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ON THE PLONKA DECOMPOSITION OF GRAPHS AND RELATED ALGEBRAS

1. Introduction

In this paper we will consider undirected graphs (without
multiple edges and loops) and some general algebras. The ter-
minology used here is more or less standard. In 1971 Jerzy
Pilonka defined (see [22]) the notion of the sum of a direct
system of graphs, which was investigated by him, Raczko and by
Koslinski (see {22], (20], ([27), (14] and [15]). Decomposi-
tions of graphs into the Plonka sum are still not investigated
enough. As is well known (see, e.g. {1]), different kinds of
decompositions of graphs into some simple ones have very
important applications; also the kind of decomposition
considered seems to have some interesting applications.
Unfortunately, decompositions into the Plonka sums of graphs
were missed in the monography of Bosak [1].

In {14] the second author started to investigate decompo-
sitions of n-angles and some other graphs into the two-
component Plonka sums. He obtained, among other results, all
such decompositions of pentagons, but this method was not sim-
Ply applicable to hexagons. The problem of finding all decom-
positions of a hexagon (with some diagonals) was posed by J.
Plonka. It has been open for more than fifteen years. Such
investigations belong to a large class of constructive enumer-
ation problems, which are very important in combinatorics and
its applications (see, e.g. [2]-(5), [7])-(9])], [11], (13},
(16), [23), [24), [28] and [32]).

In particular, the problem of determining the number of
graphs with a given property was investigated by several
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authors beginning with A. Cayley ((2])-([4]), J.H. Redfield (28]
and G. Pdlya (23] and it is very important with respect to
different applications (for example in chemistry); see also
the monographs of G. Pdlya and R.C. Read {24] and F. Harary
and E. Palmer (13]}].

In this paper we present a full description of decompo-
sitions of hexagons into two-component Plonka sums which was
found by the first author. This method is general and can be
applicable to other n-angles. The paper is only one of initial
steps in investigations of such decompositions. For the sake
of completeness, we recall some known general results and some
special ones for n-angles (with some diagonals) of the second
author which appeared in a semi-publication [15] only.

Finally, we give an algebraic approach (proposed by the
first author in 1988, and reported by him during the Jadwisin
Conference on Quasigroups and Universal Algebra in 1989). This
idea is based on association of some universal algebras
A=(A;F) with graphs TI'=(A;p). These algebras are more rich
than groupoids (on the set A of vertices or on Av{w}),
considered by several authors (e.g. ({6}, ({17}, [25], [(26],
(30]). The algebras will be called full graph algebras and
seem to be more fruitful than the above-mentioned "“graph-
-algebras" (rather graph-groupoids), but unfortunately the set
of term operations of these algebras is difficult to be
determined. We consider here some variant of these algebras in
which term operations are additionally compatible with some
partial endomorphism (i.e. these graph-algebras can be treated
as graph-algebras of mixed graphs).

The authors are grateful to Professor Jerzy Plonka for
fruitful discussions about considered decompositions of
graphs.

2. Preliminaries

Let A be a non-empty finite set, say A = {ag,ag,--.,ap}.
By a graph I' with the set A of vertices we will understand
(see, e.g. [12], [18]) a relational system I'=(A;p), where
pcAxA is a symmetric relation (i.e. (ai,aj)ep = (aj,ai)ep).
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j) is called an (undirected)

edge. We will mostly consider graphs without 1loops, 1i.e.

If (ai,aj)ep then the pair (ai,a

(a,a)é¢p for every aeA. We will write apb instead of
(a,b)ep.

In Section 5 we will fix some special enumeration of
vertices, i.e. such graphs can be considered as special
semi-labelled graphs.

In [22] J. Plonka defined the notion of the sum of a
direct system of graphs (using a more general definition of
directed graphs in the sense of ([33]) by analogy to his
construction for universal algebras. He also considered a
general case of relational systems [21]. One can prove (see
[10]) that so-called regular formulas are preserved by the
construction of the Plonka sum.

Since in [20] it was proved that if a graph is
decomposable into a sum of a direct system of graphs, then
this graph is also decomposable into a two-component sum; we
will consider only this special case. We recall the definition
of the two-component Plonka sum of undirected graphs:

Let Fl=(Al;p1) and F2=(A2;p2) be two graphs such that
AlnA2=c, and assume that there exists a homomorphism h:Al
of the graph Fl into the graph Fz' Then the graph TI'=(A;p) is
said to be the Plonka sum of r, and Fz if A=A_UA and

1772
P=P,UP,YP where Po is a symmetric binary relation defined

—»Az

for aeAl and beA2 by

(*) apob g h(a)pzb.

In this case we will write F=S(F1,F2;h) and we will call
the triple (Fl,Fz;h) a decomposition (or a decomposing sys-
tem) of I'. The graph I' is said to be decomposable if there

exist graphs Fl, F2 and a graph homomorphism h:Fl—arz such
that F=S(F1,F2;h). Remark that the graph F=S(F1,F2;h) to-
gether with additional directed edges (a,h(a)), for every
aeAl, can be also considered as a mixed graph.

In this paper, heavy lines in the figures mean edges of
graphs Fl and Fz , fine lines mean additional edges determined
by the construction of the Plonka sum S(Fl,Fz;h), broken
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lines connect a vertex aeAl with its homomorphic image h(a),
and heavy dots mean the vertices of the graph Fl.

3. Some properties of decomposable graphs

By a slight modification of Theorem 2 in (27] we obtain

Proposition 1., If Pi is an isomorphism of Fi onto F&,
i=1,2, such that
(:) h’ '¢1=¢2'h
(where - is the composition of mappings), then S(Fl,Fz;h) is
isomorphic to S(F’,Fa;h') and the required isomorphism is
pieced out from 2 and 2 (or a "sum" of 2 and 2 in another
terminology).

Proposition 1 allows us to reduce investigations of graph
isomorphism to simpler cases.

The decompositions (Fl,Fz;h) and (F’,F&;h‘) are said
to be isomorphic if the assumptions of Proposition 1 are
fulfilled. '

From this point of view the following two decompositions

of a hexagon (with diagonals) are isomorphic:

Fig. 1
Indeed, we can take ¢1:A1—+A1, ¢2:A2—+A2 defined in the
following way:

¢,(a,)=b,, ¢, (a,)=b,, ¢,(a,)=b. and ¢, (a.)=b,.
2'°2 2 2'74 4 2'71 S 2'°5 1

But the converse implication in Proposition 1 does not
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hold because, for example, the triangle A={ao,a1,az} with a
loop is decomposable into the Plonka sum in two different
ways:

A = {ao}u{al,az} and A = {ao,al}u{az}.

Fig. 2

consider now the direct system (Fl,rz;h) of two graphs
F1=(A1;p1) and F2=(A2;p2), where h:Al——bA2
morphism of the graph Fl into the graph Fz. We define a new
system (Fl,rz;ﬁ) by putting F1=(A1/~,31), where ~ is the
equivalence relation defined on A, by:

a~bp iff h(a) = h(b),
A1/~ is the set of equivalence classes [a]_ (aeAl), and 31 is
defined by
[a]__El[b]~ - (3ale[a]~)(3b1e[b]~)(a1pb1).

Then we have an easy modification of Theorem 4 in [27].

is a homo-

Proposition 2, The mapping p:A VA —+A1/~uA2 defined by

2
x if xeAz,
p(x) =
(x}_ if xeA

1
is an epimorphism of the Plonka sum S(Fl,Fz;h) onto
S(rl,rz;ﬁ).

For example, the required epimorphism of the graph I' onto
the graph I'" exists, as is shown in the following figure:
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r.

Similarly, the graph I’ is an epimorphic image of the
graph I' in Figure 4:

Fig. 4

It seems to be interesting to know a solution of the
following

Problem 1. What kind of properties of graphs are preserved
by the Plonka sum of graphs?

Up to now we know a few simple facts only. For example, we
recall

Proposition 3 (cf. Theorems 9 and 10 of [27]). If Fl and
F2 are both connected (or both cliques with all 1loops, i.e.
pi=AixAi (i=1,2)), then also S(Fl,FZ;h) has this property.

In connection with this we remark that if Fl and F2 are
complete, but F2 is without one loop, say (a,a)é¢p for some

aeA and a=h(b), beAl, then S(Fl,Fz;h) is not complete

2!
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because (b,h(b))ép. There are also two planar graphs Fl' Fz
and a homomorphism h:F1—4F2 such that S(FI,FZ;h) is not pla-
nar.

A graph I' is said to be decomposable into a two-component
Plonka sum if there exist graphs Fl and F2 and a homomorphism
h:Fl—erz such that F=S(F1,F2;h).

For example, the following graphs (n-angles with diagonals
in Figure 5) are not decomposable:

O
OO

Fig. 5

On the other hand, it is easy to check (cf.{14])) that the
following pentagons with diagonals are decomposable:

O & D
& O

Fig. 6

It is easy to see that investigations of decomposability
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of graphs can be reduced to decomposability of connected
graphs, because in [15] the following was observed:

Proposition 4. A graph is decomposable iff it has at least
one decomposable connected component or contains two isolated
vertices.

In the following we will consider simple graphs only (i.e.
undirected without multiple edges and without loops).

Let a graph TI'=(A;p) be the Plonka sum S(Fl,Fz;h) of two
graphs F1=(A1;pl) and F2=(A2;p2), where h:Al—-)A2
required homomorphism of the graph Fl into Fz. Then we have
some simple facts (comp. [14]), the proof of which is left to
the reader:

is the

(i) (VaeAl)(VbeA)(apb = h(a)pb).

(ii) (Va,beAl)(h(a)ph(b) = aph(b) and h(a)pb).

(iii) (Va,beAl)(apb = h(a)zh(b)).

(iv) (YaeA,) ((a,h(a))¢#p).

(v) If A, is connected and |A1|>1, then |A2|>1.

(vi) If A is connected, then AZ does not contain isolated
vertices.

Remark that properties (iii)-(vi) hold for the graph I' without

loops.

(vii) The degree of each aeAl is not greater than the degree
of h(a).

(viii) (VaeAl)(Vbl,bzeAz, b, #b,) (b,pa, bzpa = (a,bl,h(a),bz)
is the four-vertex cycle).

(ix) (Val,azeAl)(alpa2 = (al,h(az),h(al),az) is the four-
-vertex cycle).

From (viii) and (ix) we infer easily

Proposition 5. If ' is a decomposable connected graph
without hanging vertices, then I contains the four-vertex
cycle as a subgraph.

Corollary 1 (Plonka [20])). A simple cycle of length n is
decomposable iff n=4.

Now we observe

Lemma 1. If a graph TI'=(A;p) contains two hanging verti-
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ces incident with the same vertex, then I' is decomposable.

Indeed, let a and b be two hanging vertices incident with
ceA, i.e. apc and bpc. We take Al={a}, A2=A\{a}, pi=p|A
i

(i=1,2), and we define h(a)=b. Then we conclude easily that T
is decomposable into the Plonka sum of its subgraphs (Al;pl),
(A, ip,) with h as the required homomorphism.

The situation considered in Lemma 1 is illustrated in
Figure 7:

Fig. 7

4. Decomposable trees

Now we will characterize trees which are decomposable into
Plonka sums. This material is partially covered by the semi-
publication [15]) but for completeness we will give full proofs
(which are different and simpler than those in [15]).

Lemma 2. If TI'=(Aj;p) 1is a tree, which is decomposable
into the Plonka sum S(Fl,Fz;h), where Fi=(Ai;pi) (i=1,2),
then Al contains hanging vertices only (consequently p1=e).

Indeed, if the degree of a vertex aeAl is greater than 1,
then by (viii) and (ix), the considered graph I contains a
cycle, which contradicts the assumption.

Summarizing our consideration in Section 3 and in this
section we have

Theorem 1, A tree is decomposable if and only if it
contains two hanging vertices incident with the same one ver-
tex, or it is a four-vertex chain.
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Proof, First, observe that if a tree I' contains two hang-
ing vertices incident with the same vertex, then I' is decom-
posable by Lemma 1.

If now A is a four-vertex path (a,c,d,b), i.e. apc, cpd,
dpb, then we can take A1={a,b}, A2=A\{a,b}, pi=p|A., i=1,2,

i

and we define the required homomorphism h:Al-——>A2 by the
equalities h(a)=d, h(b)=c.

Finally, assume that there are no two hanging vertices of
a tree TI'=(A;p) incident with some one vertex of A. Let I' be
decomposable into two graphs F1=(A1;p1), F2=(A2;p2) and
h:A1—+A2 be a homomorphism required in the definition of the
Plonka sum. Of course, |A|>2 and the degree of each aeA is at
most 2. If a.eA, and ajpa,, then, by Lemma 2, we have a €A

171 2727

and, by (i) and (ii), h(al)pa2 # h(al). Put h(a1)=a3. By our

5 18 not a hanging vertex. Let a4¢a2 and a,pa,.

If a,eh,, then by the definition of the Plonka sum we have

assumption, a

a,pa,, which is impossible. Therefore a,eA, and, by Lemma 2,

a, is a hanging vertex. Since a3ph(a4), we 1infer that

alph(a4) and h(a4)=a2.
Suppose there exists aseA2 such th: t ag*a,,a, and ajpag,
or a,pac. Then a,pag or a,pag, which is impossible. Let now

a_eA, and a *a,,a and for h{a we get

571 5 4 3 5)
the above-considered case. Therefore A={a1,a2,a3,a4} and T is

. Then h(as)*az,a

a simple path. Thus Theorem 1 is proved.

Corollary 2 (Plonka ([20]). A simple path of length n is
decomposable iff n=3 or n=4.

5. Decomposable n-angles with some diagonals

Let TI'=(A;p) be a (simple) graph. If A={ao,a1,...,an_1}

(where aiaeaj if i#j) and for each 1i=0,1,...,n-2,

ajP3i41
and a,_,Pay, then TI'=(A;p) is called an n-angle (with or
without diagonals). Therefore TI'=(A;p) with A={aj,a,,.--

| is an n-angle if I' is a Hamiltonian graph with a

}
n-1
distinguished Hamiltonian cycle (ao,al,...,an_l). A pair
(ai,aj), where a

a,pa
iP

i,ajeA, j=#i-1,i,i+1, is called a diagonal 1if

3 An n-angle has at most %n(n-3) diagonals. A diagonal
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(ai,aj) of a 2n-angle is called main if Jj=i+n(mod 2n). Other
diagonals are called short. An n-angle is called 1-saturated
if there exists a €A such that aipaj for all 3j#i. 1In this
case we will also say that I' is complete at a vertex a,. An
n-angle is called k-saturated if it is complete at some k
vertices. An n-angle is called strictly k-saturated if it is
k-saturated and has no more diagonals. Of course, an
n-saturated n-angle is a (simple) complete graph K with n
vertices. An n-angle is said to be k-nonsaturated if there are
k vertices with no diagonals.

Now we recall some general statements about n-angles
'=(A;p) which are decomposable into a Plonka sum S(Fl,rz;h)
of two graphs F1=(A1;p1) and F2=(A2;p2) with the required
graph homomorphism h:Al—aAz. By using the general properties
(i)-(ix), Proposition 5 and the following Lemmas 3 and 4 we
can easily prove (follow by [14]) more results on decom—
positions of n-angles:

Lemma 3. Let F=(A;p)=S(F1,F2;h). If a,b,ceAl are
pairwise different, aplb and ap,c, then there exist two
vertices of degree at least three which are not connected by
some edge (namely, a and h(a)).

Indeed, by (iii) we get h(a)#h(b) and h(a)#h(c). More-
over, by the definition of homomorphism, h(a)pzh(b),
h(a)pzh(c) and, finally, h(a)pb and h(a)pc. Therefore the
vertices a and h(a) are of degree at 1least 3; moreover -
because of looplessness by (iv) - for the pair (a,h(a)) the

relation p does not hold.

Corollary 3. If an n-angle F=(A;p)=S(F1,F2;h) has at

most one diagonal, then no vertex of degree 3 is in A and no

1’
three successive vertices belong to Al.-
Lemma 4. If F=(A;p)=S(F1,F2;h) is an n-angle, then
|A2|>1, A, is connected and every two successive vertices
belonging to A, are connected by an edge in Fi, i=1,2.
Indeed, the first statement is implied by looplessness,

the second and the third ones follow immediately because in T
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we can only obtain additional edges (which are not in Fl and
5 with some vertices of A,.

Recall that J. Plonka [20] proved that a simple cycle is
decomposable iff it is the four-vertex cycle (see Corollary
1) . But any full n-angle (i.e. with all possible diagonals, or
- in other words - the complete graph Kn) is indecomposable.

We observed in 1973 that an n-~angle with one diagonal is

Fz) which connect some vertices of A

decomposable iff this diagonal is main and n=4 or n=6 (see
{14]). It is easy to see that every n-angle without exactly
one diagonal is decomposable. Indeed, if this diagonal is
(ai,aj), j#i-1,i,i+1, then we can take A1={ai}, A2=A\{ai}
and define h(ai)=aj. More generally one gan prove ([14]) that
for every pair (n,k), where n>4 and 1<k<§n(n-3), there exists
an n-angle with k diagonals which is decomposable into a
Plonka sum of its subgraphs.

In [14] it was proved that a one-nonsaturated n-angle
(with n>2) is decomposable iff n=4. However, it was proved in
{14) that a strictly one-saturated n-angle is decomposable iff
n=4 or n=5.

A 2n-angle has an entered n-angle if a, pa for all

k+, 2
even k or for all odd k, where +2n denotes addi:ion modulo
2n. It is known (see [14]) that a 2n-angle I' with an entered
n-angle is decomposable iff n=3. 1Indeed, the hexagon with
three "short" diagonals is decomposable in the following way

(see the left part of Figure 8):

X7 RN
SR 7

Similarly we can obtain a decomposition (unique with respect
to isomorphism) of the hexagon with six (all) short diagonals.

Fig. 8



On the Plonka decomposition 219

In the next section we will consider all possible
decompositions of hexagons with some diagonals. For this
purpose we will give some additional conventions and
definitions.

Consider an n-angle F=(A;p)=S(F1,F2;h) with A={agy,a,,..

""an-l}’ We will assume (without 1loss ©of generality) the

following:

1°. (ao,al,...,an_l) is a distinguished Hamiltonian cycle (or
circuit in another terminology,

2°. a.eA. and a €A .

071 n-1""2
Two decompositions of an n-angle (treated as a regular

n-angle) are said to be essentially different if they are not
isomorphic by any axis-symmetry which preserves property 2°.
Therefore an n-angle will be considered here as '"semi-
labelled" (for labelled graphs see, e.g., [8] and ([9]). From
this point of view, the two decompositions of I' and I in
Figure 3 are essentially different (but they are isomorphic),
and the decomposition of I' is not essentially different from
the decomposition of the graph I’ in Figure 9:

re
G

Fig. 9

n_1}, AlnA2=a, aoeAl, an_leAz.
Further, let F1=(A1;p1) and F2=(A2;p2) be two (undirected)
graphs (without .loops), and let h:Al——>A2 be a fixed graph
homomorphism of ry into rz. Then the graph F=S(F1,F2;h) is

called primitive if the relations Py and p, are minimal in

Let A=A1UA2={ao,...,a

order to obtain the Hamiltonian cycle (ao,al,...,an_l) in T.

That is, if we omit one edge (ai,aj)eplupz, then the
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Hamiltonian cycle (ao,al,...,an_l) will be destroyed. For
example, the first graph in Figure 8 1is primitive but the
second one is not, because we can omit an arbitrary edge which
connects vertices of Al.

6. Enumeration of decompositions of hexagons

The general procedure to find all possible essentially
different decompositions of an n-angle is the following:
I. Fix a Hamiltonian cycle (ao,al,...,an_l);
II. Look for all possible decompositions A=A, vA, of the set
A={ao,a1,...,an_1) of vertices with property 2°;
III. Find all possible "primitive" graphs with fixed mapping
h:Al—aAz as the homomorphism required in the definition
of F=S(F1,F2;h);
IV. Enumerate all essentially different decompositions of
graphs F=S(F1,F2;h), which can be obtained by adding
some additional admissible edges between vertices of A,
or between vertices of A,;
V. Take an account of all such possibilities.

If we use this procedure for hexagons we obtain

Theorem 2, Let F=(A;p)=S(F1,F2;h) be a hexagon with some

diagonals and a fixed Hamiltonian cycle (ao,al,...,as).
Suppose aoeAl and aseAz. Then the numbers of possible
essentially different decompositions are the following:

a) 44 if |A =1,

b) 40 if |A,[=2,

c) 22 if |A,]|=3,

d) 5 If |A |=4.

Proof. First, observe that under our assumptions - taking
into account general properties of Plonka sums (see Sections 3
and 5) - we have only the following possibilities for A, and h:
1) A1={ao}, h(a°)=a3,

2) A1={a°}, h(a°)=a2,
2’) A1={ao}, h(ao)=a4,
3) A1={ao,a1}, h(a°)=a4 and h(a1)=a3,
4) A1={ao,a1}, h(a°)=a3 and h(a1)=a4,
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5) A1={ao,a2}, h(ao)=h(a2)=a4,

5) A1={a0,a4}, h(ao)=h(a4)=a2,

6) A1={a0,a2}, h(a°)=a3 P h(a2)=a5,
6') A1={a0,a4}, h(ao)=a3 ’ h(a4)=a2,
7) A1={ao,a2}, h(a0)=a4 ‘ h(a2)=a5,
7) A1={a°,a4}, h(a0)=a2 ’ h(a4)=al,
8) A1={ao,a2}, h(a°)=a3 ' h(a2)=a4,
8’) A1={ao,a4}, h(a°)=a3 ’ h(a4)=a2,
9) A1={ao,a3}, h(ao)=a4 ' h(a3)=a5,
9’) A1={ao,a3}, h(a0)=a2 , h(a3)=a1,
10) A1={a0,a3}, h(a0)=a4 . h(a3)=al,
10') A1={a0,a3}, h(a0)=a2 ’ h(a3)=a5,

11) Al={a0,a1,a2}, h(ao)=a4, h(a1)=a3, h(a2)=a4,
11’) A1={a°,a1,a2}, h(a0)=a4, h(a1)=a5, h(a2)=a4,
12) A1={a0,a1,a2}, h(ao)=a4, h(a1)=a3, h(a2)=a5,
12’) A1={ao,a1,a2}, h(a°)=a3, h(al)=a5, h(a2)=a4,
13) A1={ao,a1,a2}, h(ao)=a3, h(a1)=a4, h(a2)=a5,
14) A1={ao,a1,a3}, h(ao)=a4, h(a1)=h(a3)=a5,

14') A1={ao,a1,a4}, h(ao)=h(a4)=a2, h(a1)=a3,

15) A1={a0,al,a3}, h(a0)=a2, h(al)=a4, h(a3)=a5,
15’) A1={ao,a1,a4}, h(ao)=a3, h(a1)=a5, h(a4)=a2,
16) A1={ao,a1,a3}, h(ao)=a h(a1)=a5=h(a3),

2'
16’ ) A1={a0,a1,a4}, h(ao)=a2, h(a1)=a5, h(a4)=a2,
17) A1={a0,a2,a3}, h(ao)=a4, h(a2)=a4, h(a3)=a5,

17') A1={aoha3,a4}, h(a0)=a2, h(a3)=a1, h(a4)=a2,

18) A1={ao,a2,a3}, h(a0)=a4, h(a2)=a5, h(a3)=a1,

18’) A1={ao,a3,a4}, h(a0)=a2, h(a3)=a5, h(a4)=a1,

19) A1={ao,a2,a3}, h(a0)=a4, h(a2)=a4, h(a3)=a1,

19/ ) A1={a0,a3,a4}, h(ao)=a2, h(a3)=a5, h(a4)=a2,

20) A1={ao,a2,a4}, h(a0)=a3, h(a2)=a5, h(a4)=a1,

21) A1={ao,a1,a2,a3}, h(a0)=a4=h(a2), h(a1)=a5=h(a3),
22) A1={ao,a1,a3,a4}, h(a0)=a2=h(a4), h(a1)=a5=h(a3).

But by using suitable axis-symmetries we can observe that
the possibilities denoted by (k) and (k‘) are dual and lead to
non-essentially different decompositions. For example, cases
(2) and (2°) give isomorphic decompositions by symmetry with
respect to the axis (ao,a3). Similarly, taking into account
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symmetry with respect to the axis (al,a4) we 4observe that
possibilities (7) and (8) are not essentially different.

Moreover possibilities (17), (18) and (19) can be obtain
by suitable axis-symmetries from (14), (15) and (16), respec-
tively.

Therefore we have the following 18 essentially different
primitive graphs:

For |A,|=1 :

Fig. 10
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Fig. 13
From cases (1)-(7), (9)-(16) and (20)-(22), adding
admissible edges between vertices of A, and between vertices

1
of A, and by using suitable axis-symmetries, we obtain the

following numbers of all possibilities and essentially differ-

ent ones, respectively:

Cases (1) (2) (3) (4) (5) (6) (7) (9) (10)
All poss. 16 32 8 2 8 4 4 8 16
Ess. o
diff. poss. 12 32 6 2 6 4 4 6 12
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(11) (12) (13) (14) (15) (16) (20) (21) (22)

2 2 2 4 4 4 8 2 4

2 2 2 4 4 4 4 2 3

By counting together the numbers of essentially different
possibilities of cases (1) and (2), of cases (3)-(10), of
cases (11)-(16) and (20), and, finally, of cases (21) and (22)
we obtain numbers 44, 40, 22 and 5, which completes the proof
of Theorem 2.

It is easy to observe, by the remark after Proposition 1,
that six (essentially different possibilities of case (10) are
(pairwise) isomorphic with those of case (9). The possibili-
ties in (16) are isomorphic to suitable possibilities in (14),
too. The number of all possibilities, under our assumptions 1°
and 2° (i.e. treated as "semi-labelled" graphs), is 248. This
number for any n-angle should be even. Moreover the number of
all decompositions of labelled hexagons is 2976.

By analyzing the proof of Theorem 2 one can verify (we
leave this to the reader)

Theorem 3. There are only

a) 10 essentially different decompositions of the hexagon
with 3 main diagonals;

B) 9 essentially different decompositions of the hexagon
with 2 main diagonals;

7) 2 essentially different decompositions of the hexagon with
one main diagonal;

3) 4 essentially different decompositions of the hexagon with
two entered triangles.

We illustrate these possibilities in pictures (see Figures
16-19):






© @
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7) 1 main diagonal:

Fig. 16

§) two entered triangles:

o
X
N\

A
X
N\

Fig. 17

In the context of our results the following problem seenms
to be interesting but difficult:

Problem 2 (J. Plonka). Characterize n-angles which are
decomposable into Plonka sums of graphs.
Another interesting problem is the following.

Problem 3. What class of graphs can be built by the
construction of a Plonka sum of graphs from some special
graphs (e.g. triaqgles, n-angles, trees, etc.)?
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7. Algebras related to graphs

In this section we signalize some algebraic approach to
investigation of graphs, which seems to be interesting and
fruitful.

Consider a binary relation € on a set A. An operation
f:Ax...xA—A 1is said to be compatible with 6 if

(Vxl,...,xn,xi,...,xheh)(xiex& for i=1,...,n =
= £(Xy, 000X )0F(X],... ,x;,l));
in other words: f preserves the subset 8 of AxA or 8 is a
subalgebra of the square of the algebra (A;f). The set of all
operations (of arbitrary arities) which preserve 6 is denoted
by Pol {6}. This set Pol {8} is closed under composition of
operations, i.e., Pol {6} forms a clone (see [31]).

The set of those operations on A which preserve a subset B
of a power of A will be denoted by PolA{B}. More generally,
for an arbitrary set S of subsets of powers of A we define the
set PolAS of operations by

Pol,S = ()Pol,B.
A BesS A

Proposition 6 (see [31]). PolAS is a clone for an
arbitrary set S of subsets of powers of A.

Example, Let TI'=(A;p) be a graph with |A|=n (pcAxA). One
can verify that for a determination of the algebra A(T]=
(A;PolA{p})_ it is enough to know the set of all m-ary term
operations T(m)(ﬂ[r]) of this algebra d[I'], with some m=2".
Unfortunately, the definition of H([I'] is not effective. It
will be important to answer the following

Problem 4. What is the most economical way to determine
the set of fundamental operations (possibly small and
consisting of operations of small arities)?

By using the notion of the weak automorphism of a general
algebra (see [29]), we have some simple observation.

Proposition 7. Every automorphism of the graph I'=(A;p)
is a weak automorphism of &A[I].
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The algebra A[I'] will be called a full graph-algebra. This
algebra A['] will be investigated in a forthcoming publication
(of the first author). Such algebras #([I'] carry more
information about graphs I', than graph-groupoids (or so-called
Shallon algebras, or graph algebras) investigated by several
authors (see, e.g., [30], [17]}, ([25]), [([26]).

Problem 5, What is the connection between some properties
of algebras and properties of graphs determined by the cor-
respondence TI'—E([I']?

Now we propose some modification of this approach to
investigations of decompositions of graphs into the Plonka sum
of subgraphs.

Let T=(A;p) be a graph, which is decomposable into a
Plonka sum of its subgraphs F1=(A1;p1) and F2=(A2;p2), i.e.
F=S(F1,F2;h), where h:Al—-)A2 is a suitable graph
homomorphism. Consider a mixed graph TI'=(A;6), where e=puh”®
and hu={(a,h(a)): aeAl}. Then we can define a new "graph
algebra" S[T,Al,Az] by taking as term operations all
operations on A which preserve the relation 8 and the subsets
A, and a,. Taking into account the definition of the Plonka
sum of algebras (see [19]) we can verify

Proposition 8. The algebra H[T,AI,AZ] is decomposable

into a Plonka sum of its subalgebras A, and Az.

1
Example., Consider the algebra H[f,Al,Az] for the follow-
ing decomposition of the hexagon:

Fig. 18

Then all unary term operations of the algebra E[T,Al,Az] are
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the following:
9y (X)  9,(%) 93(x) g, (x) gg(x) gg(x) 9;(x) gg(x)

a, a, a, a, a, a, a, a; a,
a, a; a; a, a; a, a, a, a,
a, a, a, a, a, a, a, a, a,
a, a, a, a, a, a, a, a, a,
a, a, a, a, a, a, a, a, a,
ag ag ag a, a, a, a, a, a,

We give also an example of a binary term operation of the

considered algebra:

(1]

(2]

(3]

(4]

(5]

° 3, @& 3, a; a, &4
B3| 20 3 2 2 23 ¥4
af 3 & 2 233 a3 3,
] 2 3 2 3 3, 3,
azl a; a; a3 a; a3 3,
A 2 2y, 34 2, 3 3,
ag| a5 a3 a3 a3 a5 35
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