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MARTINGALES AND SUBMARTINGALES ON QUANTUM LOGIC

In this paper, we introduce the notion of submartingales
and martingales in the state m on L, relative to sequence

{an}n_ from L, such that m(an)=1, R(xn)uLnuR(xn+l) is
partially compatible with respect to a, where X, is a sequence
of observables on L, {Ln}n_ is a nondecreasing sequence of

sublogic of L. This submartingales and martingales of an
integrable functions on a probability space (Q,¥,u) and the
case which is investigated in 1 is special case, when a =a ..
for all n. The main result is Theorem 3.3. It is analogous to
martingale convergence theorem [9], [2], but this convergence
is only in the state m. The author does not know how to prove

this theorem for the convergence a.e. in a state m.

0. Preliminaries

Let L be a quantum logic, i.e. an orthomodular o-lattice
[13]. Explicitly: L is a quantum logic if the following axioms
are fulfilled:

I) L is a non empty, partially ordered set with the relation
"<" with the maximum and minimum element (1 and 0 resp.)
where 1#0;

II) For any sequence {an}n_ cLL we have vaneL or AanEL,
where v,A are lattices operations;

III) There is 1-1 mapping 1:L—L satisfying: a) for all aeL
(al)l=a; b) for all aeL we have aval=1, aAal=0, for all ael;
c) if a,bel, asb then blsal;

IV) Orthomodular law: For any a,beL, as<b, it holds b=av(alAb).

Let L be a quantum logic and a,belL. We shall say that a,b
are orthogonal (aib) if asb'. The elements a,b will be called
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compatible (a<b) if there are three mutually orthogonal
elements al,bl,ceL such that a=a,vc, b=b1vc.

It is know [13], that for all a,belL a—b iff L is a
Boolean algebra.

A subset L.cL will be called a sublogic of L if a)

1
0,1eLl; b) a*eL1 for each aeLl; c) vaneL1 for each sequence
®
{an}n=1 Ll'

A subset BcL will be called a sub-c-algebra of L, if B is
a sublogic of L such that for any a,beB aeb.

A sublogic L,
of pairwise orthogonal elements from L., is at most countable.

1
In this case, of {aa} <L, then there is a countable sequence
{b_}® €L, such that

<L will be called separable if any sequence

ocd

n’'n=
[ ]
Va = \/b.
aed & n=1 M

Let (X,?) be a measurable space. A c-homomorphism from S
to L is any mapping h with the following properties: 1)

h(X)=1; 2)If A,Bef and AnB=2, then h(A)ith(B); 3) If {An}:=

c?,
(-] -] 1 1 1

then h(UAn) = \/h(An). If X=R and ¥=B(R") then the
n=1 n=1

o-homomorphism h will be called an observable on L.
In subsequent paragraphs we shall often use the following
theorem.

Theorem 0.1. (Lommis - Sikorski [6],[12],[13]) Let B be a
Boolean c-algebra. Then there exist a measurable space (X,¥)
and a o-homomorphism h from ¢ onto B.

The set R(x)={x(E) | EeB(Rl)} is said to be the range of
the observable x. It is clear that R(x) is a Boolean
sub-g-algebra of L and if f is any Borel function then
R(fex)cR(Xx).

Definition 0.1, Let L be a gquantum logic and x, vy be ob-
servables on L. We shall say that x, y are compatible (xe3y)
if for any beR(x), aeR(y) it holds aesb.

S.V. Varadarajan [13] has proved the following properties:
If B is a countably generated Boolean sub-c-algebra of L then
there exists such an observable z on L that R(z)=B. If x,y are
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any observables and xe»y then there are an observable z on L
and Borel functions f,qg satisfying x=fo.z, y=geo2z.

Put L[O'a]={beL | b=a}, aeL, a*#0. Then L[O,a]
tum logic with the maximum element a and orthocomplement "*%,

is a quan-

which is defined as follows:
b* = b'aa, for beL .
. [0,a)
Now we are going to define a measure on the quantum 1logic

L. A function m:L—([0,o») will be called a measure on L if it
[+

holds: a) m(0)=0; b) If {an}n=1cL, a ia, for n=t, then
ln(\/an) = E m(a ). We shall consider nontrivial measures
n
n

only m(1)#0. If m(1)=1, then m will be called a state on L.

If x is an observable on L and m is a state, then the
function mx:B(Rl)—a[o,l] where mx(E)=m(x(E)), EeB(Rl) said
to be a probability distribution of the observable x in the
state m.

An expectation of an observable x, in the state m is the
number

m(x) = {x dm = Shmx(dl),
if the integral on the right side exists.

1. Partial Compatibility

Definition 1.1. [10] Let L be a quantum 1logic and McL,
aeL, a*0. We shall say that M is partially compatible with
respect to a (abb. as M is p.c.[a]) if the following is true:
1) For all beM we have bea (Mea); 2) For all b,ceM we have
braescaa is a compatible set, (Maa={baa | beM}).

Let aeL, a#*0. Then the subset Maa is compatible in L iff

it is compatible in L[o,a]'

For F={a1,...,an}cL put
d d

com(F)=\/ n allA...Aann, where D={0,1}, d={d

d.}, a=a’,
deD n

11
a“=a.
The set M is p.c.[com(F)] ([11].

The cardinality of a set G will be denote by G.
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Definition 1.2. [11] Let BcL. Put
com(B)={com(F) | FcB, |F|<w}.
The element com(B)eL, if it exists, is said to be a commuta-
tor of the set B.
Note that B is p.c.[com(B)] [11}].

Theorem 1.1. [11]. Let BcL such that com(B) exists. Then
the set B is p.c.[a) iff aeB and ascom(B) where aeL, a=0.

Let M be a set of states on L. The pair (L,M) is a quite
full system (abbr. q.f.s.) if {meM | m(a)=1}c{meM | m(b)=1}
implies asb.

. Let (L,M) be g.f.s. We say that L has the property U if
m(x)=m(y) for all meM implies x=y, where x,y are bounded
observables on L. We say that L has property E if for any pair
X,y of bounded observables there is a unique bounded
observable z such that m(z)=m(x)+m(y) for any meM. The
observable z is called the sum of observables x,y and we write
z=x+y. A pair (L,M) is called a sum logic if it is g.f.s. and
L has the properties U and E, (see [4], [3]).

Let x,y be such observables, for which the sum x+y exists.
In what follows we shall suppose that the following condition
is fulfilled:

a) If aelL-{0} and R(xX)UR(y)e»a then x+ye>a and x+yAra=
=xAa+yaa, where zaa is an observable on L[o,a]’ which is de-
fined by zaa(E)=z(E)aa, for Eeﬂ(Rl). For example, the guantum
logic on the Hilbert space satisfies the condition a).

Definition 1.3. Let L be a quantum logic and {an}:=ch. We
shall say that the sequence {an}:=1 has a 1limit equal to a

@® - @® @®
lima=a if V Aa = A Va =a.

n-w n=1 k=n n=1 k=n
Lemma 1.2. Let L be a quantum 1logic and {an}:=1cL. If
there exists 1lim a =a and there is a state m with the
n-oo

property m(an)=1 for all n, then m(a)=1.

The proof is obvious.

o0
Let (M }h—a n+1

and Mn be p.c.[a] for all n, a be any element aeL-{0}. Then it

be such system of subset of L that MncM
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[+ ]
is clear, that L_}Mn is p.c.[a]. In addition, if com(M_)
n=1

@ «©
exist for all n, then com| /M = lim comM = A com(M_).
n=1 o n=1

2. Conditional Expectation

A relative conditional expectation is defined and analyzed
in (7], (8). At this place we introduce only the definition
and some fundamental properties.

Throughout we shall assume that (L,M) be a summable
quantum logic fulfilling the condition «).

Definition 2.1. Let LocL be a sublogic. Let x be an ob-
servable on L, meM, aeL-{0}. We shall suppose that

a) R(x)uLo is p.c.[a};

b) m(a)=1;

c) There exists m(x).
Then by a version of conditional expectation of the observable

X in the state m, for L relativized by a notation:

’
Em(x/Lo,a) we understand ang observable 2z with the pro-
perties:

a) zea;

b) R(z)AacL0

c) For any beL0 §x dm = §z dm, where §{x dm = {m(x(da)ab)
b b b
if the integral on the right side exists.

Aa;

Definition 2.2. Let x,y be observables. We shall say, that
X,y are equal "modulo" a state m (x=y(m]) if for any
EeB(Rl) m(x(E)Ay(E))=0, where aAb=(aAbl)v(alAb).

The relation "«(m]" is reflexive and symmetric. Moreover,
if R(x)VR(Y)VR(z) 1is p.c.[a], m(a)=1l, then x=y[(m], y=z[m]
implies x=z[] [7].

Theorem 2.1, (7]. Let x,y be such observables that
R(x)vR(y) be p.c.[a], where m(a)=1 and Lo be a sublogic of L.
Then Em(x+y/L0,m)mEm(x/Lo,a) + Em(y/Lo,a) [m].

3. Generalized Martingales and Submartingales

In this part we introduce a definition of generalized
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martingales and submartingales. As before we shall assume that
(L,M) is a summable quantum logic with the property «).

=]
Definition 3.1. Let {Ln}n=l

sublogic of L, {xn}z=1 be a sequence of observables on L,

{an}:=1cL. Let there be a state m with m(an)=1 for all n.

be a nondecreasing sequence of

Then the triple (x_,L_,a_) will be called a submartingale in

n’"n’"n
the state m if it is holds:
1) anLn+1 for all n;
2) R(xn)uR(xn+1)uLn is p.c.[an] and moreover R(xn)Aanc
anAan.
3) For all beLn, gxn dm = iEm(xn+1/Ln,an) dm.

A submartingale will be called a martingale in the state m if
for any beLn

gxn dm = gEm(xn+1/Ln'an) dm.

Definition 3.2. [5]. Let {xn}§=1
bles on L. We shall say that
a) x, converges to x in Lp(m) (denote xn—Bex), if

be a sequence of observa-

m(|xn-x|p)—+0;

b) X, converges to x in the measur. m(xn—ax[m]), if for
any €£>0 lﬁm m((xn-x)[-c,c])=1.

c) X, converges to x almost everywhere with respect to m

[++] [+ 4]
(x,—x a.e.[m]) if for any €>0 n(\V A (xn-x)[-c,c])=1.

k=1 n=k
Lemma 3,1, Let (xn,Ln,an) be a submartingale resp. a mar-
tingale in a state m. Let {z }m be any sequence of

observables with the following progegties:
1) R(zn)uR(zn+1)uLn is p.c.[a ]);
2) R(zn)AananAan;
3) xnmzn[m] for all n.
Then (zn,Ln,an) is a submartingale resp. a martingale in a
state m.

Proof. Since x «z [m], we have S|xn-zn| dm=0. Let beL .

Then
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0= S|xn—zn| dm = S X _Aa -z Aa_| dm = Slana -z _Aa | dm +

n"“n “n"“n n “n"“n
a, baa
+ S [x ra -z Aa | dm = s |x ra -2z Aa | dm = S|xn-zn| dm z
blAan b"an. b
=|gxn-zn dm|z0.
b

It means that Kxn-zn dm=0 for all beLn. This implies andm=
b b
=Szn dm. We conclude that (zn'Ln'an) is the submartingale
b
resp. the martingale in the state m. (Q.E.D.)
Let us denote by L(T) the smallest sublogic which

contained T (TcL).

Lemma 3,2, Let (xn'Ln'an) be a submartingale resp. a mar-

s . «©
tingale in a state m. Let {zn}n=1

observables with the following properties:

be any sequence of

1) R(zn)AananAan;
2) xnuzn[m] for all n.

Moreover let be aneLn and there exist ﬁ*g an=a. If x is such

®
an observable that x«»a and R(x)AacL(Ld}Ln)Aa, then

n=1
a) xn—Bex iff zn—Rex;

b) xn—ax[m] iff zn—ax[m].

Proof. As Ln is p.c.(a,] and ({L_}> is nondecreasing

nn=1
[+
subsets of L we have L(#;{Ln) is p.c.{a]. Because {ara }u
[« <]
1—
uR(x)AacL(k;{Ln)Aa we have xAavxaa'=x <> aaa . Now we put

. _ 1 . 1 .
n (anan)v(onan), LI (znAan)v(onan), where x is such an

o
observable, that xo({O})=1, xo({l})=o. From this we have

x’«»zh for all n. Moreover xhuzh[m], X, ax [m], z/’«z [{m]. As

n n °n n “n
. 1 1
W write X_=X_Aad_VX_A an =Z_Ad_VZ_A
e can n=*n"3n xn an ad zn zn an zn an then
X «aAa for a . hen - = A -
{ n'zn} n 11 n T m((xn x) (E)) m((xn a Aa

-annAa)(E)) = m((thanAa-annAa)(E)) = m((xh-x)(E)), for all

EeB(Rl). And m((zn-x)(E))=m((zh-x)(E)) for all n and for all
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1 . . ®
EeB(R"). Moreover the set (R(xn)uR(zn)uR(x))AanAacL(kziLn)Aa

and aaAz’Aa_ox_Aa_A .
nfan*Xpran a[(m). Thus

m( (x;,-X) (E))

m((thanAa-XAanAa)(E)) = m((zhAanAa-annAa)(E))=

((2,=x) (E)) -

Now we get
m((xn-x)(E)) = m((zn-x)(E)) for any EeB(Rl) and for all n.
a) Let xn—Bax. It means O0=lim Slxn—x|p dm.

n-o
But

S|xn-x|p dm = sltlpm((xn-x) (dt)) = Sltlpm((zn-x) (at)) =
=S|zn-x|p dm.
It means that xn—Eax iff zn—Bax.
b) If xn—ex[m] then for all €>0

1= 1lim m((xn—x)[—c,e]) = 1lim m((zn-x)[-c,e]). It means that
n-w n-
xn—ex[m] iff zn—ax[m]. (Q.E.D.)
Theorem 3.3. Let (L,M) be a summable logic. Let (xn'Ln’an)
be a submartingale in the state m, a eL and there be a

1lim a_=a. Let sup(|x_|)<w. Then there exists an observable x
n n
n->w n

with the properties:

[ ]
R(x)Aac(L_}Ln) and x —x[m].
n=1

— l 3 -
Proof., Put yn-(anan)v(onan). Then (yn,Ln,an) is a sub
martingale in the state m (Lemma 3.1). From Lemma 3.2 it fol-

@
lows that x —x[m] iff y —x[m]. We know, that L(kZiLn)

@ [e ]
is p.c.[a]. But R(yn)cL(L_)Ln)Aa and L(L‘}Ln)Aa is a Boolean-
n=1 n=1

-c-algebra. If we use the Loomis~Sikorski theorem we get

2]
(X,9), h, {£}n.

able function resp. such that fnoh=ynAa. Put 9n={Eey | h(E)e

1 measurable space, o-homomorphism, ¢-measur-

€L Aa}. If ceB(R')  then h(f;I(C))eLnAa. It means that

fgl(c)eyn. Hence fn is the measurable function for any n. Now
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we have for Eef_ S £ (t)m (dt) = 5 £ oh dm = g y A2 dm =
E h(E) bra
= Syndm - andm < Sxm_ldm = gfnﬂ(t)mh(dt).
b b b E

Therefore, (fn,fn) is a submartingale on the probability space
(X,f,mh). Because m(xn) = an(t)mh(dt), s;p mh([fn|)<m.

From this it follows that the assumption for the convergence
theorem [9], [2] are fulfilled on some probability space.

o]
Thus, there exists a o¢(|_J# )-measurable function f (where
n=1

© 0
(§Z{yn) is the smallest o-algebra which contains kziyn) with

the property: fn—af a.e.[mh]. It means that ynAa—afoh
a.e.[mh]. .
L
Now we put x=fehvx0Aa . Then R(x)AacL(#;{Ln)Aa and

yn—ex[m]. Finally from Lemma 3.2 we have xn—ax[m]. (Q.E.D.)
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