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ORTHOSYMMETRY AND MODULARITY IN ORTHOLATTICES

Orthosymmetric orthomodular lattices were introduced by
R. Mayet [6] who also proved their basic properties and
indicated their significance within the axiomatics of quantum
theories. In this paper we offer solutions to a few question
suggested by the cited paper (6]. We first prove that the
orthosymmetric structure on Hilbert lattices is unique.- This
result may find application in the foundation of algebraic and
measure theoretic quantumr mechanics. Then we take up some
questions motivated by [6]. As the main results we show that
modular lattices need not admit an orthosymmetric structure
and that orthosymmetric orthomodular lattices need not have a
strong set of states.

1. Introduction and basic notions

Motivated by gquantum axiomatics, one of the main lines of
investigation in orthomodular 1lattices (abbr. OML) is the
effort so determine Hilbert 1lattices among general ortho-
modular lattices (see e.g. [10], [13], etc.). Following this
line, R. Mayet introduced orthosymmetric orthomodular lattices
(abbr. OSOML) and showed, roughly, that OSOML’s form a useful
subclass of OML’s which contains all Hilbert 1lattices. The
orthosymmetry seems also interesting in its own algebraic
right. In this paper we carry on the investigation originated
in [6] and resolve a few questions regarding the size of the
class of OSOML's.

For the basic notions concerning orthomodular lattices,
let us refer to [3] and [4]. Throughout this paper, 1let us
denote by L and OML.
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Recall that elements a,belL are called compatible (abbr.
aCb) if they are contained in a Boolean subalgebra of L. A
maximal Boolean subalgebra of L is called a block. Further, by
the centre of L (denoted by C(L)) we call the intersection of
all blocks of L. Thus, C(L) is a Boolean subalgebra of L
consisting of all "absolutely compatible" elements in L.

A nonnegative function s on L is called a state if it
satisfies the following conditions:

(1) s(1)=1,
(2) s(ViE“ ai) = E s(ay)
1eN
for every mutually orthogonal sequence {ai}iENCL'

An automorphism of L is a bijection P:L—L satisfying

the following conditions (x,yel):
P(x') = (P(x))’
P(xAy) = P(x)AP(Yy) .

If, moreover, P°P=1L (the identity on L), WwWe call P a
symmetry. We denote by Aut(L) the group of all automorphisms
of L and by Sym(L) the set of all symmetries of L.

For aeL, let the mapping ¢a @ note Sasaki projection

corresponding to a (i.e., ¢a(x)=aA(a’vx) for all xeL). (In a
Hilbert lattice - the lattice of closed subspaces of a Hilbert
space - the Sasaki projection is the ordinary orthogonal
projection onto a.)

1.1 Definition. An orthosymmetric orthomodular lattice

(abbr. OSOML) is an OML equipped with a mapping S:a—S, from
L to Sym(L) (called an orthosymmetry) such that all a,bel
satisfy the following conditions:

(1) 8,5, S, = ssa(b),

(2) bvs,(b) = bve,(b),

(3) aib > Sa°sb = savb'

We shall need the following properties of the orthosym-
metry.

1.2. Proposition [6]. Let L be an OSOML and a,beL. Then
Sa=Sb if and only if
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(R) aCb and (aab)v(a’aAb’)eC(L).
In particular, Sa=sa’ for all aeL.

1.3, Proposition [6]. Let L be an OSOML and a,bel. Then
Sa(b)=b if and only if acb.

2. Orthosymmetric structure of the lattice of closed sub-

spaces in an inner product space

Throughout this section we shall investigate an orthosym-
metric structure of the lattices of closed subspaces.
Especially, we shall study the orthosymmetry on the lattice of
closed subspaces in a Hilbert space.

First we introduce some more notations. Let V be a vector
space over a division ring K(card K>2), endowed with a
hermitean form <., .>. A subspace X of V is called closed if
x=(x*)* (we use the notation X for the space Xl={VeV|<x,V>=0
for each xeX}). We denote by L(V) the lattice of all closed
subspaces of V (ordering is given by the set inclusion). A
space V is said to be an orthomodular space if v=x+x* for

each XeL(V) (or equivalently, if (L(V),l) forms an ortho-
modular lattice - see [2]). For each XeL(V) we define a
projection Px putting

i
1 1ex, xzex .

2.1, Proposition [6]. Let V be an orthomodular space and
let SX:L(V)—QL(V) (XeL(V)) be the mapping defined by the
formula

SX(Y) = (2Px-I)(Y) for any YeL(V), where I is the
identity mapping. Then the mapping s:x——»sx (XeL(V)) is an

Px(x1+x2) = x for any x

orthosymmetry on L(V).

If V is a Hilbert space H, then the mapping S from the
foregoing proposition is a usual geometrical symmetry on L(H)
(i.e. Sx(Y) is the closed subspace of H symmetrical to Y with
respect to X). It should be observed that the lattice L(H) is
an OSOML with a strong set of states, i.e., for each X,YeL(H)
(X#Y), there is a state s such that s(X)=s(Y).

Since all other-examples dealt with in [6] also have this
property, the question arises of whether it has to be the case
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in general. Let us point out that it does not have to be so.
Indeed, according to [5] there is an orthomodular space V such
that L(V) does not have a strong set of states.

Let us concentrate to a Hilbert lattice L(H). Let us show
that this lattice admits exactly one orthosymmetry (which, of
course, has to be the orthosymmetry from Proposition 2.1).

2.2 Theorem. Let H be a Hilbert space with dim Hz=3. Then
there is exactly one orthosymmetry on L(H).

Proof, Let S be an orthosymmetry on L(H) and let S’ be the
usual orthosymmetry (i.e., Sk(Y)=(2Px-I)(Y), X,YeL(H)). Take
a nonzero element XeL(H). Making use of Wigner theorem [11],
[12] we see that SX(Y)=UX(Y) (YeL(H)), where Ux is a suitable
unitary or antiunitary mapping on H. Since S, is an identity

X
on X and X' (see Proposition 1.2. and Proposition 1.3.), U

X
has to be a unitary mapping. According to the equality
- : 2_
SX°SX"1L(H)' we see that UX can be taken so that UX—I. Put
Ux+I
Q= 5 . Then Q is a projection and we can find YeL(H) such

that Q=P,. According to Proposition 1.2., it suffices to show
that X=Y or X=Y'.

Since SX(Y)=S&(Y)=Y, we see that XCY. Let us now consider
the case of XAY#20. If X-XAY#0, then there exists a closed
subspace RsX such that R is not compatible with XAY. Thus, R
is not compatible with Y and therefore SY(R)=R. But SY(R)t
¢SX(R)=R, which is a contradiction. We obtain that X=Y. Apply-
ing the same argument to X and YAxl, we see that X=Y. Indeed,
if X*Y, we can find a closed subspace K=Y such that K is not
compatible with X. Then Sx(K)*K, but Sx(K)=S§(K)=K—a contra-
diction.

Finally, let XAY=0. Then X=sy'. If X*Yl, then there is a
closed subspace EsY' such that E is not compatible with X.
Therefore SX(E)tE and Sx(E)=S§(E)=S;l(E)=E - again a con-

tradiction. So we have X=Y'. The proof is complete.

3. Orthosymmetry of modular ortholattices

It is proved in [6] that every Boolean algebra admits a
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unique orthosymmetry (an easy consequence of Proposition
1.3.). Both Boolean algebras and finite-dimensional Hilbert
lattices are examples of modular OSOML’s. Infinite-dimensional
Hilbert lattices are OSOML’s which are not modular. In [6)
there are examples of finite nonmodular OSOML’s, so orthosym-
metry does not imply modularity. The gquestion is whether
modularity implies orthosymmetry.

3.1, Proposition [6]. Every finite modular ortholattice
admits an orthosymmetry.

Thus, it remains the case of infinite modular lattices.
Here the answer may be in the negative as we see from the
following result.

3.2. Proposition. There is a modular ortholattice admitt-
ing no orthosymmetry.

Proof, We take a finite nonmodular OML, L with exactly

OI
one state s. We may assume (see [7], [9]) that s attains the
value 1/3 on each atom. Obviously for this situation, each
block of L0 has three atoms.

We now apply to L, the process of "modularization" as

0
introduced by Godowski [1]: For jieN, let us define OML’s Li by

induction. Denote by Di-l the set of all pairs (a,b) of atoms

in Li-l whose supremum is 1. (The existence of such pairs of
atoms implies the circumstance that the OML in question is not
modular.) For -each (a,b)eDi_1 we add Li-l three atoms c,

d, e and two blocks whose sets of atoms are {a,c,e} and
{b,d,e}. Having done this for all (a,b)eDi_l,
OML L,. (Obviously, in L; we have avb=e’). We obtain L; 1Ly

and the identity mapping of L

we obtain an

j-3 1into L, preserves the
orthocomplements, the ordering and the orthogonal suprema. Let
us endow the union L=_L__}Li with the orthocomplementation and
the ordering inheritedlggom Li (ieN). Then L. becomes an OML
(the 1limit of OML’‘s L;, ieN, see [8, Th. 4.11]). It remains to
prove that L is the required example.

First, let us verify the modularity. Observe that L

contains only 0, 1, atoms and coatoms (orthocomplements of
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atoms). The supremum of each two distinct atoms is a coatom
and their infimum is 0. By de Morgan laws, the infimum of each
two distinct coatoms is an atom and their supremum is 1. This
ensures that L is modular.

By the construction, each state on Li can be extended to a
state on Lj for j>i and, also, to a state on L. For each atom
beLi-Li_1 (ieN) there is a state on L, (and also a state on L)
attaining a value different from 1/3 at b. On the other hand,
all states on L attain the value 1/3 at all atoms of L.. As

(o}
automorphisms preserve states, each automorphism of L maps L

onto Lo. But L is generated by Lo, hence each automorphism og
L is uniquely determined by its values on L,. We obtain that
Aut(L) is isomorphic to Aut(M), which is a finite group.
Suppose that S is an orthosymmetry of L. Let us now apply
Proposition 1.2. to L. As C(L)={0,1}, the relation (R) is
equivalent to the condition be{a,a’}. For b¢{a,a’} we have

$,*Sy. We obtain an infinite family {S_ : a is an atom of L}

a
of distinct automorphisms of L. This is a contradiction.

Therefore L admits no orthosymmetry and the proof is complete.
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