

Elżbieta Ambrosiewicz

POWERS OF SETS OF INVOLUTION IN LINEAR GROUPS

In paper [1] it was proved that  $K_2 K_2 \neq GL(2, K)$  if  $\text{char } K \neq 2$  and that  $K_2 K_2 \neq PSL(2, K)$  if  $\text{char } K \neq 2$  and the element  $-1$  is not a square, where  $K_2$  denotes a set (of all involutions of a group. In this paper we will prove that  $(K_2 K_2)^2 = SL^*(2, K)$  where  $SL^*(2, K)$  denotes the subgroup of all matrices with determinant  $\pm 1$  and that  $(K_2 K_2)^2 = PSL(2, q)$  where  $q$  is odd and  $q \geq 5$ . We will also prove that  $PSL(2, 2^m) = C_2^4 (m > 1)$  where  $C_2$  denotes the conjugacy class of involution  $[0, 1; 1, 0]$ .

**Theorem 1.** If  $\text{char } K \neq 2$  then  $(K_2 K_2)^2 = SL^*(2, K)$  in the group  $GL(2, K)$ .

**Proof.** We will use the next two lemmas.

**Lemma 1.** (see [1]). Let  $G$  be a group. An element  $g \in G$  belongs to  $K_2^m (m \geq 2)$  if and only if there is an element  $t \in K_2^{m-1}$ ,  $t \neq g^{-1}$  such that  $(gt)^2 = 1$ .

**Lemma 2.** If  $M$  is a non-empty subset of the group  $G$ ,  $M = M^{-1}$  and  $x M \cap M \neq \emptyset$  for each  $x \in G$ , then  $MM = G$ .

The proof of Lemma 2 is obvious. From Lemma 2 there results a remark.

**Remark.** If  $M$  is a subset of a finite group  $G$  such that  $M = M^{-1}$  and  $|M| > \frac{1}{2} |G|$  then  $MM = G$ .

If  $A \in K_2 K_2$  then  $\det A = \pm 1$  by Lemma 1. From [2] (Corollary 4.7, p.360) we know that each matrix in the group  $GL(2, K)$  is similar to  $[a, 0; 0, a]$  ( $a \neq 0$ ) or to  $[0, 1; a_1, a_2]$ . Hence we can restrict our investigations of the set  $K_2 K_2$  to the matrices  $[a, 0; 0, a]$  ( $a = \pm 1$ ) and  $[0, 1; a_1, a_2]$  with  $a_1 = \pm 1$ .

We have  $T^{-1}N_i T = N_i^{-1}$  ( $i = 1, 2$ ) where  $N_1 = [a, 0; 0, a]$ ,  $N_2 = [0, 1; -1, a_2]$ ,  $T = [0, 1; 1, 0]$ ,  $T^2 = E$ ,  $T \neq N_i$  ( $i = 1, 2$ ). Therefore  $N_1, N_2 \in K_2 K_2$ . If  $a_2 \neq 0$  and  $\text{char } K \neq 2$ , then  $N = [0, 1; 1, a_2] \notin K_2 K_2$ , which one can easily verify. If  $a_2 = 0$  then  $N \in K_2 K_2$ , because the matrices  $N_3 = [0, 1; 1, 0]$ ,  $T = [0, -1; -1, 0]$  fulfil all the conditions of Lemma 1. Therefore we have  $K_2 K_2 = SL(2, K) \cup \{[0, 1; 1, 0]\}^A$ ,  $A \in GL(2, K) \setminus SL^*(2, K)$ . The set  $K_2 K_2$  fulfils all the conditions of Lemma 2. Naturally  $(K_2 K_2)^{-1} = K_2 K_2$ . If the second condition of Lemma 2 is not fulfilled, then exists an element  $x_0 \in SL^*(2, K)$  such that for each  $A \in K_2 K_2$ ,  $x_0 A = A_1 \notin K_2 K_2$  and  $\det A_1 = -1$ . Thus  $\det A = \det A_1$ ,  $\det x_0^{-1} = -\det x_0^{-1}$ , which contradicts with the construction of set  $K_2 K_2$ . Therefore  $(K_2 K_2)^2 = SL^*(2, K)$ . Since  $GL(2, 3) = SL^*(2, 3)$  so  $(K_2 K_2)^2 = GL(2, 3)$ .

**Theorem 2.** If  $q \geq 5$  ( $q$ -odd) then  $(K_2 K_2)^2 = PSL(2, q)$ .

**Proof.** For  $q=5$  we have  $K_2 K_2 = PSL(2, 5)$  (see [1]). Let us observe that a matrix  $T$  has the order two iff  $T = [x, y; -y^{-1}(1+x^2), -x]$  or  $T = [-x, -y; y^{-1}(1+x^2), x]$ . A matrix  $A = [a_{11}, a_{12}; a_{21}, a_{22}]$  belongs to  $K_2 K_2 \subseteq PSL(2, q)$  iff

$$(1) \quad TA = A^{-1}T \quad \text{and } A \neq T \in K_2$$

by Lemma 1.

The condition  $TA=A^{-1}$ . T is equivalent to the equation

$$(2) \quad a_{21}y^2 + yx(a_{11} - a_{22}) - a_{12}(1+x^2) = 0.$$

The solvability of the equation (2) is equivalent to the solvability of the equation

$$(3) \quad x^2[(a_{11}+a_{22})^2-4]-u^2 = 4(1-a_{11}a_{22})$$

with unknowns x, u.

If  $a_{11}+a_{22} \neq \pm 2$ , then the equation (3) over the field K with  $\text{char } K \neq 2$  has a solutions (see [3] p.46). Hence in this case there exists a matrix T such that  $T^{-1}AT=A^{-1}$ . But if  $a_{11}+a_{22}=0$ , then the case  $T=A$  is possible.

If  $a_{11}+a_{22}=\pm 2$ , then the equation (3) may not have a solution and thus the matrix T may not exist. Therefore, in the case  $a_{11}+a_{22} \neq \pm 2, 0$  there exists T such that  $T^{-1}AT=A^{-1}$  and  $A \neq T \in K_2$ . All the matrices M with  $a_{11}+a_{22} \neq \pm 2, 0$  belong to  $K_2 K_2$ . It is evident that  $|M| > \frac{1}{2} |PSL(2, q)|$  for  $q \geq 7$ . Naturally,  $M=M^{-1}$ . Therefore  $MM=PSL(2, q)$  for  $q \geq 7$  by the Remark. Since  $M \in K_2 K_2$  so we have  $PSL(2, q)=(K_2 K_2)^2$  for  $q=7$ . In the paper [1] there has been proved that  $K_2 K_2=PSL(2, 2^m)$  ( $m > 1$ ). Now we will give another result.

**Theorem 3.** If  $m > 1$  then  $PSL(2, 2^m)=C_2^4$ , where  $C_2$  denotes the conjugacy class of the matrix  $[0, 1; 1, 0]$ .

**Proof.** Since each noncentral matrix is similar to  $[0, 1; 1, s]$  in the group  $PSL(2, 2^m)$  and the equation  $x^2=a$  has a solution in the field  $GF(2^m)$ , so we have

$$(4) \quad \begin{bmatrix} 0 & 1 \\ 1 & s \end{bmatrix} = x^{-1} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad XY \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} Y^{-1}$$

where

$$X = \begin{bmatrix} \sqrt{s-1}, & 0 \\ \sqrt{s-1}, & s\sqrt{s-1} \end{bmatrix} \quad Y = \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix}, \quad s \neq 0.$$

We have also

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

From the last identity and from (4) there results  $M = PSL(2, 2^m) - C_2 \subseteq C_2 C_2$ . For  $m > 1$ ,  $|M| > \frac{1}{2} |PSL(2, 2^m)|$ . We also have  $M^{-1} = M$ . Thus  $MM = PSL(2, 2^m)$  by the Remark. Since  $M \subseteq C_2 C_2$  so we have  $PSL(2, 2^m) = C_2^4$  for  $m > 1$ . This ends the proof of Theorem 3.

#### REFERENCES

- [1] J. Ambrosiewicz: On the square of sets of linear groups, Rend. Sem. Mat. Univ., Padova, 75(1985) 253-256.
- [2] T. W. Hungerford: Algebra, Springer-Verlag, New York, Heidelberg, Berlin 1974.
- [3] L. E. Dickson: Linear groups. Berlin, Teubner, reprinted Dover. 1958.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF WARSAW,  
BIALYSTOK BRANCH, 15-267 BIALYSTOK, POLAND

Received December 8, 1989; revised version July 20, 1990.