: is explicitly
given by (see (2.141)):

= 1 - 1 - . 3 -
(2.16.) c(t) = EIH:TTT (51nx(£ t)'p + 51nK(t) q) for teR
1 with ¢ := dK(p,q) .
[For proving <c,c> = 1 use (1.5) and cosx(e) = <P,q>,
(see (2.14)) and then verify c¢” + k-c = 0 , see the remark

before (2.130).]

From (2.16),(1.1) follows:
(A) .
The C~ map dK(p,..) UR resp. £San°dK(p"')) Up

(2.16,) { from Mz\{p,—p} to T M has a C
NE\{-p} resp. onto all of Ng with value o at p,

extension onto

the first extension being the inverse of the c¥ diffeomorphism
(2.15), the second extension !:M: — Tpmg characterized by:
. . . . n n+1l
i(p)+(1i,d) :Mx — E

X is the composition of the inclusion

map i:N? — E2+1 with the (..I..)K-orthogonal projection of
i(Ng) onto i(p)+(i*TpN£)9 , and e.g. in case p=e this

amounts to (i*#(q))» = (0,q) for q=(q0,q)eN: (see (2.0)).

Finally it follows from (2.1),(2.3),(2.5),(2.13),(2.131),
that for ke{2,...,n} the canonical “inclusion” map
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k+1

R SN IRn+l

((ao,...,ak) - (ao,...,ak,o,...,o)) induces
(2.17.) “the &canonical” isometric, distance preserving,
0 totalﬂy geodesic c¥ immersion Mt s N: p
|

and moreover, if ke{1l,...,n} and V

k:={V|V is a (k+1)-dim.
n+1l

with VnME:z}, then (2.13) and the
transversality of E to Mz (see (2.82), (2.83)) imply:

vector subspace of R

V - Vnmz is a bijection of Vk onto the set Ak of

(2.17) all complete, connected k-dim. totally geodesic

submanifolds A of N:, each such A being isometric to
Nt, with a distance preserving inclusion A “— M .

Mg admits a canonical orientation induced by the one of R,

n , n
For every peNK a basis (Vl""'vn) of TpNx is

(2.18) positively oriented iff (see (2.3),(2.5)) the basis
(p,(i*vl)*,..,(i*vn)a) of Rn+1 is pos. orientgd.

(iv) The Lie group G: of all orientation preserving

isometries of M: and the Lie algebra g: of this group.

Let GL(n+1,IR)xIRn+1 — Rn+1 ((A,p) > A-p) denote the

canonical group action of GL(n+1,R) on rOH1 from the left.

Then for every

AeGL(n+1,R) with m~m29m2, i.e. (see (2.5),(2.6)):
(2.19) <A-p,m-p>n=<p,p>n for pemz and, if k=0: xo(m-p)>0,
there is a

(2.20) unique c¥ diffeomorph. fA:NZ — M: with iofP = A-i,

and because of

(2.21) (A*v)e = A-(vﬁ) for veTRn+1

it follows from (2.18),(2.20),(2.21):

A

(2.22) f is orientation preserving & AEGL+(n+1,R)

< det(A)>0.
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Moreover (2.19),(2.2),(2.3),(2.5) imply
(2.23) for k=0: fA:N: — N: is a c¥ isometry,
1 o*

(2.24) for k=0: A = | A vith aeR” and AeGL(n,R)

{where o,aeRn are considered as (nxl)-matrices and B* is the

transposed of a matrix B).

If we introduce therefore

GQ = {AeGL+(n+1,R)|m-m:sN2} for k=0,
(2.25)
Gg := {ReGL, (n+1,R) m-mggwg and AeSO(n)} ,

then one proves (in a standard way) for all keR:

n

. n+1l
(2.26) { G, is a connected

2
GL+(n+1,R), which is compact iff k>0,

dim. Lie subgroup of

and (see (2.20))

G: — Isomo(Ng) (R — fm) is a c¥ isomorphism onto
the Lie group of all orientation preserving
(2.27) | isometries of N:, which acts transitively on Nz (even
transitively on the bundle of positive orthonormal

n-frames of NQ). Moreover IsomO(N:) is the connected

component of 1Id in Isom(NQ).

In the following we identify Isomo(N:) with GQ under the
isomorphism (2.27), see also (2.20).

n
K
identified with a certain vector subspace of the vector space

The Lie algebra g: of G (sIsomo(ME)) will be as usual

M(n+1,R) of all real (n+l)x(n+l)-matrices, namely with the
image under the composition of the canonical maps

3j >
r,el % T mma,Rr) L meR)
where 0 is the unit (n+l1)x(n+l)-matrix, j:G: — M(n+1,R)

the inclusion map, (..)* being defined for the vector space
M(n+1,R) analogously to (2.3). Under this identification we
get:
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The L1t algebra 92

of G: (sIsomo(M:), see (2.27)) 1is
the L1t subalgebra of gl (n+1,R) (:= L1E algebra of

real (n+l)x(n+l)-matrices with the commutator as

(2.28) ; bracket operation) formed by all matrices
0 ~-KV¥
= . n
(V’V)x =1y v with veR and Vemss(n,R),

\

with the (commutator) bracket
(2.28)) [(ViV) (WiW) ] = (Vw=Wv; (VW-WV) -k (Vw*-wv*) ) ,

where the elements of R" are considered as (nx1)-matrices and
A* is the transposed of a matrix A and mss(n,R) denotes the
[g]-dim. vector space of all real skew-symmetric (nxn)-
matrices.

n

Using (2.280) one can compute the KiiLineé form B: of 8,

as:
(2.28)) B:((V;V)K,(W;W)K) = —(n-1) (2k-<V,w> + <V,W>) =
(2.282) = (n-1) (trace of the matrix (v;V)K~(w;W)K) .

where <V,W> := trace(V*-W) is the canonical Euclidean inner
product on M(n,R). Therefore, if nz2, B: is negative definite

for k>0, degenerate for k=0 and nondegenerate and indefinite
for k<O.

Remark. The description (2.28),(2.280) of the Lie algebras

n (H)

8y of the isometry groups of MZ (for all keR) as a certain C
family of LiE subalgebras of gl(n+1,R) ([which should be
understood in an analogous sense as in § 2.ii.d], depending
analytically on keR, is the main feature of the  WEIERSTRASS
models NE (keR, see (2.5)), when studying the mechanics of
rigid bodies in spaces of constant curvature with the aim of
controlling how the results do depend on k, when k varies in
the real numbers.

Moreover the isotropy group of the point e in IsomO(Ng)
(see (2.0),(2.6)) corresponds under the isomorphism (2.27) to
the
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1 o*

n o= o= n
(2.29) subgroup lee := {(1xA):= ° A |AeSO(n)} of GK

and we call the corresponding Lie subalgebra of gn

" (see
(2.28),(2.29)):

n L] -
(2'290) bK $= {(o,V)KIVemSS(n,R)} .
the “isotropy subalgebra” of 8+

On the other hand we call the following vector subspace of

92 (which is a Li subalgebra of g? only for k=0, see
(2.28),(2.28))
(2.291) t2:={(v;o)xlvemn} the “translation subspace” of g:,

thereby giving rise to the
s n _
(2.292) { vectorspace splitting 8, = bK ® ’t'c P
(viv) . = ((07V) ., (ViO0),)

which is orthogonal with respect to the Kimn form of g:
(see (2.281)).

Then the exponential function for matrices (defined by the
classical power series)

(2.30) { Exp := Exp(n+1):m(n+1,R) — GL_(n+1,R)
‘ n . n n n
maps g, into Gn and bx onto lee P
more precisely (see (2.29),(2.290)): for all Vemss(n,R):
(2.30,) Exp((0;V), ) = (1xA) with A := Exp™ (V) e so(n) .
Finally, if Ay, pap denote the canonical basis vectors

of Rn, then one checks easily (see(2.28)) for all teR:

cosK(t) —KSan(t) 0 .. 0

sinK(t) cosK(t) 0 .. 0
(2.31) Exp((ta,;0),) = 0 0 1o | e Gy
0 0 °
and similar for LIV
More generally, if u € Sn—1 = {aeRn|<a,a>=1}, then (see
(z.gii(2.83)) there is a unique ueTiNE with (i*u)9 = (0,u) €

€ R and the orbit of the point eENE under the 1-parameter
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. n .
subgroup (EXP((tu;O)n))teR in GK is (see (2.13),(2.30))
the geodesic cu:R - Nz of Mz with cu(o) = e and
(2.32) éu(O) =u, i.e. for all teR:
Exp((tu;O)K)-e = cu(t) = cosx(t)e+51nx(t)-(0,u) .

(v) The distance function r and the radial unit vector

field R in M: with respect to the point eeN::

The (n-1)-dim. volume of geodesic spheres in M:.

If we denote (see (2.0),(2.6))

(2.33 e := (1,0,...,0) e mg and Nz(e) = NE\{e,—e} ,

o)
then the function r, which measures the distance of the points

of Mz from e satisfies (see (2.14),(2.14;),(1.9))

r := dK(e,..):N: — R 1is CO, rIME(e) is ¢¥ and >0,
(2.33) and for p=(p0,p)eN:: p0=cosK(r(p)), Ipli=sin_(xr(p))
and if pemz(e): (o,p) = sinK(r(p))-i*Ue(p) .

Then we define on N:(e) the e-radial unit vector field R by

(2.345)  R(p) := (exp (x-U,(P))) (r(p)) for peM;

(see (2.15),(2.16)), R(p) being the velocity vector at time
r(p) of.the unique unit speed geodesic C:R — M: joining
e = c(0) and p = c(r(p)) , thus explaining the terminology

“e=-radial” for the vector field R. Then

(2.34) g(R,R) =1 , VRR =0 and moreover R = grad{(r) ,
hence R is Cw,

as one verifies easily, and (2.34 (2.13) imply:

o)

(2.34 (i,R)” = - k-sin (r)-e + cosx(r)-(i*ue)* .

1)
Furthermore, if peN:(e) and aeT;ME is a unit vector orthogonal

to Ue(p) (see (2.16)), then we define

a
P

and we obtain from (2.350),(2.13) immediately

(2.350) S~ = [expk(r(p)-(cos(x)-Ue(p)+sin(x)-a))]'(0) e T M

P K

(2.35))  (i,50)7 = sin (xr(p) - (1,27 ,
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which together with (2.341),(2.5),(2.3) gives

a, _ a, _ s
(2.352) g(R(p),Sp) = 0 and NSpH = slnx(r(p)) .

Moreover, if we consider Ue:Mz(e) — TME as a c“ vector
field in MQ along the constant map Mz(e) — N: (@ — p) , we
obtain from (2.340) resp. (2.350) immediately (by the standard
methods for computing covariant derivatives for vector fields
along maps):

(2.353) =0 resp. = a .,

v 8) vV,.a,Uu

R(p) e (Sp) e
From the last equation, from (2.341),(2.351) and (2.9) follows
_ | . . X . -
but V(SS)R = cotK(r(p)) sp which implies [using VRR 0 (see
(2.34)) and that the set {S;IaeT;N: and g(a,Ue(p))=0} spans
the orthogonal complement of R(p) in TPN: (see
(2.35,),(2.35,))]:

(2.35) VXR = cotx(r)-[x - g(X,R)-R] for all XeI(Ng(e)).

Remarks.

a) (2.340),(2.34),(2.350),(2.352) amount essentially to
the so-called “Gauss Lemma” for exp, in a very explicit form
for the special Riemannian manifold Nz, which however here
follows from elementary computations (without wusing  Jacosr
fields !) only using the explicit description (2.13) of the

exponential map exp, of ME in Rn+l.

b) We have the following geometric interpretation of s2:

The point pemz(e) lies on the geodesic (distance) sphere
Sg-l(p) of radius p :=r(p) € JO,m [ (see (2.33.),(2.14,)),

which is (see (2.15)) the image under expx(p-..) of the
Euclidean unit sphere Tiwz in Tewg of radius 1 around the
origin of TeN:, T:NE being isometric to the standard sphere

s of gD, (2.35,) says then, that S; is tangent to Sg-l(p)

at p, namely the image under (expx(p-..))* of the unit
vector (cos(x)-Ue(p) + sin(x)-a)’ (0) tangent to TiN: at

Ue(b). Therefore, due to (2.351) the (n-1)-dim. volume element

of Sz-l(p) (pulled back to T:ME via expn(p-..)) is sink(p)n-1
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times the volume element of TéN (isometric to Sn_l),

therefore for
every pe}0,m [ the geodesic sphere n-l(p)'=r"1({p})

(2.36) is a regular (n-1)-dim. C“J submanifold of M with
(n-1)-dim. volume vol(S (p)) = 51nK(p) -1 Ch-1 '
where
(2.361) Ch-1 = Euclidean (n-1)-dim. volume of sh -1 in EP
= 2.7™2/r (3 |
(e.qg. 00=2, 01=2n, 02=4n, 03=2n3,...).
(vi) The Busenann function Bniy: — R of a unit speed

geodesic c:R — NE for k<o0.

a) Suppose now k<0. Then in the Lorentzian vector space

(Rn+1,<..,..>x) (see (2.1),(2.2)) we have the future time

resp. future light cone:

C := {peR |<p P>, >0 and p0>0} 2 N (see (2.5))
ac := {peR™|<b, b> =0 and b >0} =
(2.37) = asymptotic cone of Nx
and (Lorentzian geometry !) for all v,weCudC one has

<v,w>K = 0 and =" iff R+v = R+w < acC.

(Remember, that (because of k<0) N: is a hyperboloid of
revolution in Rn+1, § 2.ii.a). Now, for any unit speed

geodesic c:R — NQ we have (using (2.13),(2.2),(2.3),(2.5),
(2.83) and k<0):

{ c(t) = cosK(t)c(O) + sinK(t)c’(O) for all teR and
2.38 ’ 't
( ) <c,c>K=1 . c0 = <c,e>K21 , <c,c >x=0 , <c’,c >K=x.

Then we define the Busewanny vector bc of ¢ by

{ b_ := c(0) + (1/V-K)-c’' (0) =
(2.39)

V=Kt

e” S(e(t) + (1/V=K)-c’ (t)) e RO

for teR,

where the second equation follows from (2.38) and one has the
identities (which follow from (1.1)) in case k<O:
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2-cosx(x) e + e P

V=Kx -V=Kx

e - e .

' vV-Kx -V=Kx
(2.40) {

ZV:?-sinK(x)

If we introduce the “reverse” geodesic c':R — N: of ¢ by
(2.41) { c'(x) := c(-x) , then b_v = c(0) - (1/V=K)-c’ (0)

and <bc,bc> = <bcv,bcv> = 0 and <bc,bcv> = 2

K K K

(see (2.38)). From (2.39),(2.41) and (2.17) one obtains
immediately

2-c(x) = e‘/:zt-bc + e-v:zt-bcv,
(2-42) { hence c(R) = M? A Span{b _,b v}
K c’'c )
From (2.38),(2.42) we obtain
2 = eV:Et-<bc,e>K + e-‘/:Et-<bcv,e>K for all teR,
which implies <bc’e>x >0, therefore (see (2.37),(2.41))

b_eaC and (together with (2.42) and its differentiated
version) we get

(2.43) b = lim[2e Y ®tc(t)] = lim[(2/v=R)e V¥t ()] € ac ,
t tow

i.e.: b is the “renormalized” direction of c(t) resp. c’(t)

in Rn+1 if t tends to +o and this direction bc lies on the

cone 3C of asymptotic directions for the hyperboloid N: in

rAtL, Oppositely:

For every bedC and pemz there exists a unique unit
(2.44) speed geodesic c:R — MZ with c(0)=p and bceR+b,

namely c(t) := cosK(t)p + V-nsinK(t)(<b,p>;l-b - p) for all
teR (see (2.37)). '

b) Remark. For a complete 1l-connected n-dim. Riemannian
manifold M of strictly negative sectional curvature one is
used to form & “closure® M of M by adding to M an ideal
boundary “6M” of M, consisting of ;points at infinity”, which
are equivalence classes of unit speed geodesics
c,&,...:R — M with respect to the relation:

c asymptotic to ¢ :&

1< There exists peIR+ with d(c(t),c(t)) < p for all teR+,
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the equivalence class of ¢ with respect to this relation
being denoted by c(w),

and c(w) is called the point of c at +o .. A topology on
M := MudM is then introduced, called the “cone toplogy”, a
terminology which seems to be motivated by our example in
question M:=N:. Because, since k<0, the function COSK|[0,+m[
is strictly monotonic increasing, therefore in case M:=Nz the
last definition amounts to

(2.45,) {

This and the first equation of (2.43) (applied to ¢ and ¢&)

Cc(w)=C(w) iff there exists PER
with <c(t),c':(t)>K < p for all teR_ .

implies therefore

(2.45) c(o) = &(w) (<bc,be>x=0(2f§7)) R,"b_ = R by .

The cone topology on 2:=N206M2 is then by definition the

one, which makes the bijective map (see (2.5),(2.44),(2.45))
-5 . R,-p if peNZ
(2.46) h:M' — (CU3C)/R, with h(p) :=
Tk + , n
R+-bc if p=c(eo)eaIM'c

into a homeomorphism. In this way (M?,&NE) becomes canonically

homeomorphic to (D",s" '), since the map cuac — R"
(v=(v0,v) - (V—xvo)-l-v) induces a homeomorphism of aC/IR+
resp. (C\'JaC)/IR+ of onto the unit sphere S™ ! resp. the unit

disc D" in R".

Since the metric space (Nz,dk) is complete, one can not

extend the metric cl'< onto all of N:, however the  BUSEMANN
functions which we will describe now will measure in a certain
sense distances of points of N: from the points c(m)eaN: at
infinity:

c) For every unit speed geodesic c:R — M: we define the
Busemann function BC:NE — R of c by (see (2.37)):

n
(2.47) Bc(p) := (1/V-x)-in(<p,bc>x) for all peNK,
therefore Bc is Cc7.

This description of Bc is extrinsic since bceac does not
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belong to Nz, however from (2.47) we get via (2.43),(2.14),

(2.40) and using lide(p,c(t)) = 4o the following intrinsic

one: too

(2.47,) B, (P) = tig[dn(p,c(t))-t] for all pENE.

This means, that Bc(p) is some “renormaljzed distance of p
from c(o)” (see b)) and which can be symbolized (since

t=d, (c(0),c(t))) by “B,(p) = d .(p,c(®)) - d,(c(0),c(x))”. The
last interpretation of Be however deserves a warning: This
“distance from c(w)” is determined by c(w) only up to an
additive constant, more precisely (see (2.45),(2.47)):

If ¢,c:R — Nz are unit speed geodesics, then

(2.47,) B. - Bz ¢ Nz — R 1is constant iff c¢(o) = C(w} .

Finally we mention another intrinsic description of Bc(p)
for pemz (without any limiting process !) in terms of “polar
coordinates with respect to (c(O),é(O))", more precisely a
description which only involves the distance from p to c(0)
and the angle between c(0) and the initial velocity vector
u, (p)eT>, MD

o!P c(0) k
and p, namely: If we set (see (2.16))
r0:=dK(c(0),..):N2 -— R and
. | 1 n
o.—Uc(O).NK\{c(g)} = TooyMc
i for all pelM'c (see (2.16),(2.13),(2.161)):
= exp, (ry(pP)"Uy(p)) =

cos, (ry(p))-c(0) + sin (ry(P))- (1,U,(P))~ ,

of the unique unit speed geodesic joining c¢(0)

[=]

(2.47,)

e
o

o

il

then one deduces (using (2.39),(2.473),(2.14),(2.38),(2.5),
(2.3)) easily for all pemg

(2.47,) <p,b_>, = cos (r,(p)) - V=K-sin (r,(P))-g(U,(p),E(0))
(see (2.161)), which together with (2.47) provides the
announced intrinsic description of Bc(p).

Moreover one sees from (2.471) that

_ . P . n
(2.475) (Bfoc)of = Bc for every isometry f.NK —> Nx .

Going back again to (2.472) we observe, that according to
(2.472) the differential resp. the gradient vector field of Bc
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does only depend on c(w), more precisely: If we introduce for
convenience of the computation the constant vector field

BC:N: — ™M1 along i:N: s R"1 with
A _) _
(2.48,) { B, = b, . i,
therefore en(Bc’Bc) = 0 and Vch = 0 for XEX(MK)
(as follows from bceac, see (2.43),(2.37), resp. from (2.4)),
then, using the unit normal field EK of NE in E:+1, the

definition (2.47) of the Busemann function can be written as
(see (2.2),(2.3),(2.85)):

(2.48,) B, = (1/“:2)'1“(“:E'ex(§x'5c)) .

Therefore for all Xex(mz) we obtain from (2.481) (using
(2.86),(2.480)):
(2.48,) X'Bo = - zﬁéétiéggl S (P E_T—l_ﬁ_—'Bc'i*x) :
k' k'’ c) K En' c)
. -1 .
Since Ex + eK(EK,BC) ~Bc is orthogonal to EK (see (2.86)),

it is tangential to NE, and therefore we get from (2.482)
. 1
igradg_ = - (£,  + —Fg—5—="B.) ,
(2.483) * ¢ k eK(EK'BC) ¢
hence ngadBcH =1 .
Then the Hessian of Bc can be computed for all XeI(N:) as
(HessB ) (X) := V,(gradBR ) =
(2.48,) { c X c

in particular the Laplacian of Bc in Nz is constant:

= V=K-[X - g(X,gradg ) -gradg ) ,

(2.48;) 8B, := trace(HessB ) = (n-1) -v=K .

c
We are now able to prove for every c® path ¢:I — Nz :

c:I — N: is a maximal integral curve of -gradBc iff
(2.49) I=R and ¢ is a unit speed geodesic with &(w)=c(w).

[Proof: First one obtains immediately from (2.471) and
(2.13)):
(2.50) B_(t) = -t for teR, therefore g(gradBcoc,é) = -1 .

But gradBcoc (see (2.483)) and ¢ are both unit vector fields,
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so it follows from (2.50) and Cauchy-Schwarz (in-)equality:
(2.501) c = -(gradBc)oc .

If C:R — N: is now an arbitrary unit speed geodesic with
C(w)=c(w) then we get from (2.472), that gradBe = gradBc and
therefore (apply (2.501) for ¢ instead of c):

c = -(gradBé)oE = —(gradBc)oé =, whereby (2.49)“¢” is
proved. Suppose oppositely, that c:I — N: is a maximal
integral curve of -gradBc and without loss of generality Oe€I.
Choose then the unique unit speed geodesic ¢&:R — M: with

C(0) = c(0) and C(w) = C(w) , (see (2.44),(2.45)).

Then ¢ 1is according to the (already proved !) statement

(2.49)“¢” a maximal integral curve of —gradBc. Therefore by

the uniqueness property of maximal integral curves of a vector

field with the same initial values it follows I=R and ¢é=&, in

particular ¢ is (as ¢) a unit speed geodesic with &(®)=c(®).]
From (2.49) one gets immediately

If C:R — NQ is any unit speed geodesic and there
(2.51) exists t eR with é'(to) = -gradg_(c(t,)) , then
C(w) = c(w) .

[Proof: After re-scaling ¢ we may assume to=0. Let then
(see (2.49)) ¢C:R — MZ' denote the maximal integral curve of
-gradBc with €(0)=c¢(0), therefore

&' (0) = -gradB_(&(0)) = -gradB_(&(0)) = & (0) .

But according to (2.49) ¢ is a unit speed geodesic with
¢(w)=c(o). Because of the uniqueness theorem for maximal
geodesics with the same initial velocity vectors it follows

therefore ¢=C and thus c¢(w)=C(w)=c().]

d) The horosphere H := H(p,c(w)) through pemz with limit
point c(m)eamz (see b)) is defined as usual to be the reqgular
(n-1)-dim. 1level submanifold of the Busewann function Bc
through p in ME, i.e. (see (2.47))

(2.52)  H = B_'({8,(P)}) = {qeM]I<g-p,b_> =0} .
[We observe: Because of (2.472) for any unit speed geodesic
&R — My with &(w)=c(w) holds BZ'({85(P)}) = BL ({B_(P)}) ,
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i.e. H in fact depends only on c(w).]

Moreover: Because of (2.44),(2.475) and the fact, that the
group GQ acts transitively on the set of all unit speed
geodesics in ME, it follows from (2.52):

2.52 Each two horospheres of M® are congruent in Mo,
K K

1)

Remark. Since V := {veRn+1|<v,bc>K=0} is a n-dim. vector

subspace of Rn+1, which is tangent to the asymptotic cone 8C
for the hyperboloid M: along the generator R+-bc (see
(2.37),(2.43)), we get from (2.52) the following extrinsic

description of the horosphere H as the “hyperplane section” of

n+1

M: with the n-dim. affine subspace of R through p, which is

parallel to V in rOTL.

From the last remark and (2.52) follows, that if e.q.

c(0)=e and c'(0)=e1, then (see (2.39)) bc =e + (1/V-x)-e1
resp. (see (2.47)) Bc(e)=0 and:
{aeR™ 2, =0} — g1
K V=K
(2.522) (a — (- 3 <a,a> , - <a,a> , az,...,an))
induces a c“ diffeomorphism of Rn_l onto the
horosphere H = B;I({O}) of N:.
From (2.52) follows, that ( := -(gradBc)oj is a unit
normal field along j:H < N: and therefore it follows

directly from (2.482) and ([Do]l,4.5.1ii,iii, that the shape

operator of H with respect to the normal field { at peH equals

V=R-14 0 of

i.e. H is an umbilical hypersurface in MK

T H '
P

constant mean curvature Vv-k (w.r.t. () and if nz3, the
(n-1)-dim. riemannian submanifold H of N: is. of vanishing
sectional curvature.

From the description (2.52) of the horosphere H it is
clear (Mz is the boundary of an unbounded convex body in Rn+1,
hence N: has the “two-piece property”) that N:\H consists of

+ -
two components H , H where
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" + _ n _ o n+1 _
(2.53) H' = {qeM(IB_(q)>B (P)} = M n {qeR" |<g-p,b_> >0}

and H is defined correspondingly.

Because of (2.50) the sets H+,H_ can be characterized
(without using bc or Bc) in the following way:

' resp. H is the connected component of Nz\H,
(2.531) which contains the points c(t) for t > - resp.
t > 4o .

Moreover the normal field property of —(gradBc)oj for
j:H “: allows (using (2.47,), (2.49), (2.50), (2.51),
(2.531)) to characterize the asymptotic behaviour of a wunit
speed geodesic C:R — NE with respect to the given c¢ (see

b), (2.45_.)) as follows:

o)

C(w)=c(w) <« There exists tOeJ with E(to)eH and
(2.54) C intersects H at the time to
orthogonally, passing from H+ to H .

(If one side of (2.54) 1is true, then é(]—m,to[)sH+ and
E()ty,@[)SH .) '

If we choose now for the given unit speed geodesic
c:R — N: the special horosphere (see (2.50) and the remark
after (2.54)):

.- e g1
(2.55,) { He 1= H(c(0),c(=)) = B (10D) .
Hc = Bc (R,) and Hc = 30 (R) ,

and we get, that the Busemanw function Bc measures the
oriented distance of the points in NE from the horosphere Hc

+ dist(p,Hc) for p € H: v Hc
(2.55)  B,(p) = _ -
- dlst(p,Hc) for p e Hc v Hc R
where dist(p,Hc) = inf{dK(p,q)Iquc} . Moreover, as one can

show [using (2.472),(2.473), the CaucHy-Schuwirz inequality and
the strict monotony of (see (1.1))
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—K .
eV X
e"V KX

and

cos_(x) + V=K-sin_(x)
(2.56) { Kk K

cos, (x) - V:E'sink(x) for k<0 )

that the latter infimum is attained exactly at the one point
(q=) &(Bc(p)) € H, , where C¢C:R — NQ is the wunique unit
speed geodesic (see (2.44),(2.45)) with c(0) = p and

C(w) = c(w) .

In all of this section (vii) we assume n=2.

a) Then due to the canonical orientation of Mi (see
(2.18)) we have a uniquely determined complex c¢® structure J
for Ni, i.e. a c” tensor field J on Ni of type (1,1), such

that for all pemi and ueT;Ni one has

(2.57) (u,Ju) is a pos. oriented orthonormal 2-frame of Tpmi,

i.e. Jp is the rotation of Tpmi about the angle mn/2 in the
positive sense w.r.t the given orientation, in particular

(2.58) for all v,weTpNK:

2 (JoJ) (V) = - v, g(Iv,dJw) = g(v,w)
and g(Jv,w) = - g(v,dw) ,

and from (2.58) follows easily:

(2.59) J is V-parallel, i.e. V,JY = JV,¥ for all X,YeI(Ni).

b) The oriented area form ¢ of the oriented Riemannian
manifold Ni can be described as the differential 2-form with
(see a)):

(2.60) { o(X,Y) := g(JX,Y) for all x,vex(mi),
therefore ¢ is V-parallel

(together with g and J, see (2.59)), moreover one has for all
X,Y,Zex(mi) the identity:

(2-501) o(X,¥)o(z,W) = g(X,2)g(Y,W) - g(X,W)g(¥,Z) .
c) Because of (ii), Remark a) we have, if e=(1,0,0)eR3:
(2.610) Ni(e) := Mi\{e,—e} is c¥ diffeomorphic to Rz\{o}

and if r := dK(e,..):Ni — R and R := grad(r) on Ni(e)
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(see (v)a)), then it follows from (2.34),(2.58):

(R,JR) is a positively oriented orthonormal c¥ frame
(2.61) field on N (e) and therefore (see (2. 35),(2 60))
VxR = cot (r) o(R,X)-JR for all XEI(N (e)),

and (see (2.60)):
(2.61,) dr(R) = g(R,R) = 0(R,JR) =1, dr(JR) = g(R,JR) = 0.

If we define therefore the “polar angle form 6 on Mi(e) v.r.t.

e” as usual as the Pfaffian form on Ni(e) with (see
(2.60),(1.9)):
o (R,X) 2
e(Xx) := . for all XeX(M ),
(2.62.) 51nK(r) K )
i.e. O6(R) = 0 and 6(JR) = sin_ (%)
K

then evidently (use (2.61),(2.62 ),(2.59) and V torsionfree!)

(dr, 51n (r)08) is the dual frame f1e1d of (R,JR),
(2.62) VxR cos, (r)-6(X):-JrR for Xex(m (e)) and de = o ,

consequently

(2.621) g = dredr + sini(r)-(eoe) and o = sinK(r)-(drAe) .

2

Moreover, if Ue:Mi(e) — TM, is the vector field along the

map Mi(e) — Ni (p — e) , which was defined in (2.16),
then one has

- ) 2
(2.63) VU, = 8(X)-JU_ for all XeX(M).

[Because of (2.61) it suffices to verify this for Xe{R,JR} 1in
which cases the assertion (2.63) follows from (2.353),
observing that for pemi(e) one finds easily (with wuse of

(2.354),(2.35,)) sin (r(p))-JR(p) = s: with a := JU_(p) -]

d) Suppose now, that we have chosen

(2.640) a fixed unit tangent vector ueTllM2 of N2 at e

(which we can interpret as a constant vector field

Ni(e) — TNi along the map Ni(e) - Ni (p > e) ).

Then we can introduce the two c¥ functions

cosg,,, sinwuzmi(e) — R Dby (see (2.16),(2.60),(2.640)):
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. 2
cosp = g(u,Ue) , Sinp = c(u,Ue) H Nx(e) — R,
(2.64) i.e. Ue = (coswu)-u + (sin¢u)-Ju and therefore
VpeNi(e) P = exp, (r(p) - (cosp, (p)-u + sing, (p)-Ju)) ,
where Ue(p)eT:Mi is the initial velocity vector of the unit
speed geodesic c:R — Ni ' joining e = c(0) with
p = c(r(p)) € Ni(e) , 1i.e. Ue(p) is the direction under which

an observer, situated at e, “sees” the point p, and we call
therefore the three functions r, cosy, . singou the “polar
2

coordinate functions for Nx w.r.t. (e,u)”.
!

[Warning: We have not introduced a continuous angle
function wu:Ni(e) — R (which is impossible because of
(2.160)), but only coswu,sinwu. See however Remark 2) below.]

Then one obtains from (2.601),(2.64))

cosqpu2 + sinwu2 =1,

(2.64,) { 1

. : ol . (5]
i.e. (coswu,51n¢u).NK(e) — S is a C map.

and from (2.64),(2.63) one gets (because of X-coswu=g(u,Ver),
ees)

d(coswu) = - (sinwu)-e and d(sinpu) = (coswu)-e '
(2.65) in particular for every C1 path c:I — Ni(e) :
(cos¢uoc)’=-(sin¢uoc)9(é), (sinwuoc)’=(coswuoc)e(é).
Remark.

1) The first equation of (2.62) says, that the connection
form w:=w12:=-g(E2,VE1) with respect to the orthonormal frame
field(El,Ez):=(R,JR)in the sense of E. CARTAN satisfies
(see(2.620))(2.651) w = - cosK(r)-e , therefore dw = k-0
(see (2.65),(2.62),(2.621)).

2) The oriented angle function

Lolo2
£0(enyen) tTgMoXT

o Mi—e]-n,n] for the oriented 2-dim. Euclidean

S

1

vector space T M (where (u,Ju) 1is a positively oriented

K
orthonormal 2 frame, see (2.640)) is as usual defined by (see

(2.60))
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For all v,weT M zo(v,w) e }-m,m] and
(2.66)

cos(zo(v,w))

no -

2,
K°
g(v,w) , s:m(zo(v,w)) = o(v,W) ,

using g(v,w)? + o(v,w)® =1 (cf. (2.60,)), i.e. the point
(g(v,w),o0(v,w)) lies on the unit circle sl. This function <«

1.2 °
satisfies for all v,w WETeNK
(2.661) w#*V > zo(v,w) = - zo(w,v) P
zo(v,ﬁ) - zo(v,w) = zo(w,ﬁ) mod 2m .

(verify, that cos and sin have equal value for the 1left and
the right hand side of the congruence (2.661)). Moreover:
The comparison of (2.64),(2.66) implies for all pemi:
(2.66,) { (cosp ) (P) = cos(< (u,U_(P))) ,
(sing ) (P) = sin(< (u,U, (P))) ,

which provides the following geometric interpretation of the
functions cosy.,, sinwu:Mi(e) — R : For every pemi(e) the
number (coswu)(p) resp. (sinwu)(p) is the cosine resp. the
sine of the oriented angle between the fixed direction u in
Temi (see (2.640)) and the direction Ue(p), under which an
observer at e “sees” the point p. This interpretation becomes
more satisfactory, using a covering model for Ni(e):
3) Consider (see (1.9))

ﬁ.=]0,nK[xR as an open c* submanifold of R? and let
(2.670) p,w:]o,nx[xR — R denote the first resp. second
projection.

Then the cv map

(2.67) { £

a un1versal covering for N (e) (see (2. 15),(2 61 ))

U= exp, (p: (cos(p) -u + 51n(¢) Ju) ): M — N (e) 1is

which evidently satisfies (compare (2.16) with (2.67)):

u

(2.67 rof = p and erfu = cos(p)-u + sin(¢)-Ju ,

1)
i.e. (see (2.64),(2.671)):
(2.672) (cosqpu)ofu = cos(¢p) and (sinwu)ofu = sin(yp) ,

whence one deduces
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(2.67,) () *dr = dp and (using (2.65)) (fY)*e = dp ,

and therefore (see (2.62),(2.673))
(2.67,) (f“)*(gg) = RefY  and (fu)*(gg) = (sin(r)-3R).£" .

Finally the comparison of (2.662) and (2.672) yields
u
= of .
(2.675) p = Ao(u,Ue ) mod 2m
Now suppose, that reNv{w,w} and we are given a
(2.680) cr map h:N — Mi(e) of a 1-connected C¥ manifold N

into M’(e). Then because of (2.67) and the simple

connectedness of N there exists by the monodromy principle a

(2.68) { cr lifting fi:N—> M of h w.r.t. f:f — Ni(e) ,
i.e. f eh=nh

and we obtain for this map h:N — # (see (2.68),(2.671),
(2.67,))

roh = poh , h*8 = d(p-A) and
(2.681) erh = cos(peh)-u + sin(poh)-Ju , i.e.

(coswu)oh = cos(peh) and (sinwu)oh = sin(g-h) ,
and we get from (2.68),(2.675) and (2.661)

(2.68,) Y oy P(B(D))=9(B(P)) = £4(Ug(h(P)), U (B(q))) mod 2m.

Moreover, if there exists

(2.69,) {

then (r(h(qo)),O) € M and fu((r(h(qo)),o)) = h(qo) due to
(2.16),(2.67),(2.690) and consequently according to the

q,sN, such that h(qo) € exp, (]O,m [-u) ,
i.e. Ue(h(qo))=u ’

monodromy principle there exist a

unique lift of h:(N,qO) — (Mi(e),epr(]o,nn[.u))
with respect to fY:fi — Nz(e) , Wwe call it ﬁ(u,qo)'
s.t. %% ana (%) (qp)=(r(n(gy)),0),
ice. poh™90) (q )=reh(qy) and ¢eR(% %) (qg)=0.

(2.69)

For this ﬁ(“'qo) the statements (2.68

moreover

1),(2.682) hold m.m.,
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(2.691) for all geN: woﬁ(u’qo)(q) = zo(u,Ue(h(q))) mod 2w .

Via (2.673) the polar angle form 8 gets now an interpretation
appealing to its name:

Suppose that c:[a,B] — Ni(e) is an arbitrary ct path and
¢:[a,B] — M any lift of c with respect to £ (see (2.67)),
then (see (2.673))

B .

e(c(t))dt = | 6 = 6= (Y*e = | dap =
(2.70){ '[a Ic J‘f“aa Ia Ia

= 9(C(B))-p(C(a)) = 2, (U (E(x)),Ug(E(B))) mod 2m,

in particular, if c is closed, i.e. c(a)=¢(B), then
(2.701) (wvinding number of c with resp. to e) := 7%-[ 6 € Z .
c

(viii) Maximal curves of constant oriented curvature in M .

First we commemorate the following concepts and results
about plane curves (from differential geometry):
Suppose (M,g) is a 2-dim. oriented Riemannian cs manifold,
se{w,w}, J its complex structure (defined m.m. as in (vii)a)).
Suppose I is an open interval in R, c¢:I — M a unit speed c?
path in M. Then ¢ resp. Jc is the unit tangent resp. principal
unit normal vector field of c and one calls

(2.71) { Ko 3= g(Vac,Jc):I — R the oriented curvature of c,

wherefore c satisfies the FreNET ODE Vaé = Kc-Jé .

Moreover the name “oriented” curvature is motivated by:

The reverse path c' of c (see (2.41)) has oriented

(2.71,) {

curvature K(cv) = - K -

Suppose now, that a:M —- R is a Csifunction on M, se{o,w},
with lgradall =1, and c:I — M is the maximal ct integral
curve of the unit vector field Jgrada through some point
pPeM. Then c is a c® path and (see (2.71)):
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[ c(I) is the connected component of the point p in the
level set A L({r(p)}) of A through p and c has the
curvature (see (2.71)): k, = hessi(Jgrad:,Jgradi).c,
(2.72) { where hessa (X,Y) := g(Vx(gradA),Y) for X,YeX(M),
moreover:

If A-l({k(p)}) is compact or M is complete, then I=R

| and in the first case c:R — M is periodic.

After these general remarks we return to the geometry of
(M,g) := Ni and we choose for the following sections a),b),c)
(see (2.5),(2.3),(2.0), in particular e1=(0,1,0), e2=(0,0,1))

(2.73) ueTiNi , such that (i*u)9=e therefore (i*Ju)9=e

1’ 2

(see (2.57),(2.18),(2.3),(2.5)).

a) Suppose pe]o,nx[. Then the set r_l({p}) (:=distance
sphere of radius p in Ni with center e) is closed and bounded
in the complete manifold Ni, hence compact, and therefore (see
(2.72), (2.62),(2.61),(2.34)) the maximal integral c¥ curve
C:R — Mi(e) of JR = Jgrad(r) with c(0) = epr(pu)

satisfies: c¢ is a periodic unit speed curve with

c(R) = r_l({p}) and c has constant curvature
(2.74) { 1V-K,o[ for k=0
R

nc=cotx(p), where cotK(]O,nK[) = for k>0

(in particular c is for k>0 and p=(nK/2) a unit speed
geodesic). Moreover it follows from (2.74) and (2.33), that
for k=0:

(2.74;)  c(®) = M2 n xgt({cos (p)}) ,

i.,e.: c(R) is the intersection of Ni with “the” affine plane

in R3, which is affinely parallel in R3

to the affine tangent
plane of Ni at the center e of the distance sphere c(R) (at
the Euclidean oriented distance cosK(p)-l).

Finally (see (2.26)):

c:R —> Mi is an orbit of the l-param. subgroup of
(2.742) sinx(r)

G, generated by the KiLLiINc vector field

+JR.
sin (m 7%

b) If k<0 and B:Ni —> R 1is the Busemanyn function of the
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unit speed geodesic t - expx(tu) ' then - since Mi is
complete — it follows from (2.72) and (2.483),(2.484): The
maximal integral c? curve c:R — Ni(e) of J (gradp) with

c(0) = e satisfies (see (vi)d), (2.52) and use, that due to
(2.521),(2.522) horospheres are connected):
c is a unit speed curve with

(2.75) c(R) = B-l({O)) (=horosphere through e with limit
point “expx(m-u)”) and c has const. curvature KC=V-K.

Moreover it follows from (2.52),(2.39) and (2.73) that

(2.75,) c(R) = M2 n }xo - v=Rex) Tha

i.e.: c(R) is the intersection of Ni with “the” affine plane
in R3 through e, which is which 1is parallel to the affine
tangent plane of the asymptotic cone 3C of Mi in R3 (see
(2.37)) at the point e + (1/V=x)-(i,u)” .

Finally (see (2.26)):

c:R — Ni is an orbit of the l-param. subgroup of

(2.75,) {

c) Suppose k=0, therefore (see (1.1)) sinK:R — R is a

Gi gener. by the KiLLinc vector field e’ * B.jgradg.

c¥ diffeomorphism and we obtain on Ni the extrinsicly defined

(2.76) c¥ function & := sin—lox IIMZ:IM2 —» R .
K 2 kK

Using (2.73) we get on Ni(e) the following intrinsic

description of lemi:

sinx(r)-sinwu sinK(r)-g(Ju,sin¢u~Ju) sinK(r)-g(Ju,Ue) =

2.58) ¢ 2.64) 2
( ) ¢ (2.3),(2.5) ( ) ¢ (2.33 ,(2.76,)
s e s - - 2
= (i,Ju I51nK(r) 1*Ue )x x2INK ’
hence (see (2.76)):-
. s i 2
(2.761) 51nK(6) = 51nK(r) sinp, on Nx(e).

The “Law of sines” for rectangular triangles in the Euclidean
1) tell

but, that & measures the oriented distance from the geodesic
2!’\
K

resp. the hyperbolic plane (of curvature k) and (2.76
epr(R-u)= =M xgl({O}), é being positive in the “half plane”

Minxgl(m+) bounded by epr(R-u) in which Ju points, negative
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in the opposite “half plane”l. Then one computes from (2.761)

and (1.1'),(2.65),(2.62,),(2.60),(2.34):

(2.762) grads = )-(cosK(r)(sinwu)-R + (coswu)-JR)

cosx(a

on Mi(e), from where one gets (observing (2.761),(2.641),

(2.61),(1.6)): ligradsi=1 on Ni, moreover one obtains from
(2.76,) (using (2.65),(2.62),(2.59)):

(2.763) v ngrada = - x-tanK(S)-g(Jgrada,X)-Jgrada .

XeX (M2)

Since Ni is complete, we get from (2.72) for any peR:

If c:R — Ni(e) is the maximal integral ¥ curve of
JR = Jgradd with c(0) = epr(pJu) R then (see (2.72),

(2.764)): ¢ is a unit speed curve with

c(R) = 6-1({p}) and c has curvature k_=-ktan_ (p),
(2.77) c K

- = | {0} for k=0
vhere -ktan (R) = { )-V=R,V=K[ for k<O

(in particular c is a geodesic if k=0 or p=0 and «k<0).
Moreover, we get by the above-mentioned geometric
interpretation of 8 as the oriented distance from the geodesic
t > expx(tu) ¢ c(R) is the connected component of the point
expx(pJu) in the boundary of the tubular neighborhood of
epr(R-u) of radius |p| and which we call therefore the

“p-distant parallel of epr(R-u)". Furthermore, one obtains
from (2.76),(2.77):

o2 -1 .
(2.77,) c(R) = M, n x,7({sin _(p)}) ,

i.e.: c(R), the p-distant parallel of the geodesic epr(R-u)

2

in M, is the intersection of NK with the affine plane of R3,

AN

1 1f one wants to describe the oriented distance & from the

geodesic epr(R-u) also in the case x>0, one only has to
. =1 . 1 1 -1

replace in (2.76) sin by (51nKI[-5 K,E-HK]) " . Then

this function & is continuous on L however C only on

mi\{vzez,-vzez}.

'
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which is (at the oriented Euclidean dlstance 51n (p)) affinely
parallel to the 2-dim. vector subspace x2 ({0}) of R3, that
intersects (in the sense of (2.17)) Ni in the geodesic
epr(R-u). Finally (see (2.26))

2 cosK(S)

c:R — N2 is an orbit of the 1-param. subgroup of
[
(2.77,)
cos, (p)

Gx gener. by the KiLLinc v. field -Jgrads .

Since (see (2.27)) the group Gi of all orientation
preserving isometries of Ni acts transitively on the unit
c

path ¢ in Ni and every feGK and since every feGi is (see

(2.20)) induced by a certain linear map AR > R

tangent bundle of Ni, since x(foc)=n for every C2 unit speed

which

evidently maps (affine) planes of R3 into (affine) planes of
R3, preserving the parallelity between such planes, the
results (2.711),(2.74),...,(2.772) and the uniqueness theorem
for the solutions of the ODE (2.71]) allow to state the
following résumé:

d) Proposition. For every pemi, ueT;Ni and xoeR, there
exist exactly one maximally unit speed c? path c:R — Ni of
constant oriented curvature K =K, and c(0)=u. This c is Cw,
isc:R — R° is a plane curve in R> and — if k=0 — c(R) is the

i of R® with an affine plane

intersection of the hypersurface M
3
of R

specifically one can say: In case

(which is the osculating plane of i.c). More

( lxole[o,v—x[: c(R) is a p-distant parallel curve to

a geodesic with peR, s.t. K0=—ntanK(p)

k<0 and A (in partic. c(R) a geodesic for K0=0).
xo|=V:? : ¢(R) is a 1-dim. horosphere in Ni.
lxole]V:?,m[: c(R) is a 1-dim. distance sphere of
L radius PeR, such that K0=c°tn(p) .
Ko= ¢ ¢(R) is a geodesic (=straight line).
k=0 and xoeR* : ¢(R) 1is a 1-dim. distance sphere

(=euclidean circle) of radius 1/Ix0|
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k>0 and xoeR ¢ ¢(R) is a 1-dim. distance sphere of

radius pe]O,nK[, s.t. x0=cotK(p) (in
partic. c(R) a geodesic for p=%-nx).

Finally: Each of these unit speed curves of constant oriented

curvature is the unit speed orbit of a l1l-parameter subgroup of
2

orientation preserving isometries of M.

(the opposite of this
statement being trivial).

3. Informations about the maximal solutions of the ODE,

describing a mechanical process of one degree of freedom

(i) Data:

Suppose M is a non-empty open interval of R,
atM -4 R 1is a loc. Lipschitzian function (e.q. Cl),

(3.0) U:M —- R is any primitive funct. for -a (i.e. U’ ' =-a),
.= 1.2
(ro,vo) € MxR and Eo =50V + U(ro) .

Then consider the following ODE initial value problens:

(3.1) y” = a(y) with y(0) = r, and y (0) = Vo
resp.

1 s 2 _ . = ’ =
(3.2) 5-(y )° + U(y) = EO with y(0) = r, and y’ (0) = Vo *

We call the ODE of (3.1) the “law of acceleration” resp. the
one of (3.2) the “law of energy” for a certain (mechanical)
process of one degree of freedom with M as its configuration
space, MxR as its state space (or phase space), (ro,vo) its

initial state, E, its total energy, a its acceleration with U

as (“a-effectiveP) potential, the “mechanical process” itself
will be viewed as “the” maximal C2 solution of (3.1) (see
below (3.5)).

Remark, By a “solution” of the ODE (3.1) resp. (3.2) vwe
always mean a twice resp. once differentiable function
r:I — R on an open interval I of R with 0eI and r(I)sM such

that (r’’=a.r and r(0)=r, and r’(0)=vo) resp. (%(r’)2+0(r)=EO

0
and r(0)=r0 and r’(0)=v0), and then one can show, that r has
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2 (trivial) resp. ct (using Dareoux’s theorem). Such a

to be C
solution is called “maximal”, if r is not the restriction of a
solution r:I — R with I<I and I=I.

There is a very tight correlation between the two ODE’s
(3.1),(3.2), essentially well known, and of which correlation
we present here a rather subtle (for our purposes useful)
version:

(ii) Proposition. (Data as in (i).) For any open interval I of
R with 0el and every c? function r:I — R with r(I)sM the
following three statements a)-c) are pairwise equivalent:

a) r is a solution of (3.1).

b) r is a solution of (3.2) and (r' non-constant or a(r0)=0).
c) r is a solution of (3.2) and (r non-constant or a(r0)=0).

Remark. The stated equivalences remain true, if “solution”
is substituted each time by “maximal solution”.

Proof.

a) % b): That r (being a solution of (3.1)) is as well a
solution of (3.2) follows by differentiating %-(r’)2 + U(r) .
If moreover r’ is constant, then r’ =0, hence

a(r =r’(0) =0 .

o)

1

b) 3 ¢): Trivial.

c) 3 a): For this we distinguish two cases:

1St case: r is constant: Then r’ =r’” = 0 and therefore

=0 .
C

r'’-a(r) = -a(r) = —a(ro)

nd .
2 case: r is non-constant:

Then H := {tellr’ (t)#0} # @ . From c) (i.e. from (3.2) with
y=r) follows by differentiation immediately r’-(r“-a(r)) = 0,
which implies by definition of H:

(3.3) r“ = a(r) (on H and thus by continuity) on HnI = o .
So we are done, if HnI = I . Otherwise denote by

G an arbitrary (non-empty) connected component of I\H,
therefore G is an open, non-empty proper subinterval of 1I,
consequently infI = infG < supG = supl and the equality
signs do not hold simultaneously. Therefore there exists
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te{infG,supG}nI, in particular te(G\G)nI and since G is (as a
connected component of I\H) closed in I\H, i.e. Gn(I\H)=G, it
follows, that

(3.4) T € HhI , whence (see(3.3)) r’“(t) = a(r(t)) .
Moreover Gs<(I\H)<(I\H), hence r’ vanishes on the open interval
G of I, in particular r‘-a(r) is constant on G and by
continuity actually on GnI (3T). Therefore (see (3.4)) r’=a(r)
holds on G, which finishes the proof.

(iii) Since the ODE (3.1) of second order is egquivalent to
the ODE system of first order with locally Lipschitzian a (see
(3.0)):

y =v and v = a(y) with y(0) =r and v(0) =v, ,

0 0

we obtain from the general theory of ODE’s the following
Existence and Uniqueness Theorem for (3.1):
Data as in (i), then:

There exists exactly one maximal C2 solution of (3.1)
(3.5) and any C2 solution of (3.1) is a restriction of this
maximal one,

e.g. for any C2 solution r:I — R of (3.1) the following

five statements a),...,e) are therefore trivially equivalent:
((a) r:I — R 1is constant ’ ’

b) (r,r'):1 — Rz is constant ’

C) r = ao.r =0 (i.e. EO = (Uer) = U’ or =0 ),

(3.6) | d) Vo = a(ro) =0 (i.e. Eo - U(ro) =U (ro) =0 ),

{such a state (vo,ro) is called a “state of
equilibrium” for the law of acceleration y’=a(y)),

e) There exists toeI with r’(to) = a(r(to)) =0
(i.e. Ej - U(r(ty)) =V (r(ty) =0 )

0

The discussion of “the” solution of (3.1) (see (3.5)) is
frequently done (e.g. for Kerer’s problem) by discussing
“the” (?) solution of the corresponding law of energy (3.2).
This procedure deserves some caution (see the “Warning”
below), a certain justification for it however is provided by
the following

(iv) Corollary. Data as in (i). Then there exists a
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maximal C2 solution r:I — R of (3.2), which is unique among
2
all ¢ o)

constant and 1is at least unique among all non-constant

solutions of (3.2) if af(r =0 , resp. which is non-
solutions of (3.2) if a(ro) # 0 . Moreover this solutions of
(3.2) is the unique maximal solutions of (3.1) (see (3.5)).

[Proof: Trivial consequence of '~ Proposition (ii) and
(3.6).]

wWarning:

a) The c® ODE (y')2 + y?> =1 with y(0)=1 and 1y (0)=0,
which describes the “law of energy” for the harmonic

2

oscillator (with a certain initial state), has two different
maximal c* solutions r = cos and r = 1 (on R), but here we
have a(ro) = -1 # 0 . Therefore in the 1last Corollary one
can get in general no better results with respect to the
uniqueness. Moreover the last example demonstrates that the
“law of energy” alone is not sufficient to single out the
proper mechanical process solving (3.1), but that one has in
0): If

resp. if a(ro)to,
2

adcéition to take in account the initial acceleration a(r
a(r0)=0, then the constant solution r=r,,
then (not the constant but only) the non-constant maximal C
solution of (3.2) describes the mechanical process determined

by (3.1).

b) For the first order ODE (3.2) (law of energy for (3.1))
it makes of course sense to speak of C1 solutions. However in
Corollary (iv) it is essential for the *“uniqueness” part to
admit only c? solutions: Because already in the preceding
example a) of the harmonic oscillator there exists e.g. a
1

whole family (rr) of maximal C

t€R+ solutions rr:R — R of

the corresponding law of energy ((3.2) with 2U(x) := x2 ’

r0=1, v0=0), namely

rt(t) =1 for t=t and rt(t) = cos(t-t) for tzt.

However r_ is lacking the second order differentiability at
(exactly the point) TeR,, where we have a “Jump” in the

acceleration: lim r2(t) = 0 > -1 = lim r’”’(t) . Therefore
T T
1 tat tyT
these C solutions of the 1law of energy correspond to
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“mechanical processes” (not admitted as “solutions” in (3.1))
with sudden passages from rest to harmonic oscillation.

For a non-constant process of one degree of freedom
r:I — R with prescribed (acceleration a resp. its) potential
U and initial state (ro,vo) as in (3.0) one can get a priori

(i.e. expressible only in terms of the data v, r.,v

1Vq)
qualitative information about I and the behaviour of r wighogt
knowing an explicit quantitative description of r (which in
general is accessible only through numerical methods for
solving an ODE). For the convenience of the reader we give
here a rather detailed summary of these (essentially
well-known) results without proof (a complete proof of which
was presented by the first author in his course on “Mechanik”

1982/83 at Koln) in the following

(v) Theorenm.

Data: As in (i), in particular
(3.74) E, - U(rg) = 0,
and we make the additional assumption (thereby excluding a
constant process r:I — R solving (3.1), see (3.6)):
(3.7) (Eq - U(ry),U (rgy)) = (0,0) .
Consider the following subsets of M:

M := {peM|E_ > U(p)} and
(%) °(<)

(3.8,) Mo i= {peMIEo=U(p) and U’ (p)=0} ,
0 consequently for every peM0 there exists ceR+ with
Je-€,p[ < M+ and . Jp,pte[ € M_ if U (p) >0 .
- (+) (<)
From (3.70), (3.7), (3.80) follows, that r, € M+uMo and
therefore
(3.8) H := connected component of the point r, in M+uM°
is the largest subinterval of M+uMo (sM) with roeH.

For this interval H one obtains from (3.7),(3.80),(3.8)

(3.90) fan =: Tpin = Yo = Thax = supH ?nd Trin < Fmax ’
(3.9) H = ]rmin'rmax[ #+ @ and (EO—U)(H ) s R+ 1= JO,m[ ,
(3.9_) rminEM > [E0=U(rmin) and (rmineH <= U (rmin)<0)] '
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(3.9+) r €M = [E0=U(rmax) and (rmaer s U (rmax)>0)] .

Finally we define the numbers 7_e[-®,0] and t+E[0,m] by

To max
(3.10) T_ := - I _— 9 and T, i= I —ax
2(E,.-U(X)) 2(E,~U(x))
Thin 0 Ty Y

in particular (see (3.9)):
(3.100) (tT_=0 & hin=
and one has the useful information:

ro) and (t+=0 & rmax=r0)' hence T_<T,,

(3.10_) { Fin €MH & r . eM and VU (r ) =0,
L4 min € M and T_= - o p
(3.10,) { rax €EMH & r . eM and VU (r ) =0 ,
Ll Thax € M and T, =to .

Assertion. If r:I — R is the maximal 02 solution of
(3.1) (see (3.5)) for the given data UM >R,
(ro,vo) € MxR of (3.0),(3.7), then:

a) r:I — R is an open mapping of I onto the subspace
(3.11) H of R, in particular r(I) = H .
b) For every tel the following is true:

4 =
(3.12)) r(t)e{rmin,rmax} o r' (t)=0
(3.12) { < I is symmetric and r is even w.r.t. T,
i.e. UT(I) = I and reo. =r,

where ot(x) t= 2T=-X ¢t R — R is the reflection of R at <t.

. . . =0 .
c) With sgn(vo) s= { -1 iff Vo { < o One gets:

(1) If H = ]rmin’rmax[ , then vo*o and

(3.13) { r:I — H is bijective with r’'(I) € sgn(vy) R,

and I = sgn(vo)-]r_,t+[ .

(2) If H = [r

min'rmax[ » then
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Ty T sgn(v0)~t_ e I , moreover r(to) = rmin '
(3.14) r’(In]-m,to[) S R_, r’(In]to,m[) < R+
and I = sgn(vo)-]Zt_-r+,t+[ .
(3) If H = ]rmin’rmax] , then
Ty = sgn(vo)-t+ e I , moreover r(to) = Tpax !
(3.15) r’(In]-m,rO[) < R+ R r’(In]to,m[) s R_
and I = sgn(vo)-]t_,2t+-r_[ .
(4) If H = [rmin’rmax] , then

I=R, T ,T,eR and ri:R - R 1is periodic
(3.16,) -1ty
with smallest period 2T := 2:(p -t ) eR ,

moreover one has for all tel:

r(t) =r ;. « r(t+T) = ¥ oax
(3.16) > r' (]t,T+P[) s R, and r' (JT-T,t[) € R,
finally: (r(t),r’ (t)) = (ro,vo) < T e (2T)-Z .

4. Conics in ME_

We use the notations introduced in § 2 and we study now
the geometry of certain subsets of Ni, which will later occur
as the possible orbit sets of a point moving in a central

force field with a Newron’s potential, see below § 6.

(i) Definition., A subset K of Ni is called a conic

2

(section) in L

iff K 1is a connected component of the

intersection of Ni ($R3, see (2.5)) with the zero-level set
p_l({O}) of a polynomial function p:m3 — R, which is

homogeneous of degree two.

[Evidently p-l({O}) is a quadric cone in R> and recalling,
that Ng is the affine hyperplane X,=1, we see that in case k=0
this definition coincides with the concept of a conic in
classical Euclidean geometry. ]

(ii) Definition.

Suppose K is a subset of Ni. Then we define:

a) K is called an ellipse iff there exist points p,ﬁewi
and a number aeR with
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. 1 - 1
(4.10) 0 s f := E-dx(p,p) <a<Fm (see (1.9)),

such that

(4.1) K = {qeM’|d, (q,p)+d (q,B)=2a} .

Correspondingly we call p and p the focal points of K, a the
major semiaxis of K and f (see (4.10)) the focal length of K.

b) K is called a hyperbola iff there exist points p,ﬁsmi

and a number aeR with

1 ~ 1
(4.20) 0 <acx<f:= E-dx(p,p) < F M (see (1.9)),
such that
2 -
(4.2) K = {qeM 14 (q,p)=d (q,p)+2a} .

Correspondingly we call p and p the focal points of K, p the
closer one, a the major semiaxis of K and f (see (4.20)) the
focal length of K. 5

In order to compare ours with the classical notation of a
hyperbola, we point out, that the set (4.2) is only one branch
of the classical hyperbola

2 ~
(4°21) R = {CIGNK| ldk(q,P)‘dK(QrP) |=2a} ,
namely that branch, which faces p.

c) K is called a semihyperbola iff there exists a point
pemi, a unit speed geodesic 7¥:R — Ni and a number aeR with

1 .= 1. 1.
(4.30) L <a<f:= > Sw(p) : f 7 T (see (1.9)),
such that
2
(4.3) K = {qeM_15, (q)-d, (q,p)=2a} ,

where 61:Ni —> R denotes the oriented distance from ¥ (R),
defined by 81 := 8of with & from (2.76) and feGi being the
orientation preserving isometry of Mi, such that f*%(o) =u
with u from (2.73). Correspondingly we call p the focal point
of K, 7 the focal line of K, a the major semiaxis of K and f
(see (4.30)) the focal length of K.

d) K is called a horoellipse iff k<0 and there exists a
point pemi, a unit speed geodesic 7¥:R — Ni with ¥ (0)=p and
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a positive number seR , such that

(4.4) K = {qeM?1d,(q,P)+8, () =25} ,

2
K
(2.47), (2.471)). Correspondingly we call p the focal point

where 31:N — R denotes the Busewann function of ¥ (see

of K, ¥ the axis of K and s the pericentral distance of K (see
below (4.101)).

e) K is called a horohyperbola iff k<0 and there exists a
point peNi, a unit speed geodesic 7:R — Ni with y(0)=p and
a positive number seR,, such that

(4.5) K

{aeM2 14, (a,p) -8, (@) =25} ,

where Br:Ni -— R denotes the Busemanw function of 7 (see
(2.47), (2.471)). Correspondingly we call p the focal point
of K, ¥ the axis of K and s the pericentral distance of K (see
below (4.111)).

(iii) Remarks.
a) The Euclidean parabola is obviously a semihyperbola (see
(ii)c)) with the special data k=0 and a=0. Oppositely one
checks easily, that in case k=0 every semihyperbola can be
interpreted as a (Euclidean) parabola (with the same focal
point).

b) In case k>0 hyperbolas and semihyperbolas can be
interpreted as ellipses. To see this, choose for the set (4.2)
as focal points p and -p and as major semiaxis %-nx-a, for the
set (4.3) choose as focal points p and (1/V?)-1*J%(0)+ and as
major semiaxis %-nk-a.

c) We can unify the metric descriptions of conics in (ii)
as follows: If the subset K of Ni is an ellipse or a
hyperbola or a semihyperbola or a horoellipse or a
horohyperbola (see (ii)), then there exists a maximal unit
speed C2 path c¢c:R — Ni of constant oriented curvature «k

c
(see § 2.viii), such that

(4.6) K = {gqeM’1d,(q,p)=dist(q,c(R))} ,

where peNi is the focal point of K resp. in case K is an
ellipse any of the two focal points resp. in case K 1is a
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hyperbola the closer focal point. This path ¢ of constant
curvature has the following image:

If K is an ellipse or a hyperbola, then c(R) is the 1-dim.
distance sphere of radius two times the major semiaxis and
with center at the other focal point p. In case of the ellipse
both focal points are contained in the same connected
component of Mi\c(R) (namely in the “interior”, i.e. in the
bounded one, if k=0). In case K is a hyperbola the two focal
points are contained in different connected components of
Ni\c(m) (hence p lies in the “exterior”, i.e. in the unbounded
one, if k=0).

If K is a semihyperbola, then c(R) is the (2a)-distant
parallel curve to the geodesic, which is the focal 1line of K,
and a being the major semiaxis (see § 2.viii.c,d).

If K is a horoellipse, then c(R) is the 1-dim. horosphere
B;l({ZS}), and if K is a horohyperbola, then c(R) 1is the
1-dim. horosphere 87 ({-2s}), where 7y is the axis and s the
pericentral distance of K. These two cases differ only with
respect to the connected component of Mi\c(R) which contains
the focal point p.

Remark. The idea to characterize the conics uniformly as
sets of points in Ni which have equal distance from a certain
“leading curve” and one “focal point” (not on that curve) is
used (for k=-1) by LieBMaNN (see [Li],p.184-186), however the
uniform interpretation of the “leading curves” as curves of

constant curvature is lacking in Liesmann’s book.

(iv) Proposition.

a) Let K denote the ellipse in M (see (ii)a)) with focal
length f, major semiaxis a (see (4.10)) and focal points e and
fu(zf,n) {see (2.330),(2.640),(2.67)). Then K is the regular

c” submanifold of Mi defined by the equation (see (1.2),

(2.33),(2.64,),(2.64), (4.1))

51nk(2a) + 51nK(2f)-coszpu

(4.7) cot (r) = z.sinx(a+f)-sinx(a-f)

(for k=-1 see [Li],p.184) and the function r measuring the
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distance from e has the following values on K:
(4.71) r(K) = [a-f,a+f] (see (2.33),(4.10)).

b) Let K denote the hyperbola in Ni (see (ii)b)) with
focal length f, major semiaxis a (see (4.20)) and focal points
e and fu(zf,O), e being the closer one (see
(2.330),(2.640),(2.67)). Then K is the regular c¥ submanifold

of Mi defined by the equation (see (1.2), (2.33), (2.640),
(2.64), (4.2())
s1nK(2a) + 51nK(2f)-cos¢u

(4.8) cotx(r) = 2-sinx(f+a)-sink(f-a)
(for k=-1 see [Li],p.184) and the function r measuring the
distance from e attains on K the minimum (see (2.33),(4.20)):

(4.8 min(r|K) = f-a .

1!
c) Let K denote the semihyperbola in Mﬁ (see (ii)c)) with
focal length £, major semiaxis a (see (4.20)), focal point e
(see (2.330)) and focal line 7 orthogonal to the geodesic
epr(R-u) through epr(2f~u) (see (2.640)). Then K is the
regular c” submanifold of Mi defined by the edquation (see
(1.2),(2.33), (2.64,),(2.64),(4.3,))

cosn(za) + cosx(zf)-cosqpu

(4.9) cotn(r) = sinK(zf) - sinK(Za)
(for k=-1 see [Li],p.185-186) and the function r measuring the
distance from e attains on K the minimum (see (2.33),(4.20)):

(4.9 min(r|K) = f-a .

1)
d) Suppose k<0 and let K denote the horoellipse in Ni (see
(ii)d)) with focal point e (see (2.330)), pericentral distance
s (eR,) and axis expx(-xu) (see (2.640)). Then K 1is the
regular c“ submanifold of Ni defined by the equation (see

(1.2),(2.33),(2.64,),(2.64))

eV-K‘S + e"V-K'S

rcosg,,

(4.10) cot, (r) = 2-sin, (s)

(for k=-1 see [Li],p.186) and the function r measuring the
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distance from e attains on K the minimum (see (2.33),(4.20)):
(4.101) min(rikK) = s .

2
K
(see (ii)e)) with focal point e (see (2.330)), pericentral

e) Suppose k<0 and let K denote the horohyperbola in M

distance s (eR+) and axis expx(xu) (see (2.640)). Then K is
the regular c¥ submanifold of Mi defined by the equation (see

(1.2),(2.33),(2.64,),(2.64))
-V=K-s vV=K-s
e + e ‘cosp
(4.11) cot (r) = 2-sin _{(s)

(for k=-1 see (Li],p.186) and the function r measuring the
distance from e attains on K the minimum (see (2.33),(4.20)):

(4.11 min(rlK) = s .

1)

Remark. The equations (4.7)-(4.11) evidently have a common
functional structure, namely they all can be written as linear
equations in cotK(r) and cosp, :

(4.12) cotx(r) = qa + B-cosqpu with a € R+ and B € [0,0] .

We will use this unified version of the defining equations
below in (v) for our further investigations on the geometry of
the subsets introduced in (ii).

Sketch of the proof. Using the “k-geometric functions”
introduced in § 1 it is possible, to formulate the
trigonometry in Mi uniformly for all values of k. For example
the “law of cosines” takes the form (see [Fe],p.55):

wk(c) = wx(a)cosx(b) + wx(b) - sinx(a)sinx(b)cos(v),
(4.13) if a,b,ce]o,nn[ are the length’s of the sides of a
geodesic triangle in Mi and y is the (inner) angle

opposite to the side c.

Ad a): Due to the definition (ii)a) and our assumption, K
is the set of all solutions of the equation

(4.14 d(e,..) + dK(fu(zf,n),..) = 2a .

)
1
If we define (see (2.66),(2.16),(2.640))
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(4.14,) 1= 2, (u,U_(..)):M(e) — J-m,m] ,

then ¢ is not continuous on Mi(e), nevertheless (see (2.662),
(4.142)):

(4.14.) coscp = cosy.. , hence cos(n-p) = - cosp _ .
3 u u

Using (4.13) and (2.33),(2.640),(2.67),(4.142) we get, that
the solutions of (4.141) are exactly the ones of the equation

(4.14,) { ¥, (2a-r) =y, (2f)cos, (r) + ¥ (r) -

. - sinK(Zf)sinK(r)cos(n-ﬁ) .

Moreover, using (1.3), (1.5), (1.7), (1.6), we get

_ . 2 \ .
(4.145) wK(za—r) = 251nK(a)cosK(r) - 51nK(2a)51nK(r) + wK(r)
and
(4.146) sini(a) - sini(f) = sinK(a+f)-sinK(a—f) .

Because of (4.10) and (1.3), (4.143), (4.145), (4.146) the
solutions of (4.144) are exactly the ones of (4.7).

Finally (1.2°),(1.9) imply, that
(4.147) cotK is strictly monotonic decreasing on ]O,HK[.

We get from (4.7) and (2.16),(4.142),(4.143),(4.147), that r|K
can attain extremal values only at the points of Knexpx(m-u),
and this intersection can be computed explicitely from (4.141)

and (2.67), which leads to (4.71).
Ad b): Similar to a).

Ad c): Due to the definition (ii)c) and our assumption, K

is the set of all solutions of the equation

(4.15,)) 8,(..) - d.(e,..) = 2a,

where 7 is a geodesic in Nz orthogonal to expx(m-u) and
aw(e)=2f. Without loss of generality we assume u’ = e and
7(0) = epr(Zf'u) . Then the isometry f from the definition

(ii)c) is in the sense of (2.20),(2.27) induced by the matrix
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cos (-2f) -xsinx(—Zf) 0 cos, (2f) xsinx(zf) o]
51n ( 2f) cosK(-Zf) o| = 0 0 )
0 1 sinK(Zf) —cosK(Zf) 0

hence according to (2.76) and the definition of 61:

. _ oF = : . - X 2
(4.152) 51nxo61 = x, b [51nx(2f) Xq cosK(Zf) x]_]IIM'c .

From (2.33),(2.64),(2.16),(2.5),(2.3),(2.1)) and our special
choice of u we get

cosK(r) = x INi , sin (r) := x2+x IM .
(4.15.)
3 cosp, = (xl/Vx2+x )IN (e) .

Now we can prove, that the solutions of (4.15 are exactly

)
1
the ones of the equation

(4.154) sinx(r+2a) = sinx(zf)cosx(r) - cosx(zf)cos(ﬁ)sinx(r).

In case k=<0 this follows from (2.33),(4.152),(4.153) and the
injectivity of sin'< (see (1.1)). The case k>0 requires some
additional arguments (but we will not use it in this article).
Because of (1.5),(4.30) the solutions of (4.154) are exactly
the ones of (4.9). (4.91) is proved analogously to (4.71).

Ad d),e): If we introduce for brevity

o -1 if K is a horoellipse ,
(4.16,) o= { +1 if K is a horohyperbola ,
and if we define
.= . 2
(4.162) 7(x) := epr(xu) t R — NK p

we can prove the assertions d),e) simultaneously, namely: Due
to the definition (ii)d),e) and (2.33) and our assumption, K
is the set of all solutions of the equation

(4.163) r - o8B = 2s ,

7 (ox%)
where according to (4.162),(4.161),(2.640),(2.47),(2.474),
(2.33),(2.64) we have

o(V-K8

) - .si .
(4.16,) 7(ox)’ = cos, (r) - V-« sin_(r)-cosp

and according to (2.40) and k<0
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o-vV-K- (r-2s) _ e-ZG-V:?-s

(4.16,) e ‘[cos, (r) + V:E~sinx(r)] .

Because of (2.40), (4.161), (4.164), (4.165) and k<0 the
solutions of (4.163) are exactly the ones of (4.10) resp.

(4.11). (4.101) and (4.111) are proved analogously to (4.71),

using (2.50).

(v) Proposition. Suppose aem+ and Be[0,o[ and consider the
level set (see (1.2),(2.330),(2.33),(2.640),(2.64))

(4.12) K := [cot (r) - (a+B-cos¢u)]-1({0}) < Ni(e) )

Then the following is true:

(4.17)) {

(4.172) If K is the ellipse as in (iv)a), then K is compact.

K is a 1-dim. regular c® submanifold of Mi,
connected and closed in Ni.

K is a conic (see (i)), more precisely it is
isometric to one connected component of the
intersection of Ni with the quadric cone in R3

. . . 2 2,2, _ - 2
(see § 2.1, (4.12')): o (x1+x2) = (x0 Bxl) .

(4.17)

(4.18) K is a 1-dim. integral manifold of the Pfaffian form
dr - $:-8 with ¥ := B-sini(r)-simpu

(see (2.33), (2.620), (2.62), (2.64), (4.12')). For the last
function we find (see (4.18),(4.12°)):

2

(4.19) #2|K = Ser|K with § := sini-[Bz-(cotK-a)z] )

For further applications we spécify the constants «,8 in the
latter function § for the different metric types of conics,
which we had introduced in (ii):
If K is the ellipse as in (iv)a), then the function ¥ of
(4.19) can be written as

. - cosK(Za)
§ = Slnx'[[sinx(a+f)~sinx(a—f)

) .
1 sin_(2a)
+ K

+

(4.19

.2
sin _(a+f) -sin_(a-f) COtK] sin, - 1] :
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If K is the hyperbola as in (iv)b), then the function § of
(4.19) can be written as

cosK(Za)
v = Slnx‘[[sinx(f+a)-sinx(f-a)

51nK(2a)

+
(4.19,)
+

2
sin_(f+a) -sin_(f-a) c°tx] sine = 1] :
If K is the semihyperbola as in (iv)c), then the function ¥ of

(4.19) can be written as
- 2K-sinK(2a)

§ = sin{- v v
K [[51nn(2f) - 51nx(2a)

2-cosK(2a)

+

(4.19,)

.2
+ sinK(Zf) - sinK(Za) COtx] sin, 1] .

If K is the horoellipse as in (iv)d), then the function § of
(4.19) can be written as

(4.194) § = sin

2 [(=v=k-e’*'2 + == -K's-cot sin® - 1

K sin_(s) sin_(s) K [ :
K K

If K is the horohyperbola as in (iv)e), then the function § of

(4.19) can be written as

-VK-s -V=K:s
(4.19;) § = sini-[[v:z'e s

2
sin_(s) + sinK(s)'COtx]'51nn - }] :

We go back now to the general situation of (4.12'):
Suppose c:I — Mi is a path with the following 4 properties:

(4.20)) c(I) < mi(e) , cisc? and 6(&)% > 0

(see (2.330),(2.620)),

(4.20) ((rec)’ )2 = g(rec)-0(c)2

(see (2.33),(2.62,),(4.19)),

(4.202) there exists tel with c(t) € K and é(r) € Tc(r)K

(see (4.12’),(4.171)) and
(4.20,) {

Then it follows from (4.201),(4.20),(4.202),(4.203), that

either [B=0 and re.c constant] or
or [B#0 and rec non-constant] .



Planetary motion in a space of constant curvature 427

(4.21) c(I) s K,

in particular c is a C2 map into the submanifold K of M .
2 with c(I) s K is a
solution of the differential equatlon (4.20).

Oppositely every C path c:I — N

With respect to the condition (4.202) we make the remark:

(4.20,) { If tel fulfills c(t) € K n exp, (R-u) ,

then (4.20) implies c(t) € Tc(t)K

Remark. In [Li],p.192-193 was proved the special case k=-1

1]:P-153)=
The ellipse of (iv)a) is isometric to one connected

of the following result (valid for all keR, see [2i

component of the intersection of N2 with the quadric cone in
R defined by

2 2
Xy X2 2
(4.173) + =X

2 2
tanK(a) tanK(b)

(see § 2.i, (4.12’) and let b denote the minor semiaxis of K,
defined by sini(a) = 51n (b) + 51n (f) - Ksini(b)sini(f) . and
be]0,al).

The hyperbola of (iv)b) 1is isometric to one connected

component of the intersection of Ni with the quadric cone in

R> defined by

2 2
Xy X2 2
(4.17,) - = x

2 : 2
tanx(a) 51nK(b)

(see § 2.i, (4.12’) and let b denote the minor semiaxis of K,
defined by sini(f) = sini(a) + sini(b) - xsini(a)sini(b) and
be]0,f[), and moreover the other connected component of this
intersection is the image of the second branch of the
classical hyperbola (4.2 ) under the same isometry.

Sketch of the proof. From (1.2'),(2.65) we get

d[cot, (r)-(a+B-cosp )] = -sin_(r)- (dr-#-6)

with ¥ as in (4.18). This implies (4.18) and (because of
(2.62),(4.12’)) the property of K being a 1-dim. regular c¥
submanifold of Ni. Using (2.641) and (4.12°) we conclude
(4.19) and by (4.19),(1.2),(1.6) we get
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g = 51n ‘[L(B ~a2+x) + 2a-cot J 51n: - 1] .

Now we compare (4.7)-(4.11]) with (4.12') and use the
identities from § 1 to get (4.191)-(4.195).

Because of (1.2’),(1.9),(4.147) we have the

inverse c* function arcot = (c°tx|]°:"K[)-1 ,
(4.22.)
defined on { JV-K,o if nso
if k>0,

2

and we consider the c¥ path ¢:I — M, (see (2.67))

(4.22) c(x) := fu(arcotx(a+B-cos(x)),x)II , Wwhere

(4.22.) I is the connected component of zero in the maximal
domain of definition of fu(arcotx(a+3-cos(x)),x)

Now we check, that {te[dn,n]|a+B-cos(t)ecotK(]0,nK[)} is an
interval which is contained in I, and we use this and (4.12'),
(4.22),(2.672) to prove

(4.223) c(l) =K, hence K is connected.
According to § 2.iv isometries of Ni are restrictions of

3 and therefore they map conics of

certain linear mappings of R
Ni again onto such conics. Hence we may assume for the proof
of (4.17) without loss of generality u’ = e, - Then we get
from (4.153) and (1.2),(4.12’), that K 1is contained in the
quadric cone given by the equation az-(xi+x§) = (xO-Bxl)2 .
Then we prove, that (xi+x§)|K >0 and conclude (together
with (4.22 )), that K is a connected component of the

1ntersect10n of this quadric cone with N

From (4.12°),(4.18),(4.19) we get immediately the validity
of (4.204) and that any ct path ¢ with c(I)€SK satisfies the
ODE (4.20). We now return to (4.22) and prove
(4.224) C is the universal covering of the 1-dim. manifold K
(see (2.67), (2.67,), (4.12"), (4.22), (4.22;)-(4.22,)) and
moreover, that
(4.22) 8(&8') =1 and r-& satisfies (4.20,).
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Let c:I — Mi be a path with the properties (4.201),
(4.20),(4.20,), (4.20,).

If B=0, then K is a distance sphere with center e (see
(2.33),(4.12’)). Hence (4.202) and rec constant imply c(I)sK.

Suppose now B#0, choose tTel as in (4.202) and consider

(4.22 Pg = <.(u,U_(c(T))) € I and

6)
X

(4.22,) P (x) = f e(c(t))dt : I — R
T

(see (2.640),(2.66),(2.670),(2.67), (2.673), (2.675), (4.202),
(4.222),(4.223)). Then we conclude from (4.201), that P is a
C2 diffeomorphism from I onto the interval wc(I) of R, and we
prove (using (4.12°),(4.18), (4.19), (4.20), (4.203), (4.22
(4.22),(4.22,)-(4.22,)):
~ -1 2
roCo(x+¢o) and recep, both are non-constant C

Ry

solutions of the ODE initial value problem
’ 2 : ~ ’ ~y’
(4.225) ()" = 5(y) with y(0)=(xreC)(pg), ¥ (0)=(r°C)’ (p,),

where § is as in (4.19), and moreover roéo(x+w0) is a maximal
solution of this problem.

Hence roc = roéo(wc+¢o) by the uniqueness result § 3.iv.
Using (2.67,),(2.67),(2.67,),(2.67,),(2.67.), (4.22), (4.22(),
(4.227) we conclude

(4.229) c = Co(¢c+w0) ,

hence c(I)<K according to (4.223).

5. Motion of a point-like particle with p-central

acceleration, Kerter’s second law and Newron’s potential

in the space ME of constant curvature keR (nz2)

(i) Data and notations for § 5: As in § 2 and neN, nz2.

(ii) Motion of a point-like particle in NQ with p-central

acceleration.
Suppose
(5.0) we have fixed a point p in N:

(e.g. the position of the sun).

a) Let rp := dx(p,..):NE — R denote the continuous
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function (Cw on Nz(p):=M:\{p,-p}) measuring the distance of
points of M: from p in the intrinsic metric dxzmgxmz — R of
the riemannian manifold Ng of constant curvature k (eR) (see
(2.15),(2.16)). Then according to (2.15),(2.12) for every
point qun(p) there exists a unique unit speed geodesic
1q:R — Mx with 1q(0) = p and 1q(rp(q)) =4q (the “light
ray” from the sun to q), and we call

(5.1) Rp(q) = %q(rp(q)) € T;Ng the p-radial direction at q,
and — as for (2.34) - one proves
(5.2) Rp = grad(rp) is a ¢¥ unit vector field on Nz(p).

b) Let be given seNu{w,w}, sz2, and let (see (5.0),(2.16))
(5.3) I be an open interval of R and c:I — Nz(p) a c® path

describing the motion of a point-like particle in Nz(p).
Definition (see (2.10)).

(5.4.) { c:I — Nz(p) has p-central acceleration
70

iff Vac € R-(Rpoc)

(i.e. for every time tel the acceleration vector (Vaé)(t) of c
is proportional to the p-central direction Rp(c(t)) at the
position of the particle at this time t], and which evidently
is equivalent to saying (choose a:=g(Vaé,Roc)):

c:I — N:(p) has p-central acceleration

iff there exists a Cs'-2 function a:I — R with
(Vaé)(t)2= a(t)-Rp(c(t)) for all-teI, i.e.

c is a C” solution of the ODE V,c - a-(Rpoc) =0 .

(5.4,

a
[In the terminology of dynamics this means (the particle
having unit mass), that the acceleration of ¢ is induced by
the time-dependent p-central force field a-Rp:Ixmz(p) — TNE
((t,q) — (a(t),Rp(q)) -]

c) Remark. If feG: is an orientation preserving isometry
of N: such that f(p)=e (see (2.0)), then evidently c:I — N:
is a c® path in Ng(p) iff foc:I — NQ is a c® path in Nz(e)
and c¢ has p-central acceleration iff fec has e-central

acceleration. [Because one checks (using f(p)=e and f
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distance preserving), that rp=reof, therefore (see (5.2))
f*Rp=Reof, finally Va(foc)°=f*vac.]

Since Gg acts transitively on N: (cf. (2.27)) one sees,
that studying the motion of a point-like particle with
p-central acceleration is — up to an isometry — the same as
studying the motion of a point-like particle with e-central
acceleration. Therefore from now on we will consider only
motions of the latter type, in which case we have with the
notations of (2.33),(2.34): ro=r and R,=R, and (5.4p) is
reduced (for seNv{w,w}, sz2) to:

For every c® path c:I — N:(e) 1= Nz\{e,—e} one defines:

c has e-central acceleration :& V.C € R: (RecC)

s-2 9

(5.4) & There exists a C function a:I — R

with Vaé = - (RoC) .

d) Since i:NE(e) > Rx(R™\{0}) (see (2.5),(2.16)) the
ODE of (5.4) admits the following extrinsic version: For the
(5-54) c® path (YO,Y)==1°C=I — Rx(R™\{0}) (t (Yo (t),y(t)))

the ODE (5.4) is equivalent to:

{ Yo =-((yb)2+x<y’,y’>)~yo - Kra-V<y,y> ’
5'5 19 ’ ’ ’ -1 2
(3-5) vy = ((yp) 2 +x<y’ ¥/ >) ey + aryg <y, y> 2y

which is (even a:I - R might be only C0 !y 1locally

2(n+l)

Lipschitzian in (yo,y,yb,y’) € R Therefore we get

from the well-known uniqueness theorem:

If a:I - R is a C0 function, tOeI, G a neighborhood of to

in I and c¢,¢c:G — Nz(e) are two C2 path’s satisfying

Vaé = - (Rec) , Vaé' = - (Re&) and

(5.6) { c(ty) = &(ty) , c(ty =& (ty) ,
then c and C coincide on a neighborhood of to in I.

(iii) Theorem (Motions of point-like particles in Mﬁ

(nz2), which have e-central acceleration, are “plane”.).
Suppose nz2, I is an open interval of R, 0¢I and the C2

path c¢:I — M:(e) (see (2.16)) describes the motion of a
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point-like particle, ¢ having e-central acceleration (see
2

(5.4)). Then there exists a ¢ path c0:I —_ Ni(eo)
(e0:=(1,0,0)) which has eo—central acceleration and a distance
preserving isometric immersion f:(Ni,eo) — (Nz,e) onto a

2-dim. totally geodesic submanifold P of N:, such that
c = foc0 , 1in particular c(I) is contained in the 2-dim.
“plane” P of N:.

Remark. This theorem Jjustifies, to study motions of
point-like particles with e-central acceleration in M: with
nz2 only in the 2-dim. case of Nz.

Proof. Denote by

V a 3-dim. vector subspace of Rn+1 containing
(5.7) { e, c(0) and ¢ (0) (:=i,&(0)”, see (2.11)).
Then (see (2.17)) one has:
= N:nv is a 2-dim. totally geodesic submanifold

(5.8) with inclusion 3j:P ¢“— N: and which is c® isometric

2
to NK.
We want to show first
(5.9) c(I) s P,
and we introduce for that purpose the following subset H of I:
(5.10) H := {teIllc(t)eP and c(t)ej* c(t) P} .

By the choice of P (see (5.7),(5.8)) it follows 0ecH and by its
definition (5.10) and continuity of c,c it follows that H is
closed in I. For proving (5.9) it suffices therefore to show:

(5.11) H is open in I.

Ad (5.11): By hypothesis and (5.4) there exists a
(5.12) c® function «:I — R such that Vaé = a- (Rec) .
Choose next (see (5.8) and (5.7) for “eeP”) a

(5.13) ¥ 1sometry h: (M2 c.e,) — (P,e) with e :=(1,0, 0) eRr>

Now, since h: M — P is an isometry; since P is totally

geodesic in M" and because of (2.15),(2.14 ) it follows that

K
(5.14) { £ =

in particular r

joh: (NK,e ) — (N ,e) is a dlstance preserving
isometric c¥ immersion,

0 = dK(eo,..) = dK(e,f(..)) =rof ,

therefore if (see (2.34))

(5.15) R0:=grad(r0) resp. R:=grad(r), then f*R0 = Rof .
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Suppose now toeH. Then there exists by the existence theorem
for ODE’s (cf. (5.5)) a neighborhood G of t0 in I and a

2 . 2 : f o= - o
(5.16) { c” path c¢;:6 — Nx(eo)‘ with V?c0 = a- (Ryec,) and
f(cy(ty)) = c(ty) , f,ch(ty) = c(ty)

(c(to)eP and é(to)ej*T P by (5.10)!). Therefore (see

c(t.)
0
(5.14) and use, that h is isometric, j totally geodesic):
Va(foco) 5 14)Va(johoco) = Vaj*h*c0 = j*Vah*Co =
(5.17) =3j,h,v.e. =£.V,c. = o (f,R.oc.) = o (Refoc,)
* %' 3%0 *'3 0 5. 16) ‘* 0°%o (5.15) 0
and f(co(to)) = c(to) ’ f*co(to) = c(to)
From (5.12),(5.17) and (5.6) follows but: ¢ and fec coincide

0
on a neighborhood of t0 in I, i.e. without loss of generality

(G so small that)

cl|G = feocC = johoc .
0(5.14) °

for all teG: c(t) = j*(h*co(t)) € J*Thoco(t)P = ]*Tc(t)P .

in particular c(G)sh(co(G))QP and

This proves GSH (see (5.10)) and therefore (5.11).

Therefore (5.9) is true, and since P is by (5.8) a regular
submanifold of NS it follows from (5.9) that there exists a

(5.18) C2 path cl:I — P with c¢ = joc1 ’
and if we define (see (5.13),(5.18)) the C° path
= h loc - 2 = fo
(5.19) Cq = h cl.I — MK , then one has c f Sy
(see (5.14),(5.18)) and one proves (using (5.19),(5.15),
(5.12)) analogously to (5.17) f*(Vaco) = f*(a-(Rooco)) ’

from where one concludes by the immersion property of f (see

(5.14)) that i.e. cC has e_.-central

V4% o) 0 0
acceleration. This, together with (5.14),(5.19) finishes the
proof of the theorem.

= a-(Rooc

(iv) The law of acceleration for motions of poimt-like

particles in Mi expressed in polar coordinates.

Applying the orthonormal frame field (R,JR) on Mi(e) of
§ 2.vii we are going to give now a (more explicit, but still
intrinsic) transcription of the ODE of (5.4), which will be
useful for further discussions of the properties of the
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solutions of (5.4). First we have for any c®

c:I — Mi(e) with seNu{w,w} and sz2 (see (2.61)):

path

¢ = g(Rec,c) - (Rec) + g(JRec,c) - (JRec) ,
therefore (see (2.34),(2.60),(2.620))
(5.20) c = (rec)’ - (Rec) + sinK(roc)-e(é)-(JRoc) ,

from where we get by covariant differentiation (using the
V-parallelity of J (see (2.59)) and (2.62) for computing VéR):

. - " . . 2 .
(5.20) Vac = [(rec)’ - §1nx(roc)cosn(roc)(9(c)) ?-(Roc) +
+ [sinx(roc)(e(c))’ + 2(roc)’cosx(roc)9(c)]-(JRoc).
Since sinx(r) is strictly positive on Mi(e) (see (1.9),
(2.141),(2.16)), the ODE of (5.4), which characterizes c as a

path having e-central acceleration, becomes via (5.20)
equivalent to the following ODE system:

x 14
o .

(5.211) (roc)’” - sinK(roc)-cosK(roc)-(e(é))2
(5.21) (5.21,) (8(C))* + 2 (rec)’ -cot,(rec)-6(c)

Here the c® function roc:I — ]O,HK[ measures the distance
of the moving particle from the center e, whereas (due to
(2.70))

(5.22) e(é):I — R is the (Cs_l) angular velocity of erc,

i.e. of the direction map erc:I — lei , Wwhich assigns to

£(0) « TIM2  of the
unique unit speed geodesic 1t:R — M, (the “sunbeamn”)

joining e = 1t(0) (the “sun”) with c(t) = 1t(roc(t)) (the
“planet” at the time t).

each teI the initial vector U.c(t) := 7

(v) Theorem (The constancy of the scalar angular momentum
and KerLir’s second law for motions of point-like particles in
T:Ni having e-central acceleration).

Suppose I is an open interval of R and 1let the C2 path

c:I — Ni(e) (see (2.16)) describe the motion of a point-like
particle in Ni(e), having e-central acceleration, i.e. (see
(5.4)) there exists a

(5.23) c® function «:I — R with Vaé = a- (RecC) .
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Let r := dK(e,..):Mi — R denote the function, which

measures the distance of the points of Ni from the center e
(see (2.33)) and let 08 denote the polar angle (Pfaffian) form
on Ni(e) (see (2.621)).

Assertion,
a) The so-called scalar angular momentum (function) of c

.2 . .
(5.24) { 51nx(roc) 6(c):I - R 1is constant on I,

say of value LeR.

b) Since (see (1.9),(2.141))
(5.25) (sin _or) (M (e)) < R,
the two scalar ODE’s (5.21) (which transcribe the vector ODE
of (5.23) into radial and angular components, see (5.20)) are
equivalent to the following two ones:

cosx(rec) 5

(5.261) (roc)’” - ———5—————-L =« ’
(5.26) . 51nx(roc)

(5.26,) 0(e) = ——— ,

sin® (re-c)
K

which — in contrast to (5.21) — is no more a “coupled” system
of ODE’s.

c) (“KerLEr’s second law”): Consider the

c? map F:RxI — IMi with

(5.27)
F(s,t) := expx(s-(roc)(t)-(erc)(t)) for (s,t)eRxI.

[Geometric interpretation of F: For every fixed tel the

mgp F(..,t):R — Ni is the constant speed geodesic 7c(t) of
M. with 7c(t)(°) = e ‘and wc(t)(l) = c(t) . Hence for any
AeR, and all t,€el with t=t the map FI[[0,a]x[t,E] describes
the c? surface in Mi, which is “swept out” by the geodesic
segments 7c(t)([0,h]) for Tt wvarying in [(t,€)] (with
1c(t)(EO,A]) being “A-homothetic” to the geodesic segment
7c(t)([0,1]) joining e and c(t) aszshortest path).]

If o denotes the area form of MK (see (2.60)) and if we
define for AeR,_ the function AA:{(t,f)eIxIItSE} — R by
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(5.280) Al(t,f) := F*o¢ for t,€el with tsg,

I[0,7~]><[t,f]
which is the oriented area of the C2 surface FI[0,A)x[t, €]
in Ni, then for all t,teI with t=t:

sing (2 (rec) (T))

2L- I dt =
Sln ((rec)(T))

A, (t,€)

(5.28) 2
5= L.(g-t) , if k=0

2L (E-t) , if a=2

not constantly proportional to (t-t), if
(k#0 and A#2 and ro.c not constant).

Commentary. The last result only in case x=0 happens tc
express (with A=1) KerLer’s second law, namely: “The shortest
geodesic segments 7c(t)([0’1]) joining e and c(t) sweep out
within equally long time intervals equally 1large oriented
areas in Nz." This law has (according to (5.28)) for arbitrary
keR to be substituted by: “The two times 1lengthened geodesic
segments 7c(t)([0'1]) , 1i.e. the segments 7c(t)([0,2]) '
starting at e and having c(t) as their midpoint, sweep out
within equally long time intervals equally 1large oriented
areas in Mi." [From this result, where one has A=2, the
classical “KerLer’s second law” (i.e. A=l) follows in case k=0
(without the explicit result (5.28)) directly via the property
uz(AN) = A “Z(N) for the Lebesgue measure Hy and all
uz-measurable sets N in the Euclidean 2-space N E Ez .

This version of KertEr’s second law was stated in
[Kiz],p.9 for keR* and proved in [Li},p.234 for «k=-1 and
conservative forces.

Proof. (5.24) follows by differentiating sini(roc)-e(é)
1). From (5.24) and (5.25) one obtains (5.262).
Substituting the value of 6(c) from (5.262) into the equation
(5.21

and using (5.21

1) gives (5.261).

Ad c): Choose a unit vector ueTéMi. Let p,w:Rz — R
denote the first resp. second projection of R2 onto R. Then we
get the (see (2.13))
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w L] . . i . - 2 2
(5.29) { c” map f := exp (p-(cos(p)-u + sin(p)-Ju)):R® — M,

e.qg. ref =p on [O,nK[xR.
The comparison of (5.29) with (2.67) yields

(5.30) fIf = £% with R = jo,m [xR < R '
K

and therefore we obtain from (5.30),(2.621),(2.671),(2.673):

(5.31,) (£*6) IM = dp|® resp. (f*o)If = (sinx(p)-(dpAdw))lﬁ.
But since f*@ and d¢ resp. f*o and sinx(p)-(dpAdw) are real-
analytic differential forms on R> and open in R? (see

(5.30)) it follows from (5.310):
2

(5.31) f*6 = dp resp. f*o = sinK(p)-(dpAdw) on R™.
Suppose now (see (2.680),(2.68)), that we have chosen a
(5.32,) { c? 1ift &I — M uof c:Iz—a Ni(e) .
with respect to f :M — MK(e) , i.e. ¢ = f oC .
Then due to (5.320),(5.30),(2.681):
UgeC = cos(peC)u+sin(p-Cc)Ju ,
which together with (5.29) and (5.27) implies
(5.321){ F(s,t) = fog{(s,t) , vherf
g(s,t) := (s-(rec)(t), (peCc)(t)) for (s,t)eRxI,
therefore (if x:RxI — R , <T:RxI — I are canonical), then
g is c? with peg = X-(receT) and ¢eog = PoCeT ,
(5.32) thus d(peg) = (rec)(t)dx + x-(rec)’ (r)dt and
d(peg) = t*d(pe&) = 6(c(T))dr ,
(2.681)
consequently we get from (5.321),(5.31),(5.32):
F*o = g*(sin_(p)- (dpadp)) =
= SianX'(r;CL(t))'(roc)'(t)'e(é(t))'(dXAdt) =
2 gxlsin (5 (rec) (1)) ) — - (dxadT) .
t 1.3),(5.26,) sin, ((rec) (7))

From the last equation, from (5.280) and FusiNi’s theorem the
assertion (5.28) follows immediately.

(vi) Motions of particles in NQ with accelerations induced

by a potential.

a) If (M,g) is any ¢® Riemannian manifold (seNv{m,w},
sz2), V its Levi-CiviTa covariant derivative, then we say that

the acceleration Vaé of a C2 path ¢:I —- M 1is induced by a
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1

potential iff there exists a C~ function

V defined on an open neighborhood U of c(I) in ﬁ,
(5.33)

such that Vaé = - (gradV¥)e-c ,
and any Ck function ©:U — R (l=kss) satisfying (5.33) is
called a (cX) potential for v,¢. — From (5.33) follows the
well-known Law of energy:
(5.34) E_ := %-g(é,é) + (Vec):I — R 1is constant,
where the functions E_ , %'g(é,é) , Vec on I are called

then total, kinetic, potential energy of c¢ respectively.
[(5.34) follows just by differentiating Ec and using then
(5.33). Moreover (5.34) motivates the (at first sight strange)
choice of the minus sign in (5.33): Gains (resp.. losses) 1in
kinetic energy should be compensated by losses (resp. gains)
in potential energy so as to balance the total energy.]

b) If in particular (M,g) is N: and r := dK(e,..):Nz — R
the function measuring the distance of the points of N: from e
(being c¥ on N:(e), see (2.33,),(2.33)), then one says, that
the acceleration of a C2 path c¢c:I — Nz(e) is induced by a
(Ck) potential only depending on r, iff there exists a (Ck)
function (1=k) of one real variable
Vi:H — R , defined on an open interval H of R
containing r(c(I)), such that Vor is a potential for
vaé, i.e. (see (5.33),(2.34)):
Vac = - [grad(Ver)]ec = = (V' o(rec))- (Rec) .

The comparison of (5.35) and (5.4) shows for any C2 path

(5.35)

c:I — Nz(e) ¢ If the acceleration of «c¢ 1is induced by a
potential (Ver) depending only on r, then c¢ has e-central
acceleration {(with a := g(Vaé,Roc) = - (V s(rec))).

c) With respect to the question, whether the inverse of
the last conclusion 1is true, we have the following
information: Suppose, that seNu{w,w}, sz2 and that we are

given a
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cS path c:I — N:(e) with e-central acceleration
(5.36) (see (5.4)) and 1let us assume in addition, that
(rec)’ has no zero’s on I. Then V ¢ is induced by a

a
CS_1 potential Veor only depending on r.

[A construction of such a V is very direct: First, by
assumption, rec:I — R is a c® diffeomorphism onto an open
interval H := r(c(I)) of R. If a = g(Vaé,Roc) , then

2

-ao(rec) Y:H —» R is a ¢®72 function and if V denotes any

primitive function of it, then Vir(c(l)) — R is a c¢571
function with - V' e(rec) = a = g(Vaé,Roc) , which together
with (5.4), (5.35) shows, that Vor is a CS_1 potential for
V,c-]

d) Remark. The result c¢) guarantees, that for any
arbitrary c® path c:I — N:(e) with e-central acceleration
and for every (open!) connected component G of
{teIl| (rec)’ (t)#0} the acceleration of cl|G 1is induced by a
potential Vger depending only on r. However in general for two
such components G and & the ranges of definition r_l(c(G))

resp.'r_l(c(G)) of V. resp. Va overlap and Ve and Ve don’t fit

G

together, in particular V.,-.r and. Vger are not restrictions of

G
a potential for Vac on I [e.g.: The ¥ path c:I —» N:(e)
with e-central acceleration, defined by
c(t) := (1,1+sin(1)t2-sin(t),0) for teR, has only one zero to

of (roc)’, and (because 2sin(1)>1) toe]o,l[. So 0 and 1 are
from two different connected components of {teR| (rec)’ (t)=0},
but c(0) = c(1) and (Vaé)(O) # (Vaé)(l) , which excludes
in view of (5.33) the existence of any potential for Vaé on
all of R whatsoever!]. Nevertheless: If e.g. c:I — Mz(e) is
Cw, then the zero’s of (rec)’ are isolated and hence any
compact subinterval [a,b] of I is covered by only finitely
many of these connected components G, i.e. the study of
cl[a,b] is then reduced to the study of finitely many c¥
path’s with accelerations induced by ¥ potentials depending

only on r (see (5.35)).
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(vii) Newron’s potential in M?(e) (i.e. one, depending
only on r and having divergence free gradient).

a) If (M,g) is a n-dim. c® (sz2) Riemannian manifold, V¥
its Levi-Civita covariant derivative, then for every ck
(1sk=s-1) vector field XeX (M) its cX™?

divX is defined by

divergence (function)

divX := trace(VX) (VX viewed as (1,1) tensor field)
n
(5.37,) = g(vV. X,E.) locally,
0 1& 7R
if (El""’En) is an ON frame field.

Then for every Ck function A of M one has

(5.37) div(AX) = (X-A) + AadivX = g(grada,X) + adivX

and for any Ck+1 function ¥ of M one defines its Laplacian Ay
by

(5.371) Ay = divgrady = trace(Hessy) .

(5.37,)

b) All classical authors agree that “the” distinguishing
property of Newron’s gravitational potential ¢ in E3\{o} is
the fact, that it first depends only on r (= distance from the
origin), i.e. ¥ = Ver with decreasing ViR, — R and that
it has divergence free gradient, i.e. (see (5.371))
AV = A(Ver) = 0 , and which proves to be equivalent to the
condition that there exists keR+, such that for all peE3\{o}
the “force vector” -(gradV) (p) points towards the origin (i.e.
the center “attracts”) and the length of the “force vector”
igrad(Ver)ll (p) equals k divided by the normalized area r(p)2
of the sphere through p with center o.

This definition is adopted always for En\{O} with
arbitrary nz2 and was for the hyperbolic space Nil(e) already
proposed by J. BoLval between 1848 and 1851 (see [Bo]l,p.15¢6,
line 7-) in order to study motions of celestial bodies in
hyperbolic 3-space. It was then extensively used by
W. KiLLine (see [Kiz],p.7) for Nz(e) with k20, later on (about
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1905) it was discussed widely by H. LIEBHANN (see e.qg.
[Li],p.224, & 49, section 1) and applied by many others: We
shall follow this convention and define for nz2 (see (1.9) and

see (2.36) for the volume of spheres in M:):
There exists keR+, such that the following holds:

{Gradient of NeEwToN’s potential Vn in N:(e)) =
... 1-n
= k-51n‘c (r)-R

(5.38,) {

(k including the gravitational constant and the mass of the
attracting “sun” at e). If we denote therefore by

(5.381) Vn:]o’"n[ — R a primitive function of k-sini—rl

(for an explicit description of such a primitive function Vn
for arbitrary n see e.g. [SChz],p.153 resp. [Kiz],p.27), then

trivially
(5.38) grad(V -r) = (V/ r)gradr = k-sini-n(r)-R .
T (5.38),(2.34)
Now we have due to (2.35): VXR = cotK(r)-[X - g(X,R)-R] .

Therefore choosing a local orthonormal frame field (El""’En)

of mﬁ(e) with E; coinciding with R, then due to (5.37,):

1

n
div(R) Yy cot (r)g(E.-8,.E.,E.) =
(5.39,) gk i7%i1710 "

n
cotK(r)-iEI(l-Bil) = (n-l)-cotx(r) .

Consequently one computes using (5.38),(5.37),(5.390),(2.34),
(1.1) easily

(5.39) A(Vnor) = divgrad(Vnor) =0 ,
and (5.38),(5.39) prove, that Vot satisfies m.m. - the
classical requirements for the Newron’s potential in E3\{o}.
From (5.381) and (1.2') we get in case n=3 explicitely:
3 -2

with V, = - k-cotK and V3 = + k-51nK .

i 3

4 © = - . °

(5.40) { NeEwToN’s potential V. or k- (cot or) on M_(e),
3
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(viii) c? paths with accelerations admitting Newton’s

3-dim. potential.

According to (vi)b) every c? path c:I —» Mz(e) with an
acceleration induced by Newron’s potential V3or has e-central
acceleration, hence [according to theorem (iii) and the
following remark (of § 5)]) c is a “plane” curve and it can be
studied through a

C2 path c:I — Ni(e) with an acceleration induced

by Newtox’s (3-dim.) potential
(5.41) Vor = - cotK(r):Mi(e) — R .

Here: keR+ , V :=-k-cot, , V' :=k-sin

therefore o = g(Vaé,Roc) 2

[/

Combining this statement (5.41) with (5.26) (which is via
(5.21),(5.4) equivalent to c¢ having e-central acceleration
with a.=g(Vaé,Roc)) gives the following

ix Proposition. A c? path c:I — N3(e) has an
K

acceleration induced by Newron’s 3-dim. potential - k-cotx(r)
with keR+ iff there exists an LeR such that ¢ is congruent in
M (e) to a ¢® path c:I — M2(e) (<> M3 (e)) which satisfies
the ODE’s:

sin;Z(roc)-[cotK(roc)-L2 - k],

(5.42) (reoc)”

(5.43) 0(¢) = L-sin 2(rec) .

Moreover, if (5.42),(5.43) are satisfied, then we get from
(5.33) the law of energy:

(5.44) %.[((roc):)z + sini(roc).e(é)zl - k'COtK(roc) =
= Ec = constant .

(x) In the Euclidean case one more constant of the motion
in Newron’s (3-dim.) potential is known, the so-called Lenz
vector. This concept has the following generalization for
arbitrary k (see [Zil],p.51):

If LeR and c:I — Ni(e) is a solution of the ODE’s
(5.42),(5.43), then the Lenz vector (see (2.16),(2.57),(5.24))
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= - .2. g . ° . 2
(5.45) ¢t := L Juc [k + x-L tanK( 5 )] (Ue c):I — Temx
is constant on I, where (see (2.16),(2.57),(2.620))
2

(5.46) w_ 1= (rec)’ - (U,ec) + sinK(roc)-e(é)-(Jerc):I — T M.

can be characterized by the V-parallel-transport along
exp, (x-U_(c(t)))1[0,1] mapping s_(t) onto c(t) for telI.

6. Motion of a point-like particle in NZ with acceleration

induced by Newron’s gravitational potential

Now we are able to classify all possible orbits in
Newron’s 3-dim. potential and to discuss the geometry of these
orbits. According to § 5.iii,viii we have to consider only

“plane” curves and hence we have the following
2

(i) Data: We use for the 2-dim. standard space Nx of
constant curvature keR the notations introduced in § 2, in
particular e := (1,0,0) € Ni , r := dK(e,..):Ni — R the

function measuring the distance from e and 6 the polar angle
form on Ni(e):=Ni\{e,—e}.

Suppose c:I — Ni is a maximally defined path describing
the motion of a point-like particle, c having an acceleration
induced by Newron’s 3-dim. potential, i.e. (see § 5.vi-viii)
c:I — Ni is a maximal solution of the ODE
(6.1) Vaé = - [grad(—k-cotx(r))]oc = - k-singz(roc)-(Roc)
with a fixed positive number keR+.

Then I is an open interval of R,

(6.11) c is a c® path with c(I)QMi(e)

and according to (5.24),(5.44) we introduce the numbers E,LeR,
where

(6.2) E is the total energy of c, i.e. the constant value of
2 1((rec) )2 + sinZ(rec)-6(c)?) - k-cot, (rec) ,

(6.3) L is the scalar angular momentum of c, i.e. the
constant value of sini(roc)-e(é) .
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(ii) Proposition. Data as in (i) and consider the function

L2
(6.4) U i= ——— - k-cotKI]O,nK[
2-51nK
(see (1.1),(1.2),(1.9),(6.3)). Then (see § 3.i,(6.2),(6.4))

(rec) is a maximally defined process of one degree of
(6.5) freedom with the (effective) potential U and total
energy E,

and this function U (see (6.4)) has the following properties:

(6.61) U is a c® function on ]o,nK[ ’
- o if L=0
(6-65) V(X)) —55 { +® if Le0
+ ® if k>0
(6.63) U(x) __-)XZTIK { -k-vV-k if k=0 '
(6.64) if L=0, then U is strictly monotonic increasing,
(6.6,) if k<0 and Lzzk/v-x,
> then U is strictly monotonic decreasing,

otherwise, i.e. if L#0 and [k<0 = L2<k/¢:?], there
exists exactly one critical point p of U in ]O,HK[
(6.66) and U is strictly monotonic decreasing on ]0,p],
strictly monotonic increasing on [p,nK[ and attains
at p its absolute minimum of value
LN

2'L2 2

Remark. For the later applications of (6.61)-(6.67) it is

(6.67) min(U) = -

helpful to “see” these properties of U by drawing a picture of
the graph of U.

Proof. According to § 5.ix the ODE (6.1) is equivalent to
the ODE-system (5.42),(5.43), where (using (6.4)) the equation
(5.42) can be written as

(6.71) (roc)’ = = U’ (roc) ,
and using (6.3),(6.4) the law of energy (6.2) takes the form

(6.7,) E = %-((roc)’)z + U(roc)
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Since ¢ is a maximal solution of (6.1), we can conclude, that
rec is a maximal solution of (6.7 This completes the proof

of (6.5).

1)

From (6.4) and (1.1),(1.2),(1.1'),(1.2°) we get immediately
(6.6,),(6.6,),(6.6;) and

(6.7,) [U'(t) =0 & k= L2-cotx(t)] for all te]o,m,[.

This implies: In case L=0 resp. in case k<0 and Lzzk/v—x
there exists no critical point of U. Otherwise there exists
exactly one critical point p of U in jo,m [ and (using (1.6))

2
= - _X K. 12
(6.7,) U(p) = 5 + 5L .

2L
The preceding remarks imply (6.6,) and (6.6) (using (6.6

)
1
(6.62)). Moreover we investigate the rational function

k2 K
(6.81) ¢(x) = - % T 3X .
2
Since ¢ (x) = k + £ , we have
2'XZ 2

(6.83) kz0 = { strictly monotonic increasing on R+,
(6.84) k<0 =3 ¢ strictly monotonic increasing on ]0,k-vV~K].

From (6.63),(6.74),(6.81)—(6.83) we get U(p) < lim U(x) and

n
x’lK

thereby we can complete the proof of (6.66).

(iii) Proposition. Data as in (i).
a) The constants E,L (see (6.2),(6.3)) fulfill:

rec is bounded &
(6.9) < [(k>0 and E arbitrary) or (k=0 and E<-k-v-K)]

2

~

5 if k=0 ,
1.(E + VE®+kk?)  if k=0 .

b) If L#0 and reoc is bounded (see (6.3),(6.9)), then the
following is true:

o]

(6.10) roc bounded = L2 = {

If (6.10) holds with “=", then the equation U(x) = E
(see (6.4),(6.2)) has éxactly one solution in ]O,HK[ and roc
is constant of this value.
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If (6.10) holds with “<”, then the equation U(x) = E
(see (6.4),(6.2)) has 1in 10,7, [ exactly two solutions
Trin < Tmax and rec is periodic with (roc)(I) = [rmin’rmax]

and has the behaviour as indicated in (3.16).

c) If L#0 and rec is unbounded (see (6.3),(6.9)), then the
equation U(x) = E (see (6.4),(6.2)) has exactly one solution
and

r € R+ and rec has the image (roc)(I) = [r

min min’m[
behaves as described in (3.14), in particular (rec) (t) — o
for t — infI and for t — suplI.

Proof.

Ad a): Because of (6.5) we can apply § 3.iii,v to rec.

Hence we can choose

(6.11,) {

and get (see (6.4),(6.111),(6.2))

toeI and Iy = (roc)(to) with

roc constant or sup(rec)(I) > r,. > inf(re.c)(I) =z O

(o]

(6.112) U(ro) s E and (rec not constant & U(ro) < E)
and (see (3.9+) for “3” and (3.90),(3.8),(3.80) for “&”):

(6.11,) roc bounded ¢« 13 U(p) =z E .

5€[rorﬂn[
Using (6.61)-(6.67) we see the equivalence of the right hand

sides of (6.113) and (6.9).

Now suppose roc is bounded. Then according to (6.9) the
right hand side of the inequality in (6.10) is positive. Hence
(6.10) holds for L=0 and we can assume L#0. Then we conclude
from (6.61)-(6.67),(6.81),(6.9),(6.112):

(6.11,) E = ¢(L°) with ¢ as in (6.8)).
Now we consider (see (6.81)-(6.83))
IR, "t if k20

(6.84) I := {

and we obtain

(¢170,k/vV=-K]) "

1_ if k<0

bl

(x + Vx2+xk2) if k>0 ,
2

k . =
5§|R_ if k=0 ,
(x + Vx2+nk2)l]-m,-k-v-n] if k<0 .

(6.8) ? =

=l
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Then (6.114) implies because of (6.81)-(6.85),(6.9):
L2 = J(E) . Because of (6.85) this proves (6.10).

Ad b),c): Because of (6.5) a direct consequence of
§ 3.iii,v and (6.61)—(6.67), notice
(equality in (6.10)) < E = minvu
(iv) Proposition. Data as in (i), assume L#0 and consider

the function
2 2E 2k

= 3 . — — ¥ . i 2 -
(6.12) g = sin, [[L2 + L2 cotKJ sin, 1] .

Then ¢ is a C® solution of the first order ODE
(6.13) ((roc)’ )2 = g(reoc)-0(&)2 and 8(&)2 > 0
(see (2.33),(6.12),(2.62,)).

Remark. In [(Li] (case «k=-1) and E. Wurrraker’s classical

book on analytical dynamics (case k=0) the equation (6.13) is

formulated as (%%)2 =‘":‘v‘(r) .
Proof. This is a consequence of the law of enerqgy, namely
((roc)’ )2 = 2E + 2k-cot (rec) - sin’(rec)-0(¢)? =
(6.2)

= [2E + 2k-cot, (rec) - L2-sin;2(r)]oc ,
(6.3)
where in case L#0

2E + 2k-cot_(rec) - L®-sin"2(r) = L2 -sin"%(r)-8(r)
K K
(6.12)

and (6.3) completes the proof.

(v) Theorem (All radial orbits in NEWTON’ S 3-dim.
potential),

Data as in (i) and in addition
(6.14) e(c) = 0 .

Assertion,

a) There exists a unit speed geodesic 7:R — Ni with

7(0) = e and c(I) s 7(]0,nK[) .

b) Suppose toéI and ro:=(roc)(to) ' rb:=(roc)'(t0) . If

(6.15) k=0 and r, z v (r)) := Vék-[cotK(r - V:E; ,

0 0)

then rec is strictly monotonic increasing with (rec)(t) > o
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for t — supI . 1In all cases different from (6.15) one has
(rec)(t) 0 for t — suplI , i.e. the particle falls into
the “sun”.

Hence the number vm(ro) is the “escaping velocity” (for

the distance ro) and this effect occurs only if k=0.

Sketch of the proof.
Choose 7(x) := epr(x-Ue(c(to))) with a toeI, check
E = supU(]ro,nK[) < ([k=0 and lrolzvm(ro)]
(see (6.2),(6.4),(6.15)) and apply § 3.v, § 6.1ii.
(vi) Theorem (411 bounded non-radial orbits in NEewToN’ S

3-dim. potential, KerLer’s first and third law).
Data as in (i) and in addition

(6.16) e(é) # 0 and rec bounded.
Assertion,
a) (“KeprLer’s first law”): c:I — Ni is periodic (in

particular I=R) and c(I) is an ellipse (see § 4.ii.a) with one
focal point at e.

b) Between the “geometrical” parameters of this ellipse -
major semiaxis a and focal 1length f - and the “physical”
parameters of ¢ — total energy E and scalar angular momentum L
— the following relations hold:

(6.17) E -k-cot_(2a)
5 K

L .
(6.18) EE-San(Za)

.2 .2
51nx(a) - s1nK(f) .

c) (“KerLer’s third law”): The periodic time T of c¢ [(i.e.
the smallest positive period of c) satisfies

2
(6.19) 1% = iz%l—-cosn(a)-sinz(a) .

With fixed major semiaxis a the periodic time T is a strictly
monotonic decreasing function of the curvature constant «.

Remarks.

a) For KerLer’s second law see above § 5.v.c.

b) These results were essentially formulated for «keR* in
[Kiz],p.7-9 and proved for k=-1 in (Li],p.234-236.

c) We try to give a numerical estimate for the influence
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of the curvature of the universe onto the “planetary year, i.e.
the periodic time of our earth. The major semiaxis of the
elliptic orbit of our earth around the sun is well known and

equals approximately a - 150-106 km = 1,5-1013 cm . Due to

{HE] (preface) the radius of our universe is of size 1028 cm .
If our universe would be the Ni with x>0, then we can assume
n, = diam(NZ) z 1028 cm , hence

(6.20,) pi=a/m, s 11,5101 .

For the version (6.19) of KerLer‘s third 1law one finds the

power series expansion

2
T(a,k)? = 2027
(6.20,)
2 2 2 2,2 17 2,3
[1 (Ka)+§'(Ka) -m'(Ka) +...] ’
which leads in case k>0 to the approximation (see (6.201))
(6.20,) T(a,k) - T(a,0)-[1 - gﬁ] if 0<mp << 1.
6

Using T(a,0) - 365 days = 3,1536:10 sec and (6.201),(6.203)
we get:

(6.20,) IT(a,k) - T(a,0)| = 7,58-10 2

sec < 10~ % sec .

i.e.: If our universe is an Nz with k>0, then the “planetary
year” of our earth differs from the Euclidean value at most by

1078 sec !

Proof,
Ad a),b): First we get from (6.16),(6.9)
(6.21,) K >0 or (k=0 and E < -k-V=K ]
and from (6.16),(6.3)
(6.21,) L#*0.
Because of (6.211) the equation (6.17) has exactly one

solution a in ]0,%-nK[ and, since rec is bounded, we conclude
from (6.10),(6.17) (using (1.1),(1.2),(1.6),(1.7)) for this
solution

L2
2k
with equality in (6.213) iff equality in (6.10). Because of

(6.213) -sinK(Za) s sini(a)
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>

(6.213) and ae]o,%-nn[_the equa;ion, (6.18) has exactly one
solution £ in (0,a( and f=0 iff equality in (6.10). Hence
(usinhg (1.2),(4.146),(6.212)) we have -found unigque numbers
a,feR with the following three properties:

(6.214) 0 =f <acx< %-nn o ’
(6'215) 3% < Sin (;+:??:;:aia—f) !
L K K
(6.21.) 2k _ 51nx(2a) .
- 6 - -

Lz 51§K(a+f)-51nx(a-f)

These numbers a,f satisfy (6.17),(6.18) and fulfill (because
of (iii)b))

(6.217) f=0 » roc constant.

Moreover we compute using (6.4),(6.216),(1.1),(1.2),(1.5),
(1.7),(6.17)

(6.21) U(a-f). = U(a+f) = E with U from (6.4).

Because of (6.16), (6.212), (6.214), (6.217), (6.218) the
proposition (iii)b) yields

(6.21.) I=R and roé periodic with
9 (rec) (I) =-[a-f,a+f] .

Hence we can choose

(6.22 T e R with (rec)(t) = a-f = min(rec)

1)
and (see (2.16))
: L 1.2 ,
(6.222) u := Ue(c(t)) € Temn with Tt from (6.221).
Now let K denote the ellipse in Mi (see § 4.ii.a) with
focal length a, major semiaxis a (see (6.214)—(6.216)) and
focal points e and fu(zf,n) (see (2.330),(6.222),(2.67)).

Then due to § 4.iv.a we have

(6.22,) 'K = [eot, (r) - (a+3'°°swu)]_1({0})
vith aeR _, Be(0,o[ and (B=0 & £=0)

and according to (4.191),(6.215),(6.216)

(6.224) the functions § from (4.19) and (6.12) coincide.
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Moreover (4.7),(4.71),(6.221),(6.222) imply

(6.22 c(t) € K n epr(R-u)

5)
and (6.3),(6.212) yield

(6.22 e(¢)? > 0 .

6)
We can conclude from (6.11),(6.217),(6.219),(6.223)-(6.226) by
using proposition § 4.v

(6.22,) {

(since c is a submersion into K because of (6.226)).

c(R) ¢ K
and c is an open mapping into the 1-dim. manifold K

We now introduce (see (6.219),(6.221))

X
(6.23.) P (x) 1= J 8(c(t))at .
T
Then (see (6.11),(6.226) and use (6.3),(6.219),(6.214),(1.9)
for surjectivity)
(6.232) ¢C:R —> R is ac”® diffeomorphism
with (use (2.673),(2.675),(6.222))
(6.233) P = Ao(u,erc) mod 2m .
Hence we can introduce the number (see (6.231),(6.232))

.= _1 - . - -1
(5-234) T := (¢c) {sgn(8(c)) -2n) (¢c) (0) € R,
and find (use (2.16),(6.222),(6.231)—(6.234)): T+T 1is the
first moment in time after T, at which ¢ intersects the

1)/ (6.22,),
(6.223),(4.71) we conclude (roc) (T+T) = (rec)(t) = a-f .

geodesic segment expx(xu)l]o,nx[. Using (6.22

Hence according to (6.219) and proposition (iii)b) the number
T must be a period of roc and because of (6.3) a period of
@(c) too, which implies (see (6.231),(6.234)) ¢°(X+T) = wc(x)
mod 2m. Now we can conclude:

(6.23 c is periodic with smallest positive period T.

5)
Hence c¢(R) = c([0,T]) 1is compact and with (6.227), (6.223),
(4.171) follows c(R) = K .

Ad c): Because of (6.235),(6.234),(6.23 the periodic

1)
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time T of ¢ can be computed by

2n
T = lj ((wc)'l)'(t)dtl - l[ (o) "H (B)atl =

0 e(c)

(Sln (r)ece (o, )" h(tyate =
ool
= 1/(cot (r)+k),.

- .} 451nx(a+f)51ni(a-f) e -
IL] o [sinK(Za)+sinK(2f)cos(t)]2+4Ksini(a+f)sini(a-f)
(6.22,),(4.7),(6.22,),(2.66,)

= (1/VK) - cosl/z(a) 51n1/2(a)-25
(6.21)
with
n 4sin3/2(a+f)sin3/2(a-f)
§ := J K K at .

0 [sinK(Za)+sinK(2f)cos(t)]2+4xsini(a+f)sini(a-f)
Hence for a proof of (6.19) we have to show

3 = n-sinn(a) .
This integration is the only part of the proof, .which requires

different argumentation in case k>0 resp. k=0 resp. k<0. For
details see [Zil],p.36—40.

Because of (6.19),(6.214),(1.9) it suffices for the proof
of the monotony statement to show:

(6.24.) { Eg[cosx(y)sini(y)] < 0 on
R |

Since (see (1.9),(6.241))

Q := {(x,a)eR?|a>0 and x<(5§)2} .

(6.242) cosx(y) > 0 and 51nx(y) >0 on N

1

it suffices for (6.241) to show

3 a. .
(6.243) gi[cosx(y)] < 0 and 5;[51nx(y)] <0 onQ

For this purpose we deduce from (1.1):

Eg[cosx(y)] - %-sinx(y) on R% and
(6.24,) . . -1
axlsing(y)] = 0 ony ({0}) .

(vii) Theorem (All unbounded non-radial orbits in NEWTON’ S
3-dim. potential).
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Data as in (i) and in addition
(6.25) 8(c) #+ 0 and rec unbounded.

Assertion. Then we have k = 0 and E z - k-v-k and for
c(I) holds:

a) If E > + k-vV-K ,
then c(I) is a hyperbola (see § 4.ii.b) with closer focal
point e. Between the “geometrical” parameters of this
hyperbola — major semiaxis a and focal 1length f -~ and the
“physical” parameters of c — total energy E and scalar angular
momentum L — the following relations hold:

(6.26,) . E
2

(6.262) %E-sinK(Za)

k-cotx(Za) ’

L2 .2
51nK(f) - 51nn(a) .

b) If x =0 and E =0 ,
then c(I) is a parabola (see § 4.iii.a) with focal point e.
Between the “geometrical” parameter of this parabola -
pericentral distance s (see (4.91)) — and the “physical”
parameter of ¢ — scalar angular momentum L - the following
relation holds:

(6.27,) 1L’ = x-2s .

c) If Kk <0 and E = + k-vV-«k ,

then c(I) is a horohyperbola (see § 4.ii.e) with focal point
e. Between the “geometrical” parameter of this horohyperbola -
pericentral distance s — and the “physical” parameter of c¢ -—
scalar angular momentum L — the following relation holds:

(6.28,) L = 2k-sinx(s)'e¢:z's .

d}) If x <0 and - k-V-Kk < E < + k-V=-K ,
then c(I) is a semihyperbola (see § 4.ii.c) with focal point
e. Between the “geometrical” parameters of this semihyperbola
— major semiaxis a and focal length f - and the “physical”
parameters of c — total energy E and scalar angular momentum L
— the following relations hold:

(6.29 E = - kn~tanK(2a) ’

1)
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2 . .
(6.292) (L /k)'cosK(Za) = 51nK(2f) - 51nx(2a) .

e) If k <0 and E = - k:V-K ,
then c(I) is a horoellipse (see § 4.ii.d) with focal point
e. Between the “geometrical” parameter of this horoellipse -
pericentral distance s — and the “physical” parameter of c -
scalar angular momentum L — the following relation holds:

2 -V-K*S

(6.30 L® = 2k-sinK(s)-e .

1)

Proof. First we get from (6.25),(6.9),(6.3) the first
assertion and

(6.31)) L=o0.

Because of (6.311),(6.25) we can apply proposition (iii)c) te

roc and hence choose a
(6.312) T € I with (rec)(tr) = min(rec)
and (see (2.16))

L 1.2 . .
(6.313) u := Ue(c(t)) € TeIM'< with T as in (6.312).

Moreover we get from the limes statements in (iii)b): In the
one point compactification Mi v {w} of Mi one has c(t) — o
for t — infl and for t — supI , hence c(I) v {=}
compact in Mi U {@} and consequently

(6.314) c(I) is closed in Ni .

Ad a): Because of k = 0 and E > + k:V=K the equation
(6.261) has exactly one solution a in R,. For this number a
the equation (6.262) has exactly one solution f in J]a,of.
Hence (using (1.2),(4.146),(6.311)) we have found unique
numbers a,feR with the following three properties:

(6.321) 0<a<f<ow,
cosK(Za)

2E
—_— = - - - — ,
L2 51nK(f+a) 51nn(f a)

%:
L2 51nx(f+a)-51nn(f-a)

These numbers fulfill (6.261),(6.262) and we compute using

(6.32,)

51nK(2a)

(6.32,)
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(6.4),(6.323),(1.2),(1.5),(1.7),(6.261)

(6.324) U(f-a) = E with U as in (6.4).

Because of (6.25),(6.311),(6.321),(6.324) the proposition
(iii)c) yields

(6.32 (rec) (I) = [f-a,w[ .

5)
Now let K denote the hyperbola in Ni (see § 4.ii.b) with focal
length f, major semiaxis a (see (6.321)-(6.323)) and focal
points e and fu(2f,0), e being the closer one (see (2.330),

(6.313),(2.67)). Then due to § 4.iv.b we have

(6.32 K = [cot, (r) - (a+3-cos¢u)]'1({0}) with a,BeR

6) +

and according to (4.192),(6.322),(6.323)

(6.327) the functions § from (4.19) and (6.12) coincide.
Moreover (4.8),(4.81),(6.312),(6.313),(6.325) imply

(6.328) c(t) € K n epr(R-u)

and (6.3),(6.311) yield

(6.32) e(¢)? > 0 .

We . can conclude from (6.11),(6.326)-(6.329) by using
proposition § 4.v: c¢(I) € K and ¢ is an open mapping into
the 1-dim. manifold K (since ¢ is a submersion into K because
of (6.329)). Together with (6.314),(6.326),(4.171) it follows
then c¢(I) =K.

Ad Db)-e): Analogous to a), use (4.193)-(4.195) and
conclude from (6.62)-(6.67) and (6.112), that ( k<0 and

E = -k'vV=K ) is possible only if 1? < k/V-k .

(viii) Remark. In case k<0 one has (see § 6.vi,vii) rather
many geometrically different types of orbits of point-like
particles moving in a central force field with Newron’s
potential, which correspond to the various geometric types of
the gedmetry of curves of constant (oriented) curvature in the
hyperbolic plane (see § 2.viii.d and § 4.iii.c). For a better
understanding of this geometric diversity of “KerLer orbits”
the following consideration might be helpful:
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Choose a fixed negative value k of the curvature constant,
a fixed unit speed geodesic ¥:R — Ni with 7(0)=e, a fixed
value L of the scalar angular momentum with 0 < L2 < k/V-K

and study then the family of curves c characterized by the

E
following three properties:

a) cE:I — Ni is a maximally defined path in Mi with

acceleration induced by Newron’s 3-dim. potential,

b) Cp has total energy E and scalar angular momentum equal to

the given L,

c)|0€I and cE(O) = 1(min(rocE))
(the, minimum exists according to § 6.iii.b,c).

From condition c) and the proofs of (vi),(vii) we get the
following additional information in Theorem (vi), (vii):

In case E < -k:-V-x the ellipse cE(I) (see § 4.ii.a,
§ 6.vi.a,b) has the second focal point 1(-2fE),
are the unique solutions of (6.17),(6.18),(6.214).

where aE,fE

In case E = -k:V-k the horoellipse cE(I) (see § 4.ii.d,
§ 6.vii.e) has the axis 7y (-x).

In case =-k'V-XK < E < +k-'V=K the semihyperbola cE(I) (see
§ 4.ii.c, § 6.vii.d) has the focal line with initial velocity
vector J%(Zf
(4.35),(6.29

where aE,f are the unique solutions of

B E
(6.29,).

RE
In case E = +k-V-K the horohyperbola cE(I) (see

§ 4.ii.e, § 6.vii.c) has the axis 7 (x).

In case E > +k-v-Kk the hyperbola CE(I) (see § 4.ii.Db,

§ 6.vii.a) has the second focal point 1(2fE), where aE,fE are
the unique solutions of (6.261),(6.262),(6.321).
Now suppose E » -k-vV-k . Then one checks fE — + ©

(use (4.71),(6.17)). Hence the focal point 1(-2fE) of the

ellipse cE(I) different from e converges in Mi to ¥ (-») (see
§ 2.vi.b) and for the equation characterizing cE(I) we get
(see (2.471), (4.71) and (4.1),(4.4)):
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dx(e"') + de(w(-ZfE),..) - ZfE} = 2-£iE - fE) .

I
— B — S

r(-x) )

For E » +k:-V-K one again checks fE — + o (use (4.81),

(6.261)). Hence the focal point 1(2fE) of the hyperbola cE(I)
different from e converges in Ni to 7 (+o) (see § 2.vi.b) and
for the equation characterizing cE(I) we get (see (2.411),
(4.81) and (4.2),(4.5)):

dx(e’°') - EdK(V(ZfE),..) - 2f % =2:-(f, - a

—I>Bw(..) — s

Suppose -k-v¥-K < E < +k-v¥=K and E > o k-vV-K with
ce{l1,-1}. Then one checks fE — O'w (use (4.91),(6.291)).
Hence the intersection point 7(2fE) of the focal 1line of the
semihyperbola cE(I) with the given geodesic ¥ has the same

limes in Ni as the focal point different from e of the ellipse

resp. hyperbola when approaching o-k:-v-k from the other side.
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