

Radoslaw Godowski, Tadeusz Traczyk

IMPLICATIVE ORTHOPOSETS

1. Introduction

In [2] the present authors in a cooperation with Professor Jules Varlet, introduced a notion of implication, as a partial operation, on an orthomodular poset P . This operation was supposed to reduce to the Hardegree's implication

$$a \rightarrow b = a' \vee (a \wedge b).$$

in the case P be an orthomodular lattice.

Surprisingly, it happens that in the case of implicative orthoposet P (see the definition 7 below)

$$a \rightarrow b \text{ exists iff } a \wedge b \text{ exists in } P.$$

This statement is the main result of the present paper. It also has some nice consequences, which are discussed in section 4 below.

2. Basic definition and notions

Let us recall that an orthocomplemented poset, abbreviated orthoposet, (see [1]) is an algebraic structure

$$(P, \leq, ', 0, 1),$$

where $(P, \leq, 0, 1)$ is a poset with the least and the greatest element - denoted by 0 , 1 respectively, and $a \mapsto a'$ is a unary operation on P satisfying the following conditions:

- (OCP1) $a'' = a$
- (OCP2) $a \leq b \implies b' \leq a'$
- (OCP3) $a \leq b' \implies a \vee b$ exists
- (OCP4) $a \vee a' = 1$

An orthoposet P is said to be orthomodular if it satisfies:
 (OCP5) $(a \leq b \text{ and } a \vee b' = 1) \implies a = b$.

If $a \leq b'$, we say that a and b are orthogonal and we write $a \perp b$. We say that a commutes with b and we write aCb , if there exist mutually orthogonal elements a_1, b_1, c in P such that :

$$a = a_1 \vee c \quad \text{and} \quad b = b_1 \vee c.$$

An ortoposet P is said to be a Boolean poset (see [4]) if it satisfies:

$$(BP) \quad a \wedge b = 0 \implies a \perp b.$$

Every Boolean poset is orthomodular. In a Boolean poset, if for some a, b the l.u.b. $a \vee b$ exists, then aCb (see [4]). We say that an orthomodular poset $(P, \leq, ', 0, 1)$ is a horizontal sum of a family $\{(P_t, \leq, ', 0, 1), t \in T\}$ of orthomodular posets (see [1]), if the following conditions hold :

- H1) $t \neq s \implies P_t \cap P_s = \{0, 1\}$,
- H2) $P = \bigcup \{P_t, t \in T\}$,
- H3) $a \leq b$ in P iff there exists $t \in T$ such that $a, b \in P_t$, and $a \leq b$ in P_t ,
- H4) the unary operation $'$ on P_t is a restriction of the operation $'$ on P .

A partial field of sets (see [1]) is a nonempty family M of subsets of a set X satisfying for any $A, B \in M$ the following conditions:

- (PFS1) $A \in M \implies X \setminus A \in M$,
- (PFS2) $[A, B \in M, A \cap B = \emptyset] \implies A \cup B \in M$.

Observe that a partial field of sets M forms an orthomodular poset under inclusion as a partial order and natural operation

$$A' = X \setminus A,$$

where $0 = \emptyset$, $1 = X$ and for any $A, B \in M$, $A \perp B$ iff $A \cap B = \emptyset$. A typical, nontrivial example of a partial field of sets is a family M of even subsets of even (finite) set X . Before giving another example let us observe that if for any $x \in X$, $\{x\} \in M$ then M forms a Boolean poset .

Example 1. Let $X = \{1, 2, 3, 4, \dots\}$, $A = \{2, 4, 6, 8, \dots\}$, $B = \{3, 6, 9, 12, \dots\}$. We define a family M as follows :

$Z \in M$ iff

- 1) Z is finite or
- 2) $X \setminus Z$ is finite or
- 3) there exist finite subsets C, D of X such that
 $Z = (A \setminus C) \cup D$ or
- 4) there exist finite subsets C, D of X such that
 $Z = ((X \setminus A) \setminus C) \cup D$ or
- 5) there exist finite subsets C, D of X such that
 $Z = (B \setminus C) \cup D$ or
- 6) there exist finite subsets C, D of X such that
 $Z = ((X \setminus B) \setminus C) \cup D$.

Observe that this family is a partial field of sets and forms a Boolean poset (we denote it by K_2). Moreover $A \wedge B$ does not exist in M . The idea of this construction is due to J. Klukowski ([4]).

3. Implicative orthoposets

Definition 2. (see [2]). An orthoimplication on an orthoposet P is a partial binary operation \rightarrow defined as follows :

$c = a \rightarrow b$ iff c is the smallest element in P such that:

- 1) $a' \leq c$
- 2) $(x \leq a \text{ and } x \leq b) \implies x \leq c$.

The above definition is a natural generalization of Hardegree's orthoimplication (see [3]).

Lemma 3. (see [2]). $a \rightarrow b$ exists in P iff the least upper bound

$$c = \bigvee_{x \leq a, b} (a' \vee x) \text{ exists. Then } a \rightarrow b = c.$$

Corollary 4. If $a \wedge b$ exists in P then $a \rightarrow b$ exists and:

$$a \rightarrow b = a \rightarrow (a \wedge b) = a' \vee (a \wedge b).$$

Example 5. Observe that in the orthoposet K_2 (Example 2.1), $A \rightarrow B$ does not exist.

It follows from Corollary 4 that in particular,
if $a \leq b$, then $a \rightarrow b = 1$.

The converse statement is not true in general, even if the orthoposet P is orthomodular.

Example 6. Let M be a partial field of even subsets of the set $X = \{1, 2, 3, 4, 5, 6\}$. Let $A = \{1, 2, 3, 4\}$, and $B = \{1, 2, 3, 5\}$. Then $A \rightarrow B = 1$, and $A \not\leq B$.

Definition 7. (see [2]). An orthoposet P is said to be implicative if

$a \rightarrow b = 1$ implies $a \leq b$, for all $a, b \in P$.

In [2] it is proved that every implicative orthoposet is orthomodular. Observe that a horizontal sum of a family F of orthomodular posets is implicative iff every member of F is implicative.

Lemma 8. Let P be an orthomodular poset. If $a \rightarrow b$ exists in P then :

- 1) $a \wedge (a \rightarrow b)$ exists
- 2) $[a \wedge (a \rightarrow b)] \rightarrow b = 1$
- 3) $[x \leq a \text{ and } x \leq b] \implies x \leq a \wedge (a \rightarrow b)$.

Proof. 1) Observe that $a \leq (a \rightarrow b)$ because $a' \leq a \rightarrow b$.

Then the meet $c = a \wedge (a \rightarrow b)$ exists.

2) We have to show that $c \rightarrow b = 1$. Suppose that $d \in P$ is such that :

- 1) $c' \leq d$
- 2) $[x \leq c \text{ and } x \leq b] \implies x \leq d$

or, equivalently :

- 1a) $a' \leq d$
- 1b) $(a \rightarrow b)' \leq d$
- 2) $[x \leq c \text{ and } x \leq b] \implies x \leq d$.

It follows from 1a) and 2) that $a \rightarrow b \leq d$. Then from this fact and from 1b) we obtain $d = 1$.

3) If $x \leq a$ and $x \leq b$ then it follows from the definition of orthoimplication that $x \leq a \rightarrow b$. Thus $x \leq a \wedge (a \rightarrow b)$.

Now we can prove the converse to Corollary 4 .

Proposition 9. In an implicative orthoposet P , if $a \rightarrow b$ exists then $a \wedge b$ exists in P and $a \wedge b = a \wedge (a \rightarrow b)$.

Proof. Evidently $a \wedge (a \rightarrow b) \leq a$. From Lemma 8.2) it follows that $a \wedge (a \rightarrow b) \leq b$. This fact together with Lemma 8.3) completes the proof.

Corollary 10. Let P be an implicative orthoposet such that $a \rightarrow b$ exists for all $a, b \in P$. Then P is an orthomodular lattice.

Definition 11. (see [2]). A partial orthomodular lattice (abbreviated poml) is an orthomodular poset satisfying the condition:

$$a \wedge b \text{ exists} \implies a' \wedge b \text{ exists.}$$

Observe that any orthomodular lattice and any Boolean poset is a poml . Moreover a horizontal sum (as well as a product) of a family F of orthomodular posets is a poml iff every member of F is .

In [2] it is proved that every poml is implicative. In particular any orthomodular lattice and any Boolean poset is implicative.

Proposition 12. (see [2]). Let P be an implicative orthoposet. Then the following conditions are satisfied:

- (1) $a \rightarrow 0 = a'$
 $(a \rightarrow 0) \rightarrow 0 = a$
- (2) $0 \rightarrow a = 1$
- (3) $(a \rightarrow b = b \rightarrow a = 1) \implies a = b$
- (5) if $a \rightarrow b$, $a \rightarrow c$ exist then
 $(b \rightarrow c = 1) \implies (a \rightarrow b) \rightarrow (a \rightarrow c) = 1$
- (6) $(a \rightarrow b = 1) \implies b \rightarrow a = (a \rightarrow 0) \rightarrow (b \rightarrow 0)$
- (7) if $c \rightarrow a$ exists then :
 $a \rightarrow (b \rightarrow 0) = b \rightarrow c = 1 \implies (c \rightarrow a) \rightarrow (b \rightarrow a) = 1$
- (8) if $a \rightarrow b$ exists then
 $(a \rightarrow b) \rightarrow (a \rightarrow 0) = (b \rightarrow a) \rightarrow (b \rightarrow 0)$

4. Partial orthoimplicative algebras

In [2] an orthoimplicative algebra has been introduced and investigated. It is, by definition an algebra $(P, \cdot, 0, 1)$ of type $(2, 0, 0)$ for which the basic properties (1) - (8) of \rightarrow serve as the set of axioms. It was proved in [2] that if we define an ordering relation in P by

$$a \leq b \text{ iff } ab = 1$$

and an orthocomplementation operation by

$$a' = a0$$

then the associated system $(P, \leq, ', 0, 1)$ is an implicative orthoposet and $a \rightarrow b \leq ab$ whenever $a \rightarrow b$ exists.

In this section we define a partial orthoimplicative algebra as a partial algebra $(P, \cdot, 0, 1)$ with two constants 0 and 1 and the partial binary operation \cdot fullfills some axioms. The set of axioms is divided into 3 parts.

The first part (axioms 1-3) contains existential axioms. Here $p(x_1, \dots, x_n)$ denotes any term function over \cdot . The axioms say when $p(x_1, \dots, x_n)$ must exist.

The second part (axiom 4) contain axioms of the form:

$$p(x) = q(x)$$

where the existence of p and q follows immediately from the axioms of first part.

The third part (axioms 5-11) contains axioms of the form: if $p_1(x_1, \dots, x_n), \dots, p_k(x_1, \dots, x_n)$ exist and $\Phi(p_1, \dots, p_n)$ holds then $q_1(x_1, \dots, x_n), \dots, q_l(x_1, \dots, x_n)$ exist and $\Psi(p_1, \dots, p_n, q_1, \dots, q_l)$ holds, where Φ and Ψ are conjunctions of equalities of terms p_i and q_i .

Definition 13. Let $(P, \cdot, 0, 1)$ be a partial algebra with two constants 0 and 1 and a partial binary operation \cdot . We say that P is a partial orthoimplicative algebra if the following hold (where T denotes the set of all term function over \cdot):

- A1. $p(0, a, 1)$ exists for any $a \in P$ and any $p \in T$,
- A2. ab exists $\implies ba$ exists for any $a, b \in P$,

A3. ab exists and $ab = 1 \implies p(0, a, b, 1)$ exists for
 any $a, b \in P$ and any $p \in T$,
 A4. $0a = 1$ for any $a \in P$,
 A5. if ab exists and $ab = ba = 1$ then $a = b$,
 A6. if ab exists and $ab = 1$ then :
 1. $ba = a0 \cdot b0$
 2. $b0 \cdot a0 = 1$
 3. $b0 \cdot a = b$
 4. $a0 \cdot b = b$
 A7. if ab exists then $a0 \cdot ab$ exists and $a0 \cdot ab = 1$,
 A8. if ab, bc exist and $ab = bc = 1$ then ac exists and
 $ac = 1$,
 A9. if $a \cdot b0, bc, ac$ exist and $a \cdot b0 = bc = 1$ then $ca \cdot ba$
 exists and $ca \cdot ba = 1$,
 A10. if ab exists then $ab \cdot a0 = ba \cdot b0$,
 A11. if ab, bc, ac exist and $bc = 1$ then $ab \cdot ac$ exists and
 $ab \cdot ac = 1$.

The main result of this section is the following

Theorem 14. Let $(P, \cdot, 0, 1)$ be a partial orthoimplicative algebra. We define:

$$\begin{aligned}
 a \leq b &\quad \text{iff} \quad ab \text{ exists and } ab = 1 \\
 a' &= a0.
 \end{aligned}$$

Then $(P, \leq, ', 0, 1)$ is an orthomodular poset.

We will call it shortly an associated orthomodular poset.

We precede the proof with some lemmas.

Lemma 15. Let $(P, \cdot, 0, 1)$ be a partial orthoimplicative algebra. Then the following hold:

- (W1) $00 = 1$,
- (W2) $x0 \cdot 0 = x$,
- (W3) $1x = x$,
- (W4) $x1 = 1$,
- (W5) $xx = 1$,
- (W6) if $x \cdot y0$ exists and $x \cdot y0 = 1$, then $y \cdot x0 = 1$ and
 $x0 \cdot y = y0 \cdot x$,

Proof.

(W1): put $a = 0$ in A4 ,
 (W2): put $a = 0$, $b = x$ in A6.3 ,
 (W3): put $a = 0$, $b = x$ in A6.4 and apply (W1) ,
 (W4): put $a = 0$, $b = x_0$ in A6.2 and apply (W1) and (W2) ,
 (W5): put $b = 0$, $a = x_0$ in A7 and apply (W2) ,
 (W6): put $a = x$, $b = y_0$ in A6.2 and apply (W2) ,
 put $a = x$, $b = y_0$ in A6.1 and apply (W2) .

Lemma 16. Let $(P, \cdot, 0, 1)$ be a partial orthoimplicative algebra and \leq be the relation defined in Theorem 14. Then $(P, \leq, 0, 1)$ is a bounded poset.

Proof. This is a consequence of axioms A4, A5, A8 and the above Lemma 15 (W4, W5).

Lemma 17. Let $(P, \cdot, 0, 1)$ be a partial orthoimplicative algebra and \leq be the partial order defined in Theorem 14. Suppose that for some $x, y \in P$, $x \leq y_0$. Then $y_0 \cdot x$ is the least upper bound of x and y , i.e.:

$$x \leq y_0 \implies y_0 \cdot x = x \vee y.$$

Proof. First we prove that x , $y \leq y_0 \cdot x$. Put $a = x_0$, $b = y$ in A7 we obtain $(x_0 \cdot 0) \leq (x_0 \cdot y)$, i.e. $x \leq x_0 \cdot y$. Observe that it follows from Lemma 15. (W6) that $y \leq x_0$ and $y_0 \cdot x = x_0 \cdot y$. Then $y \leq y_0 \cdot x = x_0 \cdot y$.

Now suppose that for some $z \in P$ we have x , $y \leq z$. We will show that $y_0 \cdot x \leq z$. Put $a = x$, $b = z_0$, $c = y_0$ in A9. We obtain: $(y_0 \cdot x) \leq (z_0 \cdot x)$. Put $a = x$, $b = z$ in A6.3. We obtain $z_0 \cdot x = z$. Thus $y_0 \cdot x \leq z$.

Corollary 18. If $x \leq y$ then $y \cdot x = x \vee y_0$.

Lemma 19. Let $(P, \cdot, 0, 1)$ be a partial orthoimplicative algebra and let $x, y, z \in P$ be such that xy exists and $z \leq x$, y . Then $z \leq xy$.

Proof. Put $a = x$, $b = z$, $c = y$ in A11, we obtain $xz \leq xy$. But $xz = z \vee x_0 \geq z$. Then $z \leq xy$.

Proof of Theorem. It was proved (Lemma 16) that $(P, \leq, 0, 1)$ is a bounded poset. The property $x'' = x$ follows from Lemma 15 (W2). The implication $x \leq y \implies y' \leq x'$ follows from A6.2. It is proved in Lemma 17 that $x \leq y_0 \implies x \vee y = x_0 \cdot y = y_0 \cdot x$. Hence (putting $y = x_0$) we obtain $x \vee x' = x_0 \cdot x_0 = 1$. Finally suppose that $x \leq y$ and $x \vee y' = 1$. We have to prove that $x = y$. Actually, if $x \leq y$ then (Corollary 18) $x \vee y_0 = yx$, thus $yx = 1$, i.e. $y \leq x$. Therefore $x = y$. This completes the proof of our Theorem.

Lemma 20. Let $(P, \cdot, 0, 1)$ be a partial orthoimplicative algebra with associated orthomodular poset $(P, \leq, ', 0, 1)$. Let $a, b \in P$ be such that ab exists in P . Then $a \wedge b$ exists and

$$a \wedge b = a \wedge ab = b \wedge ba.$$

Proof. (A7) says that $a' \leq ab$. Then (Corollary 18) $ab \cdot a' = a' \vee (ab)' = (a \wedge ab)'$. But (A10) $ab \cdot a' = ba \cdot b'$. Hence $a \wedge ab = b \wedge ba$. Therefore $a \wedge ab \leq a, b$. On the other side, if $c \leq a, b$ then (Lemma 19) $c \leq a \wedge ab$.

Corollary 21. If \cdot is a total operation on P then the associated orthomodular poset $(P, \leq, ', 0, 1)$ forms an orthomodular lattice

Theorem 22. If ab exists in a partial orthoimplicative algebra then $a \rightarrow b$ exists in the associated orthomodular poset and $a \rightarrow b = ab$.

Proof. If ab exists then (Lemma 20) $a \wedge b$ exists and $a \rightarrow b$ exists. Moreover $a \rightarrow b = a' \vee (a \wedge b) = a' \vee (a \wedge ab)$. But $a' \leq ab$. Then $a' \vee (a \wedge ab) = ab$. Therefore $a \rightarrow b = ab$.

Example 2. Let $(P, \leq, ', 0, 1)$ be an orthomodular poset. Define a partial operation \cdot on P as follows:

$$a \cdot b \text{ exists iff } a \leq b; \text{ in this case } a \cdot b = a' \vee b.$$

Then $(P, \cdot, 0, 1)$ forms a partial orthoimplicative algebra such that $a \leq b$ iff $ab = 1$.

This example shows that, in general, the orthomodular poset associated with a partial orthoimplicative algebra can be

non-implicative.

REFERENCES

- [1] R. Godowski: Commutativity in orthomodular posets, *Rep. on Mathematical Phys.* 18 (1980), 347-351.
- [2] R. Godowski, T. Traczyk, J. Varlet: Implicative posets. *Proceedings of the V Universal Algebra Symposium Turawa* (1988) 99-106.
- [3] G. M. Hardegree: Quasi implication algebras, Part I : Elementary theory, *Algebra Universalis* 12 (1981), 30-47.
- [4] J. J. Klukowski: On Boolean orthomodular posets, *Demonstratio Math.* 8 (1975), 5-14.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW,
00-661 WARSZAWA

Received January 30, 1991.