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ON THE PLONKA DECOMPOSITION OF GRAPHS AND RELATED ALGEBRAS 

1. Introduction 
In this paper we will consider undirected graphs (without 

multiple edges and loops) and some general algebras. The ter-
minology used here is more or less standard. In 1971 Jerzy 
Plonka defined (see [22]) the notion of the sum of a direct 
system of graphs, which was investigated by him, Raczko and by 
Koálirtski (see [22], [20], [27], [14] and [15]). Decomposi-
tions of graphs into the Plonka sum are still not investigated 
enough. As is well known (see, e.g. [1]), different kinds of 
decompositions of graphs into some simple ones have very 
important applications; also the kind of decomposition 
considered seems to have some interesting applications. 
Unfortunately, decompositions into the Plonka sums of graphs 
were missed in the monography of Bosak [1]. 

In [14] the second author started to investigate decompo-
sitions of n-angles and some other graphs into the two-
component Plonka sums. He obtained, among other results, all 
such decompositions of pentagons, but this method was not sim-
ply applicable to hexagons. The problem of finding all decom-
positions of a hexagon (with some diagonals) was posed by J. 
Plonka. It has been open for more than fifteen years. Such 
investigations belong to a large class of constructive enumer-
ation problems, which are very important in combinatorics and 
its applications (see, e.g. [2]-[5], [7]-[9], [11], [13], 
[16], [23], [24], [28] and [32]) . 

In particular, the problem of determining the number of 
graphs with a given property was investigated by several 
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authors beginning with A. Cayley ([2]-[4]), J.H. Redfield [28] 
and G. Pólya [23] and it is very important with respect to 
different applications (for example in chemistry); see also 
the monographs of G. Pólya and R.C. Read [24] and F. Harary 
and E. Palmer [13]. 

In this paper we present a full description of decompo-
sitions of hexagons into two-component Plonka sums which was 
found by the first author. This method is general and can be 
applicable to other n-angles. The paper is only one of initial 
steps in investigations of such decompositions. For the sake 
of completeness, we recall some known general results and some 
special ones for n-angles (with some diagonals) of the second 
author which appeared in a semi-publication [15] only. 

Finally, we give an algebraic approach (proposed by the 
first author in 1988, and reported by him during the Jadwisin 
Conference on Quasigroups and Universal Algebra in 1989). This 
idea is based on association of some universal algebras 
a=(A;F) with graphs Γ=(Α;ρ). These algebras are more rich 
than groupoids (on the set A of vertices or on Avj{co}), 
considered by several authors (e.g. [6], [17], [25], [26], 
[30]). The algebras will be called full graph algebras and 
seem to be more fruitful than the above-mentioned "graph-
-algebras" (rather graph-groupoids), but unfortunately the set 
of term operations of these algebras is difficult to be 
determined. We consider here some variant of these algebras in 
which term operations are additionally compatible with some 
partial endomorphism (i.e. these graph-algebras can be treated 
as graph-algebras of mixed graphs). 

The authors are grateful to Professor Jerzy Plonka for 
fruitful discussions about considered decompositions of 
graphs. 

2. Preliminaries 
Let A be a non-empty finite set, say A = { a ^ a ^ .. ., a }. 

By a graph Γ with the set A of vertices we will understand 
(see, e.g. [12], [18]) a relational system Γ=(Α;ρ), where 
pcAxA is a symmetric relation (i.e. (a.,a.)ep (a.,a.)ep). 
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If (a^,aj)ep then the pair (a^,aj) is called an (undirected) 
edge. We will mostly consider graphs without loops, i.e. 
(a,a)¿p for every aeA. We will write apb instead of 
(a,b)ep. 

In Section 5 we will fix some special enumeration of 
vertices, i.e. such graphs can be considered as special 
semi-labelled graphs. 

In [22] J. Plonka defined the notion of the sum of a 
direct system of graphs (using a more general definition of 
directed graphs in the sense of [33]) by analogy to his 
construction for universal algebras. He also considered a 
general case of relational systems [21]. One can prove (see 
[10]) that so-called regular formulas are preserved by the 
construction of the Plonka sum. 

Since in [20] it was proved that if a graph is 
decomposable into a sum of a direct system of graphs; then 
this graph is also decomposable into a two-component sum; we 
will consider only this special case. We recall the definition 
of the two-component Plonka sum of undirected graphs: 

Let Γ1=(Α1;ρ1) and Γ2=(Α2;ρ2) be two graphs such that 
A^r>A2=0, and assume that there exists a homomorphism h:A^—>A2 

of the graph Γ^ into the graph Γ"2. Then the graph Γ=(Α;ρ) is 
said to be the Plonka sum of Γ^ and Γ2 if A=A^uA2 and 
ρ=ρ1υρ2υρ0, where pQ is a symmetric binary relation defined 
for a€A^ and beA2 by 

(*) apQb <=» h(a)p2b. 
In this case we will write r=S(rifr2;h) and we will call 

the triple (Γ^,Γ^Ιι) a decomposition (or a decomposing sys-
tem) of Γ. The graph Γ is said to be decomposable if there 
exist graphs Γ^, Γ*2 and a graph homomorphism h:^—>Γ 2 such 
that r=S(rifr2;h). Remark that the graph r=S(rifr2;h) to-
gether with additional directed edges (a,h(a)), for every 
aeA^, can be also considered as a mixed graph. 

In this paper, heavy lines in the figures mean edges of 
graphs and Γ 2 , fine lines mean additional edges determined 
by the construction of the Plonka sum S(r ,Γ ;h), broken 
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lines connect a vertex aeA^^ with its homomorphic image h(a), 

and heavy dots mean the vertices of the graph 

3. Some properties of decomposable graphs 

By a slight modification of Theorem 2 in [27] we obtain 

Proposition 1. If φ. is an isomorphism of Γ^ onto Γ'^, 

i=l,2, such that 

(*) h ' - ^ 2 - h 

(where · is the composition of mappings), then S(r i,r 2;h) is 

isomorphic to S(Γ'^,Γ^;h') and the required isomorphism is 

pieced out from φ^ and φ 2 (or a "sum" of φ^ and <p2 in another 

terminology)· 

Proposition 1 allows us to reduce investigations of graph 

isomorphism to simpler cases. 

The decompositions (Γ^,Γ^,'Ιι) and (Γ^,Γ^,'Ιι' ) are said 

to be isomorphic if the assumptions of Proposition 1 are 

fulfilled. 

From this point of view the following two decompositions 

of a hexagon (with diagonals) are isomorphic: 

Γ: Γ': 

Fig. 1 

Indeed, we can take — * > 2 : A 2 — * A 2 d e f i n e d i n t h e 

following way: 

«>l ( a0 ) = b0 ' «>l(a3)=b3' 

¥>2(a2)=b2, <p2(a4)=b4, φ 2 ( 3 ι ) = ^ and <p2(a5)=b1. 

But the converse implication in Proposition 1 does not 
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hold because, for example, the triangle A={aQ,alfa2} with a 
loop is decomposable into the Plonka sum in two different 
ways: 

A = {aQ}u{alfa2} and A = { a ^ a ^ u ^ } . 

Cri#r2;h) 
h:A,—>A, 

of two graphs 
is a homo-

Fig. 2 
Consider now the direct system 

ri=(Al'·^* a n d Γ2 = ( Α2 ; ρ2 )' w h e r e 

morphism of the graph into the graph Γ"2. We define a new 
system (Γ^,Ι^,Έ) by putting Γ ^ ί Α ^ - , ρ ^ , where ~ is the 
equivalence relation defined on A^ by: 

a-b iff h(a) = h(b), 
A^/- is the set of equivalence classes [a]_ (aeA^), and p^ is 
defined by 

tal.Pj.tb]. «=• (3al€[a]_) (3bl6[b] J ( a ^ ) . 
Then we have an easy modification of Theorem 4 in [27]. 

Proposition 2. The mapping (p:A1uA2—>A1/~uA2 defined by 

<p(x) = 
if X€A„ 

1 
sum S(ri#r2;h) 

[x]_ if X€A, 
is an epimorphism of the Plonka 
S(rx,r2;K). 

For example, the required epimorphism of the graph Γ 
the graph Γ' exists, as is shown in the following figure: 

onto 

onto 
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Γ. Γ'. 

Fig. 3 

Similarly, the graph Γ' is an epimorphic image of the 
graph Γ in Figure 4 : 

It seems to be interesting to know a solution of the 
following 

Problem 1. What kind of properties of graphs are preserved 
by the Plonka sum of graphs? 

Up to now we know a few simple facts only. For example, we 
recall 

Proposition 3 (cf. Theorems 9 and 10 of [27]). If Γ 1 and 
Γ 2 are both connected (or both cliques with all loops, i.e. 
p.=A.xAi (i=l,2)), then also S(rifr2;h) has this property. 

In connection with this we remark that if Γ 1 and Γ 2 are 
complete, but Γ 2 is without one loop, say (a,a)¿p for some 
aeA , and a=h(b), beA , then S(T ,r_;h) is not complete 

r 

Fig. 4 
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because (b,h(b))¿p. There are also two planar graphs Γ^, Γ 2 

and a homomorphism hzT^—>Γ2 such that S(ri,r2;h) is not pla-

nar. 

A graph Γ is said to be decomposable into a two-component 

Plonka sum if there exist graphs Γ 1 and Γ 2 and a homomorphism 

hsTj—>Γ2 suchthat r=S(r,I*2;h). 

For example, the following graphs (n-angles with diagonals 

in Figure 5) are not decomposable: 

On the other hand, it is easy to check (cf.[14]) that the 

following pentagons with diagonals are decomposable: 

Fig. 6 

It is easy to see that investigations of decomposability 
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of graphs can be reduced to decomposability of connected 

graphs, because in [15] the following was observed: 

Proposition 4. À graph is decomposable iff it has at least 

one decomposable connected component or contains two isolated 

vertices. 

In the following we will consider simple graphs only (i.e. 

undirected without multiple edges and without loops). 

Let a graph Γ=(Α;ρ) be the Plonka sum S(r i #r 2;h) of two 

graphs r ^ f A ^ p ^ and Γ 2=(Α 2;ρ 2), where hrA^^—>A2 is the 

required homomorphism of the graph Γ^ into Γ 2 . Then we have 

some simple facts (comp. [14]), the proof of which is left to 

the reader: 

(i) (Va€Ax)(VbeA)(apb =» h(a)pb). 

(ii) (VajbeAj^) (h(a)ph(b) =» aph(b) and h(a)pb). 

(iii) (Va,beA^)(apb =» h(a)*h(b)). 

(iv) (VaeA^)((a,h(a))¿p). 

(v) If A^ is connected and |A^|>1, then |A2|>1. 

(vi) If A is connected, then A 2 does not contain isolated 

vertices. 

Remark that properties (iii)-(vi) hold for the graph Γ without 

loops. 

(vii) The degree of each aeA^^ is not greater than the degree 

of h(a). 

(viii) (VaeA^ (Vb l fb 2eA 2, b ^ b j ( b ^ a , b 2 p a =» (a,b l fh(a) fb 2) 

is the four-vertex cycle). 

(ix) ( V a ^ a ^ A ^ { ^ P ^ => (a l fh(a 2) »hfa^ ,a2) is the four-

-vertex cycle). 

From (viii) and (ix) we infer easily 

Proposition 5. If Γ is a decomposable connected graph 

without hanging vertices, then Γ contains the four-vertex 

cycle as a subgraph. 

Corollary 1 (Plonka [20]). A simple cycle of length η is 

decomposable iff n=4. 

Now we observe 

Lemma 1. If a graph Γ=(Α;ρ) contains two hanging verti-
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ces incident with the same vertex, then Γ is decomposable. 

Indeed, let a and b be two hanging vertices incident with 

ceA, i.e. ape and bpc. We take Aj={a}, A 2=A\{a}, p^=p| A 

(i=l, 2 ) , and we define h(a)=b. Then we conclude easily that Γ 

is decomposable into the Plonka sum of its subgraphs (A^/p^), 

(A 2;p 2) with h as the required homomorphism. 

The situation considered in Lemma 1 is illustrated in 

Figure 7: 

4. Decomposable trees 

Now we will characterize trees which are decomposable into 

Plonka sums. This material is partially covered by the semi-

publication [15] but for completeness we will give full proofs 

(which are different and simpler than those in [15]). 

Lemma 2. If Γ=(Α;ρ) is a tree, which is decomposable 

into the Plonka sum S(r i,r 2;h), where (i=l,2), 

then A^ contains hanging vertices only (consequently p^=0). 

Indeed, if the degree of a vertex aeA^ is greater than 1, 

then by (viii) and (ix), the considered graph Γ contains a 

cycle, which contradicts the assumption. 

Summarizing our consideration in Section 3 and in this 

section we have 

Theorem 1. A tree is decomposable if and only if it 

contains two hanging vertices incident with the same one ver-

tex, or it is a four-vertex chain. 

Fig. 7 
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Proof. First, observe that if a tree Γ contains two hang-
ing vertices incident with the same vertex, then Γ is decom-
posable by Lemma 1. 

If now À is a four-vertex path (a,c,d,b), i.e. ape, cpd, 
dpb, then we can take A^iajb}, A2=A\{a,b}, Pì=pIa.' i=1»2» 
and we define the required homomorphism htA.^—>A2 by the 
equalities h(a)=d, h(b)=c. 

Finally, assume that there are no two hanging vertices of 
a tree Γ=(Α;ρ) incident with some one vertex of A. Let Γ be 
decomposable into two graphs Γ1=(Α1;ρ1), Γ2=(Α2;ρ2) and 
h:Aj^—*A2 be a homomorphism required in the definition of the 
Plonka sum. Of course, |Aj>2 and the degree of each acA is at 
most 2. If a ^ A ^ and a2pa^, then, by Lemma 2, we have a2«A2, 
and, by (i) and (ii), hfa^Jpaj * hfa^). Put h(a1)=a3· By our 
assumption, a 3 is not a hanging vertex. Let a

4 * a
2
 a n d a4 p a3" 

If a4«A2, then by the definition of the Plonka sum we have 
a1pa4, which is impossible. Therefore a

4
e A

1 and, by Lemma 2, 
a 4 is a hanging vertex. Since a3ph(a4), we infer that 
ajphfa^ and h(a4)=a2· 

Suppose there exists a 5«A 2 such thet a5*a2,a3 and a^pa^, 
or a2pa5· Then a^Pa5 o r a

4P a5' w hi ch is impossible. Let now 
a,_eA, and ac*a, ,a.. Then h(a,.)*a_,a, and for h(ac) we get 3 1 3 1 4 D ¿ J S 
the above-considered case. Therefore A={a1,a2,a3,a4> and Γ is 
a simple path. Thus Theorem 1 is proved. 

Corollary 2 (Plonka [20]). A simple path of length η is 
decomposable iff n=3 or n=4. 

5. Decomposable n-angles with some diagonals 
Let Γ=(Α;ρ) be a (simple) graph. If A={a0,alf...,3η-1} 

(where ai* aj i*j) a n d ai p ai+i f o r e a c h i=0,1,...,n-2, 
and a

n_iPao' t h e n r=(A»*P) i s called an n-angle (with or 
without diagonals). Therefore Γ=(Α;ρ) with A={aQ,a1,... 
...,an_1> is an n-angle if Γ is a Hamiltonian graph with a 
distinguished Hamiltonian cycle ( a ^ a ^ . .. ,3η-1) . A pair 
(a.,a.)r where a.,a.eA, j*i-l,i,i+l, is called a diagonal if D J ι 
a.pa.. An n-angle has at most ^n(n-3) diagonals. A diagonal ι ] ¿ 
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(a^,aj) of a 2n-angle is called main if j=i+n(mod 2n). Other 
diagonals are called short. An n-angle is called 1-saturated 
if there exists a^eA such that a^pa^ for all j*i. In this 
case we will also say that Γ is complete at a vertex a^. An 
n-angle is called k-saturated if it is complete at some k 
vertices. An n-angle is called strictly k-saturated if it is 
k-saturated and has no more diagonals. Of course, an 
η-saturated n-angle is a (simple) complete graph K n with η 
vertices. An n-angle is said to be k-nonsaturated if there are 
k vertices with no diagonals. 

Now we recall some general statements about n-angles 
Γ=(Α;ρ) which are decomposable into a Plonka sum Sfr^r^h) 
of two graphs r^fA^p^) and Γ2=(Α2;ρ2) with the required 
graph homomorphism h:A^—>A2· By using the general properties 
(i)-(ix), Proposition 5 and the following Lemmas 3 and 4 we 
can easily prove (follow by [14]) more results on decom-
positions of n-angles: 

Lemma 3. Let r=(A;p)=S(ri,T2;h) . If a^ceA^^ are 
pairwise different, ap^b and ap^c, then there exist two 
vertices of degree at least three which are not connected by 
some edge (namely, a and h(a)). 

Indeed, by (iii) we get h(a)#h(b) and h(a)^h(c). More-
over, by the definition of homomorphism, h(a)p2h(b), 
h(a)p2h(c) and, finally, h(a)pb and h(a)pc. Therefore the 
vertices a and h(a) are of degree at least 3; moreover 
because of looplessness by (iv) - for the pair (a,h(a)) the 
relation ρ does not hold. 

Corollary 3. If an n-angle r=(A;p)=S(ri,r2;h) has at 
most one diagonal, then no vertex of degree 3 is in A^, and no 
three successive vertices belong to A^. 

Lemma 4. If Γ=(A;p)=S(Γ1#Γ2;h) is an n-angle, then 
|A2|>1, A2 is connected and every two successive vertices 
belonging to A^ are connected by an edge in Γ\, i=l,2. 

Indeed, the first statement is implied by looplessness, 
the second and the third ones follow immediately because in Γ 
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we can only obtain additional edges (which are not in Γ^ and 
Γ~2) which connect some vertices of A2 with some vertices of A^. 

Recall that J. Plonka [20] proved that a simple cycle is 
decomposable iff it is the four-vertex cycle (see Corollary 
1). But any full n-angle (i.e. with all possible diagonals, or 
- in other words - the complete graph Kn) is indecomposable. 
He observed in 1973 that an n-angle with one diagonal is 
decomposable iff this diagonal is main and n=4 or n=6 (see 
[14]). It is easy to see that every n-angle without exactly 
one diagonal is decomposable. Indeed, if this diagonal is 
(a.,aj), j#i-l, i, i+1, then we can take A1={a^}, A2=A\{a^> 
and define h(a.)=a.. More generally one can prove ([14]) that 1 J ι for every pair (n,k), where n>4 and l<k<^n(n-3), there exists 
an n-angle with k diagonals which is decomposable into a 
Plonka sum of its subgraphs. 

In [14] it was proved that a one-nonsaturated n-angle 
(with n>2) is decomposable iff n=4. However, it was proved in 
[14] that a strictly one-saturated n-angle is decomposable iff 
n=4 or n=5. 

A 2n-angle has an entered n-angle if a)CPa)c+ 2 f o r 
2n 

even k or for all odd k, where + 2 n denotes addition modulo 
2n. It is known (see [14]) that a 2n-angle Γ with an entered 
n-angle is decomposable iff n=3. Indeed, the hexagon with 
three "short" diagonals is decomposable in the following way 
(see the left part of Figure 8): 

Fig. 8 
Similarly we can obtain a decomposition (unique with respect 
to isomorphism) of the hexagon with six (all) short diagonals. 
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In the next section we will consider all possible 

decompositions of hexagons with some diagonals. For this 

purpose we will give some additional conventions and 

definitions. 

Consider an n-angle r=(A;p)=S(r i,r 2;h) with A={a 0,a 1 #.. 

...,β^^}. We will assume (without loss of generality) the 

following: 

I o. ( ao' ai'' ' · a di-stin9ui-she<* Hamiltonian cycle (or 

circuit in another terminology, 

2°. a neA, and a„ .«A.,, ο ι η—ι 2 
Two decompositions of an n-angle (treated as a regular 

n-angle) are said to be essentially different if they are not 

isomorphic by any axis-symmetry which preserves property 2°. 

Therefore an n-angle will be considered here as "semi-

labelled" (for labelled graphs see, e.g., [8] and [9]). From 

this point of view, the two decompositions of Γ and Γ' in 

Figure 3 are essentially different (but they are isomorphic), 

and the decomposition of Γ is not essentially different from 

the decomposition of the graph Γ" in Figure 9: 

Fig. 9 

Let Α = Α ι υ Α 2 = { & 0 a n _ 1 > , Α ι Λ Α 2 - 0 ,
 a o e A i ' a n - l e A 2 · 

Further, let Γ ^ ί Α ^ ρ ^ and Γ"2=(Α2;ρ2) be two (undirected) 

graphs (without loops) , and let hiA^^—>A2 be a fixed graph 

homomorphism of Γ^ into J"2. Then the graph r=S(r i,r 2;h) is 

called primitive if the relations p^ and p 2 are minimal in 

order to obtain the Hamiltonian cycle ( a Q , a l f . . . i n Γ. 

That is, if we omit one edge (a^,a^)ep 1up 2, then the 
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Hamiltonian cycle (a^a^,... will be destroyed. For 
example, the first graph in Figure 8 is primitive but the 
second one is not, because we can omit an arbitrary edge which 
connects vertices of A^. 

6. Enumeration of decompositions of hexagons 
The general procedure to find all possible essentially 

different decompositions of an n-angle is the following: 
I. Fix a Hamiltonian cycle (a^a^,... ,an-1) ; 
II. Look for all possible decompositions A=A^uA2 of the set 

A={a0,alf... ,a ĵ) of vertices with property 2°; 
III. Find all possible "primitive" graphs with fixed mapping 

h:A^—>A2 as the homomorphism required in the definition 
of r=S(ri,r2;h); 

IV. Enumerate all essentially different decompositions of 
graphs r=S(ri,T2;h), which can be obtained by adding 
some additional admissible edges between vertices of A^ 
or between vertices of A2; 

V. Take an account of all such possibilities. 
If we use this procedure for hexagons we obtain 
Theorem 2. Let r=(A;p)=S(ri,r2;h) be a hexagon with some 

diagonals and a fixed Hamiltonian cycle (aQ,a1#...,ag). 
Suppose aQeA¿ and a5eA2* Then the numbers of possible 
essentially different decompositions are the following: 
a) 44 if |Αχ| l=i 
b) 40 if |ΑχΙ 1=2 
C) 22 if 1=3 
d) 5 If I M 1=4 

Proof. First, observe that under our assumptions - taking 
into account general properties of Plonka sums (see Sections 3 
and 5) - we have only the following possibilities for Aĵ  and h: 
1) Aj={a0}, h(aQ)=a3, 
2) Aj-iajj}, h(aQ)=a2, 
2') A^iajj}, h(a0)=a4, 
3) A1={*q,&1}, h(aQ)=a4 and h(a1)=a3, 
4) A ^ a ^ a ^ , h(aQ)=a3 and h(a1)=a4, 
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5) A a o a2 }, h a o =h(a 2) = a 4 ' 
5' ) A = a o a4 }, h a o =h(a 4) = a 2 ' 
6) A = a o a2 }, h a o = a 3 h(a 2)=a 5' 
6' ) A = a o a4 }, h a o = a 3 h(a 4)=a 2' 
7) A = a o a 2 }, h a o = a 4 h(a 2)=a 5' 
7' ) A — a o a4 }, h a o = a 2 h(a 4)=a 1' 
8) A = a o a2 >, h a o = a 3 h(a 2)=a 4' 
8' ) A = a o a4 }, h a o = a 3 h(a 4)=a 2' 
9) A = a o a3 }, h a o = a 4 h(a 3)=a 5' 
9' ) A — a o a3 }, h a o = a 2 h(a 3)=a 1' 
10) A — a o a3 >, h a o = a 4 / h(a 3)=a 1' 
10' ) A = a o a 3 }, h a o = a 2 h(a 3)=a 5' 
11) A — a o a i ' a2> h ao> = a 4 , h( 3 l) = a 3 ' h(a 2 = a 4 ' 
11' ) A — a o a i ' a2> h ao^ = a 4 , h(a x) = a 5 ' h(a 2 = a 4 ' 
12) A — a o a i ' a2> h ao> = a 4 , h( a i) = a 3 ' h(a 2 = a 5 ' 
12' ) A — a o a i ' a2> h ao> = a 3 , h(a 1) = a 5 ' h(a 2 = a 4 ' 
13) A = a o a i ' a2> h ao> = a 3 , h( a i) = a 4 ' h(a 2 = a 5 ' 
14) A = a o a i ' a3> h ao> = a 4 , h( 3 l) =h (a 3 )

= a 5 
14' ) A = a o a i ' a4> h ao> =h(a 4)=a 2, h(a l ) = a 3 
15) A = a o a i ' a3> h ao> = a 2 , h(ax) = a 4 ' h(a 3 = a 5 ' 
15' ) A = a o a i ' a4> h ao> = a 3 , h(ai) = a 5 ' h(a 4 = a 2 ' 
16) A = a o a i ' a3> h ao> = a 2 , h( 3 l) =a 5= h(a 3) 

16' ) A = a o a i ' a4> h ao> = a 2 , h( a i) = a 5 ' h(a 4 = a 2 ' 
17) A = a o a2 ' a3> h ao> = a 4 ' h( a2> = a 4 ' h(a 3 = a 5 ' 
17' ) A — a o a3 h ao> = a 2 , h(a 3) = a i ' h(a 4 = a 2 ' 
18) A = a o a2 ' a3> h V = a 4 ' h( a2> = a 5 ' h(a 3 = a i ' 
18' ) A = a o a3 ' a4> h ao> = a 2 ' h< a3> = a 5 ' h(a 4 = a i ' 
19) A = a o a2 ' a3> h ao> = a 4 ' h ( a

2 ) = a 4 ' h(a 3 = a i ' 
19' ) A = a o a3 ' a4> h ao> = a 2 , h(a 3) = a 5 ' h(a 4 = a 2 ' 
20) A = a o a2 ' a4> h ao> = a 3 ' h< a2> = a 5 ' h(a 4 = a i ' 
21) A = a o a i ' a2' a3>' h( ao) =a 4=h(a 2>' h(a;L) = =a 5=h(a 3), 

22) A = a o a i , a3' a4^' h ( ao> =a 2=h(a 4>' h(a1)= =a 5=h(a 3). 

But by using suitable axis-symmetries we can observe that 

the possibilities denoted by (k) and (k' ) are dual and lead to 

non-essentially different decompositions. For example, cases 

(2) and (2' ) give isomorphic decompositions by symmetry with 

respect to the axis (a Q,a 3). Similarly, taking into account 
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symmetry with respect to the axis (a1#a4) we observe that 

possibilities (7) and (8) are not essentially different. 

Moreover possibilities (17), (18) and (19) can be obtain 

by suitable axis-symmetries from (14), (15) and (16), respec-

tively. 

Therefore we have the following 18 essentially different 

primitive graphs: 

For I A^ I =1 : 

Fig. 10 

For I I = 2 : 

Fig. 11 
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For I I = 3 : 

Fig. 12 

For IA1I=4 : 

Fig. 13 

From cases (l)-(7), (9)-(16) and (20)-(22), adding 

admissible edges between vertices of A^ and between vertices 

of A 2 and by using suitable axis-symmetries, we obtain the 

following numbers of all possibilities and essentially differ-

ent ones, respectively: 

Cases (1) (2) (3) (4) (5) (6) (7) (9) (10) 

All poss. 16 32 8 2 8 4 4 8 16 

Ess. 
diff. poss. 12 32 6 2 6 4 4 6 12 
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(11) (12) (13) (14) (15) (16) (20) (21) (22) 

2 2 2 4 4 4 8 2 4 

2 2 2 4 4 4 4 2 i 

By counting together the numbers of essentially different 

possibilities of cases (1) and (2), of cases (3)-(10), of 

cases (11)-(16) and (20), and, finally, of cases (21) and (22) 

we obtain numbers 44, 40, 22 and 5, which completes the proof 

of Theorem 2. 

It is easy to observe, by the remark after Proposition 1, 

that six (essentially different possibilities of case (10) are 

(pairwise) isomorphic with those of case (9). The possibili-

ties in (16) are isomorphic to suitable possibilities in (14), 

too. The number of all possibilities, under our assumptions 1° 

and 2° (i.e. treated as "semi-labelled" graphs), is 248. This 

number for any n-angle should be even. Moreover the number of 

all decompositions of labelled hexagons is 2976. 

By analyzing the proof of Theorem 2 one can verify (we 

leave this to the reader) 

Theorem 3. There are only 

a) 10 essentially different decompositions of the hexagon 

with 3 main diagonals; 

β) 9 essentially different decompositions of the hexagon 

with 2 main diagonals ; 

r) 2 essentially different decompositions of the hexagon with 

one main diagonal; 

5) 4 essentially different decompositions of the hexagon with 

two entered triangles. 

We illustrate these possibilities in pictures (see Figures 

16-19): 
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a) 3 main diagonals: 
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Fig. 14 



226 K.Glazek, A.Koélirtski 

β) 2 main diagonals: 

Fig. 15 
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r) 1 main diagonal: 

Fig. 16 
5) two entered triangles: 

Fig. 17 
In the context of our results the following problem 

to be interesting but difficult: 
seems 

Problem 2 (J. Plonka). Characterize n-angles which are 
decomposable into Plonka sums of graphs. 

Another interesting problem is the following. 
Problem 3. What class of graphs can be built by the 

construction of a Plonka sum of graphs from some special 
graphs (e.g. triangles, n-angles, trees, etc.)? 
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set PolAS of operations by 

7. Algebras related to graphs 
In this section we signalize some algebraic approach to 

investigation of graphs, which seems to be interesting and 
fruitful. 

Consider a binary relation θ on a set A. An operation 
f . . x h — > A is said to be compatible with θ if 

Η 
(Vx1,...,xn,x^,..., x^eA) (χ^θχ^ for i=l,...,n 

f (xlf... ,xn)0f (x^,... ; 
in other words: f preserves the subset θ of AxA or θ is a 
subalgebra of the square of the algebra (A;f). The set of all 
operations (of arbitrary arities) which preserve θ is denoted 
by Pol {Θ}. This set Pol {Θ} is closed under composition of 
operations, i.e., Pol {Θ} forms a clone (see [31]). 

The set of those operations on A which preserve a subset Β 
of a power of A will be denoted by PolA{B}. More generally, 
for an arbitrary set S of subsets of powers of A we define the 

s by 

Pol S = Π Ρ ο 1 α β · A BeS A 

Proposition 6 (see [31]). P o l
A
s a clone for an 

arbitrary set S of subsets of powers of A. 
Example. Let Γ=(Α;ρ) be a graph with |A|=n (pcAxA). One 

can verify that for a determination of the algebra 3[Γ] = 
(A;PolA{p>) it is enough to know the set of all m-ary term 
operations Τ^(3[Γ]) of this algebra 9[Γ], with some m*2n. 
Unfortunately, the definition of 3[Γ] is not effective. It 
will be important to answer the following 

Problem 4. What is the most economical way to determine 
the set of fundamental operations (possibly small and 
consisting of operations of small arities)? 

By using the notion of the weak automorphism of a general 
algebra (see [29]), we have some simple observation. 

Proposition 7. Every automorphism of the graph Γ=(Α;ρ) 
is a weak automorphism of 9[Γ]. 
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The algebra 3[Γ] will be called a full graph-algebra. This 

algebra 9[Γ] will be investigated in a forthcoming publication 

(of the first author). Such algebras 3[Γ] carry more 

information about graphs Γ, than graph-groupoids (or so-called 

Shallon algebras, or graph algebras) investigated by several 

authors (see, e.g., [30], [17], [25], [26]). 

Problem 5. What is the connection between some properties 

of algebras and properties of graphs determined by the cor-

respondence Γ—>9 [Γ]? 

Now we propose some modification of this approach to 

investigations of decompositions of graphs into the Plonka sum 

of subgraphs. 

Let Γ=(Α;ρ) be a graph, which is decomposable into a 

Plonka sum of its subgraphs Γ 1=(Α 1;ρ 1) and Γ 2=(Α 2/P 2) f i« e· 

r=S(r i,r 2;h), where h:A^—>A2 is a suitable graph 

homomorphism. Consider a mixed graph Γ=(Α;Θ), where e=puh D 

and h°={ (a,h(a) ) : a e A ^ . Then we can define a new "graph 

algebra" ΗΐΓ,Α^,Α^ by taking as term operations all 

operations on A which preserve the relation θ and the subsets 

Aĵ  and A 2. Taking into account the definition of the Plonka 

sum of algebras (see [19]) we can verify 

Proposition 8. The algebra a[F,A l fA 2] is decomposable 

into a Plonka sum of its subalgebras A^ and A 2. 

Example. Consider the algebra 9[Γ,Α 1,Α 2] for the follow-

ing decomposition of the hexagon: 

Fig. 18 

Then all unary term operations of the algebra 3 [ Γ,Α ,A_] are 
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the following: 

g 2(x) g 3(x) g4(x) g5(x) g 6(x) g 7(x) 

a. a. a. a. 0 0 0 0 1 1 1 1 

a i a i a i a l a0 a0 a o ao 

a. a_ a. a. a_ a. a_ 2 4 2 4 4 2 4 2 

a. a. a. a_ a. a. a, a. 3 3 3 3 4 4 4 4 

a. a. a. a. a_ a_ a_ a_ 4 4 4 4 3 3 3 3 

a 5 a 5 a3 a3 a4 a4 a2 a2 

We give also an example of a binary term operation of the 

considered algebra: 

a„ a, a„ a. a, a,. 
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