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SUBVARIETIES OF THE VARIETY DEFINED BY EXTERNALLY COMPATIBLE

IDENTITIES OF DISTRIBUTIVE LATTICES

We consider algebras of type 7t=(2,2) with two fundamen-
tal operation symbols +, -.

An identity ¢=y¢y of type T is called externally compati-
ble iff it is of the form x=x or ¢1+¢2=w1+w2 or ¢1-¢2=
=w1-w2, where x is a variable and ¢1, ¢2, wl, wz are terms
of type Tt (see[1]). An identity ¢=¢ of type T is called non-
-trivializing iff it is of the form x=x or ¢ and Y are differ-
ent from a variable (see [2], [4]).

Let D be the variety of all distributive 1lattices and T
the trivial variety of type t. If K is a variety of type T,
then we denote by Id(K) the set of all identities of type <t
satisfied in K, by Ex(K) the set of all externally compatible
identities of type Tt satisfied in K, and by N(K) the set of
all non-trivializing identities of type Tt satisfied in K.
Obviously the sets Ex(K), N(K) are equational theories.

If £ is a set of identities of type T, then V(Z) denotes
the variety of all algebras of type T defined by X.

We denote by ¢* the canonical form of a term ¢ in D.

In this paper we describe the lattice of all subvarieties
of the variety V(Ex(D)).

We have obviously

Lemma 1. (a) The identities
X-y=u-v
x+y=u+v

form an equational base of V(Ex(T)).

(b) The identity
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X y=u+v
forms an equational base of V(N(T)).

Lemma 2, The lattice L(V(Ex(T))) of all subvarieties
the variety V(Ex(T)) has the following diagram,

V(Ex(T))
V(N(T))
T
Figure 1.

i.e. L(V(Ex(T))) 1is isomorphic to a three element chain.

of

Proof. By Lemma 1 it is easy to see that T, V(N(T)),

V(Ex(T)) are different subvarieties of V(Ex(T)) and
T ¢ V(N(T)) < V(Ex(T)).
It is known (see [2]) that the following identities
x+(y+z)=(x+y)+z x-(y-2)=(x-Y)-2

xX+y=y+x X y=y-'Xx
X+Xy=x+x X (X+y) =x+x
X (yt+z)=x-y+x-z

X+X=X* X

form an equational base of V(N(D)).

Lemma 3. The lattice L(V(N(D))) of all subvarieties
the variety V(N(D)) has the following diagram

V(N (D))

D V(N(T))

T
Figure 2.

of

Proof. An arbitrary subvariety K of V(N(D)) different from

V(N(D)) satisfies at least one of the following identities:
(a) x=¢ and (x=¢)eId(D),
(b) ¢=y and (¢=y)€Id(D),
(c) x=¢ and (x=¢)£Id(D),
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(d) x=y,
where x,y are variables and ¢, Yy are terms of type t different
from a single variable.

Let (x=¢)eId(K) and (x=¢)eId(D).

Subsituting x for all variables in x=¢ we obtain (x=x+x)e
eId(K) or (x=x-x)eId(K).

Thus from (i) it follows that K<D. So K=D or K=T, because
D is equationally complete.

Let (¢=y)eId(K) and (¢=y)€¢Id(D). It is easy to see that

(8% +0" =y +y") e1a(x) .

From Marczewski’s lemma (see([3]) it follows that there
exists a product p being a component of the term ¢* such that
in every product being a component of the term w* there exists
IRARRNE S be all
such variables. Then we have the following identities in K:

a variable which does not occur in p. Let x

* & * &
p+x1+...+xn = p+x1+...+xn+w +) = p+x +...+xn+¢ +¢ =

1

* x
+...+xn+w +Y = xX.+X +...+xn.

= + +x_+ *+ * e
= Xyt 4x ¢ +¢ = x 1%,

1
(we repeat x

1
1 for case n=1).
Substituting x for all variables occurring in p in

p+x1+...+xn=x +X,+% +...+xn and y for x

1%, 1%, coesX, we obtain

ll
(x+y=y+y) €eId(K).

Thus
(x+x=y+y) eId(K) .
We have
X+y = (X+y)+(x+y) = (x+x)+(y+ty) = (2+z)+(v+v) = z+v,
X'y = (x+x) - (y+y) = (2+z)-(v+v) = z-v.
So (x+y = z+v), (x-y = 2-v)elId(K).

We have also x'y = x:y+x‘y = u-u+v-v = u+v. Thus (x-y=u+v)e
eId(K).

From Lemma 1(b) it follows that KsV(N(T)), and from Lemma
2 we have

K=V(N(T)) or K=T.
If (x=¢)eId(K) and (x=¢)«£I1d(D), then
(x=x-y)eId(K) or (x=x+y)eId(K)

(from Marczewski’s‘lemma). So, (x=y)eId(K) and K=T. The case
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(d) is obvious, i.e. K=T. Thus the varieties V(N(D)), D,
N(T), T are all different subvarieties of V(N(D)) and it is
easy to see that

I4A(D)AN(T)=N(D).
So the lattice L(V(N(D))) has the diagram as in figure 2.

Theorem. The lattice L(V(Ex(D))) of all subvarieties of
the variety V(Ex(D)) has the following diagram,

V(Ex (D))

V(N(D)) V(Ex(T))

V(N(T))

Figure 3.

i.e. L(V(Ex(D))) is isomorphic to the direct product of a
three element chain and a two element chain.

Proof. An arbitrary subvariety K of V(Ex(D)) different
from V(Ex(D)) satisfies at least one of the following iden-
tities:

(a) x=¢,-¢, and (X=¢1'¢2)€Id(0):
(b) x=¢,+¢, and (x=¢,+¢,)€Id(D),
() x=¢,-¢, and (x=¢,-¢,)¢€Id(D),
(d) x=¢1+¢2 and (x=¢1+¢2)¢1d(D),
(e) x=y,
(£)  ¢,%+0,=V,+¥, and (¢1+¢2=W1+W2)¢Id(0):
(9) ¢,°¢,=¥,"¥, and (¢1'¢2=W1'W2)¢Id(0).
(h) ¢,+¢,=v¥,-¥, and (¢1+¢2=W1°W2)¢1d(9),
(1) ¢,t¢,=v, ¥, and (¢,+¢,=¥, ¥,)eld(D),
where x is a variable and ¢1, ¢2, wl, wz are terms of type
T. Let
(x=¢1‘¢2)61d(x)
(x=¢,-¢,)eld(D).
Substituting x for each variable in this identity we get
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(x=x-x)eId(K).
Thus we have
X+X=(X+X) - (X+X)=X' X=X,
so
(x=x+x) €eId(K).
Further
X (y+tz)=[x- (y+2) ] (X" (Y+2) J=(X-y+X - 2) - (X y+X - 2Z)=X -y+X - Z.
Therefore
(x- (y+z)=x-y+x-2z)eId(D)
and it is easy to see that K<D and K=T or K=D.
Analogously, if (x=¢1+¢2)e1d(K) and (x=¢1+¢2)eId(D),
then K=D or K=T. Let (x=¢1-¢2)eId(K) and (¢l-¢2=x)¢1d(D).

Then (x=(¢1-¢2)*-(¢1-¢2)*)eId(K), vhere  (¢,-¢,)" is the

canonical form of the term ¢1-¢2 in D. From Marczewski’s
lemma it follows that in every product being a component of
(6,6,
Substituting y for all these variables we obtain
(x=y'y)eId(K), or (x=x-y)eId(K).

Thus (x=y)eId(K) and K=T. Similarly, if (x=¢1+¢2)eId(K)
and (x=¢1+¢2)¢1d(D), then K=T. In case (e) it is obvious that
K=T.

Let (¢,+¢,=Y +¥,)eId(K) and (¢,+¢,=¥,+y,)¢Id(D). Then
((8,+0,) "+(8,49,) "=, +0,) "+ (W +w,) M eTa (K) -

In a similar way as in the proof of Lemma 3 (case (b)) we

there exists a variable different from X.

obtain
(x+y=z+v), (x-y=2-v)eId(K).
So from Lemma 1 (a) we have K<SV(Ex(T)) and using Lemma 2 we
see that K is one of the varieties V(Ex(T)), V(N(T)), T.
Analogously in cases (g), (h) we have KSV(Ex(T)). Let
(¢,+¢,=V, ¥,)€Id(K) and (,+¢,=y, -¥,)eId(D).
Then
((B,+6,) " +(8,40,) "= -¥) " (9, w,) ") eTd(x) .
So, (x+x=x-xeId(K)), and
x-(y+z) = [x-(y+z)]-[x-(y+2)] = (x-y+x-2)- (X-y+x-2) =
(X y+x-2)+(x'y+x'y) = x-y+x-2.
xX-y+x-2z)eld(K).

Thus (x-(y+z)
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Using (i) we have KSV(N(D)).

From Lemma 3 it follows that K is one of the classes
V(N(D)), V(N(T)), D, T.

‘We have already proved that T, V(N(T)), V(N(D)), V(ExX(T)),
V(Ex(D)), D are all subvarieties of the variety V(Ex(D)).
Observe that

EX(T)nId(D) = Ex(D),
N(D)nEx(T) = Ex(D).
Consequently,
V(ExX(T))vD = V(N(D))VV(EX(T)) = V(Ex(D)).
Thus from Lemmas 2 and 3 it follows that lattice L(V(Ex(D))
has the diagram as in figure 3.
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