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SKEIN POLYNOMIALS AND ENTROPIO RIGHT QUASIGROUPS 

1. Introduction 

The skein polynomial K(l,m) of an oriented link Κ is an 
isotopy invariant introduced by various authors in the 
mid-1980s following the models of the Alexander and Jones 
polynomials [FH] [LM]. A surgery triple is an ordered triple 
( K J ^ K J ^ K Q ) of links KR, K^, K Q having presentations (planar 
pictures) that coincide outside a ball, within which the 
representative presentations are as shown: 

KL K0 
Thus within the ball, Kĵ  has a right-handed crossing, K^ a 
left-handed crossing, and K Q no crossing at all. The integral 
group ring of the free abelian group on the two-element set 

+ 1 +1 
{l,m} is denoted by Ζ [1~ ,m~ ], and its elements are referred 
to as Laurent polynomials. Skein polynomials are then defined 
by the following theorem [LM, pp. 109, 112-3]. 

Theorem 1.1. To each oriented classical link Κ can be 
associated a Laurent polynomial K(l,m) depending only on the 
isotopy class of K. The association is unique subject to the 
properties: 
(1.2) if U is the unknot, then U(l,m)=l; 
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if (Κ^,Κ^,Κφ) is a surgery triple, then 
(1.3) • 

lKR(l,m) + l_1KL(l,m) + mK0(l,m) = 0. R • 

Skein polynomials are often referred to by other names such as 
"oriented polynomials", "P-polynomials" (even by non-stutter-
ers), and by various acronyms that are anagrams of HOMFLY. 
There are many open questions concerning skein polynomials 
(cf. [LM, § 4]). The purpose of the current note is to point 
out that two-variable polynomials in rings may not form the 
most appropriate algebraic environment for these link invaria-
nts. Instead, less familiar algebraic structures such as 
entropie right guasigroups seem better suited. Quasigroups and 
right guasigroups are described in the second section, while 
the third section deals with entropie guasigroups and piques. 
The fourth section then sets the skein polynomials into this 
new algebraic context. 

2. Quasigroups and right quasigroups 
A quasigroup (Q,*) is a set Q equipped with a binary 

operation called multiplication, usua ly denoted by * or 
juxtaposition, such that in the equation 
(2.1) χ * y = ζ 
knowledge of any two of x, y, ζ in Q determines the third 
uniquely. For χ in Q, define right multiplication 

(2.2) R(x) : Q — > Q ; y i - » y * x 
and left multiplication 
(2.3) L(x) : Q — > Q ; y H - » x * y . 

The right and left multiplications biject. From the standpoint 
of universal algebra, the definition (2.1) is awkward. A qua-
sigroup may be defined alternatively as an algebra (Q,*,/,\) 
equipped with three binary operations, namely multiplication 
*, right division /, and left division \, such that the iden-
tities 

(x * y) / y = χ 
(2.4) 

(χ / y) * y = χ 
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and 
X = Y \ (Y * χ) 

(2.5) 
χ = y * (y \ χ) 

are satisfied. The two definitions are equivalent [S3,117]. 
The first identity of (2.4) gives the injectivity of the right 
multiplication R(y), while the second gives the surjectivity. 
The identities (2.5) give the bijectivity of the left 
multiplication L(y). In a guasigroup (Q,*,/,\) the further 
identities 

(y / χ) \ y = χ 
(2.6) 

. y / (χ \ y) = χ 
are satisfied. 

A right guasigroup is an algebra (Q,*,/) with binary 
operations of multiplication and right division such that the 
identities (2.4) are satisfied. Thus the right multiplications 
are required to biject, but no restriction is imposed on the 
left multiplications. Given a binary operation / on a set Q, 
define the opposite binary operation % on Q by 
(2.7) χ % y = y \ χ. 
The identities (2.6) may then be rewritten as 

(χ % y) \ y = χ 
(2.8) 

(χ \ y) % y = χ. 
In particular, 

Proposition 2.9. If (Q,*,/,\) is a quasigroup, then 
(Q,%,\) is a right quasigroup. • 

3. Entropie piques 
A pointed idempotent quasigroup or pique (Q,*,/,\,0) is a 

quasigroup (Q,*,/,\) equipped with an additional miliary 
operation selecting an idempotent element 0 of Q (i.e. {0} is 
a subquasigroup of Q). An algebra is entropie if each 
operation is a homomorphism [RS, 127]. A quasigroup is 
entropie iff it satisfies the identity 
(3.1) (χ * y) * (z * t) = (χ * z) * (y * t) . 
In an entropie pique (Q,*,/,\,0), set R(0)=R and L(0)=L. 
By (3.1), R and L commute. Murdoch's Second Structure Theorem 
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[Mu, Theorem 8] or the more general Structure Theorem for 3-
-algebras [SI, p. 76] [S2, § 6] then gives an abelian group 
structure (Q,+,0) such that 

χ * y = xR + yL, 
(3.2) χ / y = xR 1 - y LR 1, 

χ \ y = yL 1 - xRL 

Conversely, (3.2) may be used to define an entropie pique 
structure on any module for the integral group ring Ζ 

±1 ±1 

[R ,L ] of the free abelian group on the two-element set 
{R,L}. In particular, (Z [R*1,L11],*,/,\,0) itself is the 
free entropie pique on the singleton {1}. This suggests re-
placing the complex analytical interpretation of "Laurent pol-
ynomials" implicit in their name by an algebraic interpreta-
tion as unary entropie pique operations. 

4. Link invariants in entropie quasigroups 
The basic formula (1.3) for the skein polynomials may be 

written as 
(4.1) KQ(l,m) = -m - 1 1 KR(l,m) - m - 1l _ 1K L(l,m). 

±1 ±1 +1 The submonoid of (Ζ [1 ,m ],·,1) generated by {(-m 1) , 

(-m ^i*1} is a free abelian group on {-m 1l,-m 11 1}. Set 

(4.2) 
R = -m-1l, 

L = -m 1 
Use the same notation Κ both for an oriented link and for its 
skein polynomial. In particular U=l. The formulae (1.3) or 
(4.1) then appear as 
(4.3) K 0 = K rR + KlL. 

In view of (3.2), this may rewritten as 
(4.4) K 0 = K R * K L 

where the multiplication takes place in the free entropie 
±1 ±1 

pique (Z [R ,L ],*,/,\,0) on the singleton {U}. 
In [LM, p. 113] a recursive procedure for calculating the 

skein polynomial of a link is discussed. Given a presentation 
Κ of a link, a reversal of a crossing denotes a transformation 
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of the form Κ = K R ι—> K^ or Κ = K L ι—* Kĵ . Similarly, re-
moval of a crossing denotes a transformation of the form 
Κ = Kĵ  ι—• KQ or Κ = K L ι—• KQ. Given a presentation Κ of a 
link,say with η crossings, there is a sequence 

(4.5) Κ = K° ι—» Κ 1 ι—> ... ι—> Κ Γ _ 1 ι—• K r 

r . , , 
of reversals such that Κ is an unlink. Each presentation in 
(4.5) has η crossings. For each reversal Κ 1 ι—> K 1 + 1 in 
(4.5), there is a corresponding removal Κ 1 ι—• J 1 such that 
either (K1,K1+1,J1) or (K1+1,K1,J1) is a surgery triple. The 
link J 1 is presented with n-1 crossings, so by induction on η 
its skein polynomial is known. The relations J = K ^ K 1 * 1 or 
J 1 = Κ 1 + 1*Κ Χ given by (4.4) may be rewritten as 

(4.6) 
K 1 = K i + 1 * J i = j V 1 - K i + 1 L R - X or 

K 1 = K i + 1 \ J i = J V 1 - K i + 1 R L - 1 

r . . 0 respectively. Once Κ is known, the skein polynomial of Κ =K 
may be computed by working backwards along (4.5) using (4.6). 
If U c denotes the unlink with c components, it was noted in 
[LM, p. 113] that 
(4.7) U° = U 0 - 1 * ^ " 1 = (R + L) C _ 1. 
Induction on η then proves the following. 

Theorem 4.8. According to Proposition 2.9, the free 
+ 1 +1 entropie pique (Z [R~ ,L~ ],*,/,\,0) on the singleton {U> 

±1 ±1 determines an entropie right guasigroup (Z [R ,L ],%,\). 
Let S be the sub-right-quasigroup generated by the set 

c + 
{U I ceΖ } of skein polynomials of unlinks. Then the skein 
polynomial of an arbitrary classical oriented link is an 
element of S. • 

Theorem 4.8 may be summarized by the statement that skein 
polynomials of oriented links are entropie right quasigroup 
words in the skein polynomials of unlinks. 
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