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CONSTRUCTIONS OF LEFT NORMAL BANDOIDS 

Introduct ion 

The idea of investigation of left normal bandoids arises 
from the study of dissemilattices. 

A dissemilattice (B,+,·) is a set Β with two binary 
operations such that the reducts (B,+) and (B,·) are semi-
lattices and the identity 

(x+y) ζ = (xz) + (yz) 
is satisfied in (B,+,·)· 

Dissemilattices form one of the most important classes of 
modals - idempotent entropie algebras with additional semi-
lattice structure (for details see [13]). Dissemilattices may 
be regarded as distributive lattices for which the requirement 
of absorption and one of distributive laws have been dropped. 
The name "dissemilattice" is intended to recall the presence 
of two semilattice structures and the fact that the one dis-
tributes over the other. The algebras are known under the name 
of meet-distributive bisemilattices as well ([3], [6] - [12]). 

A dissemilattice which satisfies 
x+(y-z) = (x+y)·(x+z) 

is said to be distributive. 
Distributive dissemilattices are Plonka sums of distribu-

tive lattices ([4], [5]). The role of the partition operation 
for these algebras is played by the operation » defined as 
follows: 

x«y := x+(x-y). 
In [12] the algebra (B,«) obtained from a dissemilattice 

(B,+,·) was called a Halkowska algebra. In general, the 
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operation » is very useful in describing the lattice and 

semilattice replicas of a dissemilattice (B,+,·)· It plays an 

important role in the structure theory of dissemilattices 

([9], [10]). .Elementary properties of (B,») were discussed in 

[2]. A deeper investigation was undertaken in [12]. In parti-

cular it was shown in [12] that (B,<>) satisfies the following 

identities: 

(Bl) χ·χ=χ, 

(B2) χ· (x y) = x y , 

(B3) x - ( y z ) = (x-y) · (y· z), 

(B4) (x y) ζ = ( x z ) y, 

(B5) (x y) ζ = (x z) · (y z) , 

(B6) x· ( y z ) = χ ( y (x-z)) . 

A groupoid (B,·) satisfying the identities (B1)-(B6) was 

called in [12] a left normal bandoid. In the present paper 

left normal bandoids will often be called briefly bandoids. As 

was shown in [12], the variety of left normal bandoits is ge-

nerated by the class of all Halkowska algebras of dissemi-

lattices. The name of left normal bandoids is motivated by the 

observation that they form a non-associative generalization of 

left normal bands. In [15] it was shown that the only proper 

subvarieties of the variety of left normal bandoids are the 

four varieties of left normal bands. 

This paper is first from a series of papers studying the 

structure of left normal bandoids. We describe here some 

constructions of left normal bandoids. The paper is divided 

into three sections. The first one is a collection of basic 

notions and results about left normal bandoids, mainly from 

[12]. Section 2 presents a general method of constructing left 

normal bandoits from a family of semilattices with units and 

homomorphisms between them, generalizing the construction 

given in [12]. In Section 3 the general construction from 

Section 2 is specified to construct a left normal bandoid from 

a family of principal ideals of a complete lattice (L,+,·) 

satisfying the distributive law 
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x-Z(yi I iei) = l(x yL I iei). 

In subsequent papers we will use these constructions to 
study subdirectly irreducible left normal bandoids. 

For more information concerning left normal bandoids we 
refer the reader to [12]. [13], [15] and for basic algebraic 
concepts to [1]. 

1. Preliminaries 
The aim of this section is to recall some known facts 

concerning left normal bandoids which will be used in the 
later sections. First we recall some definitions. (See [12], 
[13]) . 

Let Β = (Β,-) be a left normal bandoid. For x,y in Β 
denote xy:=x-y. For χ in B, the mappings R(x):B —• B; 
y Η yx and L(x):B —> B; y H-» xy are known as right and 
left multiplications respectively. As was remarked in [12], 
the submonoid (T(B),«,idB) of the monoid of all mappings 
from Β to Β (under functional composition) generated by 
{R(x) I x«B> is a semilattice with unit. For each χ in B, the 
mapping L(x):(T(B),®) —» (Β,·)» α ι-» αχ is a homomorphism 
([12, Proposition 2.1]). The image xT(B) of T(B) under the 
homomorphism L(x) is called the orbit of χ in B. Since T(B) is 
a semilattice with unit and L(x):(T(B),°); α wax is a homo-
morphism, the following remark is evident. 

1.1. Remark [12], For χ in B, (xT(B),·,x) is a semi-
lattice with unit. • 

1.2. Remark [12]. Β is the union of the orbits of its 
generators. • 

1.3. Proposition ([12, Proposition 2.2]). For x, y in B, 
the mapping L(x) : (yT(Β) , • ) —» (xT(B) , · ) ; ζ t-* xz is a semi-
lattice homomorphism. • 

Let (L(B) , ® , idjj) be the submonoid of the monoid of all 
mappings from Β to Β generated by {L(x) | xeB}. The next 
corollary follows by simple induction and Proposition 1.3. 
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1.4. Corollary. For χ, y in Β and α in L(B), the mapping 
L(a) : (yT(B) , · ) —» ( (ay)T(B) , · ) ; ζ t-* az is a semilattice 
homomorph i sm. • 

1.5. Proposition (12, Proposition 2.3]). The relation s on 
Β defined by 

xsy <=> x=yx 
is a partial order on B, and xsy if and only if the orbit of 
χ is contained in the orbit of y. • 

Note that the relation s restricted to an orbit of (B,·) 
is the usual partial order of the semilattice (xT(B),·)· 
Evidently, if (B,·) is a left zero semigroup, then (B,s) is 
an antichain. 

In the sequel we use the following notation. Instead of 
xsy we sometimes write ysx. For xsy and x*y we use the symbol 
x<y or y>x. 

1.6. Remark. For x, y in Β the following conditions are 
equivalent: 

(i) xeyT(B), 
(ii) x=yx, 
(iii) x=yz for some zeB, 
(iv) xsy, 
(ν) xT(B)£yT(B). 

Proof. Observe that (i) implies (ii) since y plays the 
role of unit in (yT(Β),·)· The implication (ii) =» (iii) is 
obvious. By definition of an orbit, (iii) implies (i). So 
(i) «=» (ii) <=» (iii). Moreover, in view of Proposition 1.5, 
(ii) «=> (iv) (v) . • 

1.7. Remark. For x, y, ζ in B, xsy implies zxszy and 
xzsyz. 

Proof. Let xsy. Note that zxszy by Proposition 1.3. 
Furthermore 

(yz)(xz) = (yx)z by (B5) 
= xz since xsy. 

Consequently xzsyz. 
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1.8. Proposition. Let XjX^ycB with x^sx. Then 
XjY = Χχ(ΧΥ) = Xj^LfxJy. 

Proof. Note that, since (xT(B),·) is a semilattice and 
xyrX^exTfB), we have 

xĵ ixy) = (xyjxĵ  
Hence, using (B4) and the fact that x1=xx1, we obtain 

ΧΧ(ΧΥ) = (xxĵ jy = XjY-
The equality x^xy) = x^LfxJy holds by definition of L(x).· 

In the sequel, right normalized products (x1(x2... 
...(xn_ixn)···)) o f elements of a left normal bandoid will be 
written simply as x , x , , x . 1 2 n-i η 

1.9. Proposition [12, Lemma 4.6]. For elements xjx2...xn 
of left normal bandoid, and for one has 

Xi*l"* *xi-lxixi+l*",xn = xixl···xi-ixi+i'*'xn* m 

1.10. Proposition ([12, Corollary 4.4]). Left normal 
bandoids generated by pairs of elements are associative. • 

1.11. Corollary. For all x, y in Β 
(xy)χ = (xy)y = x(yx) - xy. 

Proof. Propositions 1.9 and 1.10. • 

2. A construction of left normal bandoids from semi-
lattices and homomorphisms between them 

In this section we describe a method of constructing left 
normal bandoids from a family of semilattices and 
homomorphisms between them, and show that each left normal 
bandoid may be represented using this method. The last result 
was essentially proved in [12], but the general construction 
was not described there. 

2.1. Definition, λ semilattice system is a triple 
(I'{^i>icl'^ij>i,jcl)' w h e r e f o r e a c h i' j» k in I 

(i) SL » (81#·,1) is a semilattice with unit; 
(ii) j:(si'*) —* (sj# ) is a semilattice homomorphism; 
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( i i i ) *ik|S.nSj = ^ jkIS^nSj' 
(iv) = x , \ j Y f o r every χ in S^Sj ; 
(ν) = idSi· 

Note that if xeS^nSj, yeS^rtS^ for some i, j, k, 1 in I, 
then x-0ki = x-tf-^y. Indeed, by 1.1 (iv) x " \ i Y = x"*kjy' 
and by l.l(iii) φ ^ y = Φ^γ. Thus x'^kiy = x'^ljy· T h i s 

justifies the following 

2.2. Definition. Let y = ( i , { S . > i 6 l , { φ ^ j e I ) be a 
semilattice system. Define a binary operation on the set 
S = S. as follows. For xeS., yeS., i,jel, 

iel 1 3 

x-y := x-^jiY, 
where the symbol · on the right hand side denotes multiplica-
tion in S^. Then the groupoid S=(S,·) is called the sum of 
the system ¡f. m 

Note that for x, y in S., x-y in S coincides with x-y in 
S. . —ι 

2.3. Theorem. The sum S of a semilattice system 

(I'{^i>iel'^ij}i jel) a ( l e f t normal) bandoid if and only 

if for all i, j, k in I, χ in S^ 
(i) = x-^j^j 

and 
(Ü) ^ji^ij^ki = •ji^kj· 

2.4. Remark. Note that condition (i) is equivalent to 
χ·(lj·χ)=χ·lj and the condition (ii) to 1^·(lj·(1^-y))= 
=l i'(l jy) for all yeSk. 

Proof. (*) First we prove that the condition (i) is 
satisfied. Let i,jel and xeS^. As a consequence of the 
assumption that S is a bandoid, and by Corollary 1.11, we get 
χ·(lj·χ)=χ·lj. By Remark 2.4 this completes the proof of (i). 

To prove (ii), assume that i,j,kel and yeS^. Since S is a 
bandoid, by Proposition 1.9 we have 1^·(lj·(1^-y))=1^·(lj-y)· 
Thus, by Remark 2.4, (ii) holds. 
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(*) Let i,j,kel, xeS., yeS., zeS.. Using Definition 2.2 ι J κ 
one obtains 
χ·χ=χ·φ.· x=x, since ^..=idc and S. is a semilattice, and IX 11 O ~~"1 
χ· (xy)=x·(x-^jiy)=x-0jiy since S^ is a semilattice 

=xy. 
Further 

(xy) (yz) = (x-^^y)-«^(y-^jZ) 
= (χ·Φ··γ)·(Φ··γ·φ··φν·ζ) since φ., is a homeomorphism j ι 31 j 1 κ J j 1 
= χ· (Φ+ίν Φ+ίΦι,+ ζ) since S. is a semilattice J1 J1 KJ 1 

- *·Φ-;* (y since φ., is a homomorphism 
Jl Kj jl 

= χ· (y z) . 
(x y) ζ = ( x ^ y ) -0kiζ = (χ·Φ^ζ) · s i n c e S^ is a semilattice 

= (xz) y. 
Thus the identities (Bl) - (B4) are satisfied in S. To 

prove (B6) and (B5) we will use conditions (i) and (ii) as 
well. 

now χ· (y· (x·z)) = x-^iy^j(x-0 k iz)) 

= Χ ' ( 0 j i y · ) since ^j^f ^ij are homo-
morphisms 

= ^jiY· (x-^ji^ijx) '^ji^ij^ki2 since ̂ i s a semilattice 
= tfjjy·(x-^jilj) ̂ji^kj2 b y (i) a n d ( i i ) 

= χ· (ΦΑΛΥΦΛΙ^-Α) 'ΦΑ since S. is a semilattice j 1 ]i ] j 1 κ j —1 
= χ·φ..(y·1.)·φ..φ. .ζ since φ., is a homomorphism j 1 j j 1 JC j j 1 
= χ· φ..γ· φ.,φ.,ζ since 1. is the unit in S. J1 J1 * J J — j 
= χ· (yz) . 

It follows that (B6) holds in S. It remains to prove the 
validity of (B5). First we prove 

x (y-x) = x-«ji(y«ijx) = x· (^¿y-
= Φην(χ·ΦηΦ^χ) 

= «jjy· (x ̂ jjLlj) by (i) 
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= χ· φ . .y φ . . 1. 
31 3 

= x-^jiíy-ij) = χ·Φ jiY = x y . 

So the identity 

(2.3.1) x - ( y x ) = x y 

holds in S. 

Now note that (Bl) and (B3) imply 

(2.3.2) (χ·ζ)·ζ = (χ·ζ)·(ζ·ζ) = χ·(ζ·ζ) = χ - ζ 

As a consequence of (B5), (2.3.2) and (2.3.1) we get that 

(x-z)-(yz) = (x-z)·(y((χ·ζ)·ζ)) = (x· z) · (y · (x· z) ) = (xz)-y. 

Therefore (B6) holds in S as well. • 

2.5. Theorem. Every left normal bandoid is the sum of some 

semilattice system y = ( l , < ® ± > ± € Χ ' j
} ± , j « x ) " 

Proof. Let I be a set of generators of a left normal 

bandoid B. For x,yel, let φ :=L(y):xT(B) —> yT(Β); ζ h y ! xy 

and £>χ: = (χΤ(Β) , · ,x) . Then Β is the sum of the system 

y = ( l , j e j ) ' b y Remarks 1.1, 1.2 and Propositions 

1.3, 1.8. ' • 

2.6. Corollary. A groupoid (G, · ) i~- a left normal bandoid 

if and only if it is the sum of a semixattice system satisfy-

ing conditions 2.3(i) and 2.3(ii). • 

Now we will consider left normal bandoids for which each 

orbit is contained in one that is maximal under set theoreti-

cal inclusion. Note that such a bandoid Β is the sum of the 

system (i, { S i > i e I , j € l) , where I is the set of all 

elements which determine maximal orbits, and for x,yel, φ xy 

and are defined as in proof of Theorem 2.5. For these 

bandoids a graphical representation is given by A. Romanowska 

and J. Smith in [12]. Orbits in a bandoid are semilattices, so 

products of elements lying within a single maximal orbit are 

given by the Hasse diagram of this orbit. To specify the 

remaining products, it suffices to indicate the semilattice 

homomorphisms between maximal orbits. The actions of these 

homomorphisms are indicated on the labelled Hasse diagram of 

the disjoint union of maximal orbits by means of arrows. If an 
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element appears in two distinct maximal orbits, then the aTrow 

between the element in the first orbit and the same element in 

the second orbit is omitted. As examples, the free left normal 

bandoid on {x,y} is given by 

Figure 2.7 

and the Halkowska algebra of the dissemilattice 

({a,b,c,d>,+, · ) with ds.cs.bs.a and es as bs d is given 

by 

Figure 2.8 

In papers of this series we use a modification of this 

representation. The difference is that, if maximal orbits are 

not disjoint, then in the modified representation their 

diagrams are not disjoint either. As example the left normal 

bandoid pictured in Figure 2.8 is given by 

3. Constructing left normal bandoids from a complete 

lattice satisfying a generalized distributive law 

In this section we use the general construction described 

in Section 2 to construct left normal bandoids from principal 

ideals of a complete lattice L=(L,+,·) satisfying the fol-

lowing distributive law: 

(3.1) x-l(Yi ι iei) = l(xyί ι i*i). 
This construction will then play an essential role in building 

up subdirectly irreducible left normal bandoids. 

Let L=(L,+,·) be a complete lattice satisfying the 

distributive law (3.1). The usual partial order of the lattice 
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L will be denoted by The greatest and least elements in 
(L,sl) are denoted by 1 and 0 respectively. 

Define a family of disjoint semilattices with units as 
follows. For (x,y) in s^ let 
(3.2) S x ya( (χ],·,χ), 
where (x] denotes the principal ideal of L generated by χ and 
• is the meet operation of the lattice L restricted to (x]. If 
ve(x] then the corresponding element of S is denoted by ν . xy xy 
Obviously S is isomorphic to (L,·,1). The elements of S ^ 
will be written without indices, i.g., x ^ x ^ . 

For (x,y), (z,t) in * L, the mapping * x y z t
: S

x y — » s
z t

 i s 

defined as follows: 
<3·3> ^yzt uxy : = ( Z - I ( V e ( y ] 1 V ' X = U ) ) z f 

3.4. Remark. For every (x,y)€*L 
( i ) *xylluxy = Σ(νε(Υ] | vx=u) 

and 
< U > *llxyull = < x u>xy· 
3.5. Remark. For all (x,y),(z,t)esL> 

^xyztuxy = ^llzt^xyl .uxy" " 
3.6. Remark. For every (x,y)esL 

^xyllxxy = * 
We will prove that for every Rsa^ the triple 

(3.7) y(L,R) := ( ^ { ^ ( ^ ^ , ί * ^ } ^ ) ^ , ^ ) 
is a semilattice system. Note that since all S are pairwise xy 
disjoint we do not need to check 2.1(iii) and 2.1(iv). 

3.8. Lemma. For e 
identity mapping on S 

3.8. Lemma. For every (x,y)esL, the mapping <^xyxy is the 

xy 
Proof. Let (x,y)e*L and ze(x]. By (3.3) we have 

φ u :=fx-Z(ve(yl I v-x=u)) . rxyxy xy v ^v 1 1 'xy 
Since L satisfies the distributive law (3.1), this implies that 

φ (u ) = u • rxyxyx xy' xy 

It remains to show that the mappings ^ x y z t are semilattice 
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homomorphisms. First we prove the following lemma. 

3.9. Lemma. For every (x,y)e*L and u,we(x], 
E(v€(y] I v-x=u-w) - (Z(V€(y] | v·x=u))·(£(veJy] | v-x=w)). 

Proof. Let us define 
a := Z(ve(y] | v-x=uw), 
b := Σ (ve (y] | vx=u) f 

c := £(ve(y] I vx=w). 
By distributivity (3.1) of L it follows that a-x=u-w, b-x=u 
and c-x=w. Therefore (b-c)· x=U'Wf and since b*ce(y], it fol-
lows that 
(3.9.1) b-c^a. 
Since a+be(y] and (a+b)-x = a-x+b-x = u-w+u = u, we have 
that a+bs^b, whence a+b=b. Consequently 
(3.9.2) a s

L
b · 

Analogously we prove that 
(3.9.3) a aL c· 
Now, (3.9.1), (3.9.2) and (3.9.3) imply a=b-c, which completes 
the proof. • 

3.10. Lemma. For all (x,y),(z,t)esL, the mappings 
are semilattice homomorphisms. 

Ρ 
(3.3) 

Proof. Let (x,y),(z,t)es and u,we(x]. By definition 
Li 

*xyzt ( u w )xy = (z'E(ve(y] | v x = u w) ) 2 t· 
Using Lemma 3.9 we obtain 

*xyzt(u'w)xy = ( z'^(ve(y] | v· x=u) ) · (Σ (ve (y] | vx=w)) z t. 
Since L is a lattice it follows that 
*xyzt(u"w)xy= ((«· Œ(v«(y]| ν· x=u) ) ) · (ζ · (Σ (ve (y] | vx=w)))) z t· 
Therefore, by (3.3), * x y 2 t(u-w) x y = * x y z t u x y " * x y z t

w
x y ' 

3.11. Corollary. Let RSs The triple f(L,R) defined by 
Li 

(3.7) is a semilattice system. 

Proof. Lemma 3.8, Lemma 3.10. • 

The sum of the system y(L,R) turns out to be a bandoid. 
To prove this we need the following lemma. 
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3 . 1 2 . Lemma. L e t x , y , z e L w i t h x * L Y · T h e n 

z - I ( v € ( y ] I ν · χ = ζ · χ ) = z - y . 

P r o o f . O b v i o u s l y E ( v e ( y ] | v x = z - x ) s L y . H e n c e 

z - I ( v e ( y ] I v x = z x ) s L z y . 

On t h e o t h e r h a n d , s i n c e z - y e ( y ] a n d ( z - y ) - x = z - x , we h a v e 

z - E ( v e ( y ] I v - x = z - x ) * L z - y . • 

3 . 1 3 . T h e o r e m . L e t R £ S L · T h e sum o f t h e s y s t e m y ( L , R ) 

d e f i n e d b y ( 3 . 7 ) i s a l e f t n o r m a l b a n d o i d . 

P r o o f . I n v i e w o f T h e o r e m 2 . 3 , i t s u f f i c e s t o p r o v e t h a t 

t h e c o n d i t i o n s ( i ) a n d ( i i ) o f t h i s t h e o r e m a r e s a t i s f i e d i n 

y ( L , R ) . F i r s t we s h o w t h a t ( i ) h o l d s . 

L e t ( u , w ) , ( t , z ) e R a n d X € ( u ] . S i n c e * U w t z x u w e S t z a n d 

t . i s t h e u n i t i n S . , i t f o l l o w s t h a t t . i n t h e t z —tz u w t z uw t z 

s e m i l a t t i c e ( S t z , s ) . H e n c e , b y Lemma 3 . 1 0 , * t z u w * u w t z x u w s 

^ t z u w S z i n ( S u w ' a > · T h u s 

( 3 . 1 3 . 1 ) * u w A z u w W z x u w * ' W ' t z u w t t z i n ( S u w ' s > · 

On t h e o t h e r h a n d 
XUW-*tZUW*UWtZXUW = X u w ( u n v ^ ( z ] | V · t = t · E ( S € ( W ] I s - u = x ) ) ) u w 

t x u w · ( u z E ( s e ( w ] I s u = x ) ) u w 

s i n c e z - £ ( s e ( w ] | s - u = x ) e ( z ] a n d 

( z - £ ( s e ( w ] I s - u = x ) ) - t = ( t · z ) · £ ( s e ( W ] | s u = x ) 

= t £ ( s e ( w ] I s u = x ) . 

N o w x u w ' ( u z " E ( S 6 ( W ] I s - u = x ) ) u w 

= x u w - ( z - x ) u w s i n c e b y ( 3 . 1 ) u - £ ( s e ( w ] | s u = x ) = x 

= ( x - ( z - x ) ) u w b y ( 3 . 2 ) 

= ( x z ) u w 

= ( x - u - z ) u w s i n c e x « ( u ] 

= x u w ( u z ) u w b y ( 3 . 2 ) 

= " u w ' t z u w ^ z s i n c e ^ t z u w ^ z " ( U - E ( v e ( z ] | v t = t ) ) u w = ( u z ) u w . 

S o we h a v e 
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( 3 . 1 3 . 2 ) x
u w ^ t z u w W z ^ w ^ u w ^ t z u w ^ z i n ( S u w ' s > ' 

A s a c o n s e q u e n c e o f ( 3 . 1 3 . 1 ) a n d ( 3 . 1 3 . 2 ) w e g e t 

x u w ' * t z u v * u v t z x u v = x u w · ^ t z u w t t z i n · S u w ' - ) ' 

T h i s m e a n s t h a t t h e c o n d i t i o n ( i ) o f T h e o r e m 2 . 3 i s s a t i s f i e d 

i n y ( L , R ) . 

N o w w e p r o v e t h e c o n d i t i o n ( i i ) . L e t ( χ , ζ ) , ( y , t ) , ( u , w ) e R 

a n d s e ( u ] . T h e n w e g e t t h e f o l l o w i n g : 

* y t x z * x z y t * u w x z s u w = ' y t x z ' x z y t ( χ Σ ( ν € ( w ] I v ' u = s ) ) x z 

" V x z 0 x z y t ( X " r ) x z w h e r e r : = E ( v 6 ( w ] I v u = s ) 

- * y t x z ( y y f * x z y t < x - r > x z > s i n c e y y t i s t h e u n i t i n ® y t 

- * y t x z ( y y t * ' ^ y t x z ^ x z y t ( x ' r } x z * L e m m a 3 · 1 0 

= ( x - E ( v e ( t ] | v - y = y ) ) x z · ( x - E ( v e ( t ] I v y = y E ( v e ( ζ ] | ν · χ = χ τ ) ) ) χ ζ 

= ( x - E ( v e ( t ] I v y = y ) ) x z - j : ( v e ( t ] | v - y = y £ ( v e ( z ] | ν · χ = χ τ ) ) ) χ ζ 

= ( χ · t - £ ( v e ( t ] I v - y = y ) - £ ( v e ( z ] | ν · χ = χ τ ) ) ) χ ζ s i n c e y t = y 

= ( x - I ( v e ( t ] | v y = x y ) - £ ( v e ( t ] | v - y = y E ( v e ( ζ ] | ν · χ = χ τ ) ) ) χ ζ 

s i n c e b y L e m m a 3 . 1 2 , x - £ ( v e ( t ] | v - y = x - y ) = x - t 

= ( x - I ( v e ( t ] I v y = x - y y £ ( v e ( ζ ] | ν · χ = χ · r ) ) ) χ ζ b y L e m m a 3 . 9 

= ( x - £ ( v e ( t ] I ν · y = y · χ · £ ( v e ( ζ ] | ν · χ = χ τ ) ) ) χ ζ 

= ( x - I ( v € ( t ] | v - y = y x - r ) ) x z 

s i n c e b y d i s t r i b u t i v i t y ( 3 . 1 ) , X ' E ( v e ( z ] I v - x = x r ) = x - r 

= ( x - Z ( v e ( t ] I v - y = y - x - y - r ) ) x z 

= ( x - Z ( v e ( t ] I v y - y x ) - E ( v « ( t ] | v - y = y r ) ) x z b y L e m m a 3 . 9 

= ( x · t · £ ( v e ( t ] I v - y = y r ) ) x z s i n c e , 

b y L e m m a 3 . 1 2 , x - £ ( v e ( t ] | v - y = x - y ) = x - t 

= ( x - Z ( v e ( t ] I v - y = y - r ) ) x z s i n c e £ ( v e ( t ] | v y = y r ) t 

= f x ] [ ( v € ( t ] I v - y = y £ ( v e ( w ] I v - u = s ) ) l b y d e f i n i t i o n o f r 
* ' xz 

= V x z 0 u w y t s u w b y d e f i n i t i o n ( 3 . 3 ) . 

B y T h e o r e m 2 . 3 t h i s c o m p l e t e s t h e p r o o f . • 

A l e f t n o r m a l b a n d o i d t h a t i s t h e s u m o f a s e m i l a t t i c e 

s y s t e m f ( L , R ) w i l l b e d e n o t e d b y Β ( L , R ) . T h e s e t o f 
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elements of this bandoid will be denoted by B(L,R). 
3.14 Example. Let L be the lattice pictured below 

[a 

0 
Figure 3.15. 

and let R = {(1,1),(b,1),(c,1)}. The bandoid B(L,R) is 
presented in the picture below: 

Figure 3.16. • 
3.17. Example. Let L be the four element chain {l,a,b,0} 

with OSjbSja^l and R={ (1,1), (a, 1) , (b, a) } . The bandoid 
B(L,R) is pictured below: 

Figure 3.18. 
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