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CONSTRUCTIONS OF LEFT NORMAL BANDOIDS

Introduction

The idea of investigation of left normal bandoids arises
from the study of dissemilattices.

A dissemilattice (B,+,*) 1is a set B with two binary
operations such that the reducts (B,+) and (B, ‘) are semi-
lattices and the identity

(xty) -2z = (x-2)+(y 2)
is satisfied in (B,+,°).

Dissemilattices form one of the most important classes of
modals - idempotent entropic algebras with additional semi-
lattice structure (for details see [13]). Dissemilattices may
be regarded as distributive lattices for which the requirement
of absorption and one of distributive laws have been dropped.
The name "dissemilattice" is intended to recall the presence
of two semilattice structures and the fact that the one dis-
tributes over the other. The algebras are known under the name
of meet-distributive bisemilattices as well ((3), [6] - [12]).

A dissemilattice which satisfies

x+(y-2z) = (xty)- (x+z)
is said to be distributive.

Distributive dissemilattices are Plonka sums of distribu-
tive lattices ([4], [5])). The role of the partition operation
for these algebras is played by the operation - defined as
follows:

Xoy = X+(X'Y).

In [12] the algebra (B,°) obtained from a dissemilattice

(B,+,:) was called a Halkowska algebra. In general, the
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operation o is very useful in describing the 1lattice and
semilattice replicas of a dissemilattice (B,+,-). It plays an
important role in the structure theory of dissemilattices
([9]}, [10]). .Elementary properties of (B,-) were discussed in
[2]. A deeper investigation was undertaken in [12]. In parti-

cular it was shown in {12] that (B,°) satisfies the following
identities:

(B1) X X=X,

(B2) x-(xy) = xy,

(B3) x (y-2) = (xy)-(y-2),
(B4) (x-y):z = (x-2)y,
(B5) (x-y)-z = (x-2)-(y-2),
(B6) x-(y-z) =x-(y-(x-2)).

A groupoid (B,-) satisfying the identities (B1)-(B6) was
called in [12] a left normal bandoid. In the present paper
left normal bandoids will often be called briefly bandoids. As
was shown in [12], the variety of left normal bandoits is ge-
nerated by the class of all Halkowska algebras of dissemi-
lattices. The name of left normal bandoids is motivated by the
observation that they form a non-associative generalization of
left normal bands. In [15] it was shown that the only proper
subvarieties of the variety of left normal bandoids are the
four varieties of left normal bands.

This paper is first from a series of papers studying the
structure of left normal bandoids. We describe here some
constructions of left normal bandoids. The paper is divided
into three sections. The first one is a collection of basic
notions and results about left normal bandoids, mainly from
{12]. Section 2 presents a general method of constructing left
normal bandoits from a family of semilattices with wunits and
homomorphisms between them, generalizing the construction
given in [12]. In Section 3 the general construction from
Section 2 is specified to construct a left normal bandoid from
a family of principal ideals of a complete lattice (L,+,-)
satisfying the distributive law
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x-):(yi | ieI) = ):(x-yi | ieI).

In subsequent papers we will use these constructions to
study subdirectly irreducible left normal bandoids.

For more information concerning left normal bandoids we
refer the reader to [12]. [13], [15] and for basic algebraic
concepts to [1].

1. Preliminaries

The aim of this section is to recall some known facts
concerning left normal bandoids which will be used in the
later sections. First we recall some definitions. (See [12],
(13]).

Let B = (B,-) be a left normal bandoid. For x,y in B
denote xy:=x-y. For x in B, the mappings R(x):B — B;
y —» yx and L(x):B — B; y — xy are known as right and
left multiplications respectively. As was remarked in [12],
the submonoid (T(B),o,idB) of the monoid of all mappings
from B to B (under functional composition) generated by
{R(x) | xeB} is a semilattice with unit. For each x in B, the
mapping L(x):(T(B),°) — (B,'); a » ax is a homomorphism
({12, Proposition 2.1)). The image xT(B) of T(B) under the
homomorphism L(x) is called the orbit of x in B. Since T(B) is
a semilattice with unit and L(x):(T(B),°); a +ax 1is a homo-
morphism, the following remark is evident.

1.1. Remark [12]. For x in B, (xT(B),-,x) is a semi-
lattice with unit. s

1.2. Remark [12]. B is the union of the orbits of its
generators. [ ]

1.3. Proposition ([12, Proposition 2.2]). For x, y in B,
the mapping L(x):(YT(B), ) — (XT(B),‘); 2 +— xz is a semi-
lattice homomorphism. ]

Let (L(B),o,idB) be the submonoid of the monoid of all
mappings from B to B generated by {L(x) | xeB}. The next

corollary follows by simple induction and Proposition 1.3.
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1.4. Corollary. For x, y in B and a in L(B), the mapping
L({a):(yT(B), ) — ((ay)T(B),-); z +m az is a semilattice
homomorphism. L]

1.5. Proposition (12, Proposition 2.3]). The relation = on
B defined by
XSy & X=yX
is a partial order on B, and xsy if and only if the orbit of
x is contained in the orbit of y. =

Note that the relation s restricted to an orbit of (B,-)
is the usual partial order of the semilattice (xXT(B),").
Evidently, if (B,:) 1is a left zero semigroup, then (B,s) is
an antichain.

In the sequel we use the following notation. Instead of
Xsy we sometimes write ysx. For xsy and x*y we use the symbol
X<y Or y>X.

1.6. Remark. For %X, Y in B the following conditions are
equivalent:

(1) xeyT(B),

(ii) x=yx,

(iii) x=yz for some ze€B,

(iv)  xsy,

(v) xT(B)syT(B).

Proof. Observe that (i) implies (ii) since y‘ plays the
role of unit in (yT(B),:). The implication (ii) = (iii) is
obvious. By definition of an orbit, (iii) implies (i). So
(i) & (ii) & (iii). Moreover, in view of Proposition 1.5,
(il) & (iv) & (V). [ ]

1.7. Remark. For X, Yy, 2 in B, x=sy implies zxszy and
X2syz.

Proof. Let x=y. Note that ZXsZYy by Proposition 1.3.
Furthermore
(yz) (xz2) = (yx)z by (B5)
= X2 since x=y.
Consequently xzsyz.
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1.8. Proposition. Let x,xl,yeB with X, =X, Then

XY = X, (xy) = xl-L(x)y.
Proof. Note that, since (xT(B),-) 1is a semilattice and
xy,xlexT(B), we have
X, (xy) = (xy)x,.

Hence, using (B4) and the fact that «x =XX,, we obtain

1
xl(xY) = (xxl)y = x1Y'

The equality xl(xy) = xl'L(x)y holds by definition of L(x).m=

In the sequel, right normalized products (xl(xz...

"‘(xn-lxn)"')) of elements of a left normal handoid will be

written simply as x eeoX

1%2 n-1%n"

1.9. Proposition [12, Lemma 4.6]. For elements X Xpe oo Xy

of left normal bandoid, and for 1sisn, one has
XiXgoooXg g XXy qoe Xy = X XgooaXg X 000X .
1,10, Proposition ([12, Corollary 4.4]). Left normal
bandoids generated by pairs of elements are associative. =

1.11. Corollary. For all x, v in B
(xy)x = (xy)y = x(yx) = xy.
Proof. Propositions 1.9 and 1.10. (]

2. A construction of left normal bandoids from semi-

lattices and homomorphisms between them

In this section we describe a method of constructing left
normal bandoids from a family of semilattices and
homomorphisms between them, and show that each 1left normal
bandoid may be represented uéing this method. The last result
was essentially proved in [12], but the general construction
was not described there.

2,1, Definition., A semilattice system is a triple
(I'{éi)iel'{¢ij}i,jel)' where for each i, j, X in I

(i) 8 = (Si,-,l) is a semilattice with unit;

(ii) Qij:(si;-) — (sj") is a semilattice homomorphism;
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iii) ¢, = ¢. ;
(. ) 1k|sinsj ¢]k|sinsj’
(iv) x-¢kiy = x-¢kjy for every x in Sinsj;

(v) ¢ii = ids.. ]

i
Note that if xesinsj, yes 1 for some i, j, k, 1 in I,
then x-¢ki = x-¢ljy. Indeed, by 1.1 (iv) x-¢kiy = x-¢kjy,

and by 1.1(iii) ¢kjy = ¢ljy. Thus x-¢kiy = x-¢1jy. This

justifies the following

2.2. Definition. Let ¥ = (I,{S;};.1/{9; be a

ij 1 jEI)
semilattice system. Define a binary operation on the set

= \USs; as follows. For xeS,, yeS
ieI

jl ileIl
Xy = x'¢tir

where the symbol - on the right hand side denotes multiplica-

tion in §i' Then the groupoid 8=(S,-) 1is called the sum of

the system ¢. (]

Note that for x, y in Sir XY in S coincides with x:y in
S -

2.3. Theorem. The sum S of a semilattice system

(I,{§. I,{¢lj}1 jEI) is a (left normal) bandoid if and only

if for all i, j, k in I, x in si

(1) X $yi054% = X051y
and

(1) 9530550, = 053045

2.4, Remark, Note that condition (i) is equivalent to
x-(lj-x)=x-1j and the condition (ii) to 1i-(1j-(1i-y))=
_11'(1j'Y) for all yesk.

Proof. (3) First we prove that fhe condition (i) is
satisfied. Let 1i,jeI and Xes, . As a consequence of the
assumption that S is a bandoid, and by Corollary 1.11, we get
x-(lj-x)=x-1j. By Remark 2.4 this completes the proof of (i).

To prove (ii), assume that i,j,keI and yeSk. Since S is a
bandoid, by Proposition 1.9 we have 1i-(1j-(1i-y))=1i-(1j-y).
Thus, by Remark 2.4, (ii) holds.
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(€) Let i,3,kel, xesi, yesj, zesk. Using Definition 2.2

one obtains

x~x=x-¢iix=x, since ¢ id and §i is a semilattice, and

ii~%s

x-(x-y)=x-(x-¢jiy)=x-¢jiy since §i is a semilattice
=x-y.

Furthe;

(xy)-(y-2) = (x'¢ti)'¢ji(Y'¢ka)

= (x-¢jiy)-(¢jiy-¢ji¢ka) since ¢ji is a homeomorphism
= X'(¢ti'¢ji¢ij) since §; is a semilattice
= x-¢ji(Y'¢ka) since ¢ji is a homomorphism
= x-(y-z).

(x-y)-z = (X'¢ti)'¢ki2
= (x-¢kiz)-¢jiy since §i is a semilattice
= (x-2)'y.

Thus the identities (Bi) -~ (B4) are satisfied in S. To
prove (B6) and (B5) we will use conditions (i) and (ii) as
well.

Now x-(y-(x-2)) = x'¢ji(y.¢ij(x.¢kiz))

= x'(¢ti'(¢ji¢ijx-¢ji¢ij¢kiz)) since ¢ji’ ¢ij are homo-
morphisms

= ¢jiy-(x-¢ji¢ijx)-¢ji¢ij¢kiz since §iis a semilattice

= ¢jiy-(x-¢jilj)-¢ji¢ka by (i).and (ii)

= x'(¢jiy-¢ji1j)-¢ji¢ka since S; is a semilattice

= x-¢ji(y-1j)-¢ji¢ka since ¢ji is a homomorphism

= x.¢jiy-¢ji¢ka since 1j is the unit in §j,

x-(y-2).
It follows that (B6) holds in S. It remains to prove the
validity of (B5). First we prove

x-(y'x) = x.¢ji(y.¢ijx) = x.(¢jiy.¢ji¢ijx)

¢jiy'(x'¢ji¢ijx)

¢jiy.(x'¢jilj) by (i)
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x ¢]1y ¢31 j
o = x'¢ji(Y'1j) = x'¢jiy =XY.
So the identity
(2.3.1) X (y'x)=x'y
holds in §.

Now note that (B1l) and (B3) imply
(2.3.2) (x+2)-z2 = (x-2):(2'2) = %X (2°2) = %2

As a consequence of (B5), (2.3.2) and (2.3.1) we get that
(x-2)-(y-z) = (x2) (Y- ((x-2)-2)) = (x-2)-(y-(x-2)) = (x°2)y.
Therefore (B6) holds in S as well. "

2.5, Theorem. Every left normal bandoid is the sum of some

semilattice system ¢ = (I’{gi}iel’{¢ij}i,jel)'

Proof. Let I be a set of generators of a 1left normal
bandoid B. For x,yeI, let ¢xy:=L(y):xT(B) — yT(B); 2z — Y2z
and §x:=(xT(B),-,x). Then B is the sum of the system
y=(I'{§i}ieI’{¢ij}i,jeI)' by Remarks 1.1, 1.2 and Propositions
1.3, 1.8. .

2.6. Corollary. A groupoid (G,-) i~ a left normal bandoid
if and only if it is the sum of a semiiattice system satisfy-
ing conditions 2.3(i) and 2.3(ii). [

Now we will consider left normal bandoids for which each
orbit is contained in one that is maximal under set theoreti-
cal inclusion. Note that such a bandoid B is the sum of the
system (I'{§i}ieI'{¢ij}i,jeI)’ where I is the set of all
elements which determine maximal orbits, and for x,yel, ¢xy
and §x are defined as in proof of Theorem 2.5. For these
bandoids a graphical representation is given by A. Romanowska
and J. Smith in [12]. Orbits in a bandoid are semilattices, so
products of elements lying within a single maximal orbit are
given by the Hasse diagram of this orbit. To specify the
remaining products, it suffices to indicate the semilattice
homomorphisms between maximal orbits. The actions of these
homomorphisms are indicated on the labelled Hasse diagram of
the disjoint union of maximal orbits by means of arrows. If an
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element appears in two distinct maximal orbits, then the arrow
between the element in the first orbit and the same element in
the second orbit is omitted. As examples, the free left normal
bandoid on {x,y} is given by

X y

Xy yx
Figure 2.7
and the Halkowska algebra of the dissemilattice
({a,b,c,d},+,-) with ds.cs.bs.a and cs as b= d is given
by
a
b <
d d
Figure 2.8

In papers of this series we use a modification of this
representation. The difference is that, if maximal orbits are
not disjoint, then in the modified representation their
diagrams are not disjoint either. As example the left normal

bandoid pictured in Figure 2.8 is given by
a

b c
. d
Figure 2.9

3. Constructing 1left normal bandoids from a complete
lattice satisfying a generalized distributive law

In this section we use the general construction described
in Section 2 to construct left normal bandoids from principal
ideals of a complete lattice L=(L,+,') satisfying the fol-
lowing distributive law:

(3.1) x-{j(yi | ieI) = 2(x-yi | ieI).
This construction will then play an essential role in building
up subdirectly irreducible left normal bandoids.

Let L=(L,+,') be a complete lattice satisfying the
distributive law (3.1). The usual partial order of the lattice
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L will be denoted by Sre The greatest and 1least elements in
(L,SL) are denoted by 1 and 0 respectively.
Define a family of disjoint semilattices with units as

follows. For (x,y) in = let

(3.2) §XY§( (x},-,%x),

where (x] denotes the principal ideal of L generated by x and
is the meet operation of the lattice L restricted to (x]. If

ve(x] then the corresponding element of Sxy is denoted by vxy'

Obviously 51 is isomorphic to (L,-,1). The elements of S1,

will be written without indices, i.qg., x:=x_..

For (x,y), (2,t) in Sp the mapping ¢x$:tzsxy—+ Szt is
defined as follows:
(3.3) ¢xyztuxy:=(z-2(ve(y] | v-x=u)) ..
3.4. Remark. For every (x,y)esL
(1) Pxy11Y%y = L(Ve(y] | v-x=u)
and
(ii) ¢11xyu11 = (x-u)xy. =
3.5. Remark. For all (x,y),(z,t)esL,
¢xyztuxy = ¢11zt¢xy1-uxy' .
3.6. Remark. For every (x,y)esL
Pxy11¥xy = Y .

We will prove that for every Res, the triple

(3.7)  #(LR) = (RiASuud(y vy er' Buyzth (x,y), (2,t) €”)
is a semilattice system. Note that since all Sxy are pairwise

disjoint we do not need to check 2.1(iii) and 2.1(iv).

3.8, Lemma. For every (x,y)esL, the mapping ¢xyxy is the
identity mapping on sxy'
Proof. Let (x,y)esL and ze(x). By (3.3) we have

¢xyxyuxy:=(x-2(ve(y] | v-x=u))xy.
Since L satisfies the distributive law (3.1), this implies that
¢xyxy(uxy) = uxy' [ ]
It remains to show that the mappings ¢ are semilattice

xyzt
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homomorphisms. First we prove the following lemma.

3.9. Lemma, For every (x,y)esL and u,we(x],
L(ve(y]l | v-x=u-w) = (L(ve(y) | v-x=u))-(L(ve{y] | v'x=w)).

Proof. Let us define

a := L(ve(y) | v-x=u-w),

b := T(ve(y] | v:-x=u),

c = T(ve(y] | v-x=w).
By distributivity (3.1) of L it follows that a-x=u-‘w, b-x=u
and c-x=w. Therefore (b'c)-x=u-w, and since b-ce(y], it fol-
lows that
(3.9.1) b-csLa.
Since a+be(y] and (a+b) 'x = a-x+b'x = u-wtu = u, we have
that a+bsLb, whence a+b=b. Consequently

(3.9.2) asLb.
Analogously we prove that
(3.9.3) ach.

Now, (3.9.1), (3.9.2) and (3.9.3) imply a=b-c, which completes
the proof. [ ]

3.10. Lemma, For all (x,y),(z,t)esL, the mappings ¢
are semilattice homomorphisms.

xyzt

Proof. Let (x,y),(z,t)esL and u,we(x]. By definition

(3.3)
¢
Using Lemma 3.9 we obtain
bryzt (U W yy = (2 (T(VE(y] | vox=u)) - (L(ve(y] | v-x=w)),,.

Since L is a lattice it follows that
¢xyzt(u'w)xy= ((z- (Z(ve(yl| v-x=u)))-(z: (L(ve(y]] VoX=W)))) 4
Therefore, by (3.3), ¢ ¢ ¢

xyzt(u-w)xy = (z-Y(ve(y] | v-x=u-w))zt.

xyzt (M) yy = CuyatUxy PxyztWxy

3.11. Corollary. Let RssL. The triple ¢(L,R) defined by
(3.7) is a semilattice system.

Proof. Lemma 3.8, Lemma 3.10. [ ]

The sum of the system ¢(L,R) turns out to be a bandoid.
To prove this we need the following lemma.
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3.12, Lemma, Let x,y,zel. with Xs y. Then
z-L(ve(y] | v-x=2-x) = z-y.

Proof. Obviously YT(ve(y] | v-x=z-x)sLy. Hence
z-T(ve(y] | v-x=z-x)st-y.
Oon the other hand, since z-ye(y] and (z'y)'x=z-x, we have
z-T(ve(y] | VeX=2:X)z 2"Y.

3.13. Theorem, Let RSSL. The sum of the system ?Y(L,R)

defined by (3.7) is a left normal bandoid.

Proof. In view of Theorem 2.3, it suffices to prove that
the conditions (i) and (ii) of this theorem are satisfied in
¥(L,R). First we show that (i) holds.

Let (u,w),(t,z)eR and xe(u). Since ¢ and

uwtzxuwestz

t is the unit in § it follows that ¢ t in the

tz tz’ uwtzXuw” Ttz
semilattice (Stz,s). Hence, by Lemma 3.10, ¢tzuw¢uwtzxuws
s¢tzuwttz in (Suw,s). Thus

(3.13.1) Xow' Pezuwfuwtzuw = uw Ptzuwbtez 1P (Syyr3)-

Oon the other hand
Xow PtzuwPuvtzXuw = xuw-(u‘z(ve(z]| v-t=t T (se(w]] s-u=x)))uw
zxuw-(u-z-z(se(w] | s-u=x))uw
since z-Y(se(w] | s-u=x)e(z] and
(z-L(se(w] | s-u=x))-t = (t-z) -L(se(w] | s-u=x)
= t-Y(se(w] | s-u=x).

Now xuw-(u-z-Z(se(w] | s-u=x))uw

= xuw-(z-x)uw since by (3.1) u-YI(se(w] | s-u=x)=x
= (x(2:%)) 4 by (3.2)
= (X 2)yy

= (xru-z) o since xe(u]
= xuw-(u-z)uw by (3.2)

Xow Ptzuwtez SiNCe  Op, b= (W E(ve(z]|v-t=t)) =(u-2) .

So we have
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(3.13.2) ¢

As a consequence of (3.13.1) and (3.13.2) we get
¢ ttz
This means that the condition (i) of Theorem 2.3 is satisfied
in ¥(L,R).

Now we prove the condition (ii). Let (x,z),(y,t),(u,w)eR

Xow PrzuvPuwtz®uw™uw Ptzuwttz 10 (SyurS)-

s
in (s __,=)

. X = .
xuw ¢tzuw uwtz uw xuw ¢tzuw

and se(u]. Then we get the following:

9 tnz® =¢ (x-L(ve(w] | v-u=s)),.

ytxz xzyt¢uwxzsuw ytxz¢xzyt

¢

= ¢ytxz xzyt(x'r)xz where r:=E(VE (w) | v-u=s)

¢ytxz(yyt.¢xzyt(x-r)xz) since yyt is the unit in §yt

N ¢thz(yyt)'¢ytxz¢xzyt(x'r)xz) by Lemma 3.10
=(x-L(ve(t]| v-y=¥))xz.(x.£(ve(t]| v-y=y-T(ve(z]| v.x=x.r)))xz
=(x-L(ve(t] | v'y=y)),, L(ve(t] | v-y=y-L(ve(z] | v-x=x'1))),,

= (x-t-L(ve(t) | v-y=y) -L(ve(z) | v-x=x-r)))xz since y-t=y

(x-L(ve(t]]| v-y=x-y) -L(ve(t]| v-y=y-L(ve(z]] v-x=x-1))),,

since by Lemma 3.12, x-F(ve(t] | v-y=x-y) = x-t

(x-L(ve(t) | viy=x-y-y-L(ve(z] | v-x=x-r)))xz by Lemma 3.9

(x-IL(ve(t) | v-y=y-x-L(ve(z] | v:x=x'1))) .
=(x-L(ve(t]] v-y=y'x-1))_,

since by distributivity (3.1), x-f(ve(z] | v-x=x'r) = x'r
‘L(ve(t) | viy=y-xy-r)) .

]
Lown)
b3

1]
~
»

‘L(ve(t] | viy=y-x)-E(ve(t] | v-y=y-r))xz by Lemma 3.9

il
—~
x

“t-T(ve(t] | v-y=y-r))xz since,

by Lemma 3.12, x-T(ve(t] | v-y=x-y) = x-t

Il
Pown)
3

‘E(ve(t] | v-y=y'r)),, since EL(ve(t] | viy=y'r) s  t

= (x-L(ve(t] | v-y=y-L(ve(w] | v-u=s)))xz by definition of r
= ¢ytxz¢uwytsuw by definition (3.3).
By Theorem 2.3 this completes the proof. .

A left normal bandoid that is the sum of a semilattice
system ¢(L,R) will be denoted by B(L,R). The set of
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elements of this bandoid will be denoted by B(L,R).
3.14 Example. Let L be the lattice pictured below

1
a

b c
o]

Figure 3.15.
and let R = {(1,1),(b,1),(c,1)}. The bandoid B(L,R) is
presented in the picture below:

Figure 3.16. =

'3,17. Example. Let L be the four element chain {1,a,b,0}

with OsLbsLasLl and R={(1,1),(a,1),(b,a)}. The bandoid

B(L,R) is pictured below:

1 ai
Opa ]
,\‘ b
b ’ ai
oba 0 > oai

Figure 3.18.
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