

Josef Tkadlec

A NOTE ON DISTRIBUTIVITY IN ORTHOPOSETS

It is well-known that distributive ortholattices are Boolean (i.e., they fulfil the condition $a \wedge b = 0 \Rightarrow a' = b'$). In this note we formulate some distributivity-like condition valid in Boolean orthoposets and prove that Boolean ω -orthocomplete poset has to be orthomodular. Our results generalize results of Klukowski [2,3] and, also, might find application in the axiomatics of quantum theories (see [1,5]).

Notions and results

Let us first review basic notions as we shall use them throughout the paper.

1. **Definition.** An orthoposet is a triple $(P, \leq, ')$ such that
 - (1) (P, \leq) is a partially ordered set with a least element, 0, and greatest element 1,
 - (2) $' : P \rightarrow P$ is a orthocomplementation, i.e., (i) $a'' = a$,
 - (iii) $a \leq b \Rightarrow b' \leq a'$,
 - (iii) $a \wedge a' = 0$ for every $a, b \in P$.

An orthoposet $(P, \leq, ')$ is called an ω -orthocomplete poset if avb exists in P for every $S \subset P$ such that $s_1 \leq s_2$ for any pair $s_1, s_2 \in S$.

Further, an ω -orthocomplete poset is called orthomodular if $b = \text{av}(b \wedge a')$ for every $a, b \in P$ such that $a \leq b$.

An orthoposet $(P, \leq, ')$ is called Boolean ([2]) if the condition $a \wedge b = 0$ implies $b \leq a'$.

For any orthoposet $(P, \leq, ')$, let us write $[a, b] = \{c \in P; a \leq c \leq b\}$ for every $a, b \in P$, $S_1 \leq S_2$ ($S_1, S_2 \subset P$) if $s_1 \leq s_2$ for every $s_1 \in S_1$ and for every $s_1 \in S_2$, $s \leq S$ ($s \in P, S \subset P$) if

$$\{s \leq s_1 \wedge \dots \wedge s_n = \{s_1 \wedge \dots \wedge s_n; s_1 \in S_1, \dots, s_n \in S_n\} (S_1, \dots, S_n \subset P).$$

2. Lemma. Suppose that $(P, \leq, ')$ is a Boolean orthoposet and that $s_1, \vee \dots \vee s_n \in P$. Let us write

$$L = \bigcup \{[0, s_1] \cap \dots \cap [0, s_n]; (s_1, \dots, s_n) \in S_1 \times \dots \times S_n\},$$

$$U = \bigcup_{k=1}^n \bigcap_{s_k \in S_k} [s_k, 1].$$

Then $L \leq U$ and $l \leq u$ for every $l \in L$ and for every $u \geq U$.

Proof. The inequality $L \leq U$ is evident. Suppose that $l \not\leq u$. Then there is an $a \in P \setminus \{0\}$ such that $a \leq l, u'$. Since $l \leq \bigcap_{s_1 \in S_1} [s_1, 1]$, we obtain $a' \not\in \bigcap_{s_1 \in S_1} [s_1, 1]$. It means that

$s_1 \not\leq a'$ for some $s_1 \in S_1$. Hence, there is an $a_1 \in P \setminus \{0\}$ such that $a_1 \leq s_1, a, u'$. Proceeding by induction, we obtain an $a_n \in P \setminus \{0\}$ such that $a_n \leq s_1, \dots, s_n, u'$ for some $s_1 \in S_1, \dots, s_n \in S_n$. Therefore we have $a_n \in L \cup U$ and $a_n \leq u \wedge u' = 0$, which is a contradiction.

3. Theorem. Suppose that $(P, \leq, ')$ is a Boolean orthoposet and that $s_1 \vee \dots \vee s_n \in P$ such that $s_1 \wedge \dots \wedge s_n, \vee s_1, \dots, \vee s_n$ exist in $(P, \leq, ')$. Then

$$\vee(s_1 \wedge \dots \wedge s_n) = (\vee s_1) \wedge \dots \wedge (\vee s_n)$$

if at least one side of this equality exists.

Proof. The left side of this equality exists if and only if $\vee L$ exists (L taken from Lemma 2) and both expressions are equal. The right side of this equality exists if and only if $\wedge U$ exists (U taken from Lemma 2) and both expressions are equal. According to Lemma 2, $\vee L$ exists if and only if $\wedge U$ exists and then $\vee L = \wedge U$.

4. Corollary. Every Boolean ω -orthocomplete poset is orthomodular.

5. Corollary. Every Boolean ortholattice is a Boolean algebra.

Let us recall that an orthoposet $(P, \leq, ')$ is called *atomic* if for any $b \in P \setminus \{0\}$ there is an $a \in P \setminus \{0\}$ such that $[0, a] = \{0, a\}$ (i.e., a is an atom) and $a \leq b$.

6. Theorem. Every atomic Boolean orthocomplete poset is a Boolean algebra.

Proof. It follows from Corollary 4 and from [2], Theorem 2.

Let us note that Boolean orthoposets are *concrete* (i.e., they are set-representable in such a manner that the supremum of a finite number of mutually disjoint sets (if it exists) is the set-theoretic union, see [4] for Boolean orthomodular posets - the orthomodularity was not used in the proof). As the following simple example shows, not every Boolean orthoposet is orthomodular.

7. Example. Let X be a four-element set and let $(P, \leq, ')$ be a triple such that P consists of \emptyset , one-element subsets of X and sets-complements of these sets, \leq means the inclusion in X and ' the set-theoretic complementation. Then $(P, \leq, ')$ is a Boolean orthoposet which is not orthomodular.

Finally, let us state for comparison results analogous to Theorem 3. We shall need the following definition.

8. Definition. Let $(P, \leq, ')$ be an orthoposet. Then elements $a, b \in P$ are called *compatible* (denoted by $(a \leftrightarrow b)$) if there are $a_1, b_1, c \in P$ such that $a = a_1 \vee c$, $b = b_1 \vee c$ and $a_1 \leq b_1$, $a_1 \leq c'$, $b_1 \leq c'$.

9. Proposition. Suppose that $(P, \leq, ')$ is an orthomodular lattice and that $s_1 \cup \dots \cup s_n \subset P$ such that $s_1 \wedge \dots \wedge s_n$, $\vee s_1, \dots, \vee s_n$ exists in $(P, \leq, ')$ and such that $s_i \leftrightarrow s_j$ for every pair $s_i \in s_i$, $s_j \in s_j$, $i, j \in \{1, \dots, n\}$ with $i \neq j$. Then

$$\vee(s_1 \wedge \dots \wedge s_n) = (\vee s_1) \wedge \dots \wedge (\vee s_n)$$

if the right side of this equality exists.

Proof. It follows from [5], Proposition 1.3.10, if we proceed by the induction.

10. Proposition. Suppose that $(P, \leq, ')$ is an orthomodular poset and that $\{s_1\} \cup S_2 \subset P$ such that $\{s_1\} \wedge S_2, \vee\{s_1\}, \vee S_2$ exists in $(P, \leq, ')$ and such that $s_1 \leftrightarrow s_2$ for every $s_2 \in S_2$. Then

$$\vee(\{s_1\} \wedge S_2) = (\vee\{s_1\} \wedge (\vee S_2))$$

if the left side of this equality exists.

Proof. See [1], Lemma 3.7.

REFERENCES

- [1] S.P. Gudder: Stochastic Methods in Quantum Mechanics, Elsevier North Holland, New York (1979).
- [2] J. Klukowski: On Boolean orthomodular posets, Demonstratio Math. 8 (1975) 5-14.
- [3] J. Klukowski: On the representation of Boolean orthomodular partially ordered sets, Demonstratio Math. 8 (1975) 405-423.
- [4] M. Navara, P. Pták: Almost Boolean orthomodular posets, J. Pure Appl. Algebra 60 (1989) 105-111.
- [5] P. Pták, S. Pulmannová: Orthomodular Structures as Quantum Logics. Kluwer, 1991 (to appear)

DEPARTMENT OF MATHEMATICS, TECHNICAL UNIVERSITY OF PRAGUE

166-27 PRAHA, CZECHOSLOVAKIA

Received May 10, 1990.