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GENERALIZED ORTHOMODULAR POSETS 

Introduction 
A weak generalized orthomodular poset (abbreviated as 

WGOMP) is defined as a poset, every interval [0,a] of which is 
equipped with a structure of orthomodular poset, satisfying 
some axioms. A structure of WGOMP can be defined on the set of 
all idempotent elements of any ring, and also on any -ring 
satisfying the '-cancellation law [7]. 

Theorem 1 states that any WGOMP can be embedded in an 
orthomodular poset. This embedding preserves, all existing 
infima, and the supremum of any two orthogonal elements. 

Those WGOMPs for which the above embedding preserves all 
existing suprema of any two elements are characterized by a 
simple condition, and are called generalized orthomodular 
posets (abbreviated as GOMPs). 

Generalized orthomodular lattices defined by Janowitz [4] 
are examples of GOMPs and we compare the embedding given in 
[4] with ours in this particular case. 

An interesting class of GOMPs consists of all Rickart 
-rings equipped with the -order introduced by M.P.Drazin 
[3]. 

For notation and basic notions concerning orthomodular 
posets and orthomodular lattices, let us refer to [1] or [6]. 
For Rickart -rings, the standard reference is [2]. 

1. Weak generalized orthomodular posets 
Definition 1. Let (A,s) be a poset with the least element 

0, such that every interval [0,a] of A is equipped with an 
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unary operation χ—>x a. We shall say that A is a weak gener-
alized orthomodular poset (abbreviated as WGOMP) if it 
satisfies the following conditions: 
(Gl) If a€A then ([0,a],s,# ) is an orthomodular poset. 

#h # 
(G2) If asbsc then a =a Ab. 

#c 
(G3) If asc, bsc and asb then the supremum avb exists in A. 

We shall write aib if and only if avb exists in A and 

a*b # a v b. (G4) If a,b,ceA with a±b, eia and cib then ciavb. 

Remarks 1. 

(a) It is easy to prove that aib if and only if there 
#c exists ce A with asc, bsc and a*b 

#c 
(b) If aib, b*c and asc then asb 
(c) The poset of figure 1 is an example of poset 

satisfying Axioms (Gl),(G2),(G3) but not Axiom (G4). 
The poset of figure 2 satisfi. s Axioms (Gl),(G2),(G4) 

but not Axiom (G3). 

Examples 1. 

(a) Any orthomodular poset is a WGOMP. 
(b) A generalized orthomodular lattice [4] is a WGOMP. 
(c) The poset of figure 3 is a WGOMP. 
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The set of all idempotent elements of a ring also provides 
an example of WGOMP. Precisely, let R be a ring and A be the 
set of all its idempotent elements. Let us consider the binary 
relation s on A defined by xsy if and only if x=xy=yx. 
Clearly, the relation ^ is an order relation. For any aeA 

#a and any xe[0,a] define χ =a-x. 
#a 

Lemma l. (i) The operation χ—>x is an orthocomplemen-
tation on [0,a]. 

(ii) If x,yeA with xy=yx the supremum xvy and the 
infimum XAy of x,y exist in A. We have xvy=x+y-xy and 
XAy=xy. 

#a (iii) If x,ye[0,a] with xsy then xvy exists. 
#a (iv) If x,ye[0,a] with xsy then y=xv(x Ay) holds. 

Proof.Statements (i) and (ii) can be proved by a straight-
forward calculation. 

#a (iii) If xsy then xy=yx=0, and we can apply (ii). 
#a #a (iv) If xsy we have x=xy=yx hence χ y=yx and, by 

^ a ^a (ii), χ Ay exists. As (x Ay)x=x(x Ay)=0, xv(x Ay) exists 
#a and XV(x Ay)=x+(a-x)y=x+y-xy=y. • 

Note, by Lemma 1, that [0,a] is an orthomodular poset and 
thus, A is an orthomodular poset if R has a unit. 

Lemma 2. For elements a and b of A, aib if and only if 
ab=ba=0 (where the relation ι is defined as in Definition 1). 

Proof. Clearly, if ab=ba=0 then a±b. Conversely, if avb 
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exists and a*b we have a=a(avb-b)=(avb-b)a, thus a=a-
-ab=a-ba, and 0=ab=ba. • 

Proposition 1. The set of all idempotent elements of a 
ring is a HGOMP. 

Proof. Axiom (Gl) follows from Lemma 1. Using Lemma 2 we 
show easily that (G2), (G3) and (G4) are satisfied. • 

An important example of WGOMP is given by -rings equipped 
with the -order. We will study this example in the following 
section. 

• · 2. The example of -order in -rings 
In this section A will denote a '-ring. That means that on 

A there exists an involution χ—>x* satisfying (x+y)*=x*+y* • · • 
and (xy) =y χ . We assume further that A fulfills the so-
-called '-cancellation law: 

* a a=0 implies a=0. 
In such a ring the '-order defined as follows: 

• · · * 

asb if and only if a a=a b and aa =ba hold, 
is an order relation [3]. 

In a -ring one can also define an orthogonality relation 
[7] by: 

aib if and only if a b=ab =0. 
We shall use.results that can be found in [5]. Among them are: 

(R^) If xiy then XAy, xvy exist and XAy=0, xvy=x+y. 
(R_) Every interval [0,x] of A is an orthomodular poset # and for ae[0,x] the orthocomplement of a is a x=x-a. 

The following lemma proves that, for -rings, the orthogonali-
ty relation of [7] agrees with the one introduced in Section 1. 

• · Lemma 3. For elements a and b of A, a b=ab =0 if and only 
*c if there exists ceA such that a*c, b*c and a=sb 

Proof. Assume a*b=ab*=0, then by (Rl) we have avb=a+b § 

and so a*avb-b=b . Conversely, if there exists ceA such 
#c that asc, b^c and asb then, as asc-b, we have a a= 
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• · · · · 
=a (c-b)=a c-a b. Now, asc implies a a=a c and therefore, 
a*b=0. Similarly, ba*=0 holds. • 

Proposition 2. Every '-ring satisfying the '-cancellation 
law is a WGOMP. 

Proof. Axiom (Gl). It is the result (R2). 
Axiom (G2). Let a,b,ceA and assume asb¿c. As [0,c] is an 

*c *c orthomodular poset, asb implies b=av(a Ab). By aia Ab, we 
Φ ̂ Φ ç Φ^ Φ ̂ 

infer av(a Ab)=a+(a Ab) and so, a =b-a Ab. 
Axiom (G3). Obvious, by making use of (Rl) and Lemma 3. 
Axiom (G4). Let a,b,ceA such that aib, eia and cib. We * » · · * * · 

have avb=a+b, c a=ca =0, c b=cb =0. Thus c (avb)=c a+c b=0 • » · 
and c(avb) =ca +cb =0. Therefore ciavb and (G4) holds. • 

Examples 2. (a) A commutative ring A has a canonical * * 
structure of -ring with χ =x. Such a ring satisfies the 
• . . . . . -cancellation law if and only if it has no non-zero nilpotent 

• 2 

element and, in this case, the -order is defined by a =ab. 
Recall that commutative rings without a non-zero nilpotent 
element are all subrings of direct products of fields. 

• · (b) Every Rickart -ring fulfills the -cancellation law 
* * and, equipped with the -order, is a WGOMP. Note that -order 

extends the classical order on the set of all projections. 
* . . . . (c) In a C -algebra, the norm satisfies the identity 

• o · • ||x x| = |x|| . Hence, χ x=0 implies x=0 and a C -algebra, when 

endowed with the -order, is a WGOMP. 

3. The embedding 
This section, in which A denotes a WGOMP, is devoted to 

the proof of the following result: Theorem 1. Every WGOMP A can be embedded as an order ideal 
Λ Λ 1 in an orthomodular poset A so that, for any xeA, xeA or χ eA. 

# . . . . . Let A be a set disjoint from A with the same cardinality. . . . # # 
Consider a bijection a—>a from A onto A and let us denote 
the set AuA# by Â. 

* Λ Lemma 4. Consider the relation s on A defined by the 
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following conditions: 
(ι) For aeA, beA, as b holds if and only if asb. 

Λ 4 · 
( 1 1 ) For aeA, beA with b=b^, as b holds if and only if 

aib^. 
(iii) For aeA*, beA# with a=a*, b=b*, as*b holds if and 

only if b sa . 
The relation s is an order relation on A. 
Proof. The reflexive and antisymmetric laws are obvious. A 

In order to prove the transitive law, let a,b,ceA such that * * 
as b and bs c. 

Φ . · If a,b,ceA or a,b,ceA it is obvious that as c. 
Φ # · * If a, beA and ce A with c=c^, as b and bs c mean asb and 

c. ib. 
# 

Then there exists meA with c si, bsm and bsc m. We have asm, * . 
Cĵ sm and asc^, therefore (by Remark 1 (a)), aic^ and as c. 

If aeA and b,ceA* the proof is similar. • 

Note that (A, s ) is a bounded poset with 0 as smallest φ 
element and 0 as largest element. 

ι . " We define a , for any a in A, by: 
a ^ a ' if aeA, 

a =a^ if aeA , a=a^. 
ι . A 

Lemma 5. The map a—>a is an orthocomplementation on A. 
1 1 · 1 * 1 Proof. Clearly, (a ) =a, and as b implies b s a follows 

easily from definitions. In order to prove that aAa1=0 holds A 
for all aeA, we consider two cases. 

If aeA and if m is a lower bound of a and ai=a* then 
*a ι meA and we have in A, msa and msa . Therefore m=0 and aAa =0. 

Φ # ι Φ If aeA with , then a =a^ and ai A ai 0 ^y ^ e 
same proof. • 

A · ι A 
Lemma 6. If a,beA with as b then avb exists in A. 
Proof. We consider different cases. 

* ι · Φ If a,beA, as b means as b . Thus axb holds and avb exists 
Φ Φ . Λ 

in A. If m «Α is an upper bound of a and b in A then we have 
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aim and bim. It follows from (G4) that miavb and avbi m . 
Hence, the supremum of a and b in A is the supremum of a and b 
in A. Ψ # * 1 If asA, beA with b=b1 , and ai b then, as aib.̂ , we have 
#, m t / * ( Κ \ ̂  

a 1ε[0,^] and b a l thus bs a 1 . Moreover, as 

^b »f ̂ b Λ # 
aia 1, ai a 1 holds. Let ceA with c^c^ , c^eA and assume 

* * 
that ai c and bi c. As a^b1, aic1 and c1sb1 it follows from 

b b ( b Ί * Remark 1(b) that asc^ 1. Therefore, c^a 1, a 1 i c and 
f ̂ b i' thus the supremum of a and b exists in A and avb= a 1 . 

# . . . If aeA and beA the the proof is similar. 
Remark 2. The second part of the above proof shows that if 

ind ait a,b^eA and aib^ then the supremum of a and b^ exists in A and 

a v b ^ j a bl) . 

Lemma 7. For two elements a and b of A, ai b implies 
b=av(aiAb). 

* ^b * * s Proof. If a,beA, with ai b, then a i b and a i a as 
^b Λ * » # a ia. If ceA with ci b and ci a we have ceA and cib, eia. As 

#j3 m 

aib, it follows by Remark 1(b) that eia . Hence a Ab exists 
« # b ^b and a Ab=a Ab=a . Since a ia, ava exists and ava =b. 

JL JL « 

Now consider aeA, b=b1 eA and suppose a« b. As aib^ avb1 
JL JL 

exists and we have aiav^ and b^avb^ Therefore (avb1) ia 
« « JL JL 

and (avb ) ib . Consider a lower bound c of a and b . If 
i l . 1 s 

ceA, then eia and cib . Hence, by (G4), ciavb and ci (avb ) . 
é é Now, if c=c eA then aie and b sc . Thus avb ic and 

# ι ± # ci(avb ) . Hence a Ab exists and a Ab=(avb ) . 
# 

As aiavb1, it follows from Remark 2 that aviavb^ = 
=(a#avbl)#. ν b We have b^ia 1 and, by using the orthomodular law in 
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[Ojavb^], we infer that: 
a#avbl = b ^ i b / a ^ l A a ^ l ) = b^O = b ^ 

Λ · Therefore, avfavb^) =b1=b and the result follows. 
φ A # # * If a=a1 eA , b=b1 eA and as b then a n d w e have 

t # Φ Φ 
b1

#Aa1=bAa1=b1
 al. But bx

 alva *=((b al) al)# by Remark 2 and 
thus, av(a1Ab)=b. • 

As an immediate consequence of Lemmas 4,5,6 and 7 we have : 
Proposition 2. If A is a WGOMP then A is an orthomodular 

poset. 
Examples 3. (a) Let R be a ring without unit and A be the 

WGOMP of all its idempotent elements. The ring R can be 
embedded in a ring with unit R . It is easy to show that the 

• I 

set I(R ) of all its idempotent elements is the set Au{l-a | 
a«A}. Obviously, I(R*) is an orthomodular poset canonically A 

isomorphic to the set A obtained from A by the previous 
construction. A 

(b) If A is the WGOMP of fig.3 then A is the orthomodular 
lattice G12 of figure 4. 

(c) If A is already an orthomodular poset then A is 
isomorphic to the direct product Ax{0,l}. 
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Indeed, consider the map φ:A—>Ax{0,l} defined as follows: 

if xeA, φ(χ)=(χ,0), 

if x#eA#, »>(x#) = (x A, 1) where χ A denotes the 
orthocomplement of χ in A. 

Then, it is easy to show that φ is an isomorphism. 

4. Generalized orthomodular poset 

The embedding of a WGOMP A in an orthomodular poset A 
preserves the infimum but not generally the supremum whenever 
they exist in A. If a,beA with aib, then, by (G4), the sup-
remum of a and b in A is also the supremum of a and b in A. 
But if we consider the WGOMP A of figure 5, suggested by 

* # · # 

M.Roddy, we have zix and ziy (thus χϊ ζ and ys ζ ), and xvy 
is not the supremum of χ and y in A because we have not 
xvyiz. 

xvy xvz yvz 

Fig. 5 

Notice that for a WGOMP A the following conditions are 
equivalent: 

(i) The embedding preserves all existing supremum of two 
elements, 

(ii) If a,b,ceA with eia and cib and if avb exists in A 
then ciavb. 

This remark leads us to introduce a new definition. 
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Definition 2. A generalized orthomodular poset (abbreviat-

ed as GOMP) is a poset (A,s) with 0 satisfying Axioms (Gl), 

(G2), (G3) and 

(G4) ' If a,b,ceA are such that eia, cib and avb exists then 

ciavb. 

Theorem 2. Every GOMP A can be embedded as an order ideal 
" Λ ι 

in an orthomodular poset A so that, for any xeA, xeA or χ eA. 

Moreover, the embedding preserves all existing supremum of two 

elements. 

Every generalized orthomodular lattice (in particular, 

every ideal of an orthomodular lattice) is a GOMP. Now, we 

will compare the present embedding with the one of Janowitz 

[4]. 

Recall the embedding of Janowitz. Let L be a generalized 

orthomodular lattice. For a subset M of L define M x={xeL | 

xiy for all yeM} and let J =[0,x]. The set £ of all ideals 
χ X 

of L of the form J x or J^, for some element χ of L, is an 

orthomodular lattice and the mapping χ — i s an embedding 

of L into £. A 
Let L be the orthomodular poset obtained from L by the 

embedding of Theorem 2. a 
Proposition 3. If L is not an orthomodular lattice then L 

is canonically isomorphic to £. 
A 

Proof. Let us define a map f:L—wC by: 

f(x)=J x if xeL 

f(x*)=J v
A if x #eL #. * A 

It is easy to see that f is a bijection from L into £ such 

that f(χ 1)=(f(x)) 1. In order to prove that xs*y is equivalent 

to f(x)cf(y), the difficulties arise in the two following 

cases: 
# # · l) xeL and y=y. eL . If xs y then xiyn and let aeJ , 

ι ι teJ . Since aiy we have tia and aeJ . Thus J v c J and 
Y 1 y l x Y l 

f(x)cf(y). The converse is obvious. 

ii) x=x '«l' and yeL. We need only prove that J """cJ does j. x^ y 
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not hold. If J icJ then x..vy is the largest element of L. x^ y ι 
Indeed, suppose the contrary. Then there exists beL with 
χ vy<b. Thus, there exists an element u of L with uix^y and 
uvx1vy=b. It follows that x^iu and that usy does not hold, 
which contradicts the fact that J 1cJ . Since L has a largest 

1 y 

element, L is an orthomodular lattice and so we have a contra-
diction. • 

* · 5. The example of the -order in a Rickart -ring 
* 

In this section A is a Rickart -ring and Proj(A) denotes 
the orthomodular lattice of all projections of A. For aeA, a' 
is the projection which generates the right-annihilator of {a} 

I · 

and let C(a)={e€Proj(A)|ae=ea}. Note that, if a=a , then C(a) 
is the projection lattice of the Rickart -ring of all 
elements of A which commute with a. 

Reading carefully Janowitz's paper [5] leads to the 
following result: 

Proposition 4. ([5]) Let a be an element of a Rickart • · 
-ring A equipped with the -order. The mapping φ :x—>x" is an 
orthoisomorphism of [0,a] into [0,a"]nC(a a) . 

Therefore, every interval [0,a] of a Rickart -ring is an 
orthomodular lattice isomorphic to an interval of a sub-
algebra of Proj(A). The key of the proof of Proposition 4 is 
the following lemma: 

• 
Lemma 8. ([5]) For a Rickart -ring A the following 

conditions are equivalent: 
(i) xsa, 
(ii) x=ax" and x"eC(a a) , 
... · · (in) x"=a"(a-x)' and χ a=a x. 

Lemma 9. Let a and b be two elements of a Rickart -ring. . . . * » (ι) aib is equivalent to a"ib" and a "±b ". 
(ii) If avb exists then (avb)"=a"vb". 

Proof, (i) If aib then avb exists, and by using the 
isomorphism of Proposition 4, we have a"ib" and a*"ib*" as, 
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* * clearly, aib is equivalent to a ib . Conversely, if a"i.b" then 

a"b"=0 and thus, 0=aa"b"=ab". Hence, 0=ab"b*=ab* and, by using * » * 
a "ib ", 0=a b also holds. Therefore, we have aib. 

(ii) Obvious, by using the isomorphism (Pavb· D 

Proposition 5. Every Rickart -ring is a GOMP. 
• . . If A is a Rickart -ring then, by Proposition 2, A is a 

WGOMP. In order to prove (G$)', let a,b,c be elements of A 
such that eia, cib and avb exists. It follows from Lemma 9 
that c"ia", c"ib"", c*"ia*" and c*"ib*" hold. We have, in the 
orthomodular lattice Proj (A) , c"ia"vb" and c*"ia*"vb*". By 

* · * 

using part (ii) Of Lemma 9, c"j.(avb)" and c "i(a vb )" and 
part (i) implies ciavb. • 

I would like to thank Georges Chevalier and Richard 
Greechie for their encouragement and suggestions. 
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