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ALGEBRAIC FOUNDATIONS OF THE THEORY OF DIFFERENTIAL SPACES 

In physics there is an urgent necessity to base some 
geometric models of physical phenomena on "sufficiently 
non-smooth" generalizations of the differentiable manifold 
concept. The theory of differential spaces might provide 
physics with such a possibility. Algebraic foundations of this 
theory are discussed. Differential space in the sense of 
Sikorski turns out to be a "geometric refinement" of the 
algebraic concept of ringed space, and it naturally 
generalizes the real manifold concept. However, it proves to 
be inadequate to deal with complex analytic manifolds. 
Mostow's theory of differential spaces is a geometric version 
of the theory of structured spaces (essentially, sheaves of 
germs of functions on a topological space). It is shown that 
to naturally generalize the concept of complex analytic 
manifold one must suitably adapt Mostow's concept of 
differential space. 

0. Introduct ion 
There is a widespread conviction that differential 

geometry must be constrained to deal with spaces that are 
"smooth enough", in practice with spaces which are locally 
diffeomorphic to a Euclidean space. We have learned to live 
with this view, but in fact it is a cumbersome constraint. The 
world around us is far from being "smooth enough", and if we 
would like to have its differentially geometric model, we 
should ardently look for "sufficiently non-smooth" 
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generalizations of the differentiable manifold concept. It 

turns out that for several years there are in circulation 

among mathematicians quite a few such generalizations (for 

instance [1] - [9], see also [10] and original works quoted 

therein), although some of them in a seminal state of their 

development. In almost all of these works it is precisely the 

assumption of the local resemblance to a Euclidean space that 

is rejected, and the structure thus obtained is usually called 

a differential space. When one starts to apply these methods 

to physical problems, they seemed to work well ([12] - [13]); 

especially encouraging results have been obtained in the field 

of classical space-time singularities ([14] - [15]). In such 

circumstances the question is unavoidable: Why do these 

methods work? Our hitherto views on differential geometry have 

turned out to be strongly biased. Which is the source of this 

bias? The aim of the present essay is to attempt at 

elucidating these question marks. 

In the introduction to a modern book on Clifford algebra 

and geometry one reads: "...the fusion of algebra with 

geometry is so fundamental that one could well say, ^Geometry 

without algebra is dump! Algebra without geometry is blind!'" 

([16]» p.xii). Already in the framework of differentiable 

manifold theory one can see that algebra is present in 

differential geometry at least on three levels. The first 

level is connected with the existence of differentiable 

manifolds either having an algebraic structure (Lie groups) or 

admitting actions of Lie groups (fibre bundles). One could 

also consider here problems related to the existence of a 

differentiable structure on such objects such as the group of 

diffeomorphisms of a differentiable manifold, the isometry 

group of a Riemann manifold, and so forth. The second level 

refers to methods of the algebraic topology such as Cech or de 

Rahm cohomology groups, characteristic classes of various 

types, Sullivan's minimal models, etc. In the following we 

shall be interested in the third level concerned with using 

the algebraic language in defining geometrical objects 

themselves. It was clear from the very beginning of the 
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development of the differential space theory that sooner or 
later one would have to turn to algebraic foundations of this 
theory. Some of the above mentioned concepts of differential 
spaces have already in themselves an algebraic flavour: the 
structures in question are defined in terms of a ring or a 
sheave of functions over a set rather than by directly 
structuring the set itself. A pioneering work of Palais [17], 
in the field called by him algebraic differential topology, 
has turned out to be extremely helpful. In fact, his 
investigations should be placed somewhere between algebraic 
geometry and differential geometry, and although he never 
mentions differential spaces, his results can be naturally 
extended to cover this case. In the present essay I shall 
amply make use of Palais' work. Proofs of all statements 
non-documented with references to suitable sources should be 
looked for in the book by Palais. 

In my analyses I shall focus on two concepts of 
differential spaces: that proposed by Sikorski ([3] and [4], 
see also [18]) and that introduced by Mostow [9]. As we shall 
see, these two concepts are closely interrelated. Other 
versions of differential spaces are studied in [10]. 

In section 1, some basic algebraic concepts are recalled. 
To consider rings of functions on certain sets, as it is the 
case in both Sikorski and Mostow theories, is not a limitation 
since any abstract (strictly semi-simple) commutatiye ring can 
be made into a ring of functions via the Gelfand 
representation. Differential space in the sense of Sikorski is 
a "geometric refinement" of the algebraic concept of ringed 
space. Ringed spaces are briefly reviewed in section 3, and 
Sikorski's theory is analyzed in section 4. Analogously, 
Mostow's theory of differential spaces is a geometric version 
of the theory of structured spaces (essentially, sheaves of 
germs of functions on a topological space); this is dealt with 
in section 5. Our main conclusions are summarized in section 
6. Sikorski's concept of differential space nicely generalizes 
the notion of real smooth manifold. It is shown that to 
suitably generalize the concept of complex analytic manifold 
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one must turn to a Mostow-like generalization. 

1. Gelfand representation of algebras 

In the following K will always denote a fixed commutative 

field. By a non-zero algebra A we mean a commutative K-algebra 

with identity such that di11^^ - 1- The zero algebra 0 is 

defined to be the trivial K-algebra consisting of the single 

element OeDC which is regarded to be the zero element and the 

identity element, simultaneously. Ih what follows, by an 

algebra we shall mean a non-zero algebra or the zero algebra. 

An algebra 4 is the zero algebra if and only if its identity 

and zero elements coincide. By a homomorphism from an algebra 

A to an algebra S we shall mean a usual algebra homomorphism 

which maps the identity of A into the identity of 8 if A is a 

non-zero algebra, and the zero homomorphism if A is the zero 

algebra. In this way, the category of commutative K-algebras 

with identity has been defined. 
* 

Let A be the dual of A as a vector space over DC, then * 
A*cA will denote the "algebraic dual" of A, i.e. the set of 

M 
all homomorphisms <p\ A > K. If K denotes the algebra of 

all K-valued functions on a set M with the algebraic 

operations defined in a pointwise manner, one has a canonical 
act 
„M 

M M 
mapping Ev: M > (K such that Ev(p) : DC » K, peM, is 

defined by f i—> f(p), feDC 
M 

A homomorphism p: A » K is said^to be a representation 

of A. It will be assumed that p separates points in M, i.e. 

that given two distinct points p and q of M there exists x in 

A such that p(x)(p) * p(x)(q). In fact, it is not a limitation 

since we can always define an equivalence relation # such that 
s w# JL 

the representation p : A > OC , where M = M/#, will 
# separate points in M . 

M Let p: A » DC be a representation of A and TcM. A 
T 

representation p|T: A » OC of A, defined by (p|T) (x) = 

p(x)|T, xeA, is called a subrepresentation of A (defined by 

T) . M For any representation p: A » OC we have an associated 
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map >/i: M >A~ defined by p i—> , i.e. i/i : A > K which 
P P 

is given by = P(x)(P)• One can easily see that 0 = Ev<>p. 

Since p is a representation, \ji is injective. Therefore, M can 

be naturally identified with a subset of A". 

Every algebra A admits a representation as a function 

algebra. Such a representation can be achieved with the help 
of the so-called Gelfand representation. A representation 
A A p : A > K of <4 is called the Gelfand representation of A 

if it is given by p (x) (<p) - <p(x) , x e A, <p e A"". 

M N Two representations p : A > DC and p 2 : A » K of 

A are said to be equivalent if there is a bijection 

s: M > N such that p = K s <> p , where K S: K N > 0CM is a 
. . N homomorphism induced by s, i.e. given by g i—» g°s, g e K . 

A representation p of an algebra A is said to be a 

universal representation of A if every representation of A is 

equivalent to a subrepresentation of p. One can show [17] that 

the Gelfand representation of an algebra A is universal. It is 

also natural in the sense of the category theory. 

An ideal M in an algebra A is said to be strictly maximal 

if dim (A/M) = 1 . In the following the set of all strictly 

maximal ideals of A will be denoted by Spec A. 

The mapping 

A" > Spec A 

defined by # i—» ker <p is a bijection. Indeed, if , <f> is 

linear and surjective, therefore ker <p has codimension one in 

A, and consequently ker# e SpecA. And vice versa, let 

M e SpecA. Since A/M is one-dimensional, there is a unique 

isomorphism ¥:<£/M > K. If II: A > A/Vl is a canonical 

projection, one has <p = ¥ <> II c As and ker <j> = M. 
j 

The kernel of Gelfand representation ker(p ) is called the 

strict radical of A and will be denoted by Rad^(O). If 

Rad<i(0)=0, A is said to be strictly semi-simple. In such a 

case the Gelfand representation of A is faithful. We can see 

that every strictly semi-simple algebra can be treated as an 

algebra of functions on a subset of A*. 
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Now, we shall discuss topology on A*. Let A be a 
K-algebra. By taking the the Gelfand representation of A we 
can regard A as an algebra of K-valued functions on A" (if the 
Gelfand representation is not faithful we can regard A/Rad^(0) 
instead of A). Now, there is an important correspondence. On 
the one hand, to each SBSA there corresponds the largest subset 
V(®) of A" such that all functions of S vanish on V(B) and, 
on the other hand, to every subset N of AA there corresponds 
the subset I(N) of all functions of A that identically vanish 
on N. 

Subsets of A* of the form V(B) are called Z-closed; they 
are closed sets for a T^-topology called the Zariski topology 

(or Z-topology, for short) of A*. It can be shown that subsets 
A 

of 1of the form := {<peA~: p (x) (#) * 0}, xeA, called 
basic open sets, constitute a base for the Z-topology of A". 
The Z-topology of AA is the weakest topology of A" for which 

A A A* all mappings x: A" > K, given by p (x)eK , are continuous 
provided that K is equipped with its weakest T^-topology. If OC 
is a topological field, the weakest topology, in which every 
function x: A* • K is continuous, is called the W-topology 
of A". It is at least as strong as the Z-topology of A" (all 
these statements are proved in [17], sections 1.3-1.4; see 
also [19], p.20-21). 

Under the canonical bijection A" » Spec A subsets V(S) 
of A*• correspond to the subsets V(S) := {^ieSpec A: ScM} of 
Spec A. Let N be a subset of A*. The sets of the form 
I(N) := |-| {ker <f>: #eN} are called strict radical ideals of A. 
There is a bijective correspondence between Z-closed subsets 
of and strict radical ideals of A. 

2. Ringed spaces 

Crucial structures in our considerations will be ringed 
spaces. First, we define a structural ring (over K) of a set M 
to be a subalgebra A of the algebra K M of K-valued functions 
on M which separate points in M. Then a ringed space (over K) 
is a pair (M,<4) where M is any set and A is a structural ring 
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of M. 1 

Let (K,A) be a ringed space. The Z-topology on M is 

defined to be the topology of M induced from the Z-topology of 

A". The basic open sets, i.e. sets of the form M^ := {peM: 

f(p)*0}, fed, constitute a base for the Z-topology of M. 

If (M,d) is a ringed space and NcM, the pair (N, ji|N), 

where <4|N is the algebra of functions being restrictions to N 

of those of A, is said to be a ringed subspace of (M,<i) . 

Let us notice that since the functions of the structural 

ring A separate points in M, the mapping Ev: M > A* is 

injective. This allows us to regard Ev as an identification of 

M with a subset of A". In these circumstances the Gelfand 
A A representation p of A is given by f = p (f)|Mc»iA, where feA. 

If Ev is surjective, one has M = A" and the ringed space (M,A) 

is called complete. A complete ringed space (M,5) such that M 

is Z-dense in M is called a completion of (M,A). One can show 

that if (M,ji) is a ringed space then (A~,A) is its completion. 

It can be proved that the category of complete ringed spaces 

over K is isomorphic to the dual of the category of 

semi-simple algebras over IK. 

Later on we shall need the following concepts. Let (M,A) 

be a ringed space. A function h: M > K is said to be 

regular if it can be written in the form f/g, where f,geA and 

g*0 everywhere. The ring of regular functions on M is denoted 

by ^ g g - A ringed space (M,A) is called a regular ringed space 

if A = . The ringed space (M,j4 ) is said to be the 
reg reg 

regularization of (M, A). 
k One can easily see that a C -manifold can be regarded as a 

k ringed space. Indeed, let K = IR and M be a C -(paracompact) 

manifold, where k is any non-negative intecrer, oo, or u. If 
k k C (M) is the family of real C -functions on M, the manifold in 

k 
question can be considered as a ringed space (M,C (M)) with 
v 

C (M) as its structural ring. It can be shown that the 

manifold topology of M is the W-topology of the ringed space 

1 In the literature the name ringed space is usually reserved 
for what is called by Palais local ringed space (see, footnote 
3) • 
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V (M,C (M)), and if k * u it is also the Z-topology of if 

(M,C (M)). In general, the Z-topology is weaker than the 
W-topology (of the same ringed space). 

If M is a compact manifold, then the ringed space 
(M,Ck(M)) is complete. 

3. Differential spaces in the sense of Sikorski 
The last example is crucial. One could reverse the 

reasoning and ask which condition should be imposed upon a 
ring of functions defined on a set M to change this set into a 
manifold or some its workable generalization. From the answer 
to this question various definitions of differential spaces 
arise. The essential idea consists in selecting a family of 
functions on M in such a way that it would be possible to 
treat it, ex definitione, as the family of smooth functions on 
M. If the family of such functions is a ring, almost 
everything else which is needed is, as we have seen above, 
nicely done by the algebraic properties of ringed spaces. 

One of the possible ways was chosen by Sikorski [3], [4], 
[18]. He decided to work with a non-empty family C of real 
functions on a set M with the weakest topology z c in which 
functions of C are continuous. The family C was supposed to be 
(1) closed with respect to localization, and (2) closed with 
respect to superposition with smooth functions on the 
Euclidean space. 

A function f, defined on AcM, is said to be a local 
C-function if, for every peA there is a neighbourhood B in the 
topological space (A, t^), where is the topology induced in 
A by tc, and a function geC such that g|B = f|B. The sot of 
all local C~functions is denoted by CA. One obviously has 
CcCM- If C = CJJ the family C is said to be closed vith respect 
to localization. 

Let C be a family of real functions on M. It is said to be 
closed vith respect to superposition with smooth Euclidean 
functions if for any nelN and any function weC^R11) , 
flf ..., fn e C implies u ° (f.̂ , ..., f ) e C. 
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A family C of real functions on M satisfying conditions 
(1) and (2) is called a differential structure on M, and it is 
treated, ex definitione, as the family of smooth functions on 
M. A pair (M,C), where C is a differential structure on M, is 
called a differential space (in the sense of Sikorski). Let us 
notice that on the strength of condition (2) C is a (linear) 
ring, and consequently a differential space (M,C) is also a 
ringed space. 

It turns out that the notion of differential space is both 
2 

a vast generalization of the ordinary manifold concept and a 
workable tool: large parts of differential geometry can be 
done entirely in terms of it (see [18]). Let us briefly 
consider the two conditions defining this concept. 

The closure with respect to localization is a natural 
condition. It ensures the global meaning to all local 
constructions. This can be seen from the following. Let (M,C) 
be a ringed space, where M is a priori given a certain 
topology. Let {U^}, iel, be an open covering of M in this 
topology. By restricting C to each U^ one obtains the presheaf 
of rings on M (for details see below, section 4). To connect 
rings over all open sets U^ into a global structure, i.e. to 
change the presheaf into a sheaf, one must assume that C is 
closed with respect to localization. 

Moreover, condition (1) is satisfied by smooth functions 
on manifolds. Without having it satisfied the differential 
space concept could not be a generalization of that of smooth 
manifold. 

The closure with respect to superposition with smooth 
Euclidean functions is also a useful postulate. It makes the 
topology t c of a differential space (M,C) identical with the 
Zariski topology which, in the case when (M,C) is a manifold, 
will coincide with the manifold topology. Moreover, as we have 
seen, condition (2) guarantees that a family C of real 
functions is a ring. This, however, could be achieved in many 
2 ', 
By postulating that a differential space should be locally 

diffeomorphic to an open subset of a Euclidean space, the 
differential space changes into a smooth manifold. 
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different ways. For instance, in place of demanding the 

closure with respect to superposition with smooth Euclidean 

functions one could postulate the closure with respect to 

superposition with "Euclidean polynomials". In such a case the 

topology would in general fail to be a Zariski topology, but 

the way seems to be worthwhile to try since it clearly drifts 

towards the algebraic geometry. 

We should notice that if we assume K = C, the Sikorski 

construction in general does not work. The reason is the 

following. Let H be a complex analytic manifold. We might try 

to construct a ringed space by considering the pair (H, £) 

where S is the family of holomorphic complex valued functions 

on H. As it is well known, if feS, and f reaches the maximum 

at p € int H, then f = const on H ([20], p. 307). Therefore, 

if H is compact, the family Ç consists only of constant 

functions which of course ruins the idea. To circumvent this 

difficulty one must take into considerations sheaves of 

algebras over a given set. This will be done in the next 

section. 

4. Structured spaces and Mostow differential spaces 

Let M be a topological space and 9 the category of 

commutative K-algebras with identity. By topM we shall denote 

the category whose objects are open subsets of M and morphisms 

inclusion maps between them. Therefore, for any, U, V e topM, 

one has 

(a) Hom(U,V) = 0 iff V c U, 

(b) Hom(U,V) = { i
U
v } iff V c U, 

where i Uy! V c—» U is the inclusion map. By a presheaf of 

algebras on M we mean a system S = {S(U), P U y : u » v e topM, 

VcU}, where S(U)«a and p U
y e Homg(S(U),S(V)) satisfying the 

following conditions: 

(PI) S(e) = 0, where a is the empty set, 

(P2) for any U e topM, p U is the identity of S(U), 
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(P3) for any U, V, W € topM, if W c V c U, then p U
w = 

V U - P w P v 

A presheaf S can be equivalently defined as a 
contravariant functor ¡f from the category topM to the category 
S which assigns the zero algebra to the empty set. In such a 
case one has S(U) = y(U) and p U

y = y(iU
v), for U, V € topM, 

VcU. 
A presheaf S = {S(U), p U

y: U,V e topM, VcU} of algebras on 
M is a sheaf if it satisfies the following additional 
conditions: 

(51) suppose that is an open covering of U; if a,b e 
e S(U) and p U (a) = p U (b), for all t, then a = b, 

t t 
(52) suppose that {V̂ .} is an open covering of U; if there 

exist elements a. such that a. e S(V.) for each t, 
V r V t t 

a n d p V nV (at} = 9 % nV ( as ) f o r e a c h fc' S' t h e n 

. t s t s U there is an element a e S(U) such that p v (a) = a. 
t r 

(notice that condition (SI) implies that a is unique). 

Nowj we define the sheaf of germs of K-valued functions on 

M, $ = {$ (U), r U : U, V e topM, V c U> as the following 
V 

sheaf of algebras. For any non-empty U e topM, 4„(U) is the M 
algebra of all K-valued functions on U (under the pointwise 
algebra operations). If U, V e topM, VcU and V * z, then the 
homomorphism r U

v: (U) > restriction map 
a|V. It can be easily seen that the above assumptions 

define the sheaf $ M uniquely. 

Let S = {S(U), p U
y: U,V e topM, V c U } be a sheaf of 

algebras on M. We say that a sheaf S' = {S'(U), P , U
V= U,V e 

e topM, VcU} of algebras on M is a subsheaf of S if, for any 
U, V e topM, VcU, the algebra S'(U) is a subalgebra of S(U), 
p U (S'(U)) c S'(V) and the homomorphism P , U

V is the 
. . u 

restriction of P v- By a sheaf of function algebras 
(functional structure) on M we mean a subsheaf 9 of the sheaf 
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$ M such that (U), for each non-empty U e topM, is a non-zero 
algebra, i.e. ^(U) contains all constant K-valued functions on 
U. 

Let 9 be a sheaf of function algebras on M. For any p e M, 
we define the stalk of i at p in the following way. Let us 
consider the family y(.,p) = U {^(U): U e topM, p e M}. If 
a e y(.,p), the domain of a will be denoted by dom(a). We 
define the relation <* in ?(.,p) by: a <» (3 if there is an 
open neighbourhood U of p in M such that U c dom(a) n dom(/3) 
and a | = (3|U. Evidently, is an equivalence relation. For 
any a e ?(.,p), the germ of a at p is defined as the 
equivalence class a of a with respect to the relation * . The 

P P 
stalk ^ is defined to be the set i ap : a 6 ?(.,p)}. Moreover, 
^p can be regarded as an algebra under the following 
operations 

ap + Pp := <«' + 

V p : = ( a' 3 n d M V : = ( X a )p' 
where a, 0 e ?(.,p), X e K and a', |3' e ?(.,p) are chosen in 
such a way that o' = a p, j3' = (3 with dom(a') = dom(p'). 
Obviously, every is a non-zero algebra. More generally, one 
can define the stalk s , p e M, for any sheaf S of algebras on 
M; in such a case S p is also an algebra (not necessarily 
non-zero). 

Following Hochschild [23], the pair (M,C?M) , where M is a 
topological space and C?M a sheaf of function algebras (a 
functional structure) on M will be called the (functional) 
structured space (and for brevity it will also be denoted by 3 M). Let M and N be structured spaces. A continuous function 
f: M > N is said to be a structured map from M to N if, 
for any non-empty U e topN and a e 0 (U), one has 

-1 
a o f e 0M(f U). Clearly, structured spaces (as objects) 
together with structural maps (as morphisms) form the category 
called the category of structured spaces. 

Let (M,j4) be a ringed space. By equipping M with the 
3 | ; : 

Such a notion is called by Palais a local ringed space [17]. 
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Z-topology and, for each Z-open subset U of M, defining ° M( U) 
:= {feKU: V p € U, 3 V e topzM, 3 g € i < , p e V c U , f|V = g|V} 
one obtains the structured space (M, ©M) called the associated 
structured space. 

The structured space notion is a common generalization of 
such concepts as: smooth manifold, real analytic manifold, 
complex manifold, algebraic variety, differential space. For 
instance, every differential space M can be regarded as a 
structured space (M, 0M) with the functional structure given 
by the sheaf 0M of germs of smooth real functions on M. 
Moreover, the categories of smooth manifolds, real analytic 
manifolds, etc. are full subcategories of the category of 
structural spaces. 

In particular, by using structured spaces instead of 
ringed spaces we can overcome difficulties met in our attempt 
to construct a complex analytic differential space (end of 
section 3). Indeed, let H be a complex analytic manifold and 
0H(U) the algebra of holomorphic functions on U, where U is 
an open subset of H. Evidently, the assignment U * 0„(U) n 
defines a sheaf 0 o f function algebras on H. Therefore, any 
complex analytic manifold can be represented as a structured 
space (H,OJJ) . Basing on this fact, one can construct a complex 
differential space in an analogous manner to what has been 
done in the preceding section in the case of real differential 
spaces. To this end we could adapt a construction proposed by 
Mostow (1979). A differential space in the sense of Mostow is 
a topological space M together with a sheaf CM of germs of 
continuous (in the assumed topology) K-valued functions on M 
(with K = IR or C), called smooth functions, satisfying the 
following closure condition: for any neIN, if f ^ ..., f e 
CM(U), where U is an open subset of M, and g is a smooth 
Euclidean function on IRn (resp. a holomorphic function on Cn), 
then goff^ ..., fn) e CM(U) (Mostow originally considered 
only the real case). 

Let us notice that we do not need to assume the closure 
with respect to localization since it is contained in axiom 
(S2) of the sheaf definition. Therefore, with every 
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differential space in the sense of Sikorski is associated a 
(real) differential space in the sense of Mostow. Indeed, a 
differential space in the sense of Sikorski (M,C) is a ringed 
space; by taking its associated structured space we obtain the 
differential space in the sense of Mostow. Relationships 
between Sikorski and Mostow differential spaces were studied 
in [10]. 

5. Concluding remarks 
Since the rapid development of algebraic geometry there is 

no doubt that geometry can be given a sound algebraic 
foundations. From the work of Palais (1981) it clearly follows 
that it is equally true as far as differential geometry is 
concerned. By taking any algebra and, if necessary, 
representing it with the help of Gelfand representation as a 
functional algebra, we can construct algebraic structures such 
as ringed spaces or structured spaces which in many respects 
behave like geometric structures (one can algebraically define 
vector tangent and cotangent spaces to them, etc.). Moreover, 
many authentic differentially geometric objects such as real 
and complex manifolds turn out to be special instances of such 
structures. 

This suggests a nice way of generalizing the standard 
differential geometry. One should take a suitable algebraic 
structure (ringed space or structured space), enrich it with 
the help of axioms which would make this structure more 
"geometrically flexible", and try to implement known 
differentially geometric procedures. As we have seen, 
Sikorski's theory of differential spaces naturally arises 
according to this method when one starts from the geometric 
concept of ringed space, and Mostow's theory of differential 
spaces when one begins with structured spaces. In fact, both 
authors worked with no help of algebraic considerations, and 
they should be praised for their correct intuitions. 

Sikorski's theory is simpler than that of Mostow and 
proves to be sufficient as far as a generalization of the real 
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manifold concept is concerned. However, it is inadequate to 
deal with complex analytic manifolds. In section 4 we have 
shown that it is Mostow's theory that could be naturally 
adapted to this case. 

A nice thing with Sikorski's theory is that one can work 
entirely with the corresponding ring of functions, (almost 
entirely) forgetting about the set on which these functions 
are defined. This follows from the fact that if (M,C) is a 
differential space in the sense of Sikorski, M can be regarded 
as a subset of C~, the algebraic dual of C, and that there is 
a canonical bijection between C and Spec C, the set of 
strictly maximal ideals of C. 
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