

Wieslawa Chromik, Katarzyna Halkowska

SUBVARIETIES OF THE VARIETY DEFINED BY EXTERNALLY COMPATIBLE
IDENTITIES OF DISTRIBUTIVE LATTICES

We consider algebras of type $\tau=(2,2)$ with two fundamental operation symbols $+$, \cdot .

An identity $\phi=\psi$ of type τ is called externally compatible iff it is of the form $x=x$ or $\phi_1+\phi_2=\psi_1+\psi_2$ or $\phi_1\cdot\phi_2=\psi_1\cdot\psi_2$, where x is a variable and $\phi_1, \phi_2, \psi_1, \psi_2$ are terms of type τ (see [1]). An identity $\phi=\psi$ of type τ is called non-trivializing iff it is of the form $x=x$ or ϕ and ψ are different from a variable (see [2], [4]).

Let D be the variety of all distributive lattices and T the trivial variety of type τ . If K is a variety of type τ , then we denote by $Id(K)$ the set of all identities of type τ satisfied in K , by $Ex(K)$ the set of all externally compatible identities of type τ satisfied in K , and by $N(K)$ the set of all non-trivializing identities of type τ satisfied in K . Obviously the sets $Ex(K)$, $N(K)$ are equational theories.

If Σ is a set of identities of type τ , then $V(\Sigma)$ denotes the variety of all algebras of type τ defined by Σ .

We denote by ϕ^* the canonical form of a term ϕ in D .

In this paper we describe the lattice of all subvarieties of the variety $V(Ex(D))$.

We have obviously

Lemma 1. (a) The identities

$$x \cdot y = u \cdot v$$

$$x + y = u + v$$

form an equational base of $V(Ex(T))$.

(b) The identity

$$x \cdot y = u + v$$

forms an equational base of $V(N(T))$.

Lemma 2. The lattice $L(V(Ex(T)))$ of all subvarieties of the variety $V(Ex(T))$ has the following diagram,

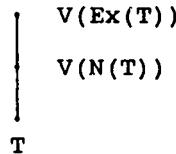


Figure 1.

i.e. $L(V(Ex(T)))$ is isomorphic to a three element chain.

Proof. By Lemma 1 it is easy to see that T , $V(N(T))$, $V(Ex(T))$ are different subvarieties of $V(Ex(T))$ and $T \subset V(N(T)) \subset V(Ex(T))$.

It is known (see [2]) that the following identities

$$\begin{array}{ll} x + (y + z) = (x + y) + z & x \cdot (y \cdot z) = (x \cdot y) \cdot z \\ x + y = y + x & x \cdot y = y \cdot x \\ x + xy = x + x & x \cdot (x + y) = x + x \\ x \cdot (y + z) = x \cdot y + x \cdot z & \\ x + x = x \cdot x & \end{array}$$

form an equational base of $V(N(D))$.

Lemma 3. The lattice $L(V(N(D)))$ of all subvarieties of the variety $V(N(D))$ has the following diagram

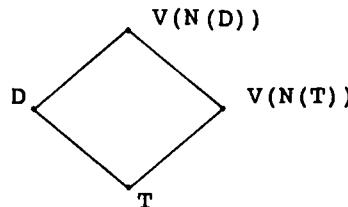


Figure 2.

Proof. An arbitrary subvariety K of $V(N(D))$ different from $V(N(D))$ satisfies at least one of the following identities:

- (a) $x = \phi$ and $(x = \phi) \in Id(D)$,
- (b) $\phi = \psi$ and $(\phi = \psi) \notin Id(D)$,
- (c) $x = \phi$ and $(x = \phi) \notin Id(D)$,

(d) $x=y$,

where x, y are variables and ϕ, ψ are terms of type τ different from a single variable.

Let $(x=\phi) \in \text{Id}(K)$ and $(x=\phi) \in \text{Id}(D)$.

Subsituuting x for all variables in $x=\phi$ we obtain $(x=x+x) \in \text{Id}(K)$ or $(x=x \cdot x) \in \text{Id}(K)$.

Thus from (i) it follows that $K \subseteq D$. So $K=D$ or $K=T$, because D is equationally complete.

Let $(\phi=\psi) \in \text{Id}(K)$ and $(\phi=\psi) \notin \text{Id}(D)$. It is easy to see that

$$(\phi^* + \phi^* = \psi^* + \psi^*) \in \text{Id}(K).$$

From Marczewski's lemma (see[3]) it follows that there exists a product p being a component of the term ϕ^* such that in every product being a component of the term ψ^* there exists a variable which does not occur in p . Let x_1, \dots, x_n be all such variables. Then we have the following identities in K :

$$\begin{aligned} p+x_1+\dots+x_n &= p+x_1+\dots+x_n+\psi^*+\psi^* = p+x_1+\dots+x_n+\phi^*+\phi^* = \\ &= x_1+\dots+x_n+\phi^*+\phi^* = x_1+\dots+x_n+\psi^*+\psi^* = x_1+x_1+\dots+x_n. \end{aligned}$$

(we repeat x_1 for case $n=1$).

Substituting x for all variables occurring in p in $p+x_1+\dots+x_n = x_1+x_1+x_2+\dots+x_n$ and y for x_1, \dots, x_n we obtain

$$(x+y=y+y) \in \text{Id}(K).$$

Thus

$$(x+x=y+y) \in \text{Id}(K).$$

We have

$$x+y = (x+y)+(x+y) = (x+x)+(y+y) = (z+z)+(v+v) = z+v,$$

$$x \cdot y = (x+x) \cdot (y+y) = (z+z) \cdot (v+v) = z \cdot v.$$

So $(x+y = z+v)$, $(x \cdot y = z \cdot v) \in \text{Id}(K)$.

We have also $x \cdot y = x \cdot y + x \cdot y = u \cdot u + v \cdot v = u+v$. Thus $(x \cdot y = u+v) \in \text{Id}(K)$.

From Lemma 1(b) it follows that $K \subseteq V(N(T))$, and from Lemma 2 we have

$$K=V(N(T)) \text{ or } K=T.$$

If $(x=\phi) \in \text{Id}(K)$ and $(x=\phi) \notin \text{Id}(D)$, then

$$(x=x \cdot y) \in \text{Id}(K) \text{ or } (x=x+y) \in \text{Id}(K)$$

(from Marczewski's lemma). So, $(x=y) \in \text{Id}(K)$ and $K=T$. The case

(d) is obvious, i.e. $K=T$. Thus the varieties $V(N(D))$, D , $N(T)$, T are all different subvarieties of $V(N(D))$ and it is easy to see that

$$Id(D) \cap N(T) = N(D).$$

So the lattice $L(V(N(D)))$ has the diagram as in figure 2.

Theorem. The lattice $L(V(Ex(D)))$ of all subvarieties of the variety $V(Ex(D))$ has the following diagram,

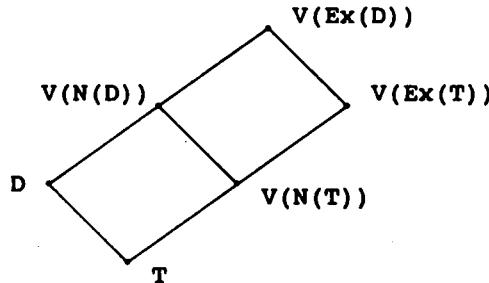


Figure 3.

i.e. $L(V(Ex(D)))$ is isomorphic to the direct product of a three element chain and a two element chain.

Proof. An arbitrary subvariety K of $V(Ex(D))$ different from $V(Ex(D))$ satisfies at least one of the following identities:

- (a) $x = \phi_1 \cdot \phi_2$ and $(x = \phi_1 \cdot \phi_2) \in Id(D)$,
- (b) $x = \phi_1 + \phi_2$ and $(x = \phi_1 + \phi_2) \in Id(D)$,
- (c) $x = \phi_1 \cdot \phi_2$ and $(x = \phi_1 \cdot \phi_2) \notin Id(D)$,
- (d) $x = \phi_1 + \phi_2$ and $(x = \phi_1 + \phi_2) \notin Id(D)$,
- (e) $x = y$,
- (f) $\phi_1 + \phi_2 = \psi_1 + \psi_2$ and $(\phi_1 + \phi_2 = \psi_1 + \psi_2) \notin Id(D)$,
- (g) $\phi_1 \cdot \phi_2 = \psi_1 \cdot \psi_2$ and $(\phi_1 \cdot \phi_2 = \psi_1 \cdot \psi_2) \notin Id(D)$,
- (h) $\phi_1 + \phi_2 = \psi_1 \cdot \psi_2$ and $(\phi_1 + \phi_2 = \psi_1 \cdot \psi_2) \notin Id(D)$,
- (i) $\phi_1 \cdot \phi_2 = \psi_1 \cdot \psi_2$ and $(\phi_1 \cdot \phi_2 = \psi_1 \cdot \psi_2) \in Id(D)$,

where x is a variable and $\phi_1, \phi_2, \psi_1, \psi_2$ are terms of type τ . Let

$$(x = \phi_1 \cdot \phi_2) \in Id(K)$$

$$(x = \phi_1 \cdot \phi_2) \in Id(D).$$

Substituting x for each variable in this identity we get

$$(x=x \cdot x) \in \text{Id}(K).$$

Thus we have

$$x+x = (x+x) \cdot (x+x) = x \cdot x = x,$$

so

$$(x=x+x) \in \text{Id}(K).$$

Further

$$x \cdot (y+z) = [x \cdot (y+z)] \cdot [x \cdot (y+z)] = (x \cdot y+x \cdot z) \cdot (x \cdot y+x \cdot z) = x \cdot y+x \cdot z.$$

Therefore

$$(x \cdot (y+z) = x \cdot y+x \cdot z) \in \text{Id}(D)$$

and it is easy to see that $K \subseteq D$ and $K=T$ or $K=D$.

Analogously, if $(x=\phi_1+\phi_2) \in \text{Id}(K)$ and $(x=\phi_1+\phi_2) \in \text{Id}(D)$, then $K=D$ or $K=T$. Let $(x=\phi_1+\phi_2) \in \text{Id}(K)$ and $(\phi_1+\phi_2=x) \notin \text{Id}(D)$.

Then $(x=(\phi_1+\phi_2)^* \cdot (\phi_1+\phi_2)^*) \in \text{Id}(K)$, where $(\phi_1+\phi_2)^*$ is the canonical form of the term $\phi_1+\phi_2$ in D . From Marczewski's lemma it follows that in every product being a component of $(\phi_1+\phi_2)^*$ there exists a variable different from x . Substituting y for all these variables we obtain

$$(x=y \cdot y) \in \text{Id}(K), \text{ or } (x=x \cdot y) \in \text{Id}(K).$$

Thus $(x=y) \in \text{Id}(K)$ and $K=T$. Similarly, if $(x=\phi_1+\phi_2) \in \text{Id}(K)$ and $(x=\phi_1+\phi_2) \notin \text{Id}(D)$, then $K=T$. In case (e) it is obvious that $K=T$.

Let $(\phi_1+\phi_2=\psi_1+\psi_2) \in \text{Id}(K)$ and $(\phi_1+\phi_2=\psi_1+\psi_2) \notin \text{Id}(D)$. Then $((\phi_1+\phi_2)^* + (\phi_1+\phi_2)^*) = (\psi_1+\psi_2)^* + (\psi_1+\psi_2)^* \in \text{Id}(K)$.

In a similar way as in the proof of Lemma 3 (case (b)) we obtain

$$(x+y=z+v), (x \cdot y=z \cdot v) \in \text{Id}(K).$$

So from Lemma 1 (a) we have $K \subseteq V(\text{Ex}(T))$ and using Lemma 2 we see that K is one of the varieties $V(\text{Ex}(T))$, $V(N(T))$, T .

Analogously in cases (g), (h) we have $K \subseteq V(\text{Ex}(T))$. Let

$$(\phi_1+\phi_2=\psi_1 \cdot \psi_2) \in \text{Id}(K) \text{ and } (\phi_1+\phi_2=\psi_1 \cdot \psi_2) \in \text{Id}(D).$$

Then

$$((\phi_1+\phi_2)^* + (\phi_1+\phi_2)^*) = (\psi_1 \cdot \psi_2)^* \cdot (\psi_1 \cdot \psi_2)^* \in \text{Id}(K).$$

So, $(x+x=x \cdot x) \in \text{Id}(K)$, and

$$\begin{aligned} x \cdot (y+z) &= [x \cdot (y+z)] \cdot [x \cdot (y+z)] = (x \cdot y+x \cdot z) \cdot (x \cdot y+x \cdot z) = \\ &= (x \cdot y+x \cdot z) + (x \cdot y+x \cdot z) = x \cdot y+x \cdot z. \end{aligned}$$

Thus $(x \cdot (y+z) = x \cdot y+x \cdot z) \in \text{Id}(K)$.

Using (i) we have $K \subseteq V(N(D))$.

From Lemma 3 it follows that K is one of the classes $V(N(D))$, $V(N(T))$, D , T .

We have already proved that T , $V(N(T))$, $V(N(D))$, $V(Ex(T))$, $V(Ex(D))$, D are all subvarieties of the variety $V(Ex(D))$. Observe that

$$\begin{aligned} Ex(T) \cap Id(D) &= Ex(D), \\ N(D) \cap Ex(T) &= Ex(D). \end{aligned}$$

Consequently,

$$V(Ex(T)) \vee D = V(N(D)) \vee V(Ex(T)) = V(Ex(D)).$$

Thus from Lemmas 2 and 3 it follows that lattice $L(V(Ex(D)))$ has the diagram as in figure 3.

REFERENCES

- [1] W. Chromik: Externally compatible identities of algebras, (in print).
- [2] K. Hałkowska: On some operator defined on equational classes, Arch. Match. (Brno) 12 (1976), 209-212.
- [3] E. Marczewski: Concerning independence in lattices, Colloq. Math. 10 (1963) 21-23.
- [4] J. Plonka: On the subdirect Product of some equational classes of algebras, Math. Nachr. (1974) 1-3.

INSTITUTE OF MATHEMATICS, PEDAGOGICAL UNIVERSITY,
45-052 OPOLE, POLAND

Received February 12, 1990.