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MAXIMAL ANTICHAINS AND DISSECTING IDEALS

1. Introduction

Let (X,=<) be a poset. A subset I of X is called an ideal
of (X,s) if whenever yeI and xeX are such that x=sy then xel. A
subset A of X is called an antichain if any two distinct
elements of A are incomparable. Let A(X) be the set of all
antichains of (X,=<). An antichain A is called maximal if it is
a maximal element of A(X) with respect to set-theoretic
inclusion. Let MA(X) be the set of all maximal antichains of
(X,s).

It is well known (see, for example, [2], Ch. III, Thm. 3)
that the set of all ideals of (X,=) forms a distributive
lattice under set-theoretic inclusion, and that every finite
distributive lattice can be represented in this way. For any
subset Y of X let Max(Y) and Min(Y) be the set of maximal,
respectively minimal, elements of Y. On the set of all
antichains of (X,=<) a partial order can be defined as follows.
If A,BeA(X) then AsB if for each aeA there exists beB such
that asb. Furthermore, if X 1is finite then the mapping
Y— Max(Y¥) is an order-isomorphism between the set of ideals
of (X,s) and the set (A(X),=). Thus (A(X),=) is a distributive
lattice, and every finite distributive lattice arises in this
way.

R.P. Dilworth [3] showed that if X is finite, then the set
MSA(X{ of all antichains of (X,s) of maximum size forms a
distributive lattice under the order induced from (A(X),=), in
fact, a sublattice of (A(X),=). It was shown by K.M. Koh (4]
that every finite distributive lattice can be represented in
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this way.

In {1], the author showed that the set MA(X) of all
maximal antichains of the finite poset (X,=) forms a lattice
under the order induced from (A(X),=), and that furthermore
every finite lattice can be represented in this way. 1In
general, the lattice (MA(X),=s) is only a subposet of (A(X),s)
but not a sublattice. This suggests to consider the question
of what can be said about the sublattice of (A(X),=) which is
generated by MA(X). This question shall be dealt with in this
paper.

2. The lattice of dissecting ideals

We call an ideal I of a poset (X,s) dissecting if whenever
xel and yeX\I are such that x and y are incomparable then
there exists y’eX with y’'<y such that x and y’ are
incomparable.

Theorem 2.1, Let (X,s) be a poset. Then the set of all
dissecting ideals forms a complete sublattice of the 1lattice
of all ideals of (X,=).

Proof. First note that X and the empty set both are
dissecting. Let S be a non-empty set of dissecting ideals of
(X,s) and let J and M be the set-theoretic union respectively
intersection of all members of S. Let xeJ and yeX\J such that
x and y are incomparable. There exists IeS such that xeI. As
I<J, we also have yeX\I, and thus there exists y’'eX with y’'<y
such that x and y’ are incomparable. Therefore J is
dissecting. Let xeM and yeX\M. There exists IeS such that
yeX\I, and as MSI we have xel. Hence there exists y’'eX with
y’ <y such that x and y’ are incomparable, and M is dissecting.

A first connection between maximal antichains and dissect-
ing ideals is given as follows.

Proposition 2.,2. Let (X,s) be a poset, 1let AeMA(X), and
let I={xeX | there exists aeA such that xsa}. Then I ia a
dissecting ideal.

Proof, Clearly I is an ideal. Let xeI and yeX\I such that
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x and y are incomparable. By definition of I, there exists aeA
such that x=a. By maximality of A, there exists beA such that
Yy and b are comparable, and as yeX\I, we must have y<b. If
a=b then x=y, which is a contradiction, thus we have a#b. If
b=x then b=a which is a contradiction to a#b and A being an
antichain. If x=<b then again we get x=y, giving a
contradiction. Thus x and b are incomparable, and as yeX\I and
beI we have b<y. Therefore I is dissecting.

Next we see that the lattice of dissecting ideals 1is, in
fact, generated by the ideals which are generated by the
maximal antichains.

Theorem 2.3. Let (X,=) be a poset. Then the lattice of
dissecting ideals of (X,=) is the complete sublattice of the
lattice of all ideals of (X,=) which is generated by the empty
set and the ideals I(A)={xeX | there exists aeA such that

xsa} for the maximal antichains A.

Proof. Let D be the set of all dissecting ideals and L the
complete lattice generated by @ and all ideals I(A) for the
maximal antichains A. By Theorem 2.1 and Proposition 2.2 it is
clear that LsD. For xeX define K(x) to be the intersection of
all ideals I(A) where A is a maximal antichain containing x.
Obviously K(x)eL. Let I be a non-empty dissecting ideal. Let
xeI and yeX\I. If x<y then clearly y¢K(x). Suppose x and y are
incomparable. Then there exists y’<y such that x and y’ are
incomparablé, and there exists AeMA(X) with {x,y’ }SA. It then
follows that y¢I(A), and thus y¢K(x). Hence we have K(x)<I.
As xeK(x), it follows that I is the union of all ideals K(x)
for xeI, and therefore IeL, which concludes the proof of the
theorem.

Note that the 1lattice of dissecting ideals of (X,=)
contains an atom (which is then unique) if and only if (X,=)
has at least one minimal element (and then the atom is the set
of all minimal elements). Thus the complete lattice generated
by the ideals I(A) for the maximal chains A is the set of all
dissecting ideals whenever (X,=) has no minimal element, or
otherwise it is the set of non-empty dissecting ideals.
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3. Dissecting ideals in finite posets
If (X,=<) is a finite poset then by Theorem 2.1 its
dissecting ideals form a finite distributive lattice, which in

turn is isomorphic to the lattice of all ideals of a finite
poset (Y,=). We shall now investigate in which way (¥,s) can
be constructed from (X,s).

Lemma 3.1, Let (X,=) be a finite poset and xeX. Let K{x)
be defined as in the proof of Theorem 2.3, let
A(x)=Max(K(x)), and let B(x)={yeX | x and y are incomparable}.
Then A(x)={x}uMin(B(x))eMA(X).

Proof. Clearly {x}uMin(B(x)) is an antichain. Let yeX.
Then either y is comparable with x or yeB(x). But if yeB(x),
as X is finite there exists y’~-Min(B(x)) with Y’ =y. Thus
{x}uMin(B(x))eMA(X), and K(x)sI({x}uMin(B(x))). But on the
other hand, if AeMA(X) with xeA then As{x}uB(x) and thus
{x}uMin(B(x))SI(A), hence I({x}uMin(B(x)))<K(x). Therefore
A(x)={x}uMin(B(x)).

Lemma 3.2. Let (X,=) be a finite poset, and 1let x,yeX.
Then A(x)=A(y) if and only if ({zeX | z<x} = {zeX | z<y}.

Proof. Without loss of generality, we can assume that x=y.
Let A(x)=A(y), and let zeX with z<x. If y=z then y<x and thus
yeA(y)\A(x), which is a contradiction. If y, z are incompara-
ble then we get a contradiction from the fact that xeA(y),
thus xeMin(B(y)). By symmetry, we then get {zeX | z<x} =
= {zeX | z<y}.

Conversely, suppose that {zeX | z<x} = {zeX | z<y}, and
let zeA(x). Note that x and y must be incomparable. First
assume that z=x. By the equality above, there can be no z’eX
incomparable with y such that z’<x. Thus xeMin(B(y) )SA(y) .
Now assume that 2zeMin(B(x)). Clearly we can not have z<y. If
z>y then we get a contradiction to minimality of z in B(x).
Hence either z=yeA(y) or z and y are incomparable. If z, Yy
are incomparable then suppose there exists 2z2’<z such that
2’ €eB(y). We can not have z'<x (and clearly nor can we have
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x=z’), therefore z’eB(x) in contradiction to the minimality
of z. Thus zeMin(B(y))SA(y). We have shown that A(x)SA(y),
and equality holds by symmetry.

Lemma 3.3. Let (X,=<) be a finite poset, and let I be a
dissecting ideal. Then I is join-irreducible in the lattice of
dissecting ideals if and only if there exists xeX such that
I=K(x).

Proof. Let xeX and let I, J be dissecting ideals such that
K(x)=IuJ. As xeK(x), it follows that xeI or xeJ. But from the
proof of Theorem 2.3 it follows that K(x)sI or XK(x)sJ, and
thus K(x)=I or K(x)=J. Therefore K(x) 1is 3join-irreducible.
Let I be a join-irreducible dissecting ideal. Again, the proof
of Theorem 2.3 shows that I is the join of all ideals K(x) for
x€I, and thus there exists xeI such that I=K(x).

on a poset (X,s) we define an equivalence relation ~ by
x~y 1if and only if {zeX | z<x} = {zeX | z<y}. Let E(X) be
the set of equivalence classes of this relation. Note that
each element of E(X) is an antichain of (X,=). For C,DeE(X)
let Cs<D if and only if {zeX | z<c}s{zeX | z<d} whenever ceC
and deD. It is easy to see that this relation is a partial
order.

Lemma 3.4. Let (X,s) be a finite poset, let x,yeX, and let
C(x) and C(y) be the elements of E(X) containing x respective-
ly y. Then A(x)=A(y) if and only if C(x)=C(y).

Proof. Let A(x)=A(y). Then there exists Yy’ €A(y) such
that xsy’. Let zeX with z<x. If y=z then y<x which is a
contradiction to A(x)=A(y). If y and z are incomparable, then
we have 2zeB(y) but z<y’, which again is a contradiction. Thus

z<y, and we have C(x)=C(y). Conversely, suppose that C(x)=
sC(y). Then x=y (and hence also A(xX)=A(y)) or xeMin(B(y)).
Let x’'eA(x), and suppose there exists Yy’ €eA(y) such that

y'<x’ . Thus y’<x but not y’'<y, which is a contradiction.
Therefore, as A(y) 1is a maximal antichain, there exists
y’’eA(y) such that x’ =y’’, and hence A(x)=A(y).

We now can give the main result of this section.
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Theorem 3.5. Let (X,=<) be a finite poset. Then the lattice
of dissecting ideals of (X,=) is isomorphic tc the lattice of
all ideals of (E(X),=).

Proof. By the preceding Lemmas, the poset of
join-irreducible dissecting ideals is isomorphic to (E(X),s).
The rest follows from {2], Ch. III, Thm. 3.

4. A representation theorem

We shall finally give a characterization of those finite
lattices which are isomorphic to the lattice of dissecting
ideals of a partially ordered set. In view of Theorem 3.5 this
mainly reduces to the problem of characterizing the posets
(E(X),=s).

Lemma 4.1. Let (X,=<) be a finite poset with a unique
minimal element. Then there exists a finite poset (Y¥,=<) such
that (X,=) is isomorphic to (E(Y),s).

Proof. Let X, be the minimal element of X. Define Y=XxX,
and for (xl,xz),(xi,x5)eY let (xl,xz)S(xi,xa) if and only
if (xl,x2)=(x1,x2) or x1<x1 and X, =X . It is clear that
this is a partial order on Y. Now 1let (x,yl),(x,yz)eY. If
(zl,zz)eY is such that (zl,zz)<(x,yl) then z,<x and z,=X.
Thus we also have (zl,zz)<(x,y2). By symmetry, we get (x,y1)~
~(x,y2). On the other hand, 1let (xl,yl),(xz,yz)eY such that
X #X,. If x1<x2 then (xl,x1)<(x2,y2) and (xl,x2)<(x2,y2),
but at least one of (xl,xl) and (xl,xz) is incomparable with
(xl,yl). If Xy and x

from x

, are incomparable, then both are distinct
0 and we have (xo,x1)<(x1,y1) but we do not have
(xo,x1)<(x2,y2). Thus we have seen that E(Y) = {{(x,Yy) | yeX}
| xeX}, and it is easy to see in a similar way that the

mapping x+—{(x,y) | yeX} gives the desired isomorphism.

Theorem 4.2. Let (L,=) be a finite distributive 1lattice
with more than one element. Then (L,s) is isomorphic to the
lattice of dissecting ideals of a finite poset if and only if
(L,=<) contains a unique atom.

Proof. It is clear that a finite distributive 1lattice
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contains a unique atom if and only if the poset of its
join-irreducible elements contains a unique minimal element.
By Lemma 4.1 and Theorem 3.5 every finite distributive lattice
with a unique atom is isomorphic to the lattice of dissecting
ideals of a finite poset. The converse follows from Theorem
2.1 and the remark after Theorem 2.3.

As a sequence we get that every finite distributive
lattice (L,s) is isomorphic to the lattice generated by the
maximal antichains of some finite poset (X,=) (which is the
lattice of non-empty dissecting ideals of (X,=)).
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