

Olga Nánásiová

MARTINGALES AND SUBMARTINGALES ON QUANTUM LOGIC

In this paper, we introduce the notion of submartingales and martingales in the state m on L , relative to sequence $\{a_n\}_{n=1}^\infty$ from L , such that $m(a_n)=1$, $R(x_n) \cup L_n \cup R(x_{n+1})$ is partially compatible with respect to a_n where x_n is a sequence of observables on L , $\{L_n\}_{n=1}^\infty$ is a nondecreasing sequence of sublogic of L . This submartingales and martingales of an integrable functions on a probability space $(\Omega, \mathcal{F}, \mu)$ and the case which is investigated in 1 is special case, when $a_n=a_{n+1}$ for all n . The main result is Theorem 3.3. It is analogous to martingale convergence theorem [9], [2], but this convergence is only in the state m . The author does not know how to prove this theorem for the convergence a.e. in a state m .

0. Preliminaries

Let L be a quantum logic, i.e. an orthomodular σ -lattice [13]. Explicitly: L is a quantum logic if the following axioms are fulfilled:

- I) L is a non empty, partially ordered set with the relation " \leq ", with the maximum and minimum element (1 and 0 resp.) where $1 \neq 0$;
- II) For any sequence $\{a_n\}_{n=1}^\infty \subset L$ we have $\vee a_n \in L$ or $\wedge a_n \in L$, where \vee, \wedge are lattices operations;
- III) There is 1-1 mapping $\iota: L \rightarrow L$, satisfying: a) for all $a \in L$ $(a^\perp)^\perp = a$; b) for all $a \in L$ we have $\vee a^\perp = 1$, $a \wedge a^\perp = 0$, for all $a \in L$; c) if $a, b \in L$, $a \leq b$ then $b^\perp \leq a^\perp$;
- IV) Orthomodular law: For any $a, b \in L$, $a \leq b$, it holds $b = \vee(a^\perp \wedge b)$.

Let L be a quantum logic and $a, b \in L$. We shall say that a, b are orthogonal ($a \perp b$) if $a \leq b^\perp$. The elements a, b will be called

compatible ($a \leftrightarrow b$) if there are three mutually orthogonal elements $a_1, b_1, c \in L$ such that $a = a_1 \vee c$, $b = b_1 \vee c$.

It is known [13], that for all $a, b \in L$ $a \leftrightarrow b$ iff L is a Boolean algebra.

A subset $L_1 \subset L$ will be called a sublogic of L if a) $0, 1 \in L_1$; b) $a^\perp \in L_1$ for each $a \in L_1$; c) $\vee a_n \in L_1$ for each sequence $\{a_n\}_{n=1}^\infty \subset L_1$.

A subset $B \subset L$ will be called a sub- σ -algebra of L , if B is a sublogic of L such that for any $a, b \in B$ $a \ast b$.

A sublogic $L_1 \subset L$ will be called separable if any sequence of pairwise orthogonal elements from L_1 is at most countable. In this case, of $\{a_\alpha\}_{\alpha \in A} \subset L_1$, then there is a countable sequence $\{b_n\}_{n=1}^\infty \subset L_1$, such that

$$\bigvee_{\alpha \in A} a_\alpha = \bigvee_{n=1}^\infty b_n.$$

Let (X, \mathcal{F}) be a measurable space. A σ -homomorphism from S to L is any mapping h with the following properties: 1) $h(X) = 1$; 2) If $A, B \in \mathcal{F}$ and $A \cap B = \emptyset$, then $h(A) \perp h(B)$; 3) If $\{A_n\}_{n=1}^\infty \subset \mathcal{F}$, then $h\left(\bigcup_{n=1}^\infty A_n\right) = \bigvee_{n=1}^\infty h(A_n)$. If $X = \mathbb{R}^1$ and $\mathcal{F} = \mathcal{B}(\mathbb{R}^1)$ then the σ -homomorphism h will be called an observable on L .

In subsequent paragraphs we shall often use the following theorem.

Theorem 0.1. (Lommis - Sikorski [6], [12], [13]) Let B be a Boolean σ -algebra. Then there exist a measurable space (X, \mathcal{F}) and a σ -homomorphism h from \mathcal{F} onto B .

The set $R(x) = \{x(E) \mid E \in \mathcal{B}(\mathbb{R}^1)\}$ is said to be the range of the observable x . It is clear that $R(x)$ is a Boolean sub- σ -algebra of L and if f is any Borel function then $R(f \cdot x) \subset R(x)$.

Definition 0.1. Let L be a quantum logic and x, y be observables on L . We shall say that x, y are compatible ($x \leftrightarrow y$) if for any $b \in R(x)$, $a \in R(y)$ it holds $a \leftrightarrow b$.

S.V. Varadarajan [13] has proved the following properties: If B is a countably generated Boolean sub- σ -algebra of L then there exists such an observable z on L that $R(z) = B$. If x, y are

any observables and $x \leftrightarrow y$ then there are an observable z on L and Borel functions f, g satisfying $x = f \circ z$, $y = g \circ z$.

Put $L_{[0,a]} = \{b \in L \mid b \leq a\}$, $a \in L$, $a \neq 0$. Then $L_{[0,a]}$ is a quantum logic with the maximum element a and orthocomplement " $*$ ", which is defined as follows:

$$b^* = b^\perp \wedge a, \text{ for } b \in L_{[0,a]}.$$

Now we are going to define a measure on the quantum logic L . A function $m: L \rightarrow [0, \infty)$ will be called a measure on L if it holds: a) $m(0)=0$; b) If $\{a_n\}_{n=1}^\infty \subset L$, $a_n \perp a_t$ for $n \neq t$, then $m(\bigvee_n a_n) = \sum_n m(a_n)$. We shall consider nontrivial measures only $m(1) \neq 0$. If $m(1)=1$, then m will be called a state on L .

If x is an observable on L and m is a state, then the function $m_x: \mathcal{B}(\mathbb{R}^1) \rightarrow [0, 1]$ where $m_x(E) = m(x(E))$, $E \in \mathcal{B}(\mathbb{R}^1)$ said to be a probability distribution of the observable x in the state m .

An expectation of an observable x , in the state m is the number

$$m(x) = \int x dm = \int \lambda m_x(d\lambda),$$

if the integral on the right side exists.

1. Partial Compatibility

Definition 1.1. [10] Let L be a quantum logic and $M \subset L$, $a \in L$, $a \neq 0$. We shall say that M is partially compatible with respect to a (abb. as M is p.c. [a]) if the following is true: 1) For all $b \in M$ we have $b \leftrightarrow a$ ($M \leftrightarrow a$); 2) For all $b, c \in M$ we have $b \wedge a \leftrightarrow c \wedge a$ is a compatible set, ($M \wedge a = \{b \wedge a \mid b \in M\}$).

Let $a \in L$, $a \neq 0$. Then the subset $M \wedge a$ is compatible in L iff it is compatible in $L_{[0,a]}$.

For $F = \{a_1, \dots, a_n\} \subset L$ put

$$\text{com}(F) = \bigvee_{d \in D} a_1^{d_1} \wedge \dots \wedge a_n^{d_n}, \text{ where } D = \{0, 1\}, d = (d_1, \dots, d_n), a^0 = a^\perp, a^1 = a.$$

The set M is p.c. [$\text{com}(F)$] [11].

The cardinality of a set G will be denote by G .

Definition 1.2. [11] Let $B \subset L$. Put

$$\text{com}(B) = \{\text{com}(F) \mid F \subset B, |F| < \infty\}.$$

The element $\text{com}(B) \in L$, if it exists, is said to be a commutator of the set B .

Note that B is p.c. [$\text{com}(B)$] [11].

Theorem 1.1. [11]. Let $B \subset L$ such that $\text{com}(B)$ exists. Then the set B is p.c. [a] iff $a \leftrightarrow B$ and $a \leq \text{com}(B)$ where $a \in L$, $a \neq 0$.

Let M be a set of states on L . The pair (L, M) is a quite full system (abbr. q.f.s.) if $\{m \in M \mid m(a) = 1\} \subset \{m \in M \mid m(b) = 1\}$ implies $a \leq b$.

Let (L, M) be q.f.s. We say that L has the property U if $m(x) = m(y)$ for all $m \in M$ implies $x = y$, where x, y are bounded observables on L . We say that L has property E if for any pair x, y of bounded observables there is a unique bounded observable z such that $m(z) = m(x) + m(y)$ for any $m \in M$. The observable z is called the sum of observables x, y and we write $z = x + y$. A pair (L, M) is called a sum logic if it is q.f.s. and L has the properties U and E , (see [4], [3]).

Let x, y be such observables, for which the sum $x + y$ exists. In what follows we shall suppose that the following condition is fulfilled:

a) If $a \in L - \{0\}$ and $R(x) \cup R(y) \leftrightarrow a$ then $x + y \leftrightarrow a$ and $x + y \wedge a = x \wedge a + y \wedge a$, where $z \wedge a$ is an observable on $L_{[0, a]}$, which is defined by $z \wedge a(E) = z(E) \wedge a$, for $E \in \mathcal{B}(R^1)$. For example, the quantum logic on the Hilbert space satisfies the condition a).

Definition 1.3. Let L be a quantum logic and $\{a_n\}_{n=1}^{\infty} \subset L$. We shall say that the sequence $\{a_n\}_{n=1}^{\infty}$ has a limit equal to a

$$\lim_{n \rightarrow \infty} a_n = a \text{ if } \bigvee_{n=1}^{\infty} \bigwedge_{k=n}^{\infty} a_k = \bigwedge_{n=1}^{\infty} \bigvee_{k=n}^{\infty} a_k = a.$$

Lemma 1.2. Let L be a quantum logic and $\{a_n\}_{n=1}^{\infty} \subset L$. If there exists $\lim_{n \rightarrow \infty} a_n = a$ and there is a state m with the property $m(a_n) = 1$ for all n , then $m(a) = 1$.

The proof is obvious.

Let $\{M_n\}_{n=1}^{\infty}$ be such system of subset of L that $M_n \subset M_{n+1}$ and M_n be p.c. [a] for all n , a be any element $a \in L - \{0\}$. Then it

is clear, that $\bigcup_{n=1}^{\infty} M_n$ is p.c.[a]. In addition, if $\text{com}(M_n)$ exist for all n, then $\text{com} \bigcup_{n=1}^{\infty} M_n = \lim_{n \rightarrow \infty} \text{com} M_n = \bigwedge_{n=1}^{\infty} \text{com}(M_n)$.

2. Conditional Expectation

A relative conditional expectation is defined and analyzed in [7], [8]. At this place we introduce only the definition and some fundamental properties.

Throughout we shall assume that (L, M) be a summable quantum logic fulfilling the condition α .

Definition 2.1. Let $L_0 \subset L$ be a sublogic. Let x be an observable on L , $m \in M$, $a \in L - \{0\}$. We shall suppose that

- a) $R(x) \cup L_0$ is p.c.[a];
- b) $m(a) = 1$;
- c) There exists $m(x)$.

Then by a version of conditional expectation of the observable x in the state m , for L_0 , relativized by a notation: $E_m(x/L_0, a)$ we understand any observable z with the properties:

- a) $z \leftrightarrow a$;
- b) $R(z) \wedge a \subset L_0 \wedge a$;
- c) For any $b \in L_0$ $\int_b x dm = \int_b z dm$, where $\int_b x dm = \int_b m(x(d\alpha) \wedge b)$ if the integral on the right side exists.

Definition 2.2. Let x, y be observables. We shall say, that x, y are equal "modulo" a state m ($x \sim y[m]$) if for any $E \in \mathcal{B}(R^1)$ $m(x(E) \Delta y(E)) = 0$, where $a \Delta b = (a \wedge b^\perp) \vee (a^\perp \wedge b)$.

The relation " $\sim[m]$ " is reflexive and symmetric. Moreover, if $R(x) \cup R(y) \cup R(z)$ is p.c.[a], $m(a) = 1$, then $x \sim y[m]$, $y \sim z[m]$ implies $x \sim z[m]$ [7].

Theorem 2.1. [7]. Let x, y be such observables that $R(x) \cup R(y)$ be p.c.[a], where $m(a) = 1$ and L_0 be a sublogic of L . Then $E_m(x+y/L_0, m) \sim E_m(x/L_0, a) + E_m(y/L_0, a) [m]$.

3. Generalized Martingales and Submartingales

In this part we introduce a definition of generalized

martingales and submartingales. As before we shall assume that (L, M) is a summable quantum logic with the property α .

Definition 3.1. Let $\{L_n\}_{n=1}^{\infty}$ be a nondecreasing sequence of sublogic of L , $\{x_n\}_{n=1}^{\infty}$ be a sequence of observables on L , $\{a_n\}_{n=1}^{\infty} \subset L$. Let there be a state m with $m(a_n) = 1$ for all n . Then the triple (x_n, L_n, a_n) will be called a submartingale in the state m if it is holds:

- 1) $L_n \subset L_{n+1}$ for all n ;
- 2) $R(x_n) \cup R(x_{n+1}) \cup L_n$ is p.c. $[a_n]$ and moreover $R(x_n) \wedge a_n \subset L_n \wedge a_n$.
- 3) For all $b \in L_n$, $\int_b x_n dm \leq \int_b E_m(x_{n+1}/L_n, a_n) dm$.

A submartingale will be called a martingale in the state m if for any $b \in L_n$

$$\int_b x_n dm = \int_b E_m(x_{n+1}/L_n, a_n) dm.$$

Definition 3.2. [5]. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of observables on L . We shall say that

- a) x_n converges to x in $L_p(m)$ (denote $x_n \xrightarrow{p} x$), if $m(|x_n - x|^p) \rightarrow 0$;
- b) x_n converges to x in the measur. $m(x_n \rightarrow x[m])$, if for any $\epsilon > 0$ $\lim_n m((x_n - x)[- \epsilon, \epsilon]) = 1$.
- c) x_n converges to x almost everywhere with respect to m ($x_n \rightarrow x$ a.e. $[m]$) if for any $\epsilon > 0$ $m(\bigvee_{k=1}^{\infty} \bigwedge_{n=k}^{\infty} (x_n - x)[- \epsilon, \epsilon]) = 1$.

Lemma 3.1. Let (x_n, L_n, a_n) be a submartingale resp. a martingale in a state m . Let $\{z_n\}_{n=1}^{\infty}$ be any sequence of observables with the following properties:

- 1) $R(z_n) \cup R(z_{n+1}) \cup L_n$ is p.c. $[a_n]$;
- 2) $R(z_n) \wedge a_n \subset L_n \wedge a_n$;
- 3) $x_n \approx z_n[m]$ for all n .

Then (z_n, L_n, a_n) is a submartingale resp. a martingale in a state m .

Proof. Since $x_n \approx z_n[m]$, we have $\int |x_n - z_n| dm = 0$. Let $b \in L_n$.

Then

$$\begin{aligned}
 0 &= \int |x_n - z_n| dm = \int_{a_n} |x_n \wedge a_n - z_n \wedge a_n| dm = \int_{b \wedge a_n} |x_n \wedge a_n - z_n \wedge a_n| dm + \\
 &+ \int_{b^\perp \wedge a_n} |x_n \wedge a_n - z_n \wedge a_n| dm = \int_{b \wedge a_n} |x_n \wedge a_n - z_n \wedge a_n| dm = \int_b |x_n - z_n| dm \geq \\
 &\geq \left| \int_b |x_n - z_n| dm \right| \geq 0.
 \end{aligned}$$

It means that $\int_b |x_n - z_n| dm = 0$ for all $b \in L_n$. This implies $\int_b x_n dm = \int_b z_n dm$. We conclude that (z_n, L_n, a_n) is the submartingale resp. the martingale in the state m . (Q.E.D.)

Let us denote by $L(T)$ the smallest sublogic which contained T ($T \subseteq L$).

Lemma 3.2. Let (x_n, L_n, a_n) be a submartingale resp. a martingale in a state m . Let $\{z_n\}_{n=1}^\infty$ be any sequence of observables with the following properties:

- 1) $R(z_n) \wedge a_n \subseteq L_n \wedge a_n$;
- 2) $x_n \approx z_n[m]$ for all n .

Moreover let be $a_n \in L_n$ and there exist $\lim_{n \rightarrow \infty} a_n = a$. If x is such an observable that $x \leftrightarrow a$ and $R(x) \wedge a \subseteq L(\bigcup_{n=1}^\infty L_n) \wedge a$, then

- a) $x_n \xrightarrow{p} x$ iff $z_n \xrightarrow{p} x$;
- b) $x_n \rightarrow x[m]$ iff $z_n \rightarrow x[m]$.

Proof. As L_n is p.c. [a_n] and $\{L_n\}_{n=1}^\infty$ is nondecreasing subsets of L we have $L(\bigcup_{n=1}^\infty L_n)$ is p.c. [a]. Because $\{a \wedge a_n\} \cup \cup R(x) \wedge a \subseteq L(\bigcup_{n=1}^\infty L_n) \wedge a$ we have $x \wedge a \vee x \wedge a^\perp = x \leftrightarrow a \wedge a_n$. Now we put $x'_n = (x_n \wedge a_n) \vee (x_0 \wedge a_n^\perp)$, $z'_n = (z_n \wedge a_n) \vee (x_0 \wedge a_n^\perp)$, where x_0 is such an observable, that $x_0(\{0\}) = 1$, $x_0(\{1\}) = 0$. From this we have $x'_n \leftrightarrow z'_n$ for all n . Moreover $x'_n \approx z'_n[m]$, $x'_n \approx x_n[m]$, $z'_n \approx z_n[m]$. As we can write $x_n = x_n \wedge a_n \vee x_n \wedge a_n^\perp$ and $z_n = z_n \wedge a_n \vee z_n \wedge a_n^\perp$ then $\{x_n, z_n\} \leftrightarrow a \wedge a_n$ for all n . Then $m((x_n - x)(E)) = m((x_n \wedge a_n \wedge a - x \wedge a_n \wedge a)(E)) = m((x'_n \wedge a_n \wedge a - x \wedge a_n \wedge a)(E)) = m((x'_n - x)(E))$, for all $E \in \mathcal{B}(R^1)$. And $m((z_n - x)(E)) = m((z'_n - x)(E))$ for all n and for all

$E \in \mathcal{B}(R^1)$. Moreover the set $(R(x'_n) \cup R(z'_n) \cup R(x)) \wedge a_n \wedge ac L(\bigcup_{n=1}^{\infty} L_n) \wedge a$ and $a \wedge z'_n \wedge a_n \wedge x'_n \wedge a_n \wedge a[m]$. Thus

$$\begin{aligned} m((x'_n - x)(E)) &= m((x'_n \wedge a_n \wedge a - x \wedge a_n \wedge a)(E)) = m((z'_n \wedge a_n \wedge a - x \wedge a_n \wedge a)(E)) = \\ &= ((z'_n - x)(E)). \end{aligned}$$

Now we get

$$m((x_n - x)(E)) = m((z_n - x)(E)) \text{ for any } E \in \mathcal{B}(R^1) \text{ and for all } n.$$

a) Let $x_n \xrightarrow{p} x$. It means $0 = \lim_{n \rightarrow \infty} \int |x_n - x|^p dm$.

But

$$\begin{aligned} \int |x_n - x|^p dm &= \int |t|^p m((x_n - x)(dt)) = \int |t|^p m((z_n - x)(dt)) = \\ &= \int |z_n - x|^p dm. \end{aligned}$$

It means that $x_n \xrightarrow{p} x$ iff $z_n \xrightarrow{p} x$.

b) If $x_n \rightarrow x[m]$ then for all $\varepsilon > 0$

$1 = \lim_{n \rightarrow \infty} m((x_n - x)([-\varepsilon, \varepsilon])) = \lim_{n \rightarrow \infty} m((z_n - x)([-\varepsilon, \varepsilon]))$. It means that $x_n \rightarrow x[m]$ iff $z_n \rightarrow x[m]$. (Q.E.D.)

Theorem 3.3. Let (L, M) be a summable logic. Let (x_n, L_n, a_n) be a submartingale in the state m , $a_n \in L_n$ and there be a $\lim_{n \rightarrow \infty} a_n = a$. Let $\sup_n |x_n| < \infty$. Then there exists an observable x with the properties:

$$R(x) \wedge ac \left(\bigcup_{n=1}^{\infty} L_n \right) \text{ and } x_n \rightarrow x[m].$$

Proof. Put $y_n = (x_n \wedge a_n) \vee (x_0 \wedge a_n^{\perp})$. Then (y_n, L_n, a_n) is a submartingale in the state m (Lemma 3.1). From Lemma 3.2 it follows that $x_n \rightarrow x[m]$ iff $y_n \rightarrow x[m]$. We know, that $L(\bigcup_{n=1}^{\infty} L_n)$ is p.c.[a]. But $R(y_n) \subset L(\bigcup_{n=1}^{\infty} L_n) \wedge a$ and $L(\bigcup_{n=1}^{\infty} L_n) \wedge a$ is a Boolean- σ -algebra. If we use the Loomis-Sikorski theorem we get $(X, \mathcal{F}), h, \{f_n\}_{n=1}^{\infty}$ measurable space, σ -homomorphism, \mathcal{F} -measurable function resp. such that $f_n \circ h = y_n \wedge a$. Put $\mathcal{F}_n = \{E \in \mathcal{F} \mid h(E) \in \epsilon L_n \wedge a\}$. If $C \in \mathcal{B}(R^1)$ then $h(f_n^{-1}(C)) \in L_n \wedge a$. It means that $f_n^{-1}(C) \in \mathcal{F}_n$. Hence f_n is the measurable function for any n . Now

we have for $E \in \mathcal{G}_n$ $\int_E f_n(t) m_h(dt) = \int_{h(E)} f_n \circ h dm = \int_{b \wedge a} y_n \wedge a dm =$
 $= \int_b y_n dm = \int_b x_n dm \leq \int_b x_{n+1} dm = \int_E f_{n+1}(t) m_h(dt).$

Therefore, (f_n, \mathcal{G}_n) is a submartingale on the probability space (X, \mathcal{G}, m_h) . Because $m(x_n) = \int f_n(t) m_h(dt)$, $\sup_n m_h(|f_n|) < \infty$.

From this it follows that the assumption for the convergence theorem [9], [2] are fulfilled on some probability space.

Thus, there exists a $\sigma(\bigcup_{n=1}^{\infty} \mathcal{G}_n)$ -measurable function f (where $(\bigcup_{n=1}^{\infty} \mathcal{G}_n)$ is the smallest σ -algebra which contains $\bigcup_{n=1}^{\infty} \mathcal{G}_n$) with the property: $f_n \rightarrow f$ a.e. $[m_h]$. It means that $y_n \wedge a \rightarrow f \circ h$ a.e. $[m_h]$.

Now we put $x = f \circ h \vee x_0 \wedge a^\perp$. Then $R(x) \wedge a \in L(\bigcup_{n=1}^{\infty} L_n) \wedge a$ and $y_n \rightarrow x[m]$. Finally from Lemma 3.2 we have $x_n \rightarrow x[m]$. (Q.E.D.)

REFERENCES

- [1] J. Bán: Martingale convergence theorem in quantum logic, Math. Slovaca 37 (1987) 313-322.
- [2] J.L. Doob: Stochastic processes. New York, London. Chapman & Hall, (1953).
- [3] A. Dvurečenskij, S. Pulmannová: On the sum of observables in a logic. Math. Slovaca 30 (1980) 393-399.
- [4] S.P. Gudder: Uniqueness and existence properties of bounded observables. Pac. J. Math. 15 (1966) 81-92, 588-589.
- [5] S.P. Gudder, H.G. Mullikin: Measure theoretic convergences of observables and operators. J. Math. Phys. 14 (1973) 234-242.
- [6] S. Loomis: On the representation of σ -complete Boolean algebras. Bull. AMS 53 (1947) 757-760.
- [7] O. Nánášiova, S. Pulmannová: Relative conditional expectations on a quantum logic. Aplik. Matematiky

30(1985) 332-350.

[8] O. Nánásiová: Ordering observables and characterization of conditional expectations on a logic. Math. Slovaca 37(1987) 323-340.

[9] T. Neubrun, B. Riečan: Miera a integral. Veda, Bratislava (1981).

[10] S. Pulmannová: Compatibility and partial compatibility in a quantum logic. Ann. Inst. H. Poincaré 43 (1981) 391-403.

[11] S. Pulmannová: Commutator in orthomodular lattices. Demonstratio Math. 18(1985) 187-208.

[12] R. Sikorski: Boolean algebras. Berlin (1964).

[13] S.V. Varadarajan: Geometry of quantum theory. Princeton I. Van Nonstrand (1968).

SLOVENSKÁ TECHNICKÁ UNIVERZITA, STAVEBNÁ FAKULTA
KAT. MATEMATIKY A DESK. GEOM.,
RADLINSKÉHO 11, 813 68 BRATISLAVA, CZECHOSLOVAKIA

Received June 15, 1989.