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GENERALIZATION OF THE PYTHAGOREAN THEOREM

1. Introduction

In this note a generalized form of the Pythagorean theorem
is shown and proved. Because the Pythagorean theorem is being
often formulated in terms of a unitary space, for the purpose
of this work a special version of the theorem is used.

Let V be a unitary space over field R and let <.,.> be an
inner product in V.

If x,yeV and <x,y>=0, then according to the Pythagorean
theorem we have
(1) Ix+y i 2=y 2+hy )
where Ixu2=<x,x>.

The geometrical interpretation of the formula (1) may be
shown in the following way:

Let H be the Hilbert space and let <.,.> be the inner product
in H.

Let Ai be a point of the axis Rei (for i=1,2) of the space
given by two orthonormal vectors el,ezeH.

Denoting by 1 the affine line passing through the points

A, we receive

A, and S the segment of 1 whose ends are Al, 2

A1’ 2
that
I () |2+, (s) | 2=4s) 2
where Hi is an orthogonal projection onto axis IRei (for
i=1,2).
Fig 1. shows this situation.
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< I, (S) N

Now we are ready to generalize the Pythagorean theoren.

2. Theorenm

Let H be a Hilbert space with an inner product <.,.>.
Choose an orthonormal system {vl,...,vn} of n vectors of H.
Now let us fix two natural numbers k,m such that 1=<k<n, k=m<n.
Let L  denote a k-dimensional affine subspace of
span{vl,...,vn} and S any measurable subset of L. Defining

[ SR o

}
1 m 1 m
(where 1=a.=n for i=1,...,m) and denoting |[S| as k-

(s)| as k-

n as an orthogonal projection nto span{v_ ,...,V

dimensional measure of set S in space L, [N

.1
1 m
dimensional measure of 1 () in I (L) we can
Qg Qgeeelty
express the theorem in the following generalized version
n
n-k 2 _ 2
(2) [m—k]lsl - E |Hal,...,am(s)| :

al,...,am=1

o, <...<x
1 m

3. Proof of the theorem

We shall discuss two cases.
Suppose first that dimension of S is smaller than k. Hence,
the image of any projection of the set S is of the dimension
less than k. Therefore, every k-dimensional measure of S and

Ha o (S) vanishes and the theorem is true.
1%
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Assuming now that dimension of S is equal to k and
g:Rk—eaL is an affine parametfization of the subspace L we

receive
g(tll"'ltk)=(xll'°’lxn)
and
i i i i i=1,...,n
(3) xi—ao+a1t1+...+aktk , Where ajeR for §=1,....%

It can be easily seen that g is a diffeomorphism. In this case
a k-dimensional measure of set S takes the form

Is| = S V' b(1,...,n)(t) dt ...dt,, t=(t;,...,t)
g 1 (s)
where
= 89 ag k -
D(1L,-.eum) (8) = det[ (G0 |atj(t)] ]i'j=1
n ax ax n
1 1 k 1.1 |k
= det a—(t)s=(t) = det a.a. .
[ 2;; at; " oty ]i,j=1 [ Z;; 13 ]i,j=1

But the Jacobian D(1,...,n)(t) does not depend on variable
t, and from now on we shall write D(1,...,n).

For every system of numbers Cgreee Oy (ai=1,...,n; i=1,...,m)
we can perform an affine parametrization of the subspace

. k .
)i (L) of the mapping g tR—e» 1T (L) in
LSRR oyevely gty

such a way that
g (t,,eee,t)) = (X, ,...,%X, )
Oy ooty 1 k o, o
where X, is defined by (3) for 1sa =n.

i
It is clear that

I"al...am‘s)|= S V/D(al,---,am)(t) at,...dt

-1
gal. . .am(nal. . .dm(s) )

k

and
D(al,...,am)(t) = D(al,...,am) =

agal...am agal...am k
= det EE—_——_——(t) 5E____..____(t) =
i j i,j=1
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n
o o

= det[ E ai1 a.l ]k .

J i,j=1

1=1
Since any determinant of the matrix is a n-linear form of the

rows of this matrix we get
n

. 1. 1.
D(ll-.orn) = det[aija.J]n =
Z _ I 1i,4=2
1 1, =
17"k
n
1 1 1 1.
= E 1,72, .a K jln
= a; " ra ... a, det[ai ]i o
DI WS | vJ
Note that if for some s,r=1,...,k 1s is equal to 1r then two
1. 1. n
rows of the matrix [a.Ja.J] are proportional and the
I i, 5=
determinant of the matrix vanishes. Finally
n
1 1 1 1.
D(1,...,n) = a 1-a 2-...-a kdet a,l|™ .
1 2 k i i=1
1,...,1,=1 rJ
1 k

11<...<1k
Similarly

n a o o o
D(a o) = a 11-a 12- ‘a lkdet a 1j n

1'% 1 2 % [
1,2, =1 1,0=1
17°°° 'k
11<...<1k
n

Consider now the sum E D(al,...,am).
Oy, eee, 0 =1

1 m
@, <o ..oy
n
The above formula yields that E D(al,...,am) =

€y eee o=l

[» 20 G <
1 %n
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o
1 1 1 1.

E E a1 1-az 2-...-ak kdet[ai J]n .

i,j=1

Qypees O =1 1

1:---1
og<ee e <ay 11<"‘<1k
Notice that every member of the form
1 1 1 1.
1 "2, .k jln n-k .
a; rayt e ray det[ai ]. . appears [m—k times because
i,j=1
a11=11,a12=12,...,a1k=1k and another m-k values aj can be
arbitrarily chosen from the remaining n-k numbers. Hence
n
D(al,...,am) =
al,...,am=1
a1<...<am
a o a o
= a 11-a 12- -a lkdet a lj n =
m—k 1 2 T Tk i i,j=1
,...,1 =1 !
11<°"<lk
= [m X D(1,..,n).
If dim Ha o (S) =k then the inverse images satisfy
1... n
1(S) = g (1 (S)). This is because there exist
1,...,am Qyeeedy

k independent coordinates (of the parametrization g) such that
each of the remaining coordinates of the projections can be
regarded as a (unique) linear combination of the others. If,

to the contrary, dim Ha o (S) < k, then the k-dimensional
100 %
measure of ﬂa o (S) is equal to zero.
1°°°"m
This allows us to set the following equalities:

[m-k]lsl ‘[ ][ [ voa,...m dtl...dtk]2=

n-k i I(S) ’
- [m_k]D(l,..-,n)[ K dtl"'dtk] B
g 1(s)
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n , 2
= D(al,...,am)(t)[ X dtl...dtk] =
(al,...,am)eJ -1
g (n (s))
al..am al...am
n 2
= E D(al,...,am)[ S dtl...dtk] =
O, 00,0 =1 -1
1’ “m g
o, ..o (T (s))
a1<...<am 1 m al...am
n 2
T o]

Aypenesop=1

o, <e. <O
m

1
Therefore the proof of the theorem is completed.
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