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SOME ASPECTS OF dr- SPACES 

1. d r- spaces 

Sikorski's definition of differential spaces is a 
generalization of real Cm- manifolds. But in many cases, 
generalizations of complex manifolds or of C r- manifolds with 
r < oo or r = u (analytic manifolds) are needed. This leads to 
the following natural generalization [1] of Sikorski's 
definition: 

Definition 1. Let M be a set, C a non-empty set of 
functions M » K (= R or = C) , and r E (NQ U {CO, CJ} . If 

a) M carries the initial topology w.r.t. C (i. e. the 
coarsest topology such that all f e C are continuous) 

b) for each finite number of functions flf...,fn e C, also 
the function x i > o-tf^x) , .. . ,f (x)) is in C for all 
0- € Cr(Kn, DC) 

c) C M = C, 

then C is called d r- structure on M and the pair (M, C) 
d - space over K. 

It has been shown in [2] and [3] that the calculus on 
d r- spaces is completely analogous to the one on the 
differential spaces of Sikorski. 
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2. Examples of d r- spaces in electrical engineering 

Consider an electrical circuit like 

If it has n different wires, one is interested in the voltage 
(w.r.t. some reference point) and the current in each of them. 
These 2n variables will be regarded as elements of IR (or 
C 2 n). But, of course, the possible states of this system are 
restricted by the well-known equations of electrical circuits: 
The two laws of Kirchhoff, Ohm's law, the equations for 
capacitors, inductances, and the other 2-poles, 4-poles etc. 
By the pre-image theorem, one obtains some submanifold of IR2n 
(or C ) as the locus of the possible states [8]. The 
situation changes, if the circuit contains switches, relays 
thyristors, or certain operation amplifiers [6], As a simple 
example, let us discuss the following diagramm: 

where we assume that the frequency of the voltage source is 
small as compared with the eigenfrequency of the rest of the 
circuit. As long as the voltage is small, one has a current i^ 
through the relay which is too small to close the switch. But 
above some threshold, i is different from zero: 
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In a circuit like 

X—^ ! i, V 

the possible states depend on various parameters, e. g. the 
frequency of the voltage source. They are described by the 
following diagram 

So they do not form a submanifold of K , but a differential 
space. Especially if an alternating current is applied, it is 

r • advantageous to consider complex d - spaces. If diodes or 
other nonlinear elements are used, one is usually forced to 
work with C r- functions for r < oo. So one is naturally led to 
d r- spaces. 

Sasin [7] has shown that in a differential space, the 
exterior derivative cannot be defined on differential forms, 
but only on certain equivalence classes of differential forms. 
This is so, because there may be differential forms that 
vanish in all points of a differential space. But if the 
formal rules of exterior differentiation are applied, they 
would yield a form different from zero. In the theory of 
electrical circuits, such forms occur e. g. if ideal diodes 
with the following current / voltage diagramm are considered: 
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These forms occur also in circuits like [6] 

o 
- a — I — o 

where denotes a nullator (i. e. an element with 
I u = 0 and i = 0) and a norator (an element for which all 
I 

points in the u / i plane describe possible states). The 
current / voltage diagramm of this circuit is 

u 

In the equations of motion [8] of such a cirquit, the 1-form 
a := u-di occurs which is evidently zero. According to the 
formal rules of exterior differentiation, one would obtain 
dot = du A di which is different from zero at the origin. Now 
Smale's theory of electrical circuits shows that these forms 
may simply be ignored in order to get the correct equations of 
motion. This is the engineer's argument for passing over to 
the above-mentioned equivalence classes. 

r r 3. d - and C - tensor fields 

Kowalczyk [5] and Sasin [7] have defined smooth forms on a 
. . . r . differential space. In the spirit of d - spaces, this concept 

must be generalized. First, we need the definition of a 
C s- vector field (cf. also [1]): 

Definition 2. A vector field X on a d r- space (M, C) is 
g a C - vector field (s s r) , if 

feC X f € Hs : = ( s c S( c>> M ' 
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s s n where sc denotes the closure by C - functions K » K (see 

axiom b) of definition 1). The elements of H will be called s 
C s - functions, and the H - module of the C s - vector fields on 

(M, C) will be denoted by i sM. 

Next, we consider a d r - space (M, C) over OC, and two 

numbers p, q e IN. Then we define 

n a 1 p l q i * k 
T ^ M := {(x,<r, ...,<rf X,...,X) | <r e T^M; X e T^M}. 

T p , q M denotes the d r - space with the point set M and 

s S x e M X 

the d - structure generated by 

P 
{fon | f e C} u (jj {X»7T | X e lsfll} u ( j {dfoir | f e C>. 

° i=l i=p+l 

Here the projestions TT. are defined by 

1 P 1 q 
(x,cr, . . . ,0", X, . . . . ,X) 1 » X for i = 0 

1 P 1 q i 
(x,(r, • • • t & t X, . . . . ,X) i > a for 1 s i s p 

1 P 1 q i -p 
(x,cr, . . . , <T, X,.. . . ,X) i » X for i > P-

This allows us to define d s - tensor fields: 

Definition 3. A K-valued tensor field t over (M, C) is a 
g 

d - tensor field, if the map 

T P , q M g > (K, C S(K, K)) 

is smooth. Here s s r must be assumed. In the case s = r, the 

tensor field t is called smooth. If W is a Banach space and t 

a W-valued tensor field, the above condition has to be 

replaced by 

T p , q M s > (W, C S(W, W)). 

Although this definition is rather complicated, the d s - tensor 

fields are very convenient to work with, because one has [2], 

[3], [5]: 

Lemma 1. Let (M, C) be a d r - space over K, and 

s e INq u {oo, w}; s s r. Then each W-valued (p, q)-tensor field 
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may be locally written as 

k .. .k i i 
t = t. 1 . p X. . X . ® df 1»...®df q . 

11 * " q K p 

Here X^ e I S M and all sums are finite. 

This lemma is a simple consequence of the definition of a 

smooth map of a differential space [2]. 
r • , , But the concept of a d - tensor is too restrictive: On an 

infinite dimensional manifold, not even the identity 

T^M > T^M is a d r - tensor for any r. This statement is 

independent of the generalization to r * oo; it follows from 

the fact that the identity at x e M is a (1, 1)-tensor (or a 

vector valued 1-form) that can be written as 

(1) id,, = e. « tf1 

for any Hamel base i ^ J j ^ j o f T
X
M a n d t h e covectors tf1; i e I 

defined by i>1(ej) = Here the summation may be over a non 

countable set I. But applied to any X = X 3e. e T M, this makes 
J * 

sense, because the summation over j is finite. Therefore 

e. ® ^ ( X ^ j ) = e.X jS^ 

contains only finitely many terms different from zero. 

Clearly, (1) is not of the form required by lemma 1, as 

the summation is not finite, if dim M = oo. Therefore the 

identity is not a d r - tensor. 

In the same way, one shows that any metric on an infinite 

dimensional Hilbert space cannot be a d r - tensor for any r. 

Similar difficulties arise for infinite dimensional symplectic 

or complex manifolds. Therefore one defines 

Definition 4. A (p, q)-tensor field t on a d r - space 

(M, C) is called C s - tensor field (s s r), if locally (i. e. 

in some neighbourhood U of each x e M) it can be written as 
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k....k l 
(2) t. . p X. ®...®XV « df «...« df q 

1" * q K1 p 

with t. 1 . p € H ; X. e I SU; f 1 e C . The summation is not 14 * • • 1 S X u 
i q 

necessarily finite. (Cf. the remark after equation (1)). 
Note that in (2), the linear independence of the x k and of 

the df 1 is not required. So in general, the representation (2) 
is not unique. 

This definition includes a large class of tensor fields. s s Trivially, all d - tensor fields are C , too. But also the 
metric of a Hilbert space, a symplectic form, a complex 

r • • • . structure can be C - tensor fields, if they are sufficiently 
often differentiable. Also the identity can be a C r- tensor 

r field (but in general it is not C . E. g. consider a point x, 
where the C - vector fields do not span T M.) 

x r 
It is immediately seen from (2) that a C - tensor field t 

of type (p, q) satisfies 
t(u) € H s 

(3) for all u = (df1,...,dfp,Ylf...,Yg) 
with f 1 e C; Y i e ISM. 

Under certain additional conditions (e. g. if d r- spaces 
of constant differential dimension carry a base (Xj^gj 
such that .V.[X., X.] = 0), condition (3) is also sufficient 

1 / J g J 
for t to be a C - tensor field. 

The calculus of C s- fields is completely analogous to the 
one on d s- fields. Here we only repeat the definition of the 
exterior derivative: For p e IN define JJtp(M) as the set of all s s 
C - p-forms a such that each x e M has a neighbourhood U and a 

set of C s + 1 - functions a. . , f 1,...,f P _ 1 satisfying 
V • ' ^ p - l 

i, i . 
a I := doc. . A df A . . . A df p 

u ^r'^p-l 
and 

i, i_. , 
a. . A df A , . . A df p = 0 . 

I ' " p-1 
Put JH°(M) = {0}, where 0 is the zero function M > K. Then 
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one considers, in the usual way, the equivalence classes 
[cr] := {<r+u| u e OTP(M)}, where cr is any Cs- p-form. The set of s 
these equivalence classes is denoted by AP(M). 

Theorem l. There is precisely one operator 
d: aP(M) > aP^(M); p * 0; s * 1 

such that the following conditions are satisfied for all 
a, 0 e A^(M) and r e A^j(M) : 

(a) d (a + /3) = da + d/3 
(b) d o d = 0 
(c) d(a a r) = (da) at + (~l)Pa a dy 
(d) If p = 0 (i.e. a e Hs), then d[a] = [da]. 

The proof can be taken verbatim from [2] or from [7], where it 
is given for dr- and for d°°- tensor fields, respectively. 

4. Remarks on the tangent bundle 
It is well known that the tangent bundle of a d - space of 

constant differential dimension n is a vector bundle in the 
sense of differential spaces (i. e. the local trivializations 
and their inverses are smooth), if the dimension n is finite. 
This is no longer true, if n is infinite. Gerstner [4] has 
proved the following two lemmas: 

2 Lemma 2. Let M := I (IR) be the Hilbert space with scalar 
product <a, b> := £ a)Cb)C f o r a = i3^) anc* b = (b^) • Define C 
as the d00- structure on M generated by ^(M, IR) ; further set 
F := £2(IR) and let its d°- structure F be generated by the 
dual space (space of all continuous linear forms on F). Then a 
bundle map (p, U) of the tangent bundle cannot be defined in 
any x e M such that p and p 1 are smooth. (Here 
p: TU * UxF.) 

The main point in the proof of this lemma is that the 
usual definition of the Cartesian product does not contain 
enough functions to include the pullback of the differential 
d<a, a>. Even if the differential structure F of F is enlarged 
so that it contains all continuous functions F > IR, p 1 is 
not smooth: 
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Lemma 3. Lemma 2 holds true if F is the set of all 

continuous functions F > IR. 

So in order to make TM a vector bundle, it would be 

necessary to take out some of the functions of its 

differential structure. But this is definitely not what one 

wants, as its differential structure contains only the 

functions generated by (p, X) i > f(p) and (p, X) i > Xf(p) 

for all f e c . Therefore, the notion of vector bundles seems 

not to be suitable for tangent bundles of differential spaces. 

But, of course, all tangent bundles are bundles in the usual 

sense. 
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