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IMPLICATIVE ORTHOPOSETS

1. Introduction

In [2) the present authors in a cooperation with Professor
Jules Varlet, introduced a notion of implication , as a par-
tial operation, on an orthomodular poset P. This operation was
supposed to reduce to the Hardegree’s implication

a—>b = a’v (aab).

in the case P be an orthomodular lattice.
Surprisingly, it happens that in the case of implicative
orthoposet P (see the definition 7 below)

a — b exists iff a A b exists in P .

This statement is the main result of the present paper. It

also has some nice consequences, which are discussed in
section 4 below.

2. Basic definition and notions

Let us recall that an orthocomplemented poset, abbreviated

orthoposet, (see [1]) is an algebraic structure
(p, =, 7, 0, 1),

where (P, =, 0, 1) is a poset with the least and the greatest
element - denoted by 0 , 1 respectively, and a +— a’ is a
unary operation on P satisfying the following conditions:
( oCPl1 ) a" = a
( ocpr2 ) as b=— Db’ s a’
( OCP3 ) a=Db’ —5 avb exists
( OCP4 ) ava’' =1
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An orthoposet P is said to be orthomodular if it satisfies:
{ OCPS ) (as=bandavb/ =1)=— a=>b.
If a = b’, we say that a and b are orthogonal and we write
a 1 b . We say that a commutes with b and we write acCb, if
there exist mutually orthogonal elements a, bl’ c in P such
that :

a = a1 vV C and b = b1 v c .

An ortoposet P is said to be a Boolean poset (see [4]) if it
satisfies:
(BP) aAb=0 = ai1b.

Every Boolean poset is orthomodular. In a Boolean poset, if
for some a, b the l.u.b. a v b exists, then acCb (see [4]) .
We say that an orthomodular poset (P, =, f, 0, 1) is a hori-
zontal sum of a family {(Pt , =, ', 0, 1) , teT } of ortho-
modular posets (see [1]) , if the following conditions hold :

Hl1) t=*s =— P_nP_={0, 1},

H2) P =1U {P_, teT } ,

H3) a=b in P iff there exists teT such that a, b € P
and a=b in Pt ,

H4) the unary operation ’ on P is a restriction of the oper-

t ’

ation / on P .
A partial field of sets (see [1]) is a nonempty family M of
subsets of a set X satisfying for any A,B e M the following
conditions:
(PFS1) AeM =— X \ A e M,
(PFS2) [A, Be M, AnB = 3] =— AuUB € M .
Observe that a partial field of sets M forms an orthomodular
poset under inclusion as a partial order and natural operation

A’ =X\ A,

where 0 = 2, 1 = X and for any A , BeM , A L B iff AnB = 2.

A typical, nontrivial example of a partial field of sets is a
family M of even subsets of even (finite) set X . Before gi-
ving another example let us observe that if for any xeX,
{x} € M then M forms a Boolean poset .
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Example 1, Let X = (1, 2, 3, 4,...}, A = {2, 4, 6, 8,...},
B=4{3, 6, 9, 12,...} . We define a family M as follows :
ZeM iff
1) Z is finite or
2) X\Z is finite or
3) there exist finite subsets C , D of X such that

Z = (A\C) v D or
4) there exist finite subsets C, D of X such that

Z = ((X\A)\C) v D or
S) there exist finite subsets C , D of X such that

Z = (B\C) v D or
6) there exist finite subsets C, D of X such that

Z = ((X\B)\C) v D.
Observe that this family is a partial field of sets and forms
a Boolean poset (we denote it by K2). Moreover AAB does not
exist in M. The idea of this construction is due to
J. Klukowski ([4]) .

3. Implicative orthoposets

Definition 2. (see [2]). An orthoimplication on an ortho-
poset P is a partial binary
operation — defined as follows :
c=a — b iff c¢c is the smallest element in P such that:
1) a’ s ¢
2) (xsa and x=b) = xs=c.
The above definition is a natural generalization of

Hardegree’s orthoimplication (see [3]).

Lemma 3, (see [2]). a — b exists in P iff the least up-

per bound
c= V (a’vx) exists. Then a — b =c .
x=a,b

Corollary 4. If a A b exists in P then a — b exists and:
a — b=a— (aab) = a’v (aab) .

Example 5. Observe that in the orthoposet K2 (Example 2.1),
A — B does not exist.
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It follows from Corollary 4 that in particular,
if a<b , then a -5 b =1 .

The converse statement is not true in general, even if the
orthoposet P is orthomodular.

Example 6. Let M be a partial field of even subsets of the
set X={1,2,3,4,5,6} .LtA={1,2,3, 41},
and B={1, 2,3 ,5}.ThenA —-B=1, and A/ =B .

Definition 7. (see (2]). An orthoposet P is said to be im-

plicative if
a— b=1 implies a = b , for all a,b € P .

In {2) it is proved that every implicative orthoposet is
orthomodular. Observe that a horizontal sum of a family F of
orthomodular posets is implicative iff every member of F . is

implicative .

Lemma 8. Let P be an orthomodular poset. If a — b exists
in P then :

1) aaA (a—Db) exists

2) [aAn(a—>>Db) ] —>b=1

3) [xs=aandx=Db] = xsaaAn(a—o>b).

Proof. 1) Observe that a C (a — b) because a’ = a — b.
Then the meet ¢ = a A (a — b ) exists .
2) We have to show that ¢ -—» b = 1. Suppose that d € P is such
that :

1) ¢/ = d

2) [x s cand x = b] = x=4d
or, equivalently :

la) a’ = d

i1b) (a —» b)’ = d

2) [x = c and x = b] = x = d.
It follows from la) and 2) that a — b = d . Then from this
fact and from 1b) we obtain d = 1 .
3) If x=a and x=b then it follows from the definition of
orthoimplication that x=a — b. Thus x=a A (a — b).
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Now we can prove the converse to Corollary 4 .

Proposition 9. In an implicative orthoposet P, if a — b
exists then aAb exists in P and aab = a A {(a — b) .

Proof. Evidently aAn(a-—>Db) sa. From Lemma 8.2) it
follows that a A (a — b) = b. This fact together with Lemma
8.3) completes the proof.

Corollary 10. Let P be an implicative orthopose% such that
a — b exists for all a,be P. Then P is an orthomodular
lattice.

Definition 11. ( see [2] ). A partial orthomodular 1lattice
(abbreviated poml) is an orthomodular poset satisfying the
condition:

a A b exists = a’ A b exists.

Observe that any orthomodular lattice and any Boolean poset is
a poml . Moreover a horizontal sum (as well as a product) of a
family F of orthomodular posets is a poml iff every member of
F is .

In (2] it is proved that every poml is implicative. In
particulary any orthomodular lattice and any Boolean poset is
implicative.

Proposition 12, (see (2]). Let P be an implicative ortho-
poset. Then the following conditions are satistied:

(1) a— 0= a’
(a—> 0) —» 0 =a
(2) 0 > a=1

(3) (a5 b=b-—>3>a=1) == a=0>b
(5) if a — b, a — c exist then

(b >c=1) = .(a ~— b)) - (a—>c)=1
(6) (a—>b=1) == b-—3a=(a —>0) > (b — 0)
(7) if c — a exists then :
a— (b—>0)=b—a>c=1= (c—o a) > (b—oa) =1
(8) if a — b exists then

(a—b) - (a—>0) = (b— a) > (b — 0)
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4. Partial orthoimplicative algebras

In (2] an orthoimplicative algebra has been introduced
and investigated. It is, by definition an algebra (P, -, 0, 1)
of type (2 ,0 ,0) for which the basic properties (1) - (8) of
— serve as the set of axioms. It was proved in [2] that if we
define an ordering relation in P by

as=b iff ab =1
and an orthocomplementation operation by

a’ = a0
then the associated system (P ,= , /, 0, 1) is an implicative
orthoposet and a — b = ab whenever a — b exists.

In this section we define a partial orthoimplicative
algebra as a partial algebra (P ,:, 0, 1) with two constants 0
and 1 and the partial binary operation - fullfils some axioms.
The set of axioms is divided into 3 parts.

The first part (axioms 1-3) contains existential axioms.
Here p(xl,..,xn) denotes any term function over : . The axioms
say when p(xl,..,xn) must exist.

The second part ( axiom 4 ) contair axioms of the form:

p(x) = dq(x)

where the existence of p and q follows immediately from the
axioms of first part.

The third part (axioms 5-11) contains axioms of the form:
if pl(xl,..,xn), . pk(xl,..,xn ) exist and Q(pl,..,pn) holds
then ql(xl,..,xn), .oy ql(xl,..,xn) exist and T(pl,..,pn,
ql,..,ql) holds, where ¥ and ¥ are conjuctions of equalities
of terms Py and q; -

Definition 13. Let (P, -, 0, 1) be a partial algebra with
two constants 0 and 1 and a partial binary operation :-. We say
that P is a partial orthoimplicative algebra if the following
hold (where T denotes the set of all term function over -):

Al. p(0, a, 1) exists for any aeP and any peT,
A2. ab exists — ba exists for any a, b € P,
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A3. ab exists and ab =1 =— p(0, a, b, 1) exists for

any a, beP and any peT,
A4. Oa =1 for any aeP ,
AS. if ab exists and ab

ba =1 then a =0b>b,
A6. 1if ab exists and ab 1 then :
1. ba ao0-bo

2. b0:-a0 =1

3. b0-a=>L

4. ao-b=5b>

A7. if ab exists then a0-ab exists and a0-ab =1

r

A8. if ab, bc exist and ab = bc = 1 then ac exists and
ac =1,

A9. if a-b0, bc, ac exist and a:b0 = bc = 1 then ca-ba
exists and ca-ba =1 ,

Al0. if ab exists then ab-a0 = ba-bo ,

All. if ab, bc, ac exist and bc = 1 then ab-ac exists and
ab-rac = 1.

The main result of this section is the following

Theorem 14. Let (P, :, 0, 1) be a partial orthoimplicative
algebra. We define:

as=s»>» iff ab exists and ab =1
a’ = ao0.

Then (P, =, ’, 0, 1) is an orthomodular poset.
We will call it shortly an associated orthomodular poset.
We precede the proof with some lemmas.

Lemma 15, Let (P, -, 0, 1) be a partial orthoimplicative
algebra. Then the following hold:
(W1) 00 =1,
(W2) x0:0 = x ,

(W3) 1x=x,
(W4) x1 =1,
(WS) xx =1,

(W6) 1if x-yO exists and x:'y0 = 1, then y'x0 = 1 and
X0y = y0-x,
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Proof.
(W1): put a = 0 in A4 ,
(W2): put a =0 , b = x in A6.3 ,
(W3): put a = 0 , b = x in A6.4 and apply (W1) ,
(W4): put a 0 , b= x0 in A6.2 and apply (W1) and (W2) ,
(W5): put b 0 , a = x0 in A7 and apply (W2) ,
(W6): put a x , b=y0 in A6.2 and apply (W2) ,

put a = x , b = y0o in A6.1 and apply (W2) .
Lemma 16. Let (P, -, 0, 1) be a partial orthoimplicative

algebra and s be the relation defined in Theorem 14. Then
(P, =, 0, 1) is a bounded poset.

Proof. This is a consequence of axioms A4, A5, A8 and the
above Lemma 15 (W4, WS).

Lemma 17. Let (P, :, 0, 1) he a partial orthoimplicative
algebra and s be the partial order defined in Theorem 14. Sup-
pose that for some x, y e P , x = yO. Then y0 - x is the least
upper bound of x and y, i.e.:

X S Y0 w=mmp yO'X =XV Y.

Proof. First we prove that x , y s yO-x . Put a = x0 ,

b =y in A7 we obtain ( x0-0 ) s ( X0y ) , i.e. x = x0-y.
Observe that it follows from Lemma 15. (W6) that y s x0 and
y0:x = x0:y. Then y = yO-x = x0-y.

Now suppose that for some zeP we have x , y s 2. We will
show that y0'x = z . Put a=x, b=20, c=y0 in A9. We
obtain: (fo-x) £ (20'x) . Put a =x , b =12z in A6.3. We obtain
z0'x = z. Thus yO-'x s z.

Corollary 18, If x s y then y-x =x v yo .

Lemma 19, Let (P, -, 0, 1) be a partial orthoimplicative
algebra and let x, y, z € P be such that xy exists and
zZ s x, Y. Then z s xy.

Proof, Put a = x, b =z, ¢ = y in Al11, we obtain xz = xy .
But xz = z v x0 2 z . Then z s xy .
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Proof of Theorem, It was proved (Lemma 16) that (P, =, 0,
1) is a bounded poset. The property x’’ = x follows from Lemma
15 (W2). The implication X s y == y’ s x’ follows from A6.2.
It is proved in Lemma 17 that X = Y0 == X v y = X0y = yO:x .
Hence (putting y = x0) we obtain x v x/ = x0-x0 = 1. Finally
suppose that x = y and x v y’/ = 1. We have to prove that x=y.
Actually, if x=<y then (Corollary 18) x v y0 = yx, thus yx=1,
i.e. ysx . Therefore x=y. This completes the proof‘ of our
Theoremn.

Lemma 20. Let (P, -, 0, 1) be a partial orthoimplicative
algebra with associated orthomodular poset (P, =, ’/, 0 , 1) .
Let a, b € P be such that ab exists in P. Then aAb exists and

aAb=aaAnab=DbAaba.

Proof. (A7) says that a’ = ab. Then (Corollary 18) ab-a’ =
= a’ v (ab)’ = (a A ab)’ . But (Al0) ab-a’ = ba‘b’. Hence
a A ab=Db A ba. Therefore a A ab s a, b . On the other side,
if ¢ s a, b then (Lemma 19) c s a A ab .

Corollary 21. If - is a total operation on P then the as-
sociated orthomodular poset (P, =, ’, 0, 1) forms an ortho-
modular lattice

Theorem 22. If ab exists in a partial orthoimplicative
algebra then a — b exists in the associated orthomodular
poset and a — b = ab .

Proof, If ab exists then (Lemma 20) aab exists and a — b
exists. Moreover a — b =a’ v (a A b) =a’ v (a A ab). But
a’ s ab. Then a’ v (a A ab) = ab. Therefore a — b = ab .

Example 2, Let (P, =, ’, 0, 1) be an orthomodular poset.
Define a partial operation - on P as follows:

a-b exists iff a Cb ; in this case a‘b = a’ v b .

Then (P, -, 0, 1) forms a partial orthoimplicative algebra
such that a s b iff ab =1 .

This example shows that, in general, the orthomodular po-
set associated with a partial orthoimplicative algebra can be
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non-implicative.
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