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SOME ASPECTS OF d'- SPACES

1. a°- spaces

Sikorski’s definition of differential spaces is a
generalization of real C”- manifolds. But in many cases,
generalizations of complex manifolds or of cF- manifolds with
r < wmor r = w (analytic manifolds) are needed. This leads to

the following natural generalization ([1] of Sikorski’s
definition:
Definition 1, Let M be a set, C a non-empty set of

functions M — K (= Ror = C), and r € No v {o, w}. If

a) M carries the initial topology w.r.t. C (i. e. the
coarsest topology such that all f € C are continuous)

b) for each finite number of functions f£ fn e C, also

g
the function x +— o(fl(x),...,fn(x)) is in ¢ for all

o e cF(k?, K)
c) ¢c, =cC,
then C is called d°- structure on M and the pair (M, C)
ar- space over K.

It has been shown in (2] and [3] that the calculus on
ar- spaces 1s completely analogous to the one on the
differential spaces of Sikorski.



366 K. Buchner

2. Examples of a¥- spaces in electrical engineering

Consider an electrical circuit like

=

If it has n different wires, one is interested in the voltage
(w.r.t. some reference point) and the current in each of them.
These 2n variables will be regarded as elements of r2" (or

Czn). But, of course, the possible states of this system are

restricted by the well-known equations of electrical circuits:
The two laws of Kirchhoff, Ohm’s 1law, the equations for
capacitors, inductances, and the other 2-poles, 4-poles etc.
By the pre-image theorem, one obtains some submanifold of r2"
(or czn) as the 1locus of the possible states [8]. The
situation changes, if the circuit contains switches, relays
thyristors, or certain operation amplifiers [6]. As a simple

example, let us discuss the following diagramm:

| },l ]
where we assume that the frequency of the voltage source is
small as compared with the eigenfrequency of the rest of the
circuit. As long as the voltage is small, one has a current i1

through the relay which is too small to close the switch. But

above some threshold, i2 is different from zero:

1~

13
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In a circuit like

I —T

the possible states depend on various parameters, e. g. the
frequency of the voltage source. They are described by the

following diagram

[l ll sl

So they do not form a submanifold of Rz, but a differential

space. Especially if an alternating current is applied, it is
advantageous to consider complex ar- spaces. If diodes or
other nonlinear elements are used, one is wusually forced to
work with CrT functions for r < ». So one is naturally led to
at- spaces.

Sasin [7] has shown that in a differential space, the
exterior derivative cannot be defined on differential forms,
but only on certain equivalence classes of differential forms.
This is so, because there may be differential forms that
vanish in all points of a differential space. But if the
formal rules of exterior differentiation are applied, they
would yield a form different from =zero. In the theory of
electrical circuits, such forms occur e. g. 1if ideal diodes
with the following current / voltage diagramm are considered:

i
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These forms occur also in circuits like (6]

—‘—M—L—{: ;\} D‘l

!
1

3

where — —— denotes a nullator (i. e. an element with

u=20and i = 0) and a norator (an element for which all

points in the u / i plane describe possible states). The
current / voltage diagramm of this circuit is

1

In the equations of motion [8] of such a cirquit, the 1-form
o := u-di occurs which is evidently zero. According to the
formal rules of exterior differentiation, one would obtain
da = du A di which is different from zero at the origin. Now
Smale’s theory of electrical circuits shows that these forms
may simply be ignored in order to get the correct equations of
motion. This is the engineer’s argument for passing over to

the above-mentioned equivalence classes.

3. a¥- and c'- tensor fields

Kowalczyk [5] and Sasin [7] have defined smooth forms on a
differential space. In the spirit of ar- spaces, this concept
must be generalized. First, we need the definition of a
c®- vector field (cf. also [1]):

Definition 2, A vector field X on a 4f- space (M, C) is

a c®- vector field (s = r), if

fzc Xf € Hs = (scs(C))M '
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where sc® denotes the closure by c®- functions K" — K (see
axiom b) of definition 1). The elements of Hs will be called
cS- functions, and the Hs- module of the c®- vector fields on
(M, C) will be denoted by X°M.

Next, we consider a ar- space (M, C) over K, and two
numbers p, q € N. Then we define

1 p 1 q i * k
Tpéq M := {(X,0,...,0, X,...,X)| ¢ € TM; X ¢ T M}.

P4 M_ denotes the a'- space with the point set \_)Tpiq M and
xeM
the d°- structure generated by

p 5 q
{fono| f e C} v k:}{Xonl| X e ¥ M} v &:) {dfonll f € C}.
1=1 i=p+1

Here the projestions m, are defined by

1 p 1 q

(x,0,...,0, X,e0.,X) —> x for i = 0
1 p 1 q i

(x,60,...,0, X,...,X) —m— 0o for 1 =i =p
1 p 1 q i-p

(x,0,...,0, X,...,X) m—m> X for i > p.

This allows us to define d°- tensor fields:
Definition 3, A K-valued tensor field t over (M, C) is a

a%- tensor field, if the map
™M —— (x, (K, K))

is smooth. Here s = r must be assumed. In the case s = r, the
tensor field t is called smooth. If W is a Banach space and t
a W-valued tensor field, the above condition has to be
replaced by

Tp’qu — (W, S, wW)).

Although this definition is rather complicated, the d®- tensor
fields are very convenient to work with, because one has [2],
{31, [51:

Lemma 1. Let (M, C) be a ar- space over K, and

s € No v {o, w}; s = r. Then each W-valued (p, q)-tensor field
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may be locally written as

kl"'k 1

t = t, P X e...0 X_ e df
11"'1q k1 kp

i
le...eaf 9,

Here Xk e ¥°M and all sums are finite.

This lemma is a simple consequence of the definition of a
smooth map of a differential space [2].

But the concept of a d¥- tensor is too restrictive: on an
infinite dimensional manifold, not even the identity
TM — TxM is a @'~ tensor for any r. This statement is
independent of the generalization to r # »; it follows from
the fact that the identity at x e M is a (1, 1)-tensor (or a
vector valued 1-form) that can be written as

(1) id =e, & ¥

for any Hamel base {ei} of TxM and the covectors 01; iel

ieI

defined by 0l(ej) = 6;. Here the summation may be over a non
countable set I. But applied to any X = XJej € TxM’ this makes

sense, because the summation over j is finite. Therefore

i

i3 = J
e; ® 9 (X ej) eix SJ

contains only finitely many terms different from zero.

Clearly, (1) is not of the form required by lemma 1, as
the summation is not finite, if dim M = w. Therefore the
identity is not a daF- tensor.

In the same way, one shows that any metric on an infinite
dimensional Hilbert space cannot be a d- tensor for any r.
Similar difficulties arise for infinite dimensional symplectic
or complex manifolds. Therefore one defines

Definition 4, A (p, g)-tensor field t on a ar- space
(M, C) is called cS- tensor field (s s r), if 1locally (i. e.
in some neighbourhood U of each x € M) it can be written as
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K,...k i i
(2) til ip Xk s...exk e df 1 ®...0 df 4
1°""7gq 1 P
kl"'k s i
with t, P ey ; X, € ¥U; £~ € C.,. The summation is not
11"'1q s k U

necessarily finite. (Cf. the remark after equation (1)).

Note that in (2), the linear independence of the Xk and of
the df' is not required. So in general, the representation (2)
is not unique.

This definition includes a large class of tensor fields.
Trivially, all d%- tensor fields are Cs, too. But also the
metric of a Hilbert space, a symplectic form, a complex
structure can be cF- tensor fields, if they are sufficiently
often differentiable. Also the identity can be a cf- tensor
field (but in general it is not cf. E. g. consider a point x,
where the c- vector fields do not span TXM.)

It is immediately seen from (2) that a cF- tensor field t
of type (p, q) satisfies

t(u) € Hg .
(3) for all u = (df ,...,dfp,Yl,...,Yq)
with £ e C; Y, e I°M.

Under certain additional conditions (e. g. if ar- spaces
jep OF ¥M
such that iYj[xi, Xj] = 0), condition (3) is also sufficient
for t to be a C°- tensor field.

The calculus of C°- fields is completely analogous to the

of constant differential dimension carry a base (xi}

one on d°- fields. Here we only repeat the definition of the
exterior derivative: For p € N define mg(M) as the set of all
cS- p~forms a such that each x € M has a neighbourhood U and a

i i
set of c5*1- functions a; ; o f 1 ..., g P2 satisfying
10 ipg
i i
aly 1= da, . Adf L a...aaf P
i...1
1 p-1
and
i i
oy i A df 1 A.o.n df p-1 0.
100igy
Put m:(M) = {0}, where 0 is the zero function M —— K. Then
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one considers, in the usual way, the equivalence classes
(o] = {o+b] W € mg(n)}, where o is any cS- p-form. The set of
these equivalence classes is denoted by AE(M).

Theorem 1. There is precisely one operator

pt+1

. aP
a: APy — BT

(M); pz0; s=z1

such that the following conditions are satisfied for all
x, B € Ag(M) and 7 € AZ(M):

(a) d(ax + B) = da + dB

(b) d od=0

(c) d(a A 7) = (da) Ay + (-1)pa A Ay

(4d) If p=0 (i.e. @ € HS), then d[(a] = [da].

The proof can be taken verbatim from [2] or from {7], where it
is given for d¥- and for d®- tensor fields, respectively.

4. Remarks on the tangent bundle

It is well known that the tangent bundle of a arf- space of
constant differential dimension n is a vector bundle in the
sense of differential spaces (i. e. the local trivializations
and their inverses are smooth), if the dimension n is finite.
This is no longer true, if n is infinite. Gerstner (4] has
proved the following two lemmas:

Lemma 2. Let M := ZZ(R) be the Hilbert space with scalar
product <a, b> := } akbk for a = (ak) and b = (bk). Define ¢
as the d®- structure on M generated by Cm(M, R); further set
F := EZ(R) and let its d°- structure F be generated by the
dual space (space of all continuous linear forms on F). Then a
bundle map (p, U) of the tangent bundle cannot be defined in
any X € M such that P and p_1 are smooth. (Here
p: TU —— UxF.)

The main point in the proof of this 1lemma is that the
usual definition of the Cartesian product does not contain
enough functions to include the pullback of the differential
d<a, a>. Even if the differential structure F of F is enlarged
so that it contains all continuous functions F —— R, p_1 is
not smooth:
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Lemma 3. Lemma 2 holds true if F is the set of all
continuous functions F —— R.

So in order to make TM a vector bundle, it would be
necessary to take out some of the functions of its
differential structure. But this is definitely not what one
wants, as its differential structure contains only the
functions generated by (p, X) +—— f(p) and (p, X) —— Xf(p)
for all £ € C. Therefore, the notion of vector bundles seems
not to be suitable for tangent bundles of differential spaces.
But, of course, all tangent bundles are bundles in the usual

sense.
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