

Katarzyna Czyżewska

GENERALIZATION OF THE PYTHAGOREAN THEOREM

1. Introduction

In this note a generalized form of the Pythagorean theorem is shown and proved. Because the Pythagorean theorem is being often formulated in terms of a unitary space, for the purpose of this work a special version of the theorem is used.

Let V be a unitary space over field \mathbb{R} and let $\langle \cdot, \cdot \rangle$ be an inner product in V .

If $x, y \in V$ and $\langle x, y \rangle = 0$, then according to the Pythagorean theorem we have

$$(1) \quad \|x+y\|^2 = \|x\|^2 + \|y\|^2$$

where $\|x\|^2 = \langle x, x \rangle$.

The geometrical interpretation of the formula (1) may be shown in the following way:

Let H be the Hilbert space and let $\langle \cdot, \cdot \rangle$ be the inner product in H .

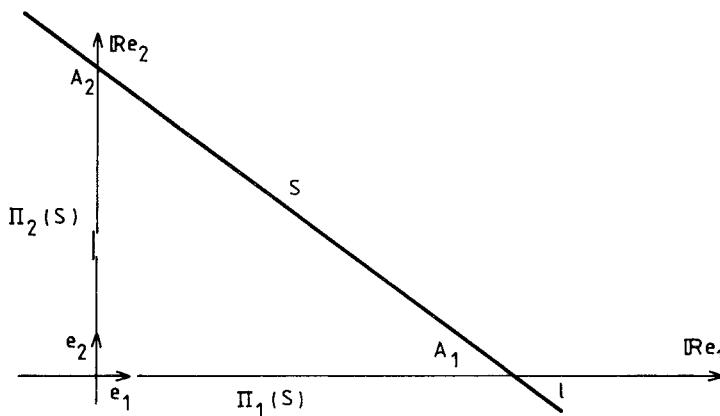
Let A_i be a point of the axis $\mathbb{R}e_i$ (for $i=1, 2$) of the space given by two orthonormal vectors $e_1, e_2 \in H$.

Denoting by l the affine line passing through the points A_1, A_2 and S the segment of l whose ends are A_1, A_2 we receive that

$$\|\Pi_1(S)\|^2 + \|\Pi_2(S)\|^2 = \|S\|^2$$

where Π_i is an orthogonal projection onto axis $\mathbb{R}e_i$ (for $i=1, 2$).

Fig 1. shows this situation.



Now we are ready to generalize the Pythagorean theorem.

2. Theorem

Let H be a Hilbert space with an inner product $\langle \cdot, \cdot \rangle$. Choose an orthonormal system $\{v_1, \dots, v_n\}$ of n vectors of H . Now let us fix two natural numbers k, m such that $1 \leq k < n$, $k \leq m < n$. Let L denote a k -dimensional affine subspace of $\text{span}\{v_1, \dots, v_n\}$ and S any measurable subset of L . Defining $\Pi_{\alpha_1 \dots \alpha_m}$ as an orthogonal projection onto $\text{span}\{v_{\alpha_1}, \dots, v_{\alpha_m}\}$ (where $1 \leq \alpha_i \leq n$ for $i = 1, \dots, m$) and denoting $|S|$ as k -dimensional measure of set S in space L , $|\Pi_{\alpha_1 \dots \alpha_m}(S)|$ as k -dimensional measure of $\Pi_{\alpha_1 \dots \alpha_m}(S)$ in $\Pi_{\alpha_1 \dots \alpha_m}(L)$ we can express the theorem in the following generalized version

$$(2) \quad \binom{n-k}{m-k} |S|^2 = \sum_{\substack{\alpha_1, \dots, \alpha_m=1 \\ \alpha_1 < \dots < \alpha_m}}^n |\Pi_{\alpha_1, \dots, \alpha_m}(S)|^2.$$

3. Proof of the theorem

We shall discuss two cases.

Suppose first that dimension of S is smaller than k . Hence, the image of any projection of the set S is of the dimension less than k . Therefore, every k -dimensional measure of S and $\Pi_{\alpha_1 \dots \alpha_m}(S)$ vanishes and the theorem is true.

Assuming now that dimension of S is equal to k and $g: \mathbb{R}^k \rightarrow L$ is an affine parametrization of the subspace L we receive

$$g(t_1, \dots, t_k) = (x_1, \dots, x_n)$$

and

$$(3) \quad x_i = a_0^i + a_1^i t_1 + \dots + a_k^i t_k, \text{ where } a_j^i \in \mathbb{R} \text{ for } j=1, \dots, k, i=1, \dots, n.$$

It can be easily seen that g is a diffeomorphism. In this case a k -dimensional measure of set S takes the form

$$|S| = \int_{g^{-1}(S)} \sqrt{D(1, \dots, n)(t)} dt_1 \dots dt_k, \quad t = (t_1, \dots, t_k)$$

where

$$\begin{aligned} D(1, \dots, n)(t) &= \det \left[\left(\frac{\partial g}{\partial t_i}(t) \mid \frac{\partial g}{\partial t_j}(t) \right) \right]_{i,j=1}^k = \\ &= \det \left[\sum_{l=1}^n \frac{\partial x_1}{\partial t_i}(t) \frac{\partial x_l}{\partial t_j}(t) \right]_{i,j=1}^k = \det \left[\sum_{l=1}^n a_i^l a_j^l \right]_{i,j=1}^k. \end{aligned}$$

But the Jacobian $D(1, \dots, n)(t)$ does not depend on variable t , and from now on we shall write $D(1, \dots, n)$.

For every system of numbers $\alpha_1, \dots, \alpha_m$ ($\alpha_i = 1, \dots, n$; $i=1, \dots, m$) we can perform an affine parametrization of the subspace $\Pi_{\alpha_1 \dots \alpha_m}(L)$ of the mapping $g_{\alpha_1 \dots \alpha_m}: \mathbb{R}^k \rightarrow \Pi_{\alpha_1 \dots \alpha_m}(L)$ in such a way that

$$g_{\alpha_1 \dots \alpha_m}(t_1, \dots, t_k) = (x_{\alpha_1}, \dots, x_{\alpha_m})$$

where x_{α_i} is defined by (3) for $1 \leq \alpha_i \leq n$.

It is clear that

$$|\Pi_{\alpha_1 \dots \alpha_m}(S)| = \int_{g_{\alpha_1 \dots \alpha_m}^{-1}(\Pi_{\alpha_1 \dots \alpha_m}(S))} \sqrt{D(\alpha_1, \dots, \alpha_m)(t)} dt_1 \dots dt_k$$

and

$$\begin{aligned} D(\alpha_1, \dots, \alpha_m)(t) &= D(\alpha_1, \dots, \alpha_m) = \\ &= \det \left[\left(\frac{\partial g_{\alpha_1 \dots \alpha_m}}{\partial t_i}(t) \mid \frac{\partial g_{\alpha_1 \dots \alpha_m}}{\partial t_j}(t) \right) \right]_{i,j=1}^k = \end{aligned}$$

$$= \det \left[\sum_{l=1}^m a_i^{\alpha_l} a_j^{\alpha_l} \right]_{i,j=1}^k.$$

Since any determinant of the matrix is a n -linear form of the rows of this matrix we get

$$\begin{aligned} D(1, \dots, n) &= \sum_{\substack{l_1, \dots, l_k=1 \\ l_1, \dots, l_k}}^n \det \left[a_i^{l_j} a_j^{l_j} \right]_{i,j=1}^n = \\ &= \sum_{\substack{l_1, \dots, l_k=1 \\ l_1 < \dots < l_k}}^n a_1^{l_1} \cdot a_2^{l_2} \cdot \dots \cdot a_k^{l_k} \det \left[a_i^{l_j} \right]_{i,j=1}^n \end{aligned}$$

Note that if for some $s, r=1, \dots, k$ l_s is equal to l_r then two rows of the matrix $\left[a_i^{l_j} a_j^{l_j} \right]_{i,j=1}^n$ are proportional and the determinant of the matrix vanishes. Finally

$$D(1, \dots, n) = \sum_{\substack{l_1, \dots, l_k=1 \\ l_1 < \dots < l_k}}^n a_1^{l_1} \cdot a_2^{l_2} \cdot \dots \cdot a_k^{l_k} \det \left[a_i^{l_j} \right]_{i,j=1}^n.$$

Similarly

$$D(\alpha_1, \dots, \alpha_m) = \sum_{\substack{\alpha_1, \dots, \alpha_m=1 \\ \alpha_1 < \dots < \alpha_m}}^n a_1^{\alpha_1} \cdot a_2^{\alpha_2} \cdot \dots \cdot a_k^{\alpha_k} \det \left[a_i^{\alpha_j} \right]_{i,j=1}^n.$$

Consider now the sum $\sum_{\substack{\alpha_1, \dots, \alpha_m=1 \\ \alpha_1 < \dots < \alpha_m}}^n D(\alpha_1, \dots, \alpha_m).$

The above formula yields that $\sum_{\substack{\alpha_1, \dots, \alpha_m=1 \\ \alpha_1 < \dots < \alpha_m}}^n D(\alpha_1, \dots, \alpha_m) =$

$$= \sum_{\substack{\alpha_1, \dots, \alpha_m=1 \\ \alpha_1 < \dots < \alpha_m}}^n \sum_{\substack{l_1, \dots, l_k=1 \\ l_1 < \dots < l_k}}^n a_1^{\alpha_1} \cdot a_2^{\alpha_2} \cdot \dots \cdot a_k^{\alpha_k} \det \left[a_i^{\alpha_j} \right]_{i,j=1}^n.$$

Notice that every member of the form

$$a_1^{l_1} \cdot a_2^{l_2} \cdot \dots \cdot a_k^{l_k} \det \left[a_i^{l_j} \right]_{i,j=1}^n \text{ appears } \binom{n-k}{m-k} \text{ times because}$$

$\alpha_1 = l_1, \alpha_2 = l_2, \dots, \alpha_k = l_k$ and another $m-k$ values α_j can be arbitrarily chosen from the remaining $n-k$ numbers. Hence

$$\begin{aligned} & \sum_{\substack{\alpha_1, \dots, \alpha_m=1 \\ \alpha_1 < \dots < \alpha_m}}^n D(\alpha_1, \dots, \alpha_m) = \\ & = \binom{n-k}{m-k} \sum_{\substack{l_1, \dots, l_k=1 \\ l_1 < \dots < l_k}}^n a_1^{\alpha_1} \cdot a_2^{\alpha_2} \cdot \dots \cdot a_k^{\alpha_k} \det \left[a_i^{\alpha_j} \right]_{i,j=1}^n = \\ & = \binom{n-k}{m-k} D(1, \dots, n). \end{aligned}$$

If $\dim \Pi_{\alpha_1 \dots \alpha_m}(S) = k$ then the inverse images satisfy $g^{-1}(S) = g_{\alpha_1, \dots, \alpha_m}^{-1}(\Pi_{\alpha_1 \dots \alpha_m}(S))$. This is because there exist k independent coordinates (of the parametrization g) such that each of the remaining coordinates of the projections can be regarded as a (unique) linear combination of the others. If, to the contrary, $\dim \Pi_{\alpha_1 \dots \alpha_m}(S) < k$, then the k -dimensional measure of $\Pi_{\alpha_1 \dots \alpha_m}(S)$ is equal to zero.

This allows us to set the following equalities:

$$\begin{aligned} & \binom{n-k}{m-k} |S|^2 = \binom{n-k}{m-k} \left[\int_{g^{-1}(S)} \sqrt{D(1, \dots, n)} dt_1 \dots dt_k \right]^2 = \\ & = \binom{n-k}{m-k} D(1, \dots, n) \left[\int_{g^{-1}(S)} dt_1 \dots dt_k \right]^2 = \end{aligned}$$

$$\begin{aligned}
 &= \sum_{(\alpha_1, \dots, \alpha_m) \in J}^n D(\alpha_1, \dots, \alpha_m) \left[\int_{g_{\alpha_1 \dots \alpha_m}^{-1}(\Pi_{\alpha_1 \dots \alpha_m}(S))} dt_1 \dots dt_k \right]^2 = \\
 &= \sum_{\substack{\alpha_1, \dots, \alpha_m = 1 \\ \alpha_1 < \dots < \alpha_m}}^n D(\alpha_1, \dots, \alpha_m) \left[\int_{g_{\alpha_1 \dots \alpha_m}^{-1}(\Pi_{\alpha_1 \dots \alpha_m}(S))} dt_1 \dots dt_k \right]^2 = \\
 &= \sum_{\substack{\alpha_1, \dots, \alpha_m = 1 \\ \alpha_1 < \dots < \alpha_m}}^n \left| \Pi_{\alpha_1 \dots \alpha_m}(S) \right|^2 .
 \end{aligned}$$

Therefore the proof of the theorem is completed.

INSTITUTE OF MATHEMATICS, ACADEMY OF MINING AND METALLURGY,
30-309 KRAKÓW, POLAND.

Received November 10, 1989.