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MAXIMAL ANTICHAINS AND DISSECTING IDEALS 

1. Introduction 

Let (Χ,ί) be a poset. A subset I of X is called an ideal 
of (X,s) if whenever yel and xeX are such that xsy then xel. A 
subset A of X is called an antichain if any two distinct 
elements of A are incomparable. Let A(X) be the set of all 
antichains of (X,^). An antichain A is called maximal if it is 
a maximal element of A(X) with respect to set-theoretic 
inclusion. Let MA(X) be the set of all maximal antichains of 
(X,*)· 

It is well known (see, for example, [2], Ch. III, Thm. 3) 
that the set of all ideals of (X,*) forms a distributive 
lattice under set-theoretic inclusion, and that every finite 
distributive lattice can be represented in this way. For any 
subset Y of X let Max(Y) and Min(Y) be the set of maximal, 
respectively minimal, elements of Y. On the set of all 
antichains of (X,s) a partial order can be defined as follows. 
If A,BeA(X) then AsB if for each aeA there exists beB such 
that asb. Furthermore, if X is finite then the mapping 
Y H Max(Y) is an order-isomorphism between the set of ideals 
of (X,s) and the set (A(X),s). Thus (A(X),s) is a distributive 
lattice, and every finite distributive lattice arises in this 
way. 

R.P. Dilworth [3] showed that if X is finite, then the set 
MSA(X) of all antichains of (X,=s) of maximum size forms a 
distributive lattice under the order induced from (A(X),s), in 
fact, a sublattice of (A(X),s). It was shown by K.M. Koh [4] 
that every finite distributive lattice can be represented in 
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this way. 
In [1], the author showed that the set MA(X) of all 

maximal antichains of the finite poset (X,s) forms a lattice 
under the order induced from (A(X),s), and that furthermore 
every finite lattice can be represented in this way. In 
general, the lattice (MA(X),s) is only a subposet of (A(X),s) 
but not a sublattice. This suggests to consider the question 
of what can be said about the sublattice of (A(X),s) which is 
generated by MA(X). This question shall be dealt with in this 
paper. 

2. The lattice of dissecting ideals 
We call an ideal I of a poset (X,s) dissecting if whenever 

xel and yeX\I are such that χ and y are incomparable then 
there exists y' eX with y' <y such that χ ánd y' are 
incomparable. 

Theorem 2.1. Let (X,s) be a poset. Then the set of all 
dissecting ideals forms a complete sublattice of the lattice 
of all ideals of (X,s). 

Proof. First note that X and the empty set both are 
dissecting. Let S be a non-empty set of dissecting ideals of 
(X,s) and let J and M be the set-theoretic union respectively 
intersection of all members of S. Let xeJ and yeX\J such that 
χ and y are incomparable. There exists IeS such that xel. As 
isJ, we also have yeX\I, and thus there exists y'eX with y' <y 
such that χ and y' are incomparable. Therefore J is 
dissecting. Let xeM and yeX\M. There exists IeS such that 
yeX\I, and as MSI we have xel. Hence there exists y' eX with 
y' <y such that χ and y' are incomparable, and M is dissecting. 

A first connection between maximal antichains and dissect-
ing ideals is given as follows. 

Proposition 2.2. Let (X,£) be a poset, let AeMA(X), and 
let I={xeX I there exists aeA such that xsa}. Then I ia a 
dissecting ideal. 

Proof. Clearly I is an ideal. Let xel and yeX\I such that 
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χ and y are incomparable. By definition of I, there exists aeA 
such that xsa. By maximality of A, there exists beA such that 
y and b are comparable, and as yeX\I, we must have y<b. If 
a=b then x^y, which is a contradiction, thus we have a*b. If 
b*x then bsa which is a contradiction to a*b and A being an 
antichain. If x^b then again we get x-y/ giving a 
contradiction. Thus χ and b are incomparable, and as yeX\l and 
bel we have b<y. Therefore I is dissecting. 

Next we see that the lattice of dissecting ideals is, in 
fact, generated by the ideals which are generated by the 
maximal antichains. 

Theorem 2.3. Let (X,s) be a poset. Then the lattice of 
dissecting ideals of (X,*) is the complete sublattice of the 
lattice of all ideals of (X,*) which is generated by the empty 
set and the ideals I(A)={xeX | there exists aeA such that 
xia} for the maximal antichains A. 

Proof. Let D be the set of all dissecting ideals and L the 
complete lattice generated by 0 and all ideals 1(A) for the 
maximal antichains A. By Theorem 2.1 and Proposition 2.2 it is 
clear that L£D. For xeX define K(x) to be the intersection of 
all ideals 1(A) where A is a maximal antichain containing x. 
Obviously K(x)eL. Let I be a non-empty dissecting ideal. Let 
xel and yeX\I. If x<y then clearly y¿K(x). Suppose χ and y are 
incomparable. Then there exists y' <y such that χ and y' are 
incomparable, and there exists AeMA(X) with {x,y' }SA. It then 
follows that y^I(A), and thus y¿K(x). Hence we have K(x)£I. 
As xeK(x), it follows that I is the union of all ideals K(x) 
for xel, and therefore IeL, which concludes the proof of the 
theorem. 

Note that the lattice of dissecting ideals of (X,*) 
contains an atom (which is then unique) if and only if (X,s) 
has at least one minimal element (and then the atom is the set 
of all minimal elements). Thus the complete lattice generated 
by the ideals 1(A) for the maximal chains A is the set of all 
dissecting ideals whenever (X,s) has no minimal element, or 
otherwise it is the set of non-empty dissecting ideals. 
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3. Dissecting ideals in finite posets 
If (Χ,*) is a finite poset then by Theorem 2.1 its 

dissecting ideals form a finite distributive lattice, which in 
turn is isomorphic to the lattice of all ideals of a finite 
poset (Y,s). We shall now investigate in which way (Y,s) can 
be constructed from (X,s). 

Lemma 3.1. Let (X,s) be a finite poset and xeX. Let K(x) 
be defined as in the proof of Theorem 2.3, let 
A(x)=Max(K(x)), and let B(x)={yeX | χ and y are incomparable}. 
Then A(x)={x}uMin(B(x))eMA(X). 

Proof. Clearly {x}uMin(B(x)) is an antichain. Let y«X. 
Then either y is comparable with χ or y€B(x). But if yeB(x), 
as X is finite there exists y'cMin(B(x)) with y' sy. Thus 
{x}uMin(B(x))eMA(X), and K(x)SI({x}uMin(B(x))). But on the 
other hand, if AeMA(X) with xeA then AS{x}uB(x) and thus 
{χ>υΜϊη(Β(χ))SI(A), hence I({x}uMin(B(χ)))£K(x). Therefore 
A(x)={x}uMin(B(x)). 

Lemma 3.2. Let (X,s) be a finite poset, and let x,yeX. 
Then A(x)=A(y) if and only if {zeX | z<x} = {zeX | z<y>. 

Proof. Without loss of generality, we can assume that x*y. 
Let A(x)=A(y), and let zeX with z<x. If y*z then y<x and thus 
yeA(y)\A(x), which is a contradiction. If y, ζ are incompara-
ble then we get a contradiction from the fact that xeA(y), 
thus xeMin(B(y)). By symmetry, we then get {zeX | z<x} = 
= {zeX I z<y>. 

Conversely, suppose that {zeX | z<x} = {zeX | z<y}, and 
let zeA(x). Note that χ and y must be incomparable. First 
assume that z=x. By the equality above, there can be no z'eX 
incomparable with y such that z'<x. Thus xeMin(B(y))£A(y). 
Now assume that Z€Min(B(x)). Clearly we can not have z<y. If 
z>y then we get a contradiction to minimality of ζ in B(x). 
Hence either z=yeA(y) or ζ and y are incomparable. If z, y 
are incomparable then suppose there exists z' <z such that 
z'eB(y). We can not have z'<x (and clearly nor can we have 
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xíz'), therefore ζ'eB(x) in contradiction to the minimality 
of z. Thus zeMin(B(y))£A(y). We have shown that A(x)£A(y), 
and equality holds by symmetry. 

Lemma 3.3. Let (X,*) be a finite poset, and let I be a 
dissecting ideal. Then I is join-irreducible in the lattice of 
dissecting ideals if and only if there exists xeX such that 
I=K(x). 

Proof. Let xeX and let I, J be dissecting ideals such that 
K(x)=IuJ. As X€K(x), it follows that xel or xeJ. But from the 
proof of Theorem 2.3 it follows that K(x)£I or K(x)£J, and 
thus K(x)=I or K(x)=J. Therefore K(x) is join-irreducible. 
Let I be a join-irreducible dissecting ideal. Again, the proof 
of Theorem 2.3 shows that I is the join of all ideals K(x) for 
xel, and thus there exists xel such that I=K(x). 

On a poset (X,*) we define an equivalence relation - by 
x-y if and only if {zeX | z<x> = {zeX | z<y}. Let E(X) be 
the set of equivalence classes of this relation. Note that 
each element of E(X) is an antichain of (X,s). For C,DeE(X) 
let CsD if and only if {zeX | z<c}£{zeX | z<d} whenever ceC 
and deD. It is easy to see that this relation is a partial 
order. 

Lemma 3.4. Let (X,*) be a finite poset, let x,yeX, and let 
C(x) and C(y) be the elements of E(X) containing χ respective-
ly y. Then A(x)sA(y) if and only if C(x)*C(y). 

Proof. Let A(x)sA(y). Then there exists y' eA(y) such 
that xsy' . Let zeX with z<x. If ysz then y<x which is a 
contradiction to A(x)*A(y). If y and ζ are incomparable, then 
we have zeB(y) but z<y' , which again is a contradiction. Thus 
z<y, and we have C(x)sC(y). Conversely, suppose that C(x)s 
sC(y). Then xsy (and hence also A(x)*A(y)) or xeMin(B(y)). 
Let x' eA(x), and suppose there exists y'eA(y) such that 
y' <x' . Thus y' <x but not y' <y, which is a contradiction. 
Therefore, as A(y) is a maximal antichain, there exists 
y"eA(y) such that x'sy", and hence A(x)sA(y). 

We now can give the main result of this section. 
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Theorem 3.5. Let (X,s) be a finite poset. Then the lattice 
of dissecting ideals of (X,s) is isomorphic to the lattice of 
all ideals of ( E ( X ) . 

Proof. By the preceding Lemmas, the poset of 
join-irreducible dissecting ideals is isomorphic to (E(X),s). 
The rest follows from [2], Ch. III, Thm. 3. 

4. A representation theorem 
We shall finally give a characterization of those finite 

lattices which are isomorphic to the lattice of dissecting 
ideals of a partially ordered set. In view of Theorem 3.5 this 
mainly reduces to the problem of characterizing the posets 
(E(X),s). 

Lemma 4.1. Let (X,*) be a finite poset with a unique 
minimal element. Then there exists a finite poset (Y,s) such 
that (X,s) is isomorphic to (E(Y),s). 

Proof. Let xQ be the minimal element of X. Define Y=XxX, 
and for (x1,x2),(χ^,χ^)eY let (xlfx2)s(χ^,χ^) if and only 
if (x1,x2) = (x'1,x'2) or and x^x^. It is clear that 
this is a partial order on Y. Now let (X/Yj^, ( χ/Υ 2) e Y· 
(zlfz2)eY is such that (z^,z2)<(χ,γ^ then z^<x and z2

sx· 
Thus we also have (z^,z2)<(x,y2). By symmetry, we get (χ,γ^)-
-(x,y2). On the other hand, let ( x ^ y ^ , (x2,y2) eY such that 
x1*x2. If xx<x2 then (x^x^<(x 2,y 2) and (x1,x2)<(x2,y2) , 
but at least one of (χ^,χ^) and (x^jXj) is incomparable with 
(χ ,y ). If χχ and x2 are incomparable, then both are distinct 
from xQ, and we have ( X Q J X J ^ ) < ( x ^ y ^ but we do not have 
(xQ,x1)<(x2,y2). Thus we have seen that Ε(Y) = {{(x,y) | yeX} 
I xeX}, and it is easy to see in a similar way that the 
mapping xi-»{(x,y) | yeX> gives the desired isomorphism. 

Theorem 4.2. Let (L,s) be a finite distributive lattice 
with more than one element. Then (L,s) is isomorphic to the 
lattice of dissecting ideals of a finite poset if and only if 
(L,3) contains a unique atom. 

Proof. It is clear that a finite distributive lattice 
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contains a unique atom if and only if the poset of its 
join-irreducible elements contains a unique minimal element. 
By Lemma 4.1 and Theorem 3.5 every finite distributive lattice 
with a unique atom is isomorphic to the lattice of dissecting 
ideals of a finite poset. The converse follows from Theorem 
2.1 and the remark after Theorem 2.3. 

As a sequence we get that every finite distributive 
lattice (L,s) is isomorphic to the lattice generated by the 
maximal antichains of some finite poset (X,s) (which is the 
lattice of non-empty dissecting ideals of (X,*)). 
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