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MARTINGALES AND SUBMARTINGALES ON QUANTUM LOGIC 

In this paper, we introduce the notion of submartingales 
and martingales in the state m on L, relative to sequence 
{a n}™ = 1 from L, such that m(an)=l, R( x

n) u Ln u R^ xn+l^ '*"s 

partially compatible with respect to a n where x n is a sequence 
of observables on L, is a nondecreasing sequence of 
sublogic of L. This submartingales and martingales of an 
integrable functions on a probability space (Ω,^,μ) and the 
case which is investigated in 1 is special case, when a

n
= a

n + i 
for all n. The main result is Theorem 3.3. It is analogous to 
martingale convergence theorem [9], [2], but this convergence 
is only in the state m. The author does not know how to prove 
this theorem for the convergence a.e. in a state m. 

0. Preliminaries 
Let L be a quantum logic, i.e. an orthomodular σ-lattice 

[13]. Explicitly: L is a quantum logic if the following axioms 
are fulfilled: 
I) L is a non empty, partially ordered set with the relation 
"s", with the maximum and minimum element (1 and 0 resp.) 
where 1*0; 
II) For any sequence {a } œ ,cL we have va eL or Aa eL, η η=ι η η 
where ν, a are lattices operations; 
III) There is 1-1 mapping j.:L—>L satisfying: a) for all a€L 
(a1)1=a; b) for all aeL we have ava 1 =l, aAax=0, for all aeL; 
c) if a,beL, asb then b 1ïa 1; 
IV) Orthomodular law: For any a,beL, asb, it holds b=av(a1Ab). 

Let L be a quantum logic and a,beL. We shall say that a,b 
are orthogonal (aib) if asb1. The elements a,b will be called 
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compatible (a<—*b) if there are three mutually orthogonal 
elements a^b^ceL such that a=a1vc, b=b1vc. 

It is know [13], that for all a,beL a«-»b iff L is a 
Boolean algebra. 

λ subset L^cL will be called a sublogic of L if a) 
Ο,ΙεΙ^; b) axeL1 for each acl^; c) vaneL1 for each sequence 
ían>ñ=l V 

A subset BcL will be called a sub-a-algebra of L, if Β is 
a sublogic of L such that for any a,beB a»b. 

A sublogic L^cL will be called separable if any sequence 
of pairwise orthogonal elements from L·^ is at most countable. 
In this case, of {aa}aCj¿cL' then there is a countable sequence 
{bn>"=1cL, such that 

ν · β - ν b n . 
aeU n=l 
Let (X,y) be a measurable space. A σ-homomorphism from S 

to L is any mapping h with the following properties: 1) 
h(X)=l; 2)If A,B«y and ΑηΒ=β, then h(A)ih(B); 3) If {An>"=1cy, (Q QO then h(^jA ) = V h( A

n)· If x = r 1 a n d ^»(R1) then the 
n=l n=l 

σ-homomorphism h will be called an observable on L. 
In subsequent paragraphs we shall often use the following 

theorem. 
Theorem 0.1. (Lommis - Sikorski [6],[12],[13]) Let Β be a 

Boolean σ-algebra. Then there exist a measurable space (X,f) 
and a σ-homomorphism h from y onto B. 

The set R(x)={x(E) | EeSÍR1)} is said to be the range of 
the observable x. It is clear that R(x) is a Boolean 
sub^-algebra of L and if f is any Borei function then 
R(f ·χ) cR(x) . 

Definition 0.1. Let L be a quantum logic and x, y be ob-
servables on L. He shall say that x, y are compatible (x«-»y) 
if for any beR(x) , aeR(y) it holds a«-*b. 

S.V. Varadarajan [13] has proved the following properties: 
If Β is a countably generated Boolean sub-a-algebra of L then 
there exists such an observable ζ on L that R(z)=B. If x,y are 
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any observables and x<—»y then there are an observable ζ on L 
and Borei functions f,g satisfying x=f«z, y=g®z. 

Put Lr_ .={b€L I bsa}, aeL, a*0. Then Lrn , is a quan-to,aj l«/3J turn logic with the maximum element a and orthocomplement "*", 
which is defined as follows: * I b = b Aa, for beLrn .. [ υ, a j 

Now we are going to define a measure on the quantum logic 
L. A function m : L — > [ 0 , c o ) will be called a measure on L if it 
holds: a) m(0)=0; b) If {an>™=1cL, a

n
i at f o r n*t/ then 

m ( V a
n ) = y ' W e s h a H consider nontrivial measures 

n η 
only m(l)*0. If m(l)=l, then m will be called a state on L. 

If χ is an observable on L and m is a state, then the 
function mx:®(R1)—»[0,1] where ηχ(Ε)=m(x(E)), EeBfR1) said 
to be a probability distribution of the observable χ in the 
state m. 

An expectation of an observable x, in the state m is the 
number 

m(x) = Jx dm = JXmx(dA), 
if the integral on the right side exists. 

1. Partial Compatibility 
Definition 1.1. [10] Let L be a quantum logic and McL, 

aeL, a*0. We shall say that M is partially compatible with 
respect to a (abb. as H is p.c.[a]) if the following is true: 
1) For all beM we have b«->a (M<-»a) ; 2) For all b,ceM we have 
bAa«—»CAa is a compatible set, (MAa={bAa | beM}). 

Let aeL, a*0. Then the subset MAa is compatible in L iff 
it is compatible in Lr. .. I υ, a j 

For F={a1,...,an>cL put 
d d -

com(F)=Vr, ai Λ.,.Λβ n, where D = { 0 , 1 } , d={d., ... ,d }, a =ax, 
« âll X £1 X 11 deD 

a =a. 
The set M is p.c.[com(F)] [11]. 

The cardinality of a set G will be denote by G. 
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Definition 1.2. [11] Let BcL. Put 
com(B)={com(F) | FcB, |F|<co}. 

The element com(B)eL, if it exists, is said to be a commuta-
tor of the set B. 

Note that Β is p.c.[com(B)] [11]. 

Theorem 1.1. [11]. Let BcL such that com(B) exists. Then 
the set Β is p.c.[a] iff a<-*B and ascom(B) where aeL, a*0. 

Let M be a set of states on L. The pair (L,M) is a quite 
full system (abbr. g.f.s.) if {meM | m(a)=l}c{meM | m(b)=l> 
implies asb. 

Let (L,M) be g.f.s. We say that L has the property U if 
m(x)=m(y) for all meM implies x=y, where x,y are bounded 
observables on L. We say that L has property E if for any pair 
x,y of bounded observables there is a unique bounded 
observable ζ such that m(z)=m(x)+m(y) for any meM. The 
observable ζ is called the sum of observables χ,y and we write 
z=x+y. A pair (L,M) is called a sum logic if it is q.f.s. and 
L has the properties U and E, (see [4], [3]). 

Let x,y be such observables, for which the sum x+y exists. 
In what follows we shall suppose that the following condition 
is fulfilled: 

a) If aeL-{0} and R(x)uR(y)«-»a then x+y«->a and x+yAa= 
=XAa+yAa, where ZAa is an observable on L r n ,, which is de-
fined by ZAa(E)=z(E)Aa, for EeS(R ). For example, the guantum 
logic on the Hilbert space satisfies the condition a). 

Definition 1.3. Let L be a guantum logic and { a
n}n-i c L' W e 

shall say that the seguence { a
n}^ = 1 has a limit equal to a 

00 00 00 00 

lim a =a if V Λ av = Λ V a
k = a· 

n-*x> n n=l k=n n=l k=n 
Lemma 1.2. Let L be a guantum logic and {a

n}n=lcL* 
there exists lim a =a and there is a state m with the 

n-xo n 

property m(an)=l for all n, then m(a)=l. 

The proof is obvious. 
Let {M_>™ , be such system of subset of L that M cM ., η η=ι η n+l 

and Mfi be p.c.[a] for all n, a be any element aeL-{0}. Then it 
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is clear, that L J M
n P- c-[ a]· I n addition, if com(M ) 

n=l n 

00 00 

exist for all n, then com^_jM = lim comM = /\ com(M ) . 
n = l n->oo n n = l 

2. Conditional Expectation 

A relative conditional expectation is defined and analyzed 

in [7], [8]. At this place we introduce only the definition 

and some fundamental properties. 

Throughout we shall assume that (L,M) be a summable 

quantum logic fulfilling the condition a). 

Definition 2.1. Let L Q c L be a sublogic. Let χ be an ob-

servable on L, meM, aeL-{0}. We shall suppose that 

a) R ( x ) u L Q is p.c.[a]; 

b) m(a)=1; 

c) There exists m(x). 

Then by a version of conditional expectation of the observable 

χ in the state m, for L Q, relativized by a notation: 

E m(x/L 0,a) we understand any observable ζ with the pro-

perties: 

a) z<—>a; 

b) R(z)AacL^Aa; 

c) For any beL_ J x dm = Jz dm, where J x dm = Jm(x(dot)Ab) 
υ b b b 

if the integral on the right side exists. 

Definition 2.2. Let x,y be observables. He shall say, that 

x,y are equal "modulo" a state m (x^yCm]) if for any 

EeB(R^) m(x(E)Ay(E) )=0, where aAb=(aAb'L) ν (aXAb) . 

The relation "<*[m]" is reflexive and symmetric. Moreover, 

if R(x)uR(y)uR(z) is p.c. [a], m(a)=l, then x<*y[m], y=<z[m] 

implies x=*z[] [7]. 

Theorem 2.1. [7]. Let χ,y be such observables that 

R(x)uR(y) be p.c.[a], where m(a)=l and L Q be a sublogic of L. 

Then E m(x+y/L 0,m)-E m(x/L 0,a) + E m(y/L 0,a) [m]. 

3. Generalized Martingales and Submartingales 

In this part we introduce a definition of generalized 
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martingales and submartingales. As before we shall assume that 
(L,M) is a summable quantum logic with the property a). 

Definition 3.1. Let { L
n}^ = 1

 b e a nondecreasing sequence of 
sublogic of L, i x

n}^ = 1
 b e a sequence of observables on L, 

{a ,cL. Let there be a state m with m(a )=1 for all n. η n=l * η 
Then the triple (x

n'Ln'an^ w i H b e called a submartingale in 
the state m if it is holds: 

1) L cL for all n; η n+l 
2) R(x )uR(x ^JuL is p.c. [a ] and moreover R(x_)Aa c η n+x η η η η 

cLnAan· 
3) For all bcLn, ¿xn dm * S V W W dm. 

b b 
A submartingale will be called a martingale in the state m if 
for any beL η 

lxn d m - £Em(xn+l/Ln'an> d m· c o 
Definition 3.2. [5]. Let {χ

η}^=ι b e a sequence of observa-
bles on L. He shall say that 

a) xn converges to χ in Lp(m) (denote xn—E-*x) , if 
-v|P\ m(|xn-x|1')—>0; 

b) x n converges to χ in the measur m(x
n—>xt®])/ if f°r 

any c>0 lĵ m m((xn~x)[-ε,ε])=1. 
c) converges to χ almost everywhere with respect to m 

OD 00 

(χ —»x a.e.[m]) if for any ε>0 m ( V A ( x„ _ x)[~ ef ε]) = 1· 
n k=l n=k 

Lemma 3.1. Let ( x
n' L

n» a
n) b e a submartingale resp. a mar-

tingale in a state m. Let iz
n^n=l a n^ sequence of 

observables with the following properties: 
1) R( zn ) u R ( zn+l ) u Ln i s P - c - [ a

n
] ; 

2) R(zn)AancLnAan; 
3) χ *z [ml for all n. ' η nL J 

Then (zn,Ln,an) is a submartingale resp. a martingale in a 
state m. 

Proof. Since χ *z [m], we have llx -ζ I dm=0. Let beL . n n J 1 η η1 η 
Then 
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O = \ Ι χ - ζ I d m = \ | x A a - ζ A a I d m = l l x A a - z A a I d m + 
J 1 η n 1 J 1 η η η η 1 J 1 η η η η 1 

a n b A a n 

+ I I x _ A a _ - z _ A a _ Ι d m = 1 I x _ A a _ - z _ A a _ I d m = I I x _ — z _ I d m s 
j 1 η η η n ' j 1 η η η η 1 j 1 η η 1 

κ ι = b A a 
D A a _ η 

η 

* l j x n ~ z n d H * ° · 

I t m e a n s t h a t l x - z d m = 0 f o r a l l b e L . T h i s i m p l i e s l x d m = 
J η η η J η 

f b b 

= l z R d m . W e c o n c l u d e t h a t ( z n ' L n ' a n ^ 1 S t h e s u b m a r t i n g a l e 

b 

r e s p . t h e m a r t i n g a l e i n t h e s t a t e m . ( Q . E . D . ) 

L e t u s d e n o t e b y L ( T ) t h e s m a l l e s t s u b l o g i c w h i c h 

c o n t a i n e d Τ ( T c L ) . 

L e m m a 3 . 2 . L e t ( x
n » L

n » a
n ) b e a s u b m a r t i n g a l e r e s p . a m a r -

t i n g a l e i n a s t a t e m . L e t í z
n } ñ = i *** a n ^ s e q u e n c e o f 

o b s e r v a b l e s w i t h t h e f o l l o w i n g p r o p e r t i e s : 

1 ) R ( V * a n c L n A a n ; 

2 ) x « z r m l f o r a l l n . 
η η 

M o r e o v e r l e t b e a € L „ a n d t h e r e e x i s t l i m a = a . I f χ i s s u c h 
η η Í W c o η 

00 

a n o b s e r v a b l e t h a t x « - » a a n d R ( x ) A a c L ( ^ j L Ï A a , t h e n 

n = l 

a ) x _ — E - » x i f f ζ — E - » x ; 
η η 

b ) x „ — » x [ m l i f f z - - « [ m ] . 
η η 

P r o o f . A s L n i s p . c . [ a n ] a n d i L
n ) n = l n o n d e c r e a s i n g 

00 

s u b s e t s o f L w e h a v e L ( ^ j L n ) i s p . c . [ a ] . B e c a u s e { a A a n > u 

n = l 

00 

u R ( x ) A a c L ( L f i ) A a w e h a v e X A a v x A a 1 = x * - * a A a n · N o w w e p u t 

n = l ^ 

x n = ( x n A a n ) v ( x 0 A a n ) ' z n = ( z n A a n ) v ^ Ο * ® ^ ' w h e r e x
0
 i s s u c h a n 

o b s e r v a b l e , t h a t X Q ( { 0 } ) = 1 , x Q ( { l > ) = 0 . F r o m t h i s w e h a v e 

x ' « - » z ' f o r a l l n . M o r e o v e r x ' - z ' [ m ] , x ' « x „ [ m ] , z ' « z _ [ m ] . A s 
η η η η 1 J η n L J η n L J 

w e c a n w r i t e χ = x A a v x A a ^ a n d ζ = z A a v z A a 1 t h e n 
η η η η η η η η η η 

{ x _ ι ζ } < — > a A a f o r a l l η . T h e n m ( ( x - χ ) ( Ε ) ) = m ( ( x A a A a -
n n η η * 1 ' ' η η 

- X A a n A a ) ( E ) ) = m ( ( x ^ A a n A a - X A a n A a ) ( E ) ) = m ( ( x ^ - x ) ( E ) ) , f o r a l l 

E e B f R 1 ) . A n d m ( ( z n ~ x ) ( E ) ) = m ( ( z ^ - x ) ( E ) ) f o r a l l η a n d f o r a l l 
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i E e S f R - 1 ) . M o r e o v e r t h e s e t ( R ( x ^ ) u R ( z ^ ) u R ( x ) ) A a n A a c L ( ^ J L R ) Aa 
11=1 

a n d a A z ' A a « x Aa A a [ m l . T h u s η η η η 

m ( ( χ ^ - χ ) ( Ε ) ) = m ( ( x ^ A a n A a - X A a n A a ) ( E ) ) = m ( ( z ^ A a n A a - X A a n A a ) ( E ) ) = 

= ( ( z ^ - x ) ( E ) ) . 
Now we g e t 

* ( ( χ η - : 

a ) L e t χ I t m e a n s 0 = l i m \ | x - x | p dm. η », J 1 η 1 

m ( ( x n - x ) ( E ) ) = m ( ( z n - x ) ( E ) ) f o r a n y E e S f R 1 ) a n d f o r a l l n . 

n-xn 
B u t 

J | x n - x | p dm = j | t | p m ( ( x n - x ) ( d t ) ) = J | t | p m ( ( z n ~ x ) ( d t ) ) = 

= J | z n - x | p d m . 

I t m e a n s t h a t χ -^-»x i f f ζ - ^ x . η η 
b) I f xR—*x[m] t h e n f o r a l l c>0 

1 = l i m m ( ( x n ~ x ) [ - ε , ε ] ) = l i m m ( ( z n ~ x ) [ - c , e ] ) . I t m e a n s t h a t 
n-xn ' n-xn 

x f i—>x[m] i f f z n — > x [ m ] . ( Q . E . D . ) 

T h e o r e m 3 . 3 . L e t (L ,N) b e a s u m m a b l e l o g i c . L e t ( χ , L _ , a _ ) η η η 
b e a s u b m a r t i n g a l e i n t h e s t a t e m, a } e L n a n d t h e r e b e a 
l i m a = a . L e t s u p ( | x | ) < œ . T h e n t h e r e e x i s t s a n o b s e r v a b l e χ η _ η 1 
n-xn η 
w i t h t h e p r o p e r t i e s : 

œ 
R ( x ) A a c ( ^ L j a n d x n — « [ m ] . 

n = l 

P r o o f . P u t y n = ( x
n

A a
n ) v ( x o A a n ) ' T h e n ^ n ^ n ^ n 5 i s a s u b " 

m a r t i n g a l e i n t h e s t a t e m (Lemma 3 . 1 ) . From Lemma 3 . 2 i t f o l -
00 

l o w s t h a t x n —»x[m] i f f y R —>x[m] . We know, t h a t L ( y L j 
n = l 

00 00 

i s p . c . [ a ] . B u t R ( y ) c L ( ^ _ j L )Aa a n d L ( ( j L ÌAa i s a B o o l e a n -
n = l n = l 

- σ - a l g e b r a . I f we u s e t h e L o o m i s - S i k o r s k i t h e o r e m we g e t 
( X , f ) , h , { f j j ) ^ - ] ^ m e a s u r a b l e s p a c e , σ - h o m o m o r p h i s m , f - m e a s u r -

a b l e f u n c t i o n r e s p . s u c h t h a t f n « h = y n A a . P u t f n = { E € y | h ( E ) e 

eL A a } . I f C e B f R 1 ) t h e n h ( f - 1 ( C ) ) e L A a . I t m e a n s t h a t η η η 
f - 1 ( C ) e f . H e n c e f i s t h e m e a s u r a b l e f u n c t i o n f o r a n y n . Now η η η 
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we have for E e^ n J fn(t)mji(dt) = | fn° h = j ^n A a d m = 

E h(E) bAa 
= Jyndm = 5xndm s J x ^ d m = Jf n + 1 (t)mh(dt) . 

b b b E 
Therefore, (fn»^n) is a submartingale on the probability space 
(X,y,mh). Because m(xn) = Jfn(t)mh(dt) , sup m h ( | f ß | ) <00. 

From this it follows that the assumption for the convergence 
theorem [9], [2] are fulfilled on some probability space. 

00 

Thus, there exists a )-measurable function f (where 
n=l n 

oo œ 

Π 1 is the smallest σ-algebra which contains l \¡f ) with 
n=l n' n=l the property: f —>f a.e. [m. 1. It means that y Aa—>f°h η h η 

a.e.[mh]. 
00 

Now we put x=fohvxQAa . Then R(x) AacL( Ln) Aa and 
n=l 

yn—>x[m]. Finally from Lemma 3.2 we have xn—>x[m]. (Q.E.D.) 
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