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ORTHOSYMMETRY AND MODULARITY IN ORTHOLATTICES 

Orthosymmetric orthomodular lattices were introduced by 
R. Mayet [6] who also proved their basic properties and 
indicated their significance within the axiomatics of quantum 
theories. In this paper we offer solutions to a few question 
suggested by the cited paper [6]. We first prove that the 
orthosymmetric structure on Hilbert lattices is unique.· This 
result may find application in the foundation of algebraic and 
measure theoretic quantum mechanics. Then we take up some 
questions motivated by [6]. As the main results we show that 
modular lattices need not admit an orthosymmetric structure 
and that orthosymmetric orthomodular lattices need not have a 
strong set of states. 

1. Introduction and basic notions 
Motivated by quantum axiomatics, one of the main lines of 

investigation in orthomodular lattices (abbr. OML) is the 
effort so determine Hilbert lattices among general ortho-
modular lattices (see e.g. [10], [13], etc.). Following this 
line, R. Mayet introduced orthosymmetric orthomodular lattices 
(abbr. OSOML) and showed, roughly, that OSOML's form a useful 
subclass of OML's which contains all Hilbert lattices. The 
orthosymmetry seems also interesting in its own algebraic 
right. In this paper we carry on the investigation originated 
in [6] and resolve a few questions regarding the size of the 
class of OSOML' s. 

For the basic notions concerning orthomodular lattices, 
let us refer to [3] and [4]. Throughout this paper, let us 
denote by L and OML. 
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Recall that elements a,beL are called compatible (abbr. 
aCb) if they are contained in a Boolean subalgebra of L. A 
maximal Boolean subalgebra of L is called a block. Further, by 
the centre of L (denoted by C(L)) we call the intersection of 
all blocks of L. Thus, C(L) is a Boolean subalgebra of L 
consisting of all "absolutely compatible" elements in L. 

A nonnegative function s on L is called a state if it 
satisfies the following conditions: 

(1) s(l)=l, 

'(Vi.H ai) = J Z S i a i ] ( 2 ) el „ „ 
1€Ñ 

for every mutually orthogonal sequence i ai}i €N c L" 
An automorphism of L is a bijection P:L—»L satisfying 

the following conditions (x,yeL): 
P(x' ) = (P(x) )' 

Ρ(ΧΛ Υ) = Ρ(x)ΛΡ(y). 
If, moreover, P«P=1L (the identity on L), We call Ρ a 
symmetry. We denote by Aut(L) the group of all automorphisms 
of L and by Sym(L) the set of all symmetries of L. 

For aeL, let the mapping ö note Sasaki projection 
corresponding to a (i.e., φ (x)=aA(a' vx) for all xeL). (In a β 
Hilbert lattice - the lattice of closed subspaces of a Hilbert 
space - the Sasaki projection is the ordinary orthogonal 
projection onto a.) 

1.1 Definition. An orthosymmetric orthomodular lattice 
(abbr. OSOML) is an OML equipped with a mapping S:a—>S= from α 
L to Sym(L) (called an orthosymmetry) such that all a,beL 
satisfy the following conditions: 

(!) W S a = SS (b)' α 
(2) bvSa(b) = bv0a(b), 
(3) aib => S aoS b = S a v b . 

We shall need the following properties of the orthosym-
metry . 

1.2. Proposition [6], Let L be an OSOML and a,beL. Then 
Sa=Sfa if and only if 
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(R) aCb and (aAb)ν(a'Ab')eC(L). 

In particular, S =S , for all aeL. α cl 

1.3. Proposition [6]. Let L be an OSOML and a,beL. Then 

S fb)=b if and only if aCb. fl 

2. Orthosymmetric structure of the lattice of closed sub-

spaces in an inner product space 

Throughout this section we shall investigate an orthosym-

metric structure of the lattices of closed subspaces. 

Especially, we shall study the orthosymmetry on the lattice of 

closed subspaces in a Hilbert space. 

First we introduce some more notations. Let V be a vector 

space over a division ring K(card K>2), endowed with a 

hermitean form <., .>. A subspace X of V is called closed if 

X=(X'L) (we use the notation X for the space X x={v€v|<x,v>=0 

for each xeX}). We denote by L(V) the lattice of all closed 

subspaces of V (ordering is given by the set inclusion). A 

space V is said to be an orthomodular space if V=X+X x for 

each XeL(V) (or equivalently, if (L(V),1) forms an ortho-

modular lattice - see [2]). For each XeL(V) we define a 

projection Ρ putting 
Ä ι 
Ρ χ(χ 1+χ 2) = Xĵ  for any x ^ x , x 2«X · 

2.1. Proposition [6], Let V be an orthomodular space and 

let S X:L(V)—»L(V) (X€L(V)) be the mapping defined by the 

formula 

S X(Y) = (2Ρχ-Ι)(Y) for any YeL(V), where I is the 

identity mapping. Then the mapping S:X—>β χ (XeL(V)) is an 

orthosymmetry on L(V). 

If V is a Hilbert space H, then the mapping S from the 

foregoing proposition is a usual geometrical symmetry on L(H) 

(i.e. δ χ(Υ) is the closed subspace of Η symmetrical to Y with 

respect to X). It should be observed that the lattice L(H) is 

an OSOML with a strong set of states, i.e., for each X,Y«L(H) 

(X*Y), there is a state s such that s(X)*s(Y). 

Since all other examples dealt with in [6] also have this 

property, the question arises of whether it has to be the case 
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in general. Let us point out that it does not have to be so. 
Indeed, according to [5] there is an orthomodular space V such 
that L(V) does not have a strong set of states. 

Let us concentrate to a Hilbert lattice L(H). Let us show 
that this lattice admits exactly one orthosymmetry (which, of 
course, has to be the orthosymmetry from Proposition 2.1). 

2.2 Theorem. Let H be a Hilbert space with dim H^3. Then 
there is exactly one orthosymmetry on L(H). 

Proof. Let S be an orthosymmetry on L(H) and let S' be the 
usual orthosymmetry (i.e., S'(Y)=(2PV-I)(Υ), X,YeL(H)). Take λ Λ 
a nonzero element XeL(H). Making use of Wigner theorem [11], 
[12] we see that 5χ(Υ)=υχ(Υ) (YeL(H)), where υ χ is a suitable 
unitary or antiunitary mapping on H. Since ε χ is an identity 
on X and X (see Proposition 1.2. and Proposition 1.3.), υ χ 

has to be a unitary mapping. According to the equality 
2 S V°S=1 T .„., we see that U v can be taken so that U = I . Put 

Λ A L ( Η ) Λ Λ 
υ +I 

Q=—2— · Then Q is a projection and we can find YeL(H) such 
that Q=Py. According to Proposition 1.2., it suffices to show 
that X=Y or X=Y1. 

Since SX(Y)=S^(Y)=Y, we see that XCY. Let us now consider 
the case of Χ Λ Υ * 0 . If X - X A Y * 0 , then there exists a closed 
subspace Rsx such that R is not compatible with ΧΛΥ. Thus, R 
is not compatible with Y and therefore Sy(R)=R. But Sy(R)* 
*S (R)=R, which is a contradiction. We obtain that Χ^γ. Apply-

ι 
ing the same argument to X and ΥΛΧ , we see that X=Y. Indeed, 
if X*Y, we can find a closed subspace K^Y such that Κ is not 
compatible with X. Then SX(K)*K, but Sx(K)=S^(K)=K-a contra-
diction. 

Finally, let Χ Λ Υ = 0 . Then XsY1. If X^Y1, then there is a 
closed subspace EsY"1 such that E is not compatible with X. 
Therefore SX(E)*E and SX(E)=Sy(E)=S' ̂ (E)=E - again a con-
tradiction. So we have X=Yi. The proof is complete. 

3. Orthosymmetry of modular ortholattices 
It is proved in [6] that every Boolean algebra admits a 
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unique orthosymmetry (an easy consequence of Proposition 
1.3.)· Both Boolean algebras and finite-dimensional Hilbert 
lattices are examples of modular OSOHL's. Infinite-dimensional 
Hilbert lattices are OSOML's which are not modular. In [6] 
there are examples of finite nonmodular OSOHL's, so orthosym-
metry does not imply modularity. The question is whether 
modularity implies orthosymmetry. 

3.1. Proposition [6]. Every finite modular ortholattice 
admits an orthosymmetry. 

Thus, it remains the case of infinite modular lattices. 
Here the answer may be in the negative as we see from the 
following result. 

3.2. Proposition. There is a modular ortholattice admitt-
ing no orthosymmetry. 

Proof. We take a finite nonmodular OML, LQ, with exactly 
one state s. We may assume (see [7], [9]) that s attains the 
value 1/3 on each atom. Obviously for this situation, each 
block of LQ has three atoms. 

We now apply to LQ the process of "modularization" as 
introduced by Godowski [1]: For ieN, let us define OML's L^ by 
induction. Denote by the set of all pairs (a,b) of atoms 
in whose supremum is 1. (The existence of such pairs of 
atoms implies the circumstance that the OML in question is not 
modular.) For each (a,b)eD^_1 we add three atoms c, 
d, e and two blocks whose sets of atoms are {a,c,e> and 
{b,d,e>. Having done this for all (a,b)eD^_1, we obtain an 
OML L^. (Obviously, in L^ we have avb=e' ) . We obtain ^¿«j^1·! 
and the identity mapping of into L^ preserves the 
orthocomplements, the ordering and the orthogonal suprema. Let 
us endow the union L=^jL. with the orthocomplementation and 

ieN 
the ordering inherited from L^ (ieN). Then L becomes an OML 
(the limit of OML's L ^ ieN, see [8, Th. 4.11]). It remains to 
prove that L is the required example. 

First, let us verify the modularity. Observe that L 
contains only 0, 1, atoms and coatoms (orthocomplements of 
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atoms). The supremum of each two distinct atoms is a coatom 
and their infimum is 0. By de Morgan laws, the infimum of each 
two distinct coatoms is an atom and their supremum is 1. This 
ensures that L is modular. 

By the construction, each state on L^ can be extended to a 
state on Lj for j>i and, also, to a state on L. For each atom 

(ieN) there is a state on L^ (and also a state on L) 
attaining a value different from 1/3 at b. On the other hand, 
all states on L attain the value 1/3 at all atoms of LQ. As 
automorphisms preserve states, each automorphism of L maps LQ 
onto LQ. But L is generated by LQ, hence each automorphism of 
L is uniquely determined by its values on LQ. We obtain that 
Aut(L) is isomorphic to Aut(M), which is a finite group. 

Suppose that S is an orthosymmetry of L. Let us now apply 
Proposition 1.2. to L. As C(L)={0,1}, the relation (R) is 
equivalent to the condition bs{a,a'}. For b¿{a,a' } we have 
Sa*Sb· We obtain an infinite family {Sa : a is ,an atom of L} 
of distinct automorphisms of L. This is a contradiction. 
Therefore L admits no orthosymmetry and the proof is complete. 
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