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GENERALIZED ORTHOMODULAR POSETS

Introduction

A weak generalized orthomodular poset (abbreviated as
WGOMP) is defined as a poset, every interval [0,a] of which is
equipped with a structure of orthomodular poset, satisfying
some axioms. A structure of WGOMP can be defined on the set of
all idempotent elements of any ring, and also on any .-ring
satisfying the *—cancellation law {(71.

Theorem 1 states that any WGOMP can be embedded in an
orthomodular poset. This embedding preserves all existing
infima, and the supremum of any two orthogonal elements.

Those WGOMPs for which the above embedding preserves all
existing suprema of any two elements are characterized by a
simple condition, and are called generalized orthomodular
posets (abbreviated as GOMPs).

Generalized orthomodular lattices defined by Janowitz (4]
are examples of GOMPs and we compare the embedding given in
[4] with ours in this particular case.

An interesting class of GOMPs consists of all Rickart
'—rings equipped with the *-order introduced by M.P.Drazin
(31.

For notation and basic notions concerning orthomodular
posets and orthomodular lattices, let us refer to [1] or [6].
For Rickart '-rings, the standard reference is [2].

1. Weak generalized orthomodular posets

Definition 1, Let (A,=) be a poset with the least element
0, such that every interval [(0,a)] of A is equipped with an
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#

unary operation x—x 3, We shall say that A is a weak gener-

alized orthomodular poset (abbreviated as WGOMP) if it
satisfies the following conditions:
(Gl) If aeA then ([O,a],S,#a) is an orthomodular poset.

#b #

(G2) If asb=c then a "=a Cab.
#c
(G3) If asc, bsc and asb then the supremum avb exists in A.
We shall write aib if and only if avb exists in A and
#
asb avb.

(G4) If a,b,ceA with aib, cia and cib then ciavb.

Remarks 1.

(a) It is easy to prove that aib if and only 1if there
#

exists ceA with asc, bsc and asb c,
#
(b) If aib, b=c and asc then asb c.

(c) The poset of figure 1 is an example of poset
satisfying Axioms (G1), (G2),(G3) but not Axiom (G4).
The poset of figure 2 satisfi. s Axioms (G1), (G2), (G4)
but not Axiom (G3).

Fig. 1 Fig.2

Examples 1.

(a) Any orthomodular poset is a WGOMP.
(b) A generalized orthomodular lattice [4] is a WGOMP.
(c) The poset of figure 3 is a WGOMP.
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Fig. 3

The set of all idempotent elements of a ring also provides
an example of WGOMP. Precisely, let R be a ring and A be the
set of all its idempotent elements. Let us consider the binary

relation = on A defined by x=y if and only if X=Xy=yX.
Clearly, the relation = is an order relation. For any aeA
#

and any xe[0,a] define x q-a-x.
#
Lemma 1. (i) The operation x—x 2 js an orthocomplemen-

tation on [0,a]. .

(ii) If x,yeA with xy=yx the supremum xvy and the
infimum xAy of X,y exist in A. We have XVY=X+y-XY and
XAY=XY.

#a
(iii) If x,ye{[0,a] with x=y then xvy exists.

#
(iv) If x,ye[0,a] with xsy then y=xv(x aAy) holds.

Proof.Statements (i) and (ii) can be proved by a straight-
forward calculation.

#
(iii) If x=y 2 then Xy=yx=0, and we can apply (ii).
#a #a
(iv) If x=y we have x=xy=yx hence x “y=yx and, by
#a #a #a #a
(ii), x “Ay exists. As (x “Ay)x=x(x “Ay)=0, xv(x “Ay) exists
#a '

and xv(x ~Ay)=x+(a-x)y=x+y-xy=y. o

Note, by Lemma 1, that [0,a] is an orthomodular poset and
thus, A is an orthomodular poset if R has a unit.

Lemma 2, For elements a and b of A, atb if and only if
ab=ba=0 (where the relation 1. is defined as in Definition 1).

Proof. Clearly, if ab=ba=0 then aiLb. Conversely, if avb
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#avb

exists and as=b we have a=a(avb-b)=(avb-b)a, thus a=a-

-ab=a-ba, and O=ab=ba. o
Proposition 1. The set of all idempotent elements of a

ring is a WGOMP.

Proof. Axiom (Gl) follows from Lemma 1. Using Lemma 2 we
show easily that (G2), (G3) and (G4) are satisfied. o

An important example of WGOMP is given by '—rings equipped
with the "-order. We will study this example in the following
section.

2. The example of ‘_order in '-rings

In this section A will denote a '-ring. That means that on
A there exists an involution x—x satisfying (x+y)'=x'+y'
and (xy)‘=y'x'. We assume further that A fulfills the so-
-called ‘-cancellation law:

a‘a=0 implies a=0.
In such a ring the *-order defined as follows:
asb if and only if a‘a=a’b and aa’=ba’ hold,

is an order relation [3].

In a .-ring one can also define an orthogonality relation
[7]) by:

aitb if and only if a'b=ab’=0.

We shall use results that can be found in [5]. Among them are:

(Rl) If x.Ly then xAy, xvy exist and xaAy=0, xvy=x+y.

(Rz) Every interval [0,x] of A is an orth;modular poset

and for ae[0,x] the orthocomplement of a is a X-x-a.

The following lemma proves that, for '-rings, the orthogonali-
ty relation of [7] agrees with the one introduced in Section 1.

Lemma 3. For elements a and b of A, a'b=ab =0 if and only

#

if there exists ceA such that a=c, b=c and asb c.
Proof. Assume a‘b=ab'=0, then by (R1) we have avb=a+b
#
and so as=avb-b=b avb- Conversely, if there exists ceA such

that a=c, b=c and asb ¢ then, as asc-b, we have a'a=
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=a‘(c-b)=a’c-a‘b. Now, a=c implies a'a=a'c and therefore,
a'b=0. Similarly, ba =0 holds. a

Proposition 2. Every '-ring satisfying the *_cancellation
law is a WGOMP.

Proof. Axiom (Gl). It is the result (R2).
Axiom (G2). Let a,b,ceA and assume asb=<c. As [0,c] is an
orthomodular poset, asb implies b=av(a cAb). By aia cAb, we

# # #

infer av(a cAb)=a+(a cAb) and so, a =b-a ¢

Ab.
Axiom (G3). Obvious, by making use of (Rl1l) and Lemma 3.
Axiom (G4). Let a,b,ceA such that aib, cia and cib. We
have avb=a+b, c’a=ca'=0, c‘b=cbﬂ=0. Thus c'(avb)=c'a+c'b=0
and c(avb)‘=ca‘+cb‘=0. Therefore ciavb and (G4) holds. o

Examples 2. (a) A commutative ring A has a canonical
structure of '—ring with x'=x. Such a ring satisfies the
‘-cancellation law if and only if it has no non-zero nilpotent
element and, in this case, the *-order is defined by a2=ab.
Recall that commutative rings without a non-zero nilpotent
element are all subrings of direct products of fields.

(b) Every Rickart '—ring fulfills the  -cancellation law
and, equipped with the '—order, is a WGOMP. Note that ' -order
extends the classical order on the set of all projections.

(c) In a C‘-algebra, the norm satisfies the identity
"x'x"="xn2. Hence, x x=0 implies x=0 and a C -algebra, when
endowed with the '-order, is a WGOMP.

3. The embedding
This section, in which A denotes a WGOMP, is devoted to
the proof of the following result:

Theorem 1. Every WGOMP A can be embedded as an order ideal
in an orthomodular poset A so that, for any xeA, xeA or x'eA.

#

Let A" be a set disjoint from A with the same cardinality.
#

Consider a bijection a—a from A onto A# and let us denote
the set AUA# by A.

Lemma 4. Consider the relation =  on A defined by the
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following conditions:
(i) For aeA, beaj, as'b holds if and only if asb.
(ii) For aeA, beA# with b=b{,

with a=a{, b=b{, a<’b holds if and

as'b holds if and only |if
albl. 4
(iii) For aeA”, beA
only if blsa

#

1° N

The relation = is an order relation on A.

Proof. The reflexive and antisymmetric laws are obvious.
In order to prove the transitive law, let a,b,ceA such that
a='b and b='c.

#

it is obvious that a=c.

#

If a,b,ceA or a,b,ceA

If a,beA and ceA# with c=c as'b and b='c mean as<b and

ll
Cllb.
Then there exists meA with c,sm, b=m and bsclm. We have asnm,
#
c,=m and asclm, therefore (by Remark 1 (a)}, aic, and a='c.
If aeA and b,ceA# the proof is similar. o

Note that (g,s‘) is a bounded poset with 0 as smallest
element and 0# as largest element.

We define al, for any a in A, by:

al=a# if aen,
1_ . ¥ ___¥#
a"=a, if aeA”, a=a,.

Lemma 5. The map a—a' is an orthocomplementation on A.

1

Proof., Clearly, (al)l=a, and a='b implies bi="a follows

easily from definitions. In order to prove that ara’=0 holds
for all aeA, we consider two cases.

#

If aeA and if m is a lower bound of a and al=a then

#

. a L
meA and we have in A, msa and msa . Therefore m=0 and aaa =0.

If aeA# with a=a1#, then a'=a and a,Aa #=0 by the
same proof. o

1 171

Lemma 6, If a,beﬁ with a=b' then avb exists in i.

Proof. We consider different cases.
If a,beA, as'b' means as'b#. Thus a.b holds and avb exists

in A, If m#eA# is an upper bound of a and b in A then we have



Generalized orthomodular posets 269

aim and bim. It follows from (G4) that miavb and avbs'm#.

Hence, the supremum of a and b in A is the supremum of a and b

in R.
£ o . # 1
If aeA, beA” with b—b1 , and a< b~ then, as aSbl, we have
#, 4o Fp \# o Fp  #
a 1e[0,b1] and b1 = la "1 thus b= {a 71| . Moreover, as
#, o P F R 4
aLta 1, a= [a 1) holds. Let ceA with c=c,", cleA and assume

that as'c and bs‘c. As aSbl, alLc

#

b #b #b .
Remark 1(b) that asc, 1. Therefore, c,=a 1, [a 1] = ¢c and

1 and clsb1 it follows from

~ # #
thus the supremum of a and b exists in A and avb=[a bl] .

#

If aeA” and beA the the proof is similar. o

Remark 2. The second part of the above proof shows that if

a,bleA and aSb1 then the supremum of a and bl# exists in i and
# #
avb #=[a bl] .
1
~ *

Lemma 7. For two elements a and b of A, a=<b implies
b=av(alAb).
) . #b R #
Proof. If a,beA, with a=b, then a "=b and a
p #

a ia. If ceA with c<'b and c=a’ we have ceA and c=<b, ciLa. As

#
a=b, it follows by Remark 1(b) that c=a b. Hence a#Ab exists
# # # #

#Ab=alAb=a b. Since a bla, ava b exists and ava b=b.

#eat

bs'a# as

and a

Now consider aeA, b=b1 and suppose a<'b. As aLbl, avb1

exists and we have asavb1 and b15avbl. Therefore (avbl)#sa#

#o. # # #
and (avbl) _bl . and b1 . If

ceA, then cira and cib Hence, by (G4), cxavbl and cs'(avbl)#.

Consider a lower bound c¢ of a

1
Now, if c=c #EA# then a=c and b.=c,. Thus avb.=c and
# 1 1 1 "1 # 1 71

c5(avb1) . Hence a‘Ab exists and alAb=(avbl) .

As asavbl, it follows from Remark 2 that av(avbl)#=

#
).
#avb . .
We have blsa 1 and, by using the orthomodular 1law 1in

#

=(a avb1
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[O,avbl], we infer that:

# #
avb, _ avb avb _ _
a 1= blv(b1 1aa 1) = blvo = bl'

Therefore, av(avbl)#=b;=b and the result follows.

_a F_F L F_F .
If a=a, er”, b—b1 €eA” and a= b then blsa1 and we have

# # #
bl# a a)y apn#

thus, av(alAb)=b. o]
As an immediate consequence of Lemmas 4,5,6 and 7 we have:
Proposition 2. If A is a WGOMP then A is an orthomodular

poset.

#
_ i_ a #_
Aal—bAa —b1 1. But b1 1va1 ((b1 by Remark 2 and

Examples 3, (a) Let R be a ring without unit and A be the
WGOMP of all its idempotent elements. The ring R can be
embedded in a ring with unit R". It is easy to show that the
set I(R') of all its idempotent elements is the set Av{l-a ]
aeA}. Obviously, I(R') is an orthomodular poset canonically
isomorphic to the set A obtained from A by the previous
construction.

(b) If A is the WGOMP of fig.3 then R is the orthomodular

lattice G,o of figure 4.

Fig. 3

(c) If A is already an orthomodular poset then 3 is
isomorphic\}o the direct product Ax{0,1}.
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Indeed, consider the map ¢:£—+Ax{0,l} defined as follows:

if xeh, p(x)=(x,0),

L L
if x#eA#, w(x#)=(x A,l) where x A denotes the
orthocomplement of x in A.

Then, it is easy to show that ¢ is an isomorphism.

4. Generalized orthomodular poset

The embedding of a WGOMP A in an orthomodular poset i
preserves the infimum but not generally the supremum whenever
they exist in A. If a,beA with aib, then, by (G4), the sup-
remum of a and b in A is also the supremum of a and b in A.
But if we consider the WGOMP A of figﬁ;e 5, Sj?gested by

M.Roddy, we have zix and zi1y (thus x=<"z" and ys'z ), and xvy
is not the supremum of x and y in A because we have not

XVYylzZ.

Xvy XVZ yvz

0
Fig.5

Notice that for a WGOMP A the following conditions are
equivalent:

(i) The embedding preserves all existing supremum of two
elements,

(ii) If a,b,ceA with cia and cib and if avb exists in A
then ciavb.

This remark leads us to introduce a new definition.
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Definition 2. A generalized orthomodular poset (abbreviat-
ed as GOMP) is a poset (A,=) with 0 satisfying Axioms (G1),
(G2), (G3) and
(G4)’ If a,b,ceA are such that cia, cib and avb exists then

cravb.

Theorem 2. Every GOMP A can be embedded as an order ideal
in an orthomodular poset A so that, for any xeA, xeA or xten.
Moreover, the embedding preserves all existing supremum of two

elements.

Every generalized orthomodular 1lattice (in particular,
every ideal of an orthomodular lattice) is a GOMP. Now, we
will compare the present embedding with the one of Janowitz
(41.

Recall the embedding of Janowitz. Let L be a generalized
orthomodular lattice. For a subset M of L define M'={xeL |
x1y for all yeM} and let Jx=[0,x]. The set £ of all ideals
of L of the form Jx or J;, for some element x of L, is an
orthomodular lattice and the mapping x—J, is an embedding
of L into £.

Let £ be the orthomodular poset obtained from L by the
embedding of Theorem 2.

Proposition 3, If L is not an orthomodular lattice then L
is canonically isomorphic to £.

Proof. Let us define a map f:irac by:

f(x)=Jx if xeL
£(xT) =Jx‘L if xferf.

It is easy to see that f is a bijection from L into £ such
that f(xl)=(f(x))l. In order to prove that xs'y is equivalent
to f£(x)cf(y), the difficulties arise in the two following
cases:

#

i) xeL and y=y1#eL . If xs.y then X1y, and let aeJx,

teJ . Since aiy., we have tia and aeJ ‘. Thus J.c3_*
Yy 1 Yy XY
f(x)cf(y). The converse is obvious.

and

ii) x=x #eL# and yeL. We need only prove that Jx chy does

1 1
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not hold. If Jx Lch then X vy is the largest element of L.
1
Indeed, suppose the contrary. Then there exists beL with
xlvy<b. Thus, there exists an element u of L with ulx,vy and
uvxlvy=b. It follows that X,iu and that wusy does not hold,
which contradicts the fact that Jx chy. Since L has a largest
1
element, L is an orthomodular lattice and so we have a contra-

diction.ao

5. The example of the ‘_order in a Rickart '-ring

In this section A is a Rickart '-ring and Proj(A) denotes
the orthomodular laé&ice of all projections of A. For aeA, a’
is the projection which generates the right-annihilator of {a}
and let Cc(a)={eeProj(A)|ae=ea}. Note that, if a=a', then C(aj
is the projection 1lattice of the Rickart '-ring of all
elements of A which commute with a.

Reading carefully Janowitz’s paper [5] 1leads to the
following result:

Proposition 4. ([5]) Let a be an element of a Rickart
'-ring A equipped with the ‘_order. The méPping wa:x—ex” is an
orthoisomorphism of [0,a] into [0,a’’]nC(a a).

Therefore, every interval [0,a) of a Rickart '-ring is an
orthomodular lattice isomorphic to an interval of a sub-
algebra of Proj(A). The key of the proof of Proposition 4 is
the following lemma:

Lemma 8. ([5]}) For a Rickart '—ring A the following
conditions are equivalent:

(i) xsa,

(ii) x=ax’’ and x“eC(a'a),

(iii) x’=a’’(a-x)’ and x a=a"x.

Lemma 9, Let a and b be two elements of a Rickart '-ring.

(i) ai1b is equivalent to a’”’ib” and a" b,
(ii) If avb exists then (avb)‘’’=a’vb’.

Proof. (i) If aib then avb exists, and by wusing the
isomorphism of Proposition 4, we have a’’1b’* and a" b’ as,
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clearly, aib is equivalent to a‘ip’. Conversely, if a‘’’1b’” then
a’’b’’=0 and thus, 0O=aa’’b’’=ab’’. Hence, 0=ab’’b =ab’ and, by using
a‘”lb'”, 0=a'b also holds. Therefore, we have aib.

(1i) Obvious, by using the isomorphism Pavb®

Proposition 5. Every Rickart '-ring is a GOMP.

If A is a Rickart '-ring then, by Proposition 2, A is a
WGOMP. In order to prove (G$)’, let a,b,c be elements of
such that cia, cib and avb exists. It follows from Lemma 9
that c”1a’’, c¢’’1b’’’, c¢"1a" and c'“1b"” hold. We have, in the
orthomodular lattice Proj(A), c’‘ia’”’vb’” and c'iatvp. By
using part (ii) Of Lemma 9, c’’i1(avb)’ and c'”x(a'vb')” and
part (i) implies ciavb. o

I would 1like to thank Georges Chevalier and Richard
Greechie for their encouragement and suggestions.
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