
DEMONSTRATIO MATHEMATICA 
Vol. XXIV No 1-2 1991 

Radoslaw Godowski, Tadeusz Traczyk. 

IMPLICATIVE ORTHOPOSETS 

1. Introduction 

In [2] the present authors in a cooperation with Professor 
Jules Varlet, introduced a notion of implication , as a par-
tial operation, on an orthomodular poset P. This operation was 
supposed to reduce to the Hardegree's implication 

a —» b = a' ν ( a λ b ) . 

in the case Ρ be an orthomodular lattice. 
Surprisingly, it happens that in the case of implicative 

orthoposet Ρ (see the definition 7 below) 

a —• b exists iff a Λ b exists in Ρ . 

This statement is the main result of the present paper. It 
also has some nice consequences, which are discussed in 
section 4 below. 

2. Basic definition and notions 

Let us recall that an orthocomplemented poset, abbreviated 
orthoposet, (see [1]) is an algebraic structure 

(P, s, 0, 1), 
where (P, s, 0, 1) is a poset with the least and the greatest 
element - denoted by 0 , 1 respectively, and a ι—> a' is a 
unary operation on Ρ satisfying the following conditions: 
( OCP1 ) a" = a 
( OCP2 ) a s b ==» b' s a' 
( OCP3 ) a s b' ==» a ν b exists 
( OCP4 ) a ν a' = 1 
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An orthoposet Ρ is said to be orthomodular if it satisfies: 

( 0CP5 ) ( a s b and a ν b' = 1 ) — > a = b . 

If a s b', we say that a and b are orthogonal and we write 

a ι b . We say that a commutes with b and we write aCb, if 

there exist mutually orthogonal elements a^, b^, c in Ρ such 

that : 

a = a 1 ν c and b = b^ ν c . 

An ortoposet Ρ is said to be a Boolean poset (see [4]) if it 

satisfies: 

(BP) a a b = 0 ==* a j. b . 

Every Boolean poset is orthomodular. In a Boolean poset, if 

for some a, b the l.u.b. a ν b exists, then aCb (see [4]) . 

We say that an orthomodular poset (P, s, ', ο, 1) is a hori-

zontal sum of a family {( p
t » si ' > !) · t e T } o f ortho-

modular posets (see [1]) , if the following conditions hold : 

HI) t * s > P t η P s = {0, 1} , 

H2) Ρ = U {P t , teT } , 

H3 ) asb in Ρ iff there exists teT such that a, b e Pfc , 

and a^b in P^ , 

H4) the unary operation ' on P^ is a restriction of the oper-

ation ' on Ρ . 

A partial field of sets (see [1]) is a nonempty family M of 

subsets of a set X satisfying for any A,Β e M the following 

conditions: 

(PFS1) AeM > X \ A e Μ , 

(PFS2) [A, Β e M , AnB = o] AuB e M . 

Observe that a partial field of sets M forms an orthomodular 

poset under inclusion as a partial order and natural operation 

A' = Χ \ A , 

where 0 = e, l = X and for any A , BeM , Α ι Β iff AnB = 0. 

A typical, nontrivial example of a partial field of sets is a 

family M of even subsets of even (finite) set X . Before gi-

ving another example let us observe that if for any xeX, 

{x> e M then M forms a Boolean poset . 
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{1, 2, 3, 4 , . . . } , A = {2, 4, 6, 8 , . . . } , 
. We define a family M as follows : 

subsets C , D of X such that 

subsets C, D of X such that 
or 

subsets C , D of X such that 

subsets C, D of X such that 

Example 1. Let X = 
Β = {3, 6, 9, 12,...} 
ZeM iff 
1) Ζ is finite or 
2) X\Z is finite or 
3) there exist finite 

Ζ = (A\C) υ D or 
4) there exist finite 

Ζ = ((X\A)\C) υ D 
5) there exist finite 

Ζ = (B\C) u D or 
6) there exist finite 

Ζ = ((X\B)\C) u D. 
Observe that this family is a 
a Boolean poset (we denote it 
exist in M. The idea of 
J. Klukowski ([4]) . 

3. Implicative orthoposets 

partial field of sets and forms 
by K2). Moreover AAB does not 
this construction is due to 

Definition 2. (see [2]). An orthoimplication on an ortho-
poset Ρ is a partial binary 
operation —• defined as follows : 

c = a —• b iff c is the smallest element in Ρ such that: 
1) a' s c 
2) (xsa and xsb) = » x*c. 
The above definition is a natural generalization of 
Hardegree's orthoimplication (see [3]). 

Lemma 3. (see [2]). a —> b exists in Ρ iff the least up-
per bound 

c = \/ (a'vx) exists. Then a —• b = c . 
x*a,b 

Corollary 4. If a Λ b exists in Ρ then a —• b exists and: 
a —> b = a —> (aAb) = a'v (aAb) . 

Example S. Observe that in the orthoposet K2 (Example 2.1), 
A —» Β does not exist. 
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It follows from Corollary 4 that in particular, 
if asb , then a —> b = 1 . 

The converse statement is not true in general, even if the 
orthoposet Ρ is orthomodular. 

Example 6. Let M be a partial field of even subsets of the 
set X = { 1 , 2 , 3 , 4 , 5 , 6 } . Let A = { 1 , 2 , 3 , 4 } , 
and Β = { 1 , 2 , 3 , 5 ) . Then A —» Β = 1 , and A/ s Β . 

Definition 7. (see [2]). An orthoposet Ρ is said to be im-
plicative if 

a —> b = 1 implies a s b , for all a,b e Ρ . 
In [2] it is proved that every implicative orthoposet is 
orthomodular. Observe that a horizontal sum of a family F of 
orthomodular posets is implicative iff every member of F is 
implicative . 

Lemma 8. Let Ρ be an orthomodular poset. If a —> b exists 
in Ρ then : 

1) a Λ ( a —» b ) exists 
2) [ a λ ( a — > b ) ] —• b = 1 
3) [ χ s a and χ s b ] = » χ s a a ( a —> b ) . 
Proof. 1) Observe that a C (a —* b) because a' s a —» b. 

Then the meet c = a Λ ( a —» b ) exists . 
2) We have to show that c —> b = 1. Suppose that d e Ρ is such 
that : 

1) c' s d 
2) [χ s c and χ s b] = » χ s d 

or, equivalently : 
la) a' s d 
lb) (a b)' s d 
2) [χ a c and χ s b] = > χ s d. 

It follows from la) and 2) that a — » b a d . Then from this 
fact and from lb) we obtain d = 1 . 
3) If xsa and xsb then it follows from the definition of 
orthoimplication that xsa —> b. Thus xsa Λ (a —> b) . 
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Now we can prove the converse to Corollary 4 . 

Proposition 9. In an implicative orthoposet P, if a —• b 
exists then aAb exists in Ρ and aAb = a λ (a —> b) . 

Proof. Evidently a λ (a —» b) sa. From Lemma 8.2) it 
follows that a λ (a —> b) s b. This fact together with Lemma 
8.3) completes the proof. 

Corollary 10. Let Ρ be an implicative orthoposet such that 
a —> b exists for all a,b e P. Then Ρ is an orthomodular 
lattice. 

Definition 11. ( see [2] ). A partial orthomodular lattice 
(abbreviated pomi) is an orthomodular poset satisfying the 
condition: 

a A b exists a' λ b exists. 
Observe that any orthomodular lattice and any Boolean poset is 
a pomi . Moreover a horizontal sum (as well as a product) of a 
family F of orthomodular posets is a pomi iff every member of 
F is . 

In [2] it is proved that every pomi is implicative. In 
particulary any orthomodular lattice and any Boolean poset is 
implicative. 

Proposition 12. (see [2]). Let Ρ be an implicative ortho-
poset. Then the following conditions are satistied: 

(1) a —» 0 = a' 
(a —> 0) —• 0 = a 

(2) 0 —> a = 1 
(3) (a —» b = b —» a = 1) ==» a = b 
(5) if a —• to, a —• c exist then 

(b c = 1) — » (a —• b) —• (a c) = 1 
(6) (a -» b = 1) ==» b —» a = (a —» 0) (b 0) 
(7) if c — » a exists then : 
a —• (b —> 0) = b —• c = = 1 — > (c a) (b a) = 
(8) if a —• b exists then 

(a —> b) —» (a —• 0) = (b —> a) —> (b —• 0) 
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4. Partial orthoimplicative algebras 

In [2] an orthoimplicative algebra has been introduced 
and investigated. It is, by definition an algebra (P, •, 0, 1) 
of type (2 ,0 ,0) for which the basic properties (1) - (8) of 
—> serve as the set of axioms. It was proved in [2] that if we 
define an ordering relation in Ρ by 

a s b iff ab = 1 
and an orthocomplementation operation by 

a' = aO 
then the associated system (P , ', 0, 1) is an implicative 
orthoposet and a —• b s ab whenever a —» b exists. 

In this section we define a partial orthoimplicative 
algebra as a partial algebra (Ρ ,•, 0, 1) with two constants 0 
and 1 and the partial binary operation · fullfils some axioms. 
The set of axioms is divided into 3 parts. 

The first part (axioms 1-3) contains existential axioms. 
Here p(xlf..,xn) denotes any term function over · . The axioms 
say when p(x1#..,xn) must exist. 

The second part ( axiom 4 ) contain axioms of the form: 

ρ ( χ ) = q ( χ ) 

where the existence of ρ and q follows immediately from the 
axioms of first part. 

The third part (axioms 5-11) contains axioms of the form: 
if PJ^ÍXJ^/· · ,xn) / ··/ Pk ( xi'"' xn ) e x i s t a n d *(Ρ1(··-Ρη) holds 
then q^(x^,..,xR), .., q1(x1,..,xn) exist and *(P1,..,Pn, 
q^,..,q^) holds, where Φ and Ψ are conjuctions of equalities 
of terms p^ and q^ . 

Definition 13. Let (P, ·, 0, 1) be a partial algebra with 
two constants 0 and 1 and a partial binary operation ·. We say 
that Ρ is a partial orthoimplicative algebra if the following 
hold (where Τ denotes the set of all term function over ·): 

Al. p(0, a, 1) exists for any aeP and any peT, 
A2. ab exists = φ ba exists for any a, b e P, 
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A3, ab exists and ab = 1 = » P(0, a, b, 1) exists for 
any a, beΡ and any peT, 

A4. Oa = 1 for any aeP , 
A5. if ab exists and ab = ba = 1 then a = b , 
A6. if ab exists and ab = 1 then : 

1. ba = aO-bO 
2. bOaO = 1 
3. bO-a = b 
4. a O b = b 

A7. if ab exists then aO-ab exists and aO-ab = 1 , 
A8. if ab, be exist and ab = be = 1 then ac exists and 

ac = 1 , 
A9. if a-bO, be, ac exist and a-bO = be = 1 then ca-ba 

exists and ca-ba = 1 , 
AIO. if ab exists then ab-aO = ba-bO , 
All. if ab, be, ac exist and be = 1 then ab-ac exists and 

ab-ac = 1. 
The main result of this section is the following 
Theorem 14. Let (P, ·, 0, 1) be a partial orthoimplicative 

algebra. We define: 
a s b iff ab exists and ab = 1 

a' = aO. 
Then (P, s, o, 1) is an orthomodular poset. 
We will call it shortly an associated orthomodular poset. 
We precede the proof with some lemmas. 

Lemma 15. Let (P, ·, 0, 1) be a partial orthoimplicative 
algebra. Then the following hold: 
(Wl) 00 = 1 , 
(W2) xO·0 = χ , 
(W3) lx = X , 
(W4) Xl = 1 , 
(W5) XX = 1 , 
(W6) if x-y0 exists and x-y0 = 1, then y-x0 = 1 and 

xO·y = yO·χ, 
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Proof. 
(Wl): put a = 0 in A4 , 
(W2): put a = 0 , b=xinA6.3 , 
(W3): put a = 0 , b = χ in A6.4 and apply (HI) , 
(W4): put a = 0 , b = xO in A6.2 and apply (Wl) and (W2) , 
(W5): put b = 0 , a = xO in A7 and apply (W2) , 
(W6): put a = χ , b = yO in A6.2 and apply (W2) , 

put a = χ , b = yO in A6.1 and apply (W2) . 
Lemma 16. Let (Ρ, · , 0, 1) be a partial orthoimplicative 

algebra and s be the relation defined in Theorem 14. Then 
(P, s, ο, 1) is a bounded poset. 

Proof. This is a consequence of axioms A4, A5, A8 and the 
above Lemma 15 (W4, W5). 

Lemma 17. Let (Ρ, ·, 0, 1) he a partial orthoimplicative 
algebra and * be the partial order defined in Theorem 14. Sup-
pose that for some x, y € Ρ , χ a yo. Then yO · χ is the least 
upper bound of χ and y, i.e.: 

x s yo ——• yO-x * χ ν y. 
Proof. First we prove that χ , y s yo*χ . Put a = xO , 

b = y in A7 we obtain ( χΟΌ ) a ( χθ-y ) , i.e. χ s xO y. 
Observe that it follows from Lemma 15. (H6) that y s χο and 
yO'X = χθ-y. Then y a y0*x = xO-y. 

Now suppose that for some zeP we have χ , y s ζ. He will 
show that yO-x s ζ . Put a = χ , b = z 0 , c = y 0 in A9. He 
obtain: (yO-x) * (zOx) . Put a = χ , b = ζ in A6.3. He obtain 
ζ0·χ - ζ. Thus yO-x * z. 

Corollary 18. If χ * y then y-x = χ ν yO . 
Lesna 19. Let (Ρ, ·, 0, 1) be a partial orthoimplicative 

algebra and let x, y, ζ e Ρ be such that xy exists and 
ζ s χ, y. Then ζ s xy. 

Proof. Put a = x, b = ζ, c = y in All, we obtain xz * xy . 
But xz " ζ ν xO fc ζ . Then ζ a xy . 
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Proof of Theorem. It was proved (Lemma 16) that (P, s, 0, 
1) is a bounded poset. The property χ " = χ follows from Lemma 
15 (W2). The implication χ s y — ^ y' s χ' follows from A6.2. 
It is proved in Lemma 17 that χ s yO — * x v y = x0-y = y0-x . 
Hence (putting y = xO) we obtain χ ν χ' = χ0·χ0 = 1. Finally 
suppose that χ s y and χ ν y' = l. We have to prove that x=y. 
Actually, if xsy then (Corollary 18) χ ν yO = yx, thus yx=l, 
i.e. ysx . Therefore x=y. This completes the proof of our 
Theorem. 

Lemma 20. Let (Ρ, ·, 0, 1) be a partial orthoimplicative 
algebra with associated orthomodular poset (P, s, ', ο , 1 ) . 
Let a, b € Ρ be such that ab exists in P. Then aAb exists and 

a A b = a A a b = b A b a . 
Proof. (A7) says that a' s ab. Then (Corollary 18) ab·a' = 

= a' ν (ab)' = (a λ ab)' . But (AIO) aba' = bab'. Hence 
a a ab = b a ba. Therefore a a ab Λ a, b . On the other side, 
if c s a, b then (Lemma 19) c s a a ab . 

Corollary 21. If · is a total operation on Ρ then the as-
sociated orthomodular poset (P, s, ', 0, 1) forms an ortho-
modular lattice 

Theorem 22. If ab exists in a partial orthoimplicative 
algebra then a —> b exists in the associated orthomodular 
poset and a —> b = ab . 

Proof. If ab exists then (Lemma 20) aAb exists and a —* b 
exists. Moreover a —» b = a' ν (a a b) = a' ν (a a ab). But 
a' s ab. Then a' ν (a a ab) = ab. Therefore a —> b = ab . 

Example 2. Let (P, s, ', 0, 1) be an orthomodular poset. 
Define a partial operation · on Ρ as follows: 

a-b exists iff a C b ; in this case a-b = a' ν b . 
Then (Ρ, ·, 0, 1) forms a partial orthoimplicative algebra 
such that a s b iff ab = 1 . 

This example shows that, in general, the orthomodular po-
set associated with a partial orthoimplicative algebra can be 
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non-implicative. 
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