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1. Introduction 

An elementary fact about congruence lattices of lattices 

is that they are distributive and pseudocomplemented, i.e. 

they can be investigated as distributive p-algebras. In G. 

Birkhoff's monography [2] the problem of characterizing 

lattices with Boolean congruence lattices was formulated. 

Three solutions of the problem were given in [20], [6] and 

[4]. Lattices with Stonean and relative Stonean (in our 

terminology, (L^)- and relative (L^)) congruence lattices were 

characterized in [13] and [9]. Semi-discrete lattices with 

(Ln)- and relative (Ln)~ congruence lattices are for any n*l 

described in [10]. 

This paper is a continuation of [6], [13], [9] and a 

generalization of [10]. We characterize lattices with 

( L
n)~ and relative (Ln)-congruence lattices for any nfcl which 

gives a partial solution of the Problems III.5 and III.6 from 

G. Grätzer's monography [5]. In particular, we get slightly 

different descriptions (from those of [13] and [9]) of 

lattices with Stonean and relative Stonean congruence 

lattices. The results are presented in terms of the weak 

projectivity (Section 3). They can be simplified for weak-

modular lattices and semi-discrete lattices. In Section 4 the 

distributive case is investigated. 
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2. Preliminaries 

An algebra (L;v,λ,*,o,1) is called a (distributive) p-
algebra or pseudocomplemented lattice (=PCL) if ( L ; V , A , 0 , 1 ) is 
a bounded (distributive) lattice and is a unary operation of 
pseudocomplement, i.e. x*a iff aAX=0. The class IB of all cj 
distributive p-algebras is equational. In [18] it is shown 
that the lattice of all equational subclasses of Β is a chain υ 

IB ,c B_ c B,c ... c IB c . ..c Β - 1 0 1 η ω 
of the type u> + 1, where ^ are the classes of all 
trivial p-algebras, Boolean algebras and Stonean algebras, 
respectively. 

The elements of the subvariety Β η ( η ϋ ) are called 
(Ln)-lattices as they are completely characterized by the 
identity 

(Ln) ' ' ' , xn ) = 1' w h e r e 

* >?V * * 
(*·./···Χ_) = (Χ,Λ ... Λ Χ ) V . Ν_ Χ,Λ ... ΑΧ. Λ ... Α Χ ) . η ι η ι η ι=ι ι ι η 

Distributive PCL's of which ev ry interval is an 
(L )-lattice are named relative (L )-lattices. The class of % η η' 
relative (Ln)-lattices can also be described as a subvariety 
of the variety of all Brouwerian lattices (see [10]). Recall 
that a Brouwerian lattice is an algebra (L;V,A,*,1) where 
(L;V,A,1) is a lattice with unit and * is the binary operation 
of relative pseudocomplementation, i.e. xsy ζ iff XAysz. A 
well-known fact about Brouwerian lattices is that they are 
distributive. In [10] relative (Ln)-lattices are described as 
Brouwerian lattices satisfying the identity 

(Ln} i^*!'· · ''xn'y) = 1' where 

* fy * * 
1n ( xl''''' xn' Y ) = ( xl A"'• A Xn ) y v i=l ( xl A*' , A Xi γ Λ··· Λ Χ

η
) y* 

Brouwerian lattices with zero are called Heyting algebras. 
Distributive PCL' s are obtained form Heyting algebras when we 
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define x* = x*0. Congruence lattices of lattices form Heyting 

algebras. Therefore they can be investigated as relative 

(L )-lattices as well as (L )-lattices, η η 

Also recall that a semi-discrete lattice is a lattice in 

which there exists a finite maximal chain between all 

comparable pairs of elements. Every finite lattice is 

obviously semi-discrete. Lattices in which all bounded chains 

are finite are called discrete. 

We shall use this notation: Con(L) for the lattice of all 

congruence relations on a lattice L, 0 (I) for the smallest 

(largest) congruence relation, a/b —» c/d for the weak 

projectivity of quotients of a lattice in the sense of [13] or 

[6]. Further, we shall usually write (x^,......,x ) 

instead of ( x ^ , . . . , , , . . . , x n ) . All undefined terms as 

well as general lattice theoretic results may be found in [2], 

[5] or [19]. 

3. The characterization theorems 

We begin with some definitions and lemmas. 

Definition 1. Let L be a lattice, nal and a/b, u^/v^» ···> 

u n + 1 / v f i + 1 nontrivial quotients of L. Then L is said to be 

n-veakly modular whenever 

a/b —> u i / v i ' * = 1/···?η+1 

implies that one of the following conditions holds: 

(i) there exist i,je{l,...,n+l}, i*j and a quotient u/v 

with u^/v^ —> u/v and u j / v j —* u/v. 

(ii) for all ie{l,...,n+l> there exist nontrivial proper 

subquotients r^/s^ c a/b and nontrivial quotients Zj/t^ such 

that r^/s^ —> a n d u i / v i —* zi/fci ( s e e Figure 1) . 

u. /v. 
^ ι' ι \ 

/ · * 
a/b · u/v 

X ; 

V v j 

(i) 
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Definition 2. Let L be a lattice, n ü and ®ι»···»θ
η 

nontrivial congruence relations on L. Then an (unordered) 
n- tuple (θ1#...,θ ) is said to be η-weakly separable if for 
any b<a in L there exists a chain b=zn<>..<z =a such that for o m 
all ie{0,...,m-l} either 

(i) —* u/ v an<* usviöj^n.. .ηθη) yields u=v or 

(ii) there exists je{l,...,n} such that for every 
nontrivial proper subquotient r/s c the following 
holds: r/s —» u/v, 
imply the existence of a nontrivial quotient u' /v' with 
u/v —> u' /v' and u' =v' (θ^) . 

Remark 1. It is easy to verify that η-weakly modular 
lattice is also (n+1)-weakly modular for any n*l. Similarly, 
(n+1)-tuple (θ^,...#θ

η+1) o f nontrivial congruence relations 
on L is (n+1)-weakly separable if some n-tuple 

Λ 
(θ^,...,θ^,...>θ

η+1) is η-weakly separable, where 
ie{l,...,n+l>. 

Lemma 1. ([5; Theorem III. 1.2]). Let L be a lattice, 
a,b,c,deL, b¿a,dsc. Then csd(d(a,b)) if and only if there 
exists a chain d=zfts...sz_=c such that o m 

a/b —> zi+i/zi e v e r y i=0,...,m-l. 

Lemma 2. ([16; 1.4.]). Let L be a lattice and 
θ,φ e Con(L). Then the relative pseudocomplemented of θ with 
respect to φ is 
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* 
Θ φ = V(0(u,v), (u,v)eS), where 

S is the set of all pairs of elements (u,v) (u,veL) such that 
u/v —> z/t and z=t (Θ) implies z=t(<p) for all z,teL. 

Now we can present the first result. 
Theorem 1. Let L be a lattice. Then Con(L) is an 

(Ln)-lattice if and only if 
(i) L is n-weakly-modular and 
(ii) every η-tuple (θ1,...,θη) of mutually distinct 

nontrivial congruence relations on L is η-weakly separable. 
Proof. Assume that Con(L) is an (Ln)-lattice, i.e. it 

satisfies the equation (Ln). Take any nontrivial quotients 
a/b, ^ / v ^ ..., u n + 1/v n + 1 in L with a/b —• ui/vi, 

i=l,...,n+l. Consider that there are no i,je{l,...,n+l}, i*j 
and a nontrivial quotient u/v such that uj/v¿ —* u/ v a n d 

uj/vj —> u/v. Set 

θ1 = ö(ul'vl)'··',θη+1= ®(un+l'vn+l)· 
First we shall prove that 
(1) θ1*ν...νθη+1*=Ι. 

In order to show that θ^ n = 0 for all i, j{l,... ,n+l}, 
i*j, suppose on the contrary that there exist elements u*v in 
L with usv(0^ η (we can assume u>v) . Then by Lemma 1 there 
exists a nontrivial subquotient u' /ν' s u/v with 
u^/v^ —» u' /ν' and uj/vj — > u' /v' » a contradiction. Hence, 
θ. s et for ail i,je{l,...,n+l}, i*j. In the case n=l we have * * * 
β, ν = I as Con(L) is Stonean. Since θ 2 s θ ^ i.e. * * * * * * 

- θ2, it follows I = θ χ ν a θχ v θ2' t h u s Í1) holds. θ 
Now we assume n^2. Set 

«1 = θ2 ν···ν θη v θη+1' 
α2 = Θ1 v θ3 ν·'·ν θη ν θη+1' 

α = θ, ν...ν θ , ν θ ,, . η 1 η-1 η+1 
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We have · · · ι<*η) = I by the assumption. We s h a l l prove 
t h a t 
(2) ( V - A V = θη+1 

* 
a n d A ^ A . . . Λ · · Λ 0 ( Η = Ι = 1 , · . . , Η . 

C l e a r l y , ® n + 1 s <*1Λ · · · Λ α η * Suppose on the contrary t h a t t h e r e 
are u,veL, u*v (we can assume u>v again) with usvfo^A . . . Λα ) 
and u * v ( ® n + i ) · Then (as usvfo^)) t h e r e e x i s t i e { 2 , . . . , n } and a 
n o n t r i v i a l subquotient u'/ν' ε u/v such t h a t u'=v' (Θ.), 
u' ϊν ' ( θ η + 1 ) · S ince u' =v' (α^), i t fo l lows than t h e r e e x i s t 
j e { l , . . . , n } , j * i and a n o n t r i v i a l subquotient u"/v" ε u' /v' 
such t h a t u " E v " ( 0 j ) . Then u " * v " (θ^ η θ^) , which c o n t r a d i c t s 
θ^ λ = 0 . Thus ο^λ . . . Aotn = θ η + 1 · Using d i s t r i b u t i v i t y and 

the f a c t t h a t θ^ s θ? f o r a l l i * j , the remaining e q u a l i t i e s in 
(2) can be e a s i l y v e r i f i e d . Now, (1) d i r e c t l y fo l lows from (2) 

and the assumption. Hence, a = b ( e 1 * v . . · ν θ η + 1 * ) · Considering the 

e x i s t e n c e of some i e { l , . . . ,n+l> with a * b ( ö * ) would lead t o 

Α θ * ) , a c o n t r a d i c t i o n . Thus f o r every i « { l , . . . , n + l > 
t h e r e e x i s t s a n o n t r i v i a l proper subquotient r^/s^ ε a/b with 

Γ . * 3 . ( θ * ) . Now using Lemma 2 t h e r e e x i s t s a n o n t r i v i a l 

quot ien t z'^/t'^ with r^/s^ —• ζ ί / ^ ϊ a n d z j . s t i ( ® i ) · BY Lemma 1 

t h i s y i e l d s t h a t f o r every i e { l , . . . , n + l > t h e r e e x i s t s a 
n o n t r i v i a l subquotient Zj/t^ £ ζ ί / ^ ϊ w ï - t h u i ^ v i —* 
Hence, L i s η-weakly modular. 

Now, l e t θ ^ , . . . , θ η e Con(L) be mutually d i s t i n c t and 
n o n t r i v i a l and b<a. According t o the assumptions t h e r e e x i s t s 
a chain b=zQ< . . .<z m =a such t h a t f o r every i « { l , . . . , m - l } 

* * * 

e i t h e r z i + i ® z i ( ( ® i A ··• Λ θ η ) ) o r z i + i s z i ( ( θ ι Α · · - A 0 j A · · · Λ θ η ) ) 
f o r some j e { l , . . . , n > . In the f i r s t case we immediately g e t the 
condi t ion ( i ) from D e f i n i t i o n 2 . We s h a l l show t h a t in the 
second case the condi t ion ( i i ) of D e f i n i t i o n 2 i s s a t i s f i e d . 

* * Let * ^ ( ( θ ^ · · · A 0 j λ . . . Λθη) ) f o r some ] « { ! , . . . , η } . 
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Further, let r/s c be a nontrivial proper subquotient 
A 

and let r/s —> u/v, u*v and u^vfe^n ... αΘ^ a ... <"»θη) · 

Suppose on the contrary that u/v —> u' /ν' , u' sv' and u' sy' (0j) 
* imply u'=v' . Then u=v (θ^) by Lemma 2, hence we have 

* usvfe^ a ... η π λ a . .. · Since also 
* * 

usviföj^n ... A A ... Γ\θη) )/ we get u=v, a contradiction. 
Thus there exist elements u'>v' with u/v—>u'/v' and u'sv' (0j). 
This proves that every (unordered) η-tuple (θ^,.,.,θ ) of 
mutually distinct nontrivial congruence relations on L is 
n- weakly separable. 

Conversely, suppose that the conditions (i), (ii) are 
satisfied. Let θ^,...,8neCon(L) be nontrivial. In order to 
prove that Con (L) is an (Ln)-lattice, it is sufficient to 
show that for any b<a in L asbil (θ,,...,θ )). The nontrivial n i η 
case is when θ^,.,.,θ^ are mutually distinct. Take b<a in L. 
Since the η-tuple (θ^,.,.,θ ) is η-weakly separable, there 
exists a chain b=cQ<...<cm=a such that for every ie{0,...,m-l} 
either the condition (i) or that of (ii) from Definition 1 
holds. In the first case we immediately get 

* c·,, Ξ σ.((θ,Λ...Λθ ) ). Now assume that (ι) doesn't hold, l+l ι l η 
i.e. there exists a nontrivial quotient u n + 1 / v n + 1 such that 

c.,,/c. —• u ,,/ν ,, , u , „ S ν ,,(θ,Λ...ΛΘ ) and l+l' ι n+1' n+1' n+1 n+lv 1 n' 
simultaneously the condition (ii) holds. Two cases can occur: 

1. there exists je{l,...,n> such that ci+i/ci —* u / v anc* 
* 

U=V(©^A .. . A0J Λ ... ΛΘ^) imply u=v. Then by Lemma 2 

c i + 1 = c i((8 1 Λ ... Λ öJ *... Λ θη)*). 

2. for every je{l,...,n}there exists a nontrivial quotient 
u./v. such that c. /c. —» u./v. and J J * l+i ι 3 D 
UjSVj(0^A ... A0j λ... Λ® η)· According to the assumptions at 
least one of the conditions (i), (ii) from Definition 1 holds 
for the quotients ci+\/ci' uj^ vj j=l,...,n+l. Clearly, 
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condition (i) is not satisfied. Hence (ii) holds, thus for 
every je{l,...,n+l} there exists a nontrivial proper 
subquotient rj/ sj c ci+i/ ci an<* a nontrivial quotient 

such that rj/ sj —* an<* Uj^ Vj —* Therefore, 
* 

Zj^tjC©^ ... θjλ ... Λθη) for every je{l,...,n}. Since we are 
considering the case (ii) from Definition 2, it follows that 
for some je{l,...n} there exists a nontrivial quotient z/t 
such that zj/tj —* a n â zst(6j). Since ZjStj(et), we ^ get * 
zst(8j a Sj), so z=t, a contradiction. Thus, the case 2. is 
impossible. Hence, for every ie{l,...,m-l} either 

c i + l î c i ( ( v ···' V * 1 o r c i + l s c i ( ( e i A ·*·Λθ^Λ ··· A0n)*)for 
some je{l,...,n>. This yields that asb(l (θ^ . . . ,θη) ) . The 

proof of Theorem 1 is complete. 

This result can be simplified if the lattice L is 
weak-modular or semi-discrete. By a weak-modular lattice L we 
mean the lattice L in which a/b —> c/d(a^b, c^d, a,b,c,d,eL) 
yields the existence of a subquotient a

1 / b
1 £ a/b such that 

c/d —» a^yb^. The class of weak-modular lattices includes all 
modular lattices (cf. [5]). 

Omitting (i) and modifying (ii) in Theorem 1 we get the 
following result: 

Corollary 1. Let L be a weak-modular lattice. Then Con(L) 
is an (Ln)-lattice (n*l) if and only if for every (unordered) 
η-tuple (θ^,.,.θ^ of mutually distinct nontrivial congruence 
relations and every b<a in L there exists a chain 
b=zQ< ...<zm=a such that for each ie{l,...,m-l> either 

(i) usv(0^ r\ ... ηθη) for any subinterval [u,v]s[z^,z^+1] 
implies u=v or 

(ii) there exits je{l,...,n} such that for every 
nontrivial proper subinterval [ u , v ] c [ z ^ , w i t h 
u=v(θ- η ... ηθ. η ... ηθ ) there exists a nontrivial 1 j η 
subinterval [u' ,v' ]s[u,v] with u' sv' (θ^). 
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Corollary 2. ([10, Corollary 4]). Let L be a semi-discrete 

lattice. Then Con(L) is an (Ln)-lattice (n^l) if and only if 

for any prime quotients p , q 1 # . . . , q n + 1 of L satisfying 

Ρ —> q k / k=l,···,n+l 

there exists a prime quotient s of L such that 
q^ —» s and q. —» s 

Figure 2 

Proof. Obviously, in a semi-discrete lattice L the 

condition (ii) from Definition 1 doesn't hold for any prime 

quotients. Every η-tuple congruences on L is evidently n-

weakly separable. 

One can easily verify the following statement (see also 

[10; Theorem 1]): 

Lemma 3. Let L be a distributive lattice with 1. Then L 

be a relative (Ln)-lattice if and only if for every aeL, [a,l] 

is an (L )-lattice, η 

Corollary 3. Let L be a lattice. Then Con(L) is a relative 

(Ln)-lattice (n^l) if and only if for every neCon(L) 

(i) the factor lattice L/Π is η-weakly modular and 

(ii) every (unordered) η-tuple (Θ^/ΤΙ, ... ,θη/Π) of 

mutually distinct nontrivial congruence relations on L/Π is 

η-weakly separable. 

Proof. By Lemma 3, Con(L) is a relative (Ln)-lattice if 

and only if Con(L/II) is an (Ln)-lattice for every IleCon(L) . 

Remark. 2. For n=l we get slightly different descriptions 

(from those of [13] or [9]) of lattices with Stonean and 

relative Stonean congruence lattices, respectively. More 
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precisely, if L is Π-almost weakly modular (cf.[9]) then L/Π 
is 1-weakly modular for any IleCon(L). On the other hand, if 
for some Θ,Π e Con(L), Θ>Π, the congruence Θ/Π on the factor 
lattice L/Π is 1-weakly separable, then θ is also Π-weakly 
separable in the sense of [9]. 

Finally, we are able to prove much simpler result for 
semi-discrete lattices (see also [10]). 

Theorem 2. Let L be a semi-discrete lattice.. Then Con(L) 
is a relative (Ln)-lattice (nal) if and only if for any prime 
quotients P'^i'· · ·'®Ιη+ι L relations ρ —• q^, 
k=l,...,n+l imply q^ —* q^ or q^ —• q^ for some 
i,je{l,...,n+l}, i*j (see Figure 3). 

Figure 3 
Proof. Let Con(L) be a relative (Ln)-lattice and a/b, 

u^/Vj^,... ,u n + 1/v n + 1 prime quotients such that a/b—• ui/vi' 
i=l,...,n+1. Denote 

Θ. = 0(ui,vi), i=l,...,n+l. 
Further,set 

aj = θ1ν·'•v0j-lvej+lv·'·νθη+1' ί=1»···»η, 

Π = ̂  (θ.ηθ.). 
i,j=l 1 

i<j 

We have asbfl^ia^,...,an)) by the assumption. Since a/b is 
prime, we conclude either 

* * * a=b(a„λ...Λα ) Π or asb(a,λ...Λα. ,Λα.ΠΛα..,λ..·λο_) Π 1 η 1 1-1 ι 1+1 η 
for some ie{l,...n}. In the first case we get u

n + 1
s v

n + i ( n ) 
η 

Lemma 2 since u n +l s vn+l ( O ^ i * ' T h i s Y i e l d s u
n+lsvn+l(0in®jJ 
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for some l*i<jsn+l as un+]/v
n+i prime. Then by Lemma 1 

* * u./v. —>u ,,/v Now assume that a=b(a,A.. .Λα.ΠΛ. . .Λα ) Π. ι ι n+l n+l ι ι η 
If we show that (Α̂ Λ...Λ(Χ*ΠΛ...AOÉ̂ ) then usv(II) will 
hold by Lemma 2. But clearly u.sv.(α,λ...α.λ...Λα ). In order l i l i η 
to show that u^sv^(a*II) by Lemma 2 it suffices verify that 
û /Vĵ  —> u/v and usv(a^) implies u=v(II) for any u,veL, usv. 
But this is really true, since and α^ η Π. 
Hence, we have u^v^(IT). This means uisvi(0k A ®m) some 
lsk<msn+l as uj/v¿ is prime, so u^/v^ —» ui/vi f o r s o m e 

lsksn+1. 
Conversely, suppose that the identity (L^) is not 

satisfied in Con(L). Hence there exist mutually different 
congruences θ^,.,.,θ ,Π on L and a prime quotient a/b such 
that a*b(l'(0,, ,Θ ,Π)). Thus a*b(0,A λΘ )*Π and n i η ι η 
a^bfe^A...ΛΘ^_1ΛΘ^Π Λ Θ^ + 1Λ...Λ© Η)*Π for all ie{l,...,n}. This 
yields by Lemma 2 that there exist prime quotients un+]/v

n+i > 
V V 1 V v n s u c h t h a t a/b un+l/vn+l' 
un+l5 v n + l · · · η θ

η ) a n d u
n+i* νη+1(Π)' a n d f o r a 1 1 i=1''*''n 

a/b—i uj/vi' uisvi'®ln" " ,Λθί-ιΛ ®ί*Π Λθί+ιΛ· " ,ηθη' anc* 
νί(Π). 
We shall show that neither ui/vi—* uj^vj n o r 

Uj/Vj —• ui/vi hold for any lsi<jsn+l. First, assume that 
u„.,/v., —>u./v. for some ie{l,...,n}. Then u.sv.(0. π ©til) n+l n+l ι ι ι » » j ι i l i 
which implies u^sv^(II), a contradiction. Now let u^/v^—> uj^vj 
for some lsi<j*n+l. Then we again get Uj®Vj(e?II π θ^) , so 
UjSVj(H), a contradiction. The proof is complete. 

4. Congruence lattices of distributive lattices 
Several interesting results were obtained for congruence 

lattices of distributive lattices. 
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Lemma 4 ([6],[8]). Let L be a distributive lattice. Then 
Con(L) is a Boolean algebra if and only if L is discrete. 

Lemma 5 ([9; Theorem 7]). Let L be a distributive lattice. 
Then Con(L) is a relative Stone lattice if and only if L is 
discrete, i.e. Con(L) is a Boolean algebra. 

Now one can ask the following question. What do 
characterizations of the lattices with (Ln)-and relative 
(L )-lattices look like in the case of a distributive lattice η 
L ?. 

In the following Theorem we give an answer to this 
question in the special case when the lattice L is a chain. 

Theorem 3. Let L be a chain. Then Con(L) is an 
(LR)-lattice (n*l) if and only if L is discrete, i.e. Con(L) 
is a Boolean algebra. 

Proof. Let Con(L) be an (Ln)-lattice. Assume on the 
contrary that L is not discrete. Then there exist elements a<b 
in L such that the interval [a,b] contains an infinite 
sequence 

a=a0,n+l<all<al2< *""<aln<al,n+l<a21<a22< ''<a2,n+l<a32< ·" 

of elements of L. Define congruences θι»···»®n on the lattice 
L as follows: 

ej - e(a'aij>v
iY1

(e(ai,j+i'ai+i,j))' j = 1 n 

η 
(i.e. so that a¿ n + 1 • ai+1#x( Pi 0k)» i=0#l# ··· a n d 

2 ai -ϊ+ι(Πθν>' i=l,2,..., j=l,... ,n - see Figure 4a). 
k*j 
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22 

21 

Ι,η+1 

*ln 

13 

12 

11 

N > n ® k ' k*l * 
s η 

' k=l K 

V > Hfl k ' k*n K 

N > n e k ' k*2 K 

N > Π « * ' k*l * 
s η 

' k=l κ 

'i+1 
r_ 

ai,j+l 
ν 

V' 
u' 
u 

"ij 
r„ 

s η 
> n * k ' k=l K 

Ν 
Ν 

Ν 

/ 
/ 

/ 
/ 

ν η 
> n * k / k=i 

a=a 0,η+1 

Figure 4a Figure 4b 
Evidently, there are infinitely many nontrivial factor classes 
(i.e. containing more than one element) related to the 

η 
congruence Γ~ίθν in the interval [a,b]. The η-tuple of 

k=l K 

congruences (θ1,...,θη) is η-separable by the assumption and 
Theorem 1. Thus there exists a chain a=z.<... ζ =b such that u m 
for each ie{l,...,m-l} either (i) or (ii) from Corollary 1 is 

satisfied. If (i) holds, then zi"zi+i((θιη···ηθ
η)*) using 

Lemma 2, i.e. there is no nontrivial factor class related to 
η 

the c o n g r u e n c e i n the interval [ · I f doesn't 

hold, then (as L is a chain) there exists a subinterval 
η 

[s,r]C[zi,zi such that rss(f~^©k), and the condition (ii) 
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from Corollary 1 holds. We shall prove that in the interval 

there is at most one nontrivial factor class related 
η 

to the congruence Θ. in this case. Suppose on the contrary 
k=l K 

that there are elements ri' si' r2' s2 such that 
Zi Í Sl < rl < S2 < r2 Í ZÍ+l' ri=si(01n...ηθη), i=l,2 and 
r
1
i s 2 · · · η θ

η ) · L e t je{1»···11} b e the indices from (ii) of 
Corollary 1. By the definition of the congruences θ^, there 
exists a nontrivial proper subinterval [u,v]c[r1#s2] such that 

A 
u=ν(θ^η...ηθ^η...ηθη) (see Figure 4b). (Obviously, [u,v] £ 

S f°r some i.) By (ii) from Corollary 1, there 

exists a nontrivial subinterval [u' ,v' ]S[u,v] such that 

u'=v'(8j). But this evidently contradicts the definition of 

the congruences θ^, i=l,...,n. 

Hence, there are only finitely many nontrivial factor 
η 

classes related to the congruence (ΓΛ θν) ·*·η ^he interval 
k- i K 

[a,b], a contradiction. Therefore L must be discrete. 

The converse statement is trivial. 
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