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ALGEBRAIC FOUNDATIONS OF THE THEORY OF DIFFERENTIAL SPACES

In physics there is an wurgent necessity to base some
geometric models of physical phenomena on “sufficiently
non-smooth" generalizations of the differentiable manifold
concept. The theory of differential spaces might provide
physics with such a possibility. Algebraic foundations of this
theory are discussed. Differential space in the sense of
Sikorski turns out to be a '"geometric refinement"” of the
algebraic concept of ringed space, and it naturally
generalizes the real manifold concept. However, it proves to
be inadequate to deal with complex analytic manifolds.
Mostow’s theory of differential spaces is a geometric version
of the theory of structured spaces (essentially, sheaves of
germs of functions on a topological space). It is shown that
to naturally generalize the concept of complex analytic
manifold one must suitably adapt Mostow’s concept of
differential space.

0. Introduction

There 1is a widespread conviction that differential
geometry must be constrained to deal with spaces that are
"smooth enough", in practice with spaces which are 1locally
diffeomorphic to a Euclidean space. We have learned to 1live
with this view, but in fact it is a cumbersome constraint. The
world aroﬁnd us is far from being "smooth enough", and if we
would like to have its differentially geometric model, we
should ardently look for *sufficiently non-smooth"
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generalizations of the differentiable manifold concept. It
turns out that for several years there are in circulation
among mathematicians quite a few such generalizations (for
instance [1] - [9], see also [10] and original works quoted
therein), although some of them in a seminal state of their
development. In almost all of these works it is precisely the
assumption of the local resemblance to a Euclidean space that
is rejected, and the structure thus obtained is usually called
a differential space. When one starts to apply these methods
to physical problems, they seemed to work well ([12] - [13]);
especially encouraging results have been obtained in the field
of classical space-time singularities ([14] - [15]). In such
circumstances the question is wunavoidable: Why do these
methods work? Our hitherto views on differential geometry have
turned out to be strongly biased. Which is the source of this
bias? The aim of the present essay is to attempt at
elucidating these question marks.

In the introduction to a modern book on Clifford algebra
and geometry one reads: "...the fusion of algebra with
geometry is so fundamental that one could well say, ‘Geometry
without algebra is dump! Algebra without geometry is blind!’"
([16], p.xii). Already in the framework of differentiable
manifold theory one can see that algebra 1is present in
differential geometry at least on three levels. The first
level is connected with the existence of differentiable
manifolds either having an algebraic structure (Lie groups) or
admitting actions of Lie groups (fibre bundles). One could
also consider here problems related to the existence of a
differentiable structure on such objects such as the group of
diffeomorphisms of a differentiable manifold, the isometry
group of a Riemann manifold, and so forth. The second level
refers to methods of the algebraic topology such as Cech or de
Rahm cohomology groups, characteristic classes of various
types, Sullivan’s minimal models, etc. In the following we
shall be interested in the third level concerned with using
the algebraic 1language in defining geometrical objects
themselves. It was clear from the very beginning of the
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development of the differential space theory that sooner or
later one would have to turn to algebraic foundations of this
theory. Some of the above mentioned concepts of differential
spaces have already in themselves an algebraic flavour: the
structures in question are defined in terms of a ring or a
sheave of functions over a set rather than by directly
structuring the set itself. A pioneering work of Palais [17],
in the field called by him algebraic differential topology,
has turned out to be extremely helpful. In fact, his
investigations should be placed somewhere between algebraic
geometry and differential geometry, and although he never
mentions differential spaces, his results can be naturally
extended to cover this case. In the present essay I shall
amply make use of Palais’ work. Proofs of all statements
non-documented with references to suitable sources should be
looked for in the book by Palﬁis.

In my analyses I shall focus on two concepts of
differential spaces: that proposed by Sikorski ([3] and [4],
sée also [18]) and that introduced by Mostow [9]. As we . shall
see, these two concepts are closely interrelated. Other
versions of differential spaces are studied in [10}.

In section 1, some basic algebraic concepts are recalled.
To consider rings of functions on certain sets, as it is the
case in both Sikorski and Mostow theories, is not a limitation
since any abstract (strictly semi-simple) commutatiye ring can
be made into a ring of functions via the Gelfand
representation. Differential space in the sense of Sikorski is
a "geometric refinement" of the algebraic concept of ringed
space. Ringed spaces are briefly reviewed in section 3, and
Sikorski’s theory is analyzed 1in section 4. Analogously,
Mostow’s theory of differential spaces is a geometric version
of the theory of structured spaces (essentially, sheaves of
germs of functions on a topological space); this is dealt with
in section 5. Our main conclusions are summarized in section
6. Sikorski’s concept of differential space nicely generalizes
the notion of real smooth manifold. It is shown that to
suitably generalize the concept of complex analytic manifold
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one must turn to a Mostow-~like generalization.

1. Gelfand representation of algebfés

In the following K will always denote a fixed commutative
field. By a non-zero algebra 4 we mean a commutative K~algebra
with identity such that dimKA =z 1. The zero algebra 0 is
defined to be the trivial K-algebra consisting of the single
element 0eK which is regarded to be the zero element and the
identity element, simultaneously. Ih what follows, by an
algebra we shall mean a non-zero algebra or the zero algebra.
An algebra 4 is the zero algebra if and only if its identity
and zero elements coincide. By a homomorphism from an algebra
4 to an algebra B we shall mean a usual algebra homomorphism
which maps the identity of 4# into the identity of B if 4 is a
non-zero algebra, and the zero homomorphism if #4# is the =zero
algebra. In this way, the category of commutative K-algebras

with identity has been defined.

Let A* be the dual of 4 as a vector space over K, then
4~c4” will denote the "algebraic dual" of £, i.e. the set of
all homomorphisms ¢: 4 —— K. If KM denotes the algebra of
all K-valued functions on a set M with the algebraic
operations defined in a pointwise mannér, one has a canonical
mapping Evi M —— (KM)* such that Ev(p): KM ——> K, peM, is
defined by f +—— f(p), fek™.

A homomorphism p: 4 —— KM is said,to be a representation
of 4. It will be assumed that p separates points in M, i.e.
that given two distinct points p and g of M there exists x in
4 such that p(x) (p) * p(x)(g). In fact, it is not a limitation
since we can always define an equivalence relation # such that
the representation p#: 4 — KM#, where M' = M/#, will

#

separate points in M".

Let p: 4 —> KM be a representation of &£ and TcM. A
T of 4, definea by (p|T)(x) =
p(x)|T, xed, is called a subrepresentation of 4 (defined by

T).

representation p|T: 4 — K

For any representation p: 4 — KM we have an associated
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map Yy: M ——>4~ defined by p — Wp’ i.e. wp: 4 —— K which
is given by wp(x) = p(x) (p). One can easily see that ¥y = Evep.
Since p is a representation, ¥ is injective. Therefore, M can
be naturally identified with a subset of 4*.

Every algebra 4 admits a representation as a function
algebra. Such a representation can be achieved with the help
of the so-called Gelfand representation. A representation
p4: 4 ——> KAA of 4 is called the Gelfand representation of 4
if it is given by p‘(x)(¢) = ¢(xX), X € 4, ¢ € 4™,

M

Two representations Pyt 4 — K and Pyt 4 —— KN of

4 are said to be equivalent if there 1is a bijection

s: M —— N such that Py = K® . Pqe where K°: KN — M is a

homomorphism induced by s, i.e. given by g +— ges, g € kY.

A representation p of an algebra 4 1is said to be a
universal representation of 4 if every representation of 4 is
equivalent to a subrepresentation of p. One can show [17] that
the Gelfand representation of an algebra 4 is universal. It is
also natural in the sense of the category theory.

An ideal M in an algebra 4 is said to be strictly maximal
if dim (4/M) = 1. In the following the set of all strictly
maximal ideals of 4 will be denoted by Spec 4.

The mapping

4% —— Spec 4

defined by ¢ +— ker ¢ is a bijection. Indeed, if ¢ed~, ¢ is
linear and surjective, therefore ker ¢ has codimension one in
4, and consequently Xker¢ € Specd. And vice versa, let
M € Specd. Since 4/M is one-dimensional, there is a unique
isomorphism ¥:4/M —— K. If TI: 4 —— 4/M is a canonical
projection, one has ¢ = ¥ o I € 4" and ker ¢ = M.

The kernel of Gelfand representation ker(p‘) is called the
strict radical of 4 and will be denoted by RadA(O). 1f
Rad£(0)=0, 4 is said to be strictly semi-simple. In such a
case the Gelfand representation of 4 is faithful. We can see
that every strictly semi-simple algebra can be treated as an
algebra of functions on a subset of £4*.
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Now, we shall discuss topology on 4*. Let 4 be a
K-algebra. By taking the the Gelfand representation of 4 we
can regard 4 as an algebra of K-valued functions on 4% (if the
Gelfand representation is not faithful we can regard A/RadA(O)
instead of #). Now, there is an important correspondence. ©On
the one hand, to each Bgd there corresponds the largest subset
V(B8) of &~ such that all functions of B vanish on V(8) and,
on the other hand, to every subset N of 4" there corresponds
the subset I(N) of all functions of 4 that identically vanish
on N.

Subsets of 4+ of the form V(B) are called Z-closed; they
are closed sets for a Tl—topology called the Zariski topology
(or Z-topology, for short) of «£*. It can be shown that subsets
of 4~ of the form A‘x t= {Ped": pd(x)(¢) # 0}, xed, called
basic open sets, constitute a base for the Z-topology of 4~.
The Z-topology of 4~ is the weakest topology of 4~ for which
all mappings Q: 4~ — K, given by p (x)eKJ , are continuous
provided that K is equipped with its weakest Tl-topology. If K
is a topological field, the weakest topology, in which every
function %: 4* — K is continuous, is called the W-topology
of 4~. It is at least as strong as the Z-topology of 4~ (all
these statements are proved in [17], sections 1.3-1.4; see
also [19], p.20-21).

Under the canonical bijection #* —— Spec &£ subsets V(3)

of 4~ correspond to the subsets V(B) := {MeSpec 4: BcM} of
Spec 4. Let N be a subset of 4*. The sets of the form
I(N) :=n {ker ¢: ¢eN} are called strict radical ideals of 4.

There is a bijective correspondence between Z-closed subsets
of 4~ and strict radical ideals of 4.

2. Ringed spaces

Crucial structures in our considerations will be ringed
spaces. First, we define a structural ring (over K) of a set M
to be a subalgebra 4 of the algebra KM of K-valued functions
on M which separate points in M. Then a ringed space (over K)
is a pair (M,4) where M is any set and 4 is a structural ring
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of M.l

Let (M,d4) be a ringed space. The Z-topology on M is
defined to be the topology of M induced from the Z-topology of
d4~. The basic open sets, i.e. sets of the form\ Mf := {peM:
f(p)#0}, fed, constitute a base for the Z-topology of M.

If (M,4) is a ringed space and NcM, the pair (N, 4|N),
where 4|N is the algebra of functions being restrictions to N
of those of 4, is said to be a ringed subspace of (M,d).

Let us notice that since the functions of the structural
ring 4 separate points in M, the mapping Ev: M —— 4* is
injective. This allows us to regard Ev as an identification of
M with a subset of 4. In these circumstances the Gelfand
representation p‘4 of 4 is given by f = pd(f)lMcd‘, where fed.
If Ev is surjective, one has M = 4* and the ringed space (M,4)
is called complete. A complete ringed space (ﬁ,Z) such that M
is Z-dense in M is called a completion of (M,d). One can show
that if (M,4) is a ringed space then (4£*,d4) is its completion.
It can be proved that the category of complete ringed spaces
over K 1is isomorphic to the dual of the category of
semi-simple algebras over K.

Later on we shall need the following concepts. Let (M,d)
be a ringed space. A function h: M —— K 1is said to be
regular if it can be written in the form f/g, where f,ged and
g*0 everywhere. The ring of regular functions on M is denoted
by 4reg' A ringed space (M,4) is called a regular ringed space
if 4 = 4reg' The ringed space (M,Areg) is said to be the
regularization of (M, 4).

One can easily see that a Ck—manifold can be regarded as a
ringed space. Indeed, let K =R and M be a Ck-(paracompact)
manifold, where k is any non-negative integer, o, or w. If
Ck(M) is the family of real Ck—functions on M, the manifold in
question can be considered as a ringed space (M,Ck(M)) with
Ck(M) as its structural ring. It can be shown that the
manifold topology of M is the W-topology of the ringed space

1 1n the literature the name ringed space is usually reserved
for what is called by Palais local ringed space (see, footnote
3).
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(M,ck(M)), and if kX #* w it 1is also the Z-topology of
(M,Ck(M)). In general, the Z-topology is weaker than the
W-topology (of the same ringed space).

If M is a compact manifold, then the ringed space
(M,Ck(M)) is complete.

3. Differential spaces in the sense of Sikorski

The last example 1is crucial. One could reverse the
reasoning and ask which condition should be imposed upon a
ring of functions defined on a set M to change this set into a
manifold or some its workable generalization. From the answer
to this question various definitions of differential spaces
arise. The essential idea consists in selecting a family «f
functions on M in such a way that it would be possible to
treat it, ex definitione, as the family of smooth functions on
M. If the family of such functions is a ring, almost
everything else which is needed is, as we have seen above,
nicely done by the algebraic properties of ringed spaces.

One of the possible ways was chosen by Sikorski [3], (4],
{18]. He decided to work with a non-empty family C of real
functions on a set M with the weakest topology T in which
functions of C are continuous. The family C was supposed to be
(1) closed with respect to localization, and (2) closed with
respect to superposition with smooth functions on the
Euclidean space.

A function f, defined on AcM, is said to be a local
C-function if, for every peA there is a neighbourhood B in the
topological space (A, Tp)» where T is the topology induced in
A by T,, and a function geC such that g|B = £|B. The set of
all local C~functions is denoted by Cp+ One obviously has
CcCy- If C = Cy the family C is said to be closed with respect
to localization.

Let C be a family of real functions on M. It is said to be
closed with respect to superposition with smooth Euclidean
functions if for any neN and any function wecm(mn),

fl’ ey fn € C implies w (fl’ ceey fn) € C.
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A family C of real functions on M satisfying conditions
(1) and (2) is called a differential structure on M, and it is
treated, ex definitione, as the family of smooth functions on
M. A pair (M,C), where C is a differential structure on M, is
called a differential space (in the sense of Sikorski). Let us
notice that on the strength of condition (2) € is a (linear)
ring, and consequently a differential space (M,C) is also a
ringed space.

It turns out that the notion of differential space is both
a vast generalization of the ordinary manifold concept2 and a
workable tool: large parts of differential geometry can be
done entirely in terms of it (see [18])). Let us briefly
consider the two conditions defining this concept.

The closure with respect to 1localization is a natural
condition. It ensures the global meaning to all local
constructions. This can be seen from the following. Let (M,C)
be a ringed space, where M 1is a priori given a certain
topology. Let {U;}, ieI, be an open covering of M in this
topology. By restricting C to each U; one obtains the presheaf
of rings on M (for details see below, section 4). To connect
rings over all open sets Ui into a global structure, i.e. to
change the presheaf into a sheaf, one must assume that C is
closed with respect to localization.

Moreover, condition (1) is satisfied by smooth functions
on manifolds. Without having it satisfied the differential
space concept could not be a generalization of that of smooth
manifold.

The closure with respect to superposition with smooth
Euclidean functions is also a useful postulate. It makes the
topology To of a differential space (M,C) identical with the
Zariski topology which, in the case when (M,C) is a manifold,
will coincide with the manifold topology. Moreover, as we have
seen, condition (2) guarantees that a family C of real
functions is a ring. This, however, could be achieved in many

2 By postulating that a differential space should be locally
diffeomorphic to an open subset of a Euclidean space, the
differential space changes into a smooth manifold.



358 M. Heller

different ways. For instance, in place of demanding the
closure with respect to superposition with smooth Euclidean
functions one could postulate the closure with respect to
superposition with "Euclidean polynomials". In such a case the
topology would in general fail to be a Zariski topology, but
the way seems to be worthwhile to try since it clearly drifts
towards the algebraic geometry.

We should notice that if we assume K = C, the Sikorski
construction in general does not work. The reason is the
following. Let H be a complex analytic manifold. We might try
to construct a ringed space by considering the pair (H, €)
where € is the family of holomorphic complex valued functions
on H. As it is well known, if fe€, and f reaches the maximum
at p € int H, then f = const on H ([20], p. 307). Therefore,
if H is compact, the family € consists only of constant
functions which of course ruins the idea. To circumvent this
difficulty one must take into considerations sheaves of
algebras over a given set. This will be done in the next

section.

4. Structured spaces and Mostow differential spaces

Let M be a topological space and &E the category of
commutative K-algebras with identity. By topM we shall denote
the category whose objects are open subsets of M and morphisms
inclusion maps between them. Therefore, for any, U, V € topM,

one has
(a) Hom(U,V) = 2 iff V c U,
(b) Hom(u,v) = (i’,} iff V c U,

where iUV: V ¢ U is the inclusion map. By a presheaf of
algebras on M we mean a system S = {S(U), pUV: U,V € topM,

VcU}, where S(U)ed and pUV € Homg(S(U),S(V)) satisfying the
following conditions:

(P1) S(e) = 0, where 2 is the empty set,

(P2) for any U e topM, pUU is the identity of S(U),
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(P3) for any U, V, W € topM, if W ¢ V ¢ U, then pr =
= AV U )
PwPvy

A presheaf S can be equivalently defined as a
contravariant functor ¥ from the category tépM to the category
A which assigns the zero algebra to the empty set. In such a
case one has S(U) = #(U) and pUV = f(iUv), for U, V € topM,
VcU.

A presheaf S = {S(U), pUV: U,V € topM, VcU} of algebras on
M 1is a sheaf if it satisfies the following additional
conditions:

(S1) suppose that {Ve} is an open covering of U; if a,b €
e s(U) and p’, (a) = p”, (b), for all t, then a = b,
t t

(S2) suppose that {Vy} is an open covering of U; if there

exist elements a such that a_ € S(V,) for each t,
v t v t t
_ s
and p thVs(at) =p thvs(as) for each t, s, then
there is an element a € S(U) such that pUV (a) =" a,
t

(notice that condition (S1) implies that a is unique).

Now, we define the sheaf of germs of K-valued functions on

M, QM = {&M(U), rU : U, Ve topM, V ¢ U} as the following
v

sheaf of algebras. For any non-empty U € topM, @M(U) is the
algebra of all K-valued functions on U (under the pointwise
algebra operations). If U, V € topM, VcU and V # @, then the
homomorphism rUV: QM(U) QM(V) is the restriction map
o — a|V. It can be easily seen that the above assumptions
define the sheaf QM uniquely. '

Let S = {S(U), p'y: U,V e topM, V c U} be a sheaf of
algebras on M. We say that a sheaf S’ = {S’(U), p’UV: u,v e
€ topM, VcU} of algebras on M is a subsheaf of S if, for any
U, V € topM, VcU, the algebra S’ (U) is a subalgebra of S(U),
va(S’(U)) ¢ 8’(V) and the homomorphism p’UV is the
restriction of pUV. By a sheaf of function algebras
(functional structure) on M we mean a subsheaf ¥ of the sheaf
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QM such that #(U), for each non-empty U € topM, is a non-zero
algebra, i.e. ¥(U) contains all constant K-valued functions on
U.

Let ¥ be a sheaf of function algebras on M. For any p € M,
we define the stalk 9p of ¥ at p in the following way. Let us
consider the family ¥(.,p) = U {¥(U): U e topM, p € M}. 1If
o € ¥(.,p), the domain of a« will be denoted by dom(a). We
define the relation “p in ¥(.,p) by: « =p B if there 1is an
open neighbourhood U of p in M such that U ¢ dom(a) n dom(B)
and «|, = 8|U. Evidently, apis an equivalence relation. For
any o« € ¥(.,p), the germ of « at p is defined as the
equivalence class ap of a with respect to the relation “p' The
stalk ?p is defined to be the set {ap: o € ¥(.,p)}. Moreover,
?p can be regarded as an algebra under the following
operations

@, + By = (af + B,

apo t= (af B')p and A(ap) = (Aa)p,

where a, B8 € ¥(.,p), » € K and a’, B’ € ¥(.,p) are chosen in
p’ B’p = Bp with dom(a’) = dom(B’).
Obviously, every ?p is a non-zero algebra. More generally, one

such a way that a'p =

can define the stalk Sp, p € M, for any sheaf S of algebras on
M; in such a case Sp is also an algebra (not necessarily
non-zero).

Following Hochschild [23], the pair (M’OM)’ where M is a

topological space and 0O a sheaf of function algebras (a

functional structure) og M will be called the (functional)
structured space (and for brevity it will also be denoted by
M).3 Let M and N be structured spaces. A continuous function
f: M —— N is said to be a structured map from M to N if,
for any non-empty U e topN and o € ON(U), one: has
a o f e OM(f_lU). Clearly, structured spaces (as objects)
together with structural maps (as morphisms) form the category
called the category of structured spaces.

Let (M,4) be a ringed space. By equipping M with the

3 Such a notion is called by Palais a local ringed épace [171.
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Z-topology and, for each Z-open subset U of M, defining OM(U)
:={felKU:VpeU,3VetopZM,3g€A,p€VcU, £|V = g|V}
one obtains the structured space (M, OM) called the associated
structured space.

The structured space notion is a common generalization of
such concepts as: smooth manifold, real analytic manifold,
complex manifold, algebraic variety, differential space. For
instance, every differential space M can be regarded as a
structured space (M, OM) with the functional structure given
by the sheaf OM of germs of smooth real functions on M.
Moreover, the categories of smooth manifolds, real analytic
manifolds, etc. are full subcategories of the category of
structural spaces.

In particular, by using structured spaces instead of
ringed spaces we can overcome difficulties met in cur attempt
to construct a complex analytic differential space (end of
section 3). Indeed, let H be a complex analytic manifold and

OH(U) the algebra of holomorphic functions on U, where U is
an open subset of H. Evidently, the assignment U ——> OH(U)
defines a sheaf 0H of function algebras on H. Therefore, any
complex analytic manifold can be represented as a structured

space (H,O0 Basing on this fact, one can construct a complex

).
differentigl space in an analogous manner to what has been
done in the preceding section in the case of real differential
spaces. To this end we could adapt a construction proposed by
Mostow (1979). A differential space in the sense of Mostow is
a topological space M together with a sheaf CM of germs of
continuous (in the assumed topology) K-valued functions on M
(with K = R or C), called smooth functions, satisfying the
following closure condition: for any neN, if fl’ ey fn €
CM(U), where U is an open subset of M, and g is a smooth
Euclidean function on R" (resp. a holomorphic function on Cn),
then go(fl, ceey fn) € CM(U) (Mostow originally considered
only the real case).

Let us notice that we do not need to assume the closure
with respect to localization since it is contained in axiom

(S2) of the sheaf definition. Therefore, with every
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differential space in the sense of Sikorski is associated a
(real) differential space in the sense of Mostow. Indeed, a
differential space in the sense of Sikorski (M,C) is a ringed
space; by taking its associated structured space we obtain the
differential space in the sense of Mostow. Relationships
between Sikorski and Mostow differential spaces were studied
in [10].

5. concluding remarks

Since the rapid development of algebraic geometry there is
no doubt that geometry can be given a sound algebraic
foundations. From the work of Palais (1981) it clearly follows
that it is equally true as far as differential geometry is
concerned. By taking any algebra and, if necessary,
representing it with the help of Gelfand representation as a
functional algebra, we can construct algebraic structures such
as ringed spaces or structured spaces which in many respects
behave like geometric structures (one can algebraically define
vector tangent and cotangent spaces to them, etc.). Moreover,
many authentic differentially geometric objects such as real
and complex manifolds turn out to be special instances of such
structures.

This suggests a nice way of generalizing the standard
differential geometry. One should take a suitable algebraic
structure (ringed space or structured space), enrich it with
the help of axioms which would make this structure more
"geometrically flexible", and try to implement known
differentially geometric procedures. As we have seen,
Sikorski’s theory of differential spaces naturally arises
according to this method when one starts from the geometric
concept of ringed space, and Mostow’s theory of differential
spaces when one begins with structured spaces. In fact, both
authors worked with no help of algebraic considerations, and
they should be praised for their correct intuitions.

Sikorski’s theory is simpler than that of Mostow and
proves to be sufficient as far as a generalization of the real
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manifold concept is concerned. However, it is inadequate to
deal with complex analytic manifolds. In section 4 we have
shown that it is Mostow’s theory that could be naturally
adapted to this case.

A nice thing with Sikorski’s theory is that one can work
entirely with the corresponding ring of functions, (almost
entirely) forgetting about the set on which these functions
are defined. This follows from the fact that if (M,C) is a
differential space in the sense of Sikorski, M can be regarded
as a subset of C~, the algebraic dual of C, and that there is
a canonical bijection between ¢+ and Spec C, the set of
strictly maximal ideals of C.
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